JP6379709B2 - 信号処理装置、信号処理方法及びプログラム - Google Patents

信号処理装置、信号処理方法及びプログラム Download PDF

Info

Publication number
JP6379709B2
JP6379709B2 JP2014125049A JP2014125049A JP6379709B2 JP 6379709 B2 JP6379709 B2 JP 6379709B2 JP 2014125049 A JP2014125049 A JP 2014125049A JP 2014125049 A JP2014125049 A JP 2014125049A JP 6379709 B2 JP6379709 B2 JP 6379709B2
Authority
JP
Japan
Prior art keywords
noise
spectrum
sensor signal
sensor
moving object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014125049A
Other languages
English (en)
Other versions
JP2016003975A (ja
Inventor
美智代 松井
美智代 松井
前野 蔵人
蔵人 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2014125049A priority Critical patent/JP6379709B2/ja
Publication of JP2016003975A publication Critical patent/JP2016003975A/ja
Application granted granted Critical
Publication of JP6379709B2 publication Critical patent/JP6379709B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、信号処理装置、信号処理方法及びプログラムに関する。
動体検知センサが、車両の速度計測及び位置検知、航空機追尾、医療、及びセキュリティ等の様々な分野で活用されている。動体検知センサは、人間、動物又は車等の動体の有無を判定すると共に、歩行状態又は静止状態等の状態を判定することが可能である。動体検知センサを用いたサービスが普及、拡大しつつある今日、動体検知センサの精度を向上させるための技術が求められている。
センサの精度向上に関して、下記特許文献1では、音声センサにおいて、無音時に得られた音声信号のパワースペクトルから雑音スペクトルを推定して、得られた音声信号から雑音スペクトルをスペクトル減算することで、雑音を除去する技術が開示されている。
特許第3961290号公報
動体検知センサにおいても、音声センサにおける雑音に対応する、ノイズが存在すると考えられる。例えば、動体検知センサに含まれる回路からノイズが発生すると考えられるため、複数の動体検知センサ間で発生するノイズが異なり得るため感度のバラつきが生じてしまう。動体検知センサの精度を向上させるためには、このような感度のバラつきが較正されることが望ましい。そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、動体検知センサの感度のバラつきを較正することが可能な、新規かつ改良された信号処理装置、信号処理方法及びプログラムを提供することにある。
上記課題を解決するために、本発明のある観点によれば、動体検知センサから出力されたセンサ信号に基づいて前記動体検知センサの検知対象範囲内における動体の有無を判定する動体判定部と、前記動体判定部により動体が存在しないと判定された区間の前記センサ信号のスペクトルに基づいて雑音スペクトルを推定する雑音推定部と、前記雑音推定部により推定された前記雑音スペクトルに基づいて前記センサ信号の内部雑音成分を補正する雑音補正部と、を備える、信号処理装置が提供される。
前記動体判定部は、センサ信号に関する特徴量の時間微分値の絶対値を閾値判定することで動体の有無を判定してもよい。
前記センサ信号に関する特徴量の時間微分値とは、前記センサ信号の瞬時振幅の時間微分値であってもよい。
前記センサ信号に関する特徴量の時間微分値とは、前記センサ信号の瞬時振幅の区間平均値の時間微分値であってもよい。
前記雑音推定部は、前記センサ信号のスペクトルを一次近似することで、前記雑音スペクトルを推定してもよい。
前記雑音推定部は、前記センサ信号のスペクトルを周波数−振幅特性の両対数スケール上で一次近似することで、前記雑音スペクトルを推定してもよい。
前記雑音推定部は、前記センサ信号のスペクトルを2以上の周波数帯に分けて一次近似することで、前記雑音スペクトルを推定してもよい。
前記センサ信号のスペクトルは、周波数毎に前記センサ信号の振幅スペクトルを指数平均したものであってもよい。
前記雑音補正部は、基準となる基準雑音スペクトルと推定された前記雑音スペクトルとの相違に基づいて、前記センサ信号の内部雑音成分を基準となる基準雑音成分へ補正してもよい。
前記雑音補正部は、推定された前記雑音スペクトルを前記センサ信号からスペクトル減算することで前記センサ信号の内部雑音成分を除去してもよい。
前記信号処理装置は、前記雑音補正部による補正結果の記録に基づいて、前記動体検知センサの故障を予測する故障予測部をさらに備えてもよい。
前記動体検知センサは、ドップラーセンサであってもよい。
また、上記課題を解決するために、本発明の別の観点によれば、動体検知センサから出力されたセンサ信号に基づいて前記動体検知センサの検知対象範囲内における動体の有無を判定するステップと、動体が存在しないと判定された区間の前記センサ信号のスペクトルに基づいて雑音スペクトルを推定するステップと、推定された前記雑音スペクトルに基づいて前記センサ信号の内部雑音成分を補正するステップと、を含む、信号処理方法が提供される。
また、上記課題を解決するために、本発明の別の観点によれば、コンピュータを、動体検知センサから出力されたセンサ信号に基づいて前記動体検知センサの検知対象範囲内における動体の有無を判定する動体判定部と、前記動体判定部により動体が存在しないと判定された区間の前記センサ信号のスペクトルに基づいて雑音スペクトルを推定する雑音推定部と、前記雑音推定部により推定された前記雑音スペクトルに基づいて前記センサ信号の内部雑音成分を補正する雑音補正部と、として機能させるためのプログラムが提供される。
以上説明したように本発明によれば、動体検知センサの感度のバラつきを較正することが可能である。
一実施形態に係る動体検知システムの論理的な構成の一例を示すブロック図である。 動体検知センサにおける検知感度のバラつきの一例を示す図である。 動体検知センサにおける検知感度のバラつきの一例を示す図である。 本実施形態に係る無人状態について説明するための説明図である。 本実施形態に係る無人判定処理について説明するための説明図である。 本実施形態に係る無人判定処理について説明するための説明図である。 本実施形態に係る雑音スペクトルの推定処理について説明するための説明図である。 本実施形態に係る雑音スペクトルの推定処理について説明するための説明図である。 本実施形態に係る雑音スペクトルの推定処理について説明するための説明図である。 本実施形態に係る雑音スペクトルの推定処理について説明するための説明図である。 本実施形態に係る雑音スペクトルの推定処理について説明するための説明図である。 本実施形態に係るセンサ信号の補正処理を説明するための説明図である。 本実施形態に係るセンサ信号の補正処理を説明するための説明図である。 本実施形態に係る動体検知システム1おいて実行される雑音補正処理の流れの一例を示すフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<1.構成例>
まず、図1を参照して、本発明の一実施形態に係る動体検知システムの構成を説明する。
図1は、一実施形態に係る動体検知システムの論理的な構成の一例を示すブロック図である。図1に示すように、動体検知システム1は、動体検知センサ10、信号処理部20、記憶部30、及び雑音処理部40を有する。
(1)動体検知センサ10
動体検知センサ10は、検知対象範囲内における動体の有無、及び動体の状態を検知するセンサである。例えば、動体検知センサ10は、電波型又は音波型のセンサであってもよく、例えばドップラーセンサにより実現され得る。他にも、動体検知センサ10は、赤外線センサ、加速度センサ等であってもよい。本明細書では、動体検知センサ10は、ドップラーセンサであるものとして説明する。また、動体検知センサ10が出力する信号を、センサ信号とも称する。
ドップラーセンサは、送信波と動体から反射された受信波との周波数差を周波数とする2チャンネルのビート信号を出力するレーダ素子、ビート信号を増幅してデジタル化するADC(Analog-to-digital converter)回路、及びビート信号を周波数解析してドップラーシフト周波数を検出する処理装置を含み得る。なお、ビート信号は、I信号(In-phase signal)及びQ信号(quadrature signal)を含む。レーダ素子及びアナログ回路では、それらを構成する半導体の物性上、熱雑音やショット雑音などの内部雑音(ノイズ)が発生する。特に低周波領域においては、PN接合部のわずかな揺らぎによって発生すると言われているショット雑音の影響により、センサごとに雑音レベルが異なり、検知感度にバラつきが発生し得る。ドップラーセンサ以外の他の動体検知センサについても、同様に内部雑音の影響でバラつきが発生し得る。このため、動体検知センサに関しては、センサごとに発生する雑音を推定して補正することで、バラつきを低減することが望ましい。ここで、図2及び図3を参照して、センサごとの検知感度のバラつきについて説明する。
図2及び図3は、動体検知センサにおける検知感度のバラつきの一例を示す図である。詳しくは、図2では、完全無人状態時の平均瞬時振幅の頻度分布を示している。なお、平均瞬時振幅とは、瞬時振幅の区間平均値を指すものとする。図2に示すように、センサ間で分布が離間しており、センサ間の分散が大きい。また、図3では、完全無人状態時の平均振幅スペクトルを示している。図3に示すように、センサ間で振幅差が生じている。このように、ドップラーセンサの検知感度にバラつきが生じている。ここで、本明細書における完全無人状態の定義について、図4を参照して説明する。
図4は、本実施形態に係る無人状態について説明するための説明図である。図4の左図は、有人状態110、及び無人状態120(不完全無人状態121又は完全無人状態123)の各状態における動体の位置を示している。図4の左図では、動体検知センサ10の、検知限界範囲11及び検知設定範囲13の2種類の検知対象範囲を示している。検知限界範囲11とは、範囲内に動体が存在する場合としない場合とで出力に有意な差が生じる範囲を意味する。検知設定範囲13とは、この範囲内に動体が存在する場合としない場合とで、設定した閾値を出力が超える又は超えないという差が生じる範囲を意味する。閾値の設定によっては、この検知設定範囲13が拡大/縮小する。また、図4の右図は、各状態において得られる動体検知センサ10の出力信号(縦軸は例えば振幅を示し、横軸は例えば時間を示す)を示している。図4に示すように、有人状態110は、検知設定範囲13内に動体が存在する状態を指し、振幅は大きい。不完全無人状態121は、検知設定範囲13内に動体が存在せず、検知限界範囲11内に動体が存在する状態を指し、振幅は小さい。完全無人状態123は、検知限界範囲11内に動体が存在しない状態を指し、振幅はゼロ又はゼロに近いものとなる。完全無人状態123においては、動体に起因する成分が含まれないので、センサの個体差がそのまま出力信号のバラつきに反映されることとなる。
ドップラーセンサ10が出力するI信号V(t)及びQ信号V(t)をそれぞれ次式で定義する。
Figure 0006379709
Figure 0006379709
ここで、上記数式1及び数式2の第1項は、ドップラーシフト周波数を有する信号成分であり、O及びOは直流成分である。n(t)及びn(t)は、雑音成分である。この雑音成分が、感度のバラつきの要因であり、本実施形態における補正対象となる。雑音成分n(t)及びn(t)を、本明細書では次式で定義する。
Figure 0006379709
Figure 0006379709
(2)信号処理部20
信号処理部20は、雑音処理部40により雑音が補正されたセンサ信号について、各種信号処理を行う機能を有する。例えば、信号処理部20は、動体検知センサ10の検知対象範囲内における動体の有無、及び動体の状態を判定する。ここで、信号処理部20は、予めリファレンス(基準)となる信号を用いてモデルを学習する。例えば、信号処理部20は、人間が歩行状態であるときのリファレンス信号を入力とし、人間が歩行状態であることを出力するよう、例えばSVM(Support vector machine)等により学習する。例えば、図4に示した例に関しては、信号処理部20は、有人状態110及び無人状態120を判定するための閾値を学習する。そして、信号処理部20は、雑音処理部40からの出力信号の振幅が閾値を超えた場合に有人状態110であると判定し、出力信号の振幅が閾値を超えた場合に無人状態120であると判定する。このように、動体検知システム1は、リファレンス信号に基づく学習を予め行うことで、検知対象範囲内における動体の有無、及び動体の状態を判定することが可能となる。
(3)記憶部30
記憶部30は、所定の記録媒体に対してデータの記録再生を行う部位である。記憶部30は、例えばHDD(Hard Disc Drive)として実現される。もちろん記録媒体としては、フラッシュメモリ等の固体メモリ、固定メモリを内蔵したメモリカード、光ディスク、光磁気ディスク、ホログラムメモリなど各種考えられ、記憶部30としては採用する記録媒体に応じて記録再生を実行できる構成とされればよい。
本実施形態に係る記憶部30は、動体判定部41、雑音推定部43、雑音補正部45における演算途中の各種数値、及び演算結果を示す情報を記憶する。
(4)雑音処理部40
雑音処理部40は、動体検知センサ10からの出力信号に含まれる雑音について各種処理を行う機能を有する。図1に示すように、雑音処理部40は、動体判定部41、雑音推定部43、雑音補正部45、及び故障予測部47としての機能を有する。
(4−1)動体判定部41
動体判定部41は、動体検知センサ10から出力されたセンサ信号に基づいて、動体検知センサ10の検知対象範囲内における動体の有無を判定する機能を有する。ここでの検知対象範囲とは、図4を用いて上記説明した検知限界範囲11を意味し、動体判定部41は、完全無人状態であるか否かを判定する機能を有する。例えば、動体判定部41は、センサ信号の特徴量を閾値判定することで、動体の有無を判定してもよい。この特徴量としては、例えばセンサ信号の瞬時振幅、瞬時周波数等が考えられる。
ただし、上述したように、センサ信号には、センサごとに個体差がある固有の雑音が含まれ得る。このため、動体判定部41が、画一的な閾値を用いた閾値判定を例えば瞬時振幅に行ったとしても、雑音の影響でその判定結果には疑義が生じ得る。そこで、動体判定部41は、センサ信号に関する特徴量の時間微分値の絶対値を閾値判定することで動体の有無を判定してもよい。この場合、時間的な変化量が閾値判定の対象となるため、動体判定部41は、雑音の影響を軽減して判定を行うことが可能となる。即ち、動体判定部41は、動体の有無の判定を、より精度よく行うことが可能となる。例えば、センサ信号に関する特徴量の時間微分値とは、センサ信号の瞬時振幅の時間微分値であってもよい。他にも、センサ信号に関する特徴量の時間微分値とは、センサ信号の瞬時振幅の区間平均値の時間微分値であってもよい。ここで、図5及び図6を参照して、特徴量の時間微分値の絶対値を閾値判定の対象として用いることの利点について説明する。
図5及び図6は、本実施形態に係る無人判定処理について説明するための説明図である。図5及び図6では、無人状態におけるセンサ毎のセンサ信号の一例、及び有人状態におけるセンサ信号の一例を、それぞれ模式的に示している。より詳しくは、図5では、無人状態及び有人状態において得られるセンサ信号の瞬時振幅の頻度分布を示している。図5において円状の破線で囲まれた部分を参照すると、無人状態のセンサ信号と有人状態のセンサ信号とで広く重複が生じている。つまり、瞬時振幅を閾値判定すると、この重複が生じる部分で誤った判定が生じ得る。一方、図6では、無人状態及び有人状態において得られたセンサ信号の瞬時振幅の時間微分値の絶対値を示している。図6において円状の破線で囲まれた部分を参照すると、無人状態のセンサ信号と有人状態のセンサ信号とで重複が生じる範囲が、図5と比較して小さい。つまり、瞬時振幅の時間微分値の絶対値を閾値判定する場合、瞬時振幅をそのまま閾値判定する場合と比較して、誤った判定が生じる可能性を低減することができる。また、図5と図6とを比較すると、無人状態における各センサ信号の分布間の間隔は、図6の方が近い。つまり、センサ信号の瞬時振幅の時間微分値の絶対値を用いた場合、図6に示したように個体差を無くした上で閾値判定することが可能となり、個体差に起因する誤った判定を回避することができる。
以下では、動体判定部41は、センサ信号の瞬時振幅の区間平均値の時間微分値の絶対値を閾値判定することで、動体の有無を判定するものとして説明する。
上記数式1及び数式2は、直流成分と交流成分とに分解された場合、次式のように表現される。
Figure 0006379709
Figure 0006379709
ここで、v(t)及びv(t)はI信号及びQ信号の交流成分であり、O及びOはI信号及びQ信号の直流成分である。交流成分v(t)及びv(t)は、信号成分s(t)及びs(t)と雑音成分n(t)及びn(t)とにより、次式のように表現される。
Figure 0006379709
Figure 0006379709
ここで、2チャンネル信号v(t)の瞬時振幅|v(t)|は、次式のように表現される。
Figure 0006379709
この瞬時振幅は、時間変動に応じて変動し得る。瞬時振幅に関し、時間変動に対して安定した特徴量として、瞬時振幅の区間平均値を次式で定義する。
Figure 0006379709
動体判定部41は、この区間平均値を閾値判定することで、動体の有無を判定してもよい。この場合、動体判定部41は、瞬時振幅の時間的な変化量を閾値判定の対象とすることで、雑音の影響を軽減して判定を行うことが可能となる。
Figure 0006379709
Figure 0006379709
Figure 0006379709
Figure 0006379709
動体判定部41は、D(t)が閾値Themptyより小さい場合に完全無人状態であると判定し、D(t)が閾値Thempty以上である場合に有人状態又は不完全無人状態であると判定する。なお、以下では、D(t)を完全無人判定特徴量とも称する。
(4−2)雑音推定部43
雑音推定部43は、動体判定部41により動体が存在しないと判定された区間のセンサ信号のスペクトルに基づいて、雑音スペクトルを推定する機能を有する。完全無人状態において得られたセンサ信号には、動体からの影響が含まれていないので、内部雑音の影響がそのまま表れる。このため、雑音推定部43は、動体判定部41により完全無人状態であることが判定された区間のセンサ信号を用いることで、雑音スペクトルを精度よく推定することが可能となる。
雑音推定部43は、センサ信号のスペクトルを一次近似することで、雑音スペクトルを推定する。一次近似の対象となるセンサ信号のスペクトルは、例えば、周波数毎にセンサ信号の振幅スペクトルを指数平均(平滑化)したものである。他にも、一次近似の対象となるセンサ信号のスペクトルは、振幅スペクトルであってもよいし、位相スペクトル若しくはパワースペクトル、又はこれらを指数平均したもの等であってもよい。以下では、雑音推定部43は、周波数毎にセンサ信号の振幅スペクトルを指数平均したものを一次近似することで、雑音スペクトルを推定するものとして説明する。
また、雑音推定部43は、センサ信号のスペクトルを周波数−振幅特性の両対数スケール上で一次近似する。さらに、一次近似の際には、雑音推定部43は、センサ信号のスペクトルを2以上の周波数帯に分けて一次近似する。これは、振幅スペクトルを指数平均したものを周波数−振幅特性の両対数スケールで表すと、2以上の傾きが異なる直線が現れるためである。雑音推定部43は、2以上の周波数帯に分けて一次近似することで、より近似精度が向上し、より精度よく雑音スペクトルを推定することが可能となる。
雑音推定部43は、振幅スペクトルを一次近似するために、まず、完全無人状態において動体検知センサ10から出力されたセンサ信号を周波数の関数に変換する。例えば、雑音推定部43は、動体判定部41により完全無人状態であると判定された、1時刻前のI信号及びQ信号にFFT(Fast Fourier Transform)を適用する。このとき、周波数インデックスnに対するフーリエ係数は、次式で与えられる。
Figure 0006379709
Figure 0006379709
なお、Sは信号の種別(I信号又はQ信号)を示し、NはFFTにかけるデータのサンプル数を示し、jは虚数を示す。また、Wは、位相回転因子を示す。ここでは、ビート信号の時系列信号をΔt(s)間隔で逐次的にFFTを適用したフーリエ係数の時系列情報を扱うため、以降、cS,nはcS,n(t)とし、C(1) S,nはC(1) S,n(t)とし、C(2) S,nはC(2) S,n(t)として、それぞれ取り扱うものとする。雑音は時間変動し得るため、雑音推定部43は、次式に示すように、FFTによって得られたフーリエ係数(振幅スペクトル)を周波数ごとに時間平滑化する。
Figure 0006379709
Figure 0006379709
Figure 0006379709
なお、τは時定数(sec)である。
以下、図7〜図11を参照しながら、雑音推定部43によるスペクトルの一次近似について具体的に説明する。図7〜図11は、本実施形態に係る雑音スペクトルの推定処理について説明するための説明図である。
図7は、センサ信号の振幅スペクトルを周波数ごとに時間平滑化した結果を通常スケールで示している。雑音推定部43は、これを周波数−振幅特性の両対数スケール上で表して一次近似することで、雑音スペクトルを推定する。
図8は、完全無人状態において得られたI信号の振幅スペクトルを時間平滑化したものを、両対数スケールで表示したものである。図8に示すように、センサの雑音振幅の周波数特性が1/fに比例している。また、低周波帯(1〜100Hz)では、周波数帯(1〜20Hzと21Hz〜100Hz)で傾きが異なる。そこで、雑音推定部43は、図8に示すように、周波数スペクトルの周波数帯を2つの帯域(符号201及び符号203)に分割して、両対数スケールでそれぞれ一次近似する。分割した周波数帯ごとの最小2乗法による1次近似推定式は、次式で表現される。
Figure 0006379709
Figure 0006379709
Figure 0006379709
Figure 0006379709
Figure 0006379709
なお、a及びaは、求める一次関数の切片及び傾きを示す。n及びnは、1Hz〜20Hz(符号201)又は21Hz〜100Hz(符号203)に相当する各周波数帯のインデックスを示す。また、周波数分解能Δfは、Δf=fs/Nである。fsはビート信号のサンプリングレートである。
雑音推定部43は、上記数式18〜数式21により一次近似した振幅スペクトルを、雑音スペクトルとする。図7に示した振幅スペクトルについて推定した雑音スペクトルを、両対数スケールで表したものを図9に示し、通常スケールで表したものを図10に示す。雑音推定部43は、異なる動体検知センサ10については、異なる雑音スペクトルを推定し得る。図11に、異なるドップラーセンサについて推定した雑音スペクトルを、通常スケールで表したものを示す。図11に示すように、雑音スペクトルには個体差が存在する。
(4−3)雑音補正部45
雑音補正部45は、雑音推定部43により推定された雑音スペクトルに基づいて、センサ信号の雑音成分を補正する機能を有する。
例えば、第1の補正処理として、雑音補正部45は、推定された雑音スペクトルをセンサ信号からスペクトル減算することでセンサ信号の雑音成分を除去してもよい。雑音補正部45は、次式のようにして、逐次入力される信号の振幅スペクトルから、推定された雑音スペクトルを減算する。
Figure 0006379709
Figure 0006379709
なお、n(a) S,n(t)は推定された雑音を示し、aは分割された帯域(例えば、1Hz〜20Hz又は21Hz〜100Hz)を示す。aS,0 (a)及びaS,1 (a)は、種別Sのセンサ信号について分割された帯域ごとに推定された一次関数の切片及び傾きである。また、sS,n(t)は補正後の振幅スペクトルを示す。以下では、雑音n(a) S,n(t)を、雑音モデルとも称する。
他にも、第2の補正処理として、雑音補正部45は、基準となる基準雑音スペクトルと推定された雑音スペクトルとの相違に基づいて、センサ信号の雑音成分を基準となる基準雑音成分へ補正してもよい。上述したように、信号処理部20は、予めリファレンス信号を用いてモデルを学習する。リファレンス信号に雑音が含まれる場合、センサ信号から雑音が単に除去されただけでは、リファレンス信号と補正後のセンサ信号との間で雑音の有無の差が生じることになり、信号処理部20における判定精度が低下し得る。よって、例えば再度の学習が要される。
そこで、雑音補正部45は、リファレンス信号に含まれる雑音に対応する基準雑音スペクトルを用いて、個体差のある雑音成分を共通の基準雑音成分へ補正することで、リファレンス信号と補正後のセンサ信号との差を低減する。具体的には、例えば、雑音補正部45は、センサ信号から、雑音推定部43により推定された雑音スペクトルを減算した後、基準雑音スペクトルを加算してもよい。他にも、雑音補正部45は、センサ信号に、基準雑音スペクトルを加算した後、雑音推定部43により推定された雑音スペクトルを減算してもよい。また、雑音補正部45は、基準雑音スペクトルから雑音補正部45により推定された雑音スペクトルを減算したものを、センサ信号に加算してもよい。このような処理により、リファレンス信号と補正後のセンサ信号との差が低減されるので、信号処理部20における判定精度が維持される。このため、再度の学習を回避することが可能となる。ここで、図12及び図13を参照して、第1の補正処理と第2の補正処理について比較して説明する。
図12及び図13は、本実施形態に係るセンサ信号の補正処理を説明するための説明図である。図12では、第1の補正処理を行った場合の、補正後のセンサ信号の平均瞬時振幅の頻度分布を示している。図13では、第2の補正処理を行った場合の、補正後のセンサ信号の平均瞬時振幅の頻度分布を示している。図12と図13とを比較すると、共にセンサ間の分散が小さくセンサ間の個体差が改善されている点で同様である。ただし、平均振幅に関しては、図12では減少しており、図13では高く維持されている。
雑音補正部45は、補正後の振幅スペクトルを逆変換して、時間関数に戻した補正後のセンサ信号を出力する。例えば、雑音補正部45は、補正後の振幅スペクトルにIFFT(Inverse FFT)を適用する。なお、雑音補正部45は、後段の信号処理部20における処理によっては、逆変換を省略して出力してもよい。
また、雑音補正部45は、補正結果を示す情報を、記憶部30に記録する。例えば、雑音補正部45は、補正量を示す情報を、時刻に対応付けて記録してもよい。また、雑音補正部45は、過去に推定され記憶部30に記憶された雑音スペクトルを固定的に用いて補正しつつ、新たに推定された雑音スペクトルとの差が閾値以上となった場合に、補正に用いる雑音スペクトルを新たに推定されたものに更新してもよい。雑音補正部45は、この更新時刻、及び新たに補正に用いる雑音スペクトルを示す情報を記憶部30に記録してもよい。
(4−4)故障予測部47
故障予測部47は、雑音補正部45による補正結果の記録に基づいて、動体検知センサ10の故障を予測する機能を有する。例えば、故障予測部47は、雑音補正部45による補正量の変動が少ない場合、又は更新頻度が少ない場合に、故障していないと予測してもよい。また、故障予測部47は、雑音補正部45による補正量の変動が大きい場合、又は更新頻度が多い場合に、故障していると予測してもよい。動体検知システム1は、補正処理のログを蓄積しておくことにより、このような故障予測を行うことが可能となる。
以上、本実施形態に係る動体検知システム1の構成例を説明した。続いて、図14を参照して、動体検知システム1の動作処理例を説明する。
<2.動作処理例>
図14は、本実施形態に係る動体検知システム1において実行される雑音補正処理の流れの一例を示すフローチャートである。
図14に示すように、まず、ステップS102で、動体検知システム1は、雑音モデルを初期化する。例えば、雑音補正部45は、雑音モデルを定数関数で初期化する。
次いで、ステップS104で、動体検知システム1は、完全無人判定特徴量D(t)の初期値を設定する。例えば、動体判定部41は、D(0)=Themptyを設定する。
次に、ステップS106で、動体検知システム1は、時刻tの信号を入力する。例えば、動体検知センサ10は、時刻tにおけるI信号及びQ信号を雑音処理部40へ出力する。
次いで、ステップS108で、動体検知システム1は、FFTを行う。例えば、雑音推定部43は、I信号及びQ信号にFFTを適用して振幅スペクトルを算出する。
次に、ステップS110で、動体検知システム1は、1時刻前である時刻t−1における完全無人判定特徴量D(t−1)を参照する。例えば、動体判定部41は、時刻t−1における完全無人判定特徴量D(t−1)を記憶部30から取得する。
次いで、ステップS112で、動体検知システム1は、D(t−1)<Themptyであるか否かを判定する。これにより、動体判定部41は、時刻t−1の状態が完全無人状態であるか否かを判定する。
D(t−1)<Themptyであると判定された場合(S112/YES)、ステップS114で、動体検知システム1は、周波数毎に周波数スペクトルの平滑化を行う。例えば、雑音推定部43は、上記ステップS108において算出された振幅スペクトルを、時間平滑化する。
次いで、ステップS116で、動体検知システム1は、雑音モデルを推定する。例えば、雑音推定部43は、振幅スペクトルを周波数ごとに時間平滑化した結果を、周波数−振幅特性の両対数スケール上で表して一次近似することで、雑音スペクトルを推定する。このとき、雑音推定部43は、例えば、2以上の周波数帯に分けて一次近似してもよい。雑音推定部43は、推定した雑音モデルを記憶部30に記憶する。
このように、動体検知システム1は、完全無人状態である場合に、入力された信号から雑音モデルを推定する。一方で、D(t−1)≧Themptyであると判定された場合、動体検知システム1は、過去に完全無人状態であった区間の信号を用いて推定され、記憶部30に記憶された雑音モデルを参照して、次のステップS118で用いる。いずれにしろ、動体検知システム1は、完全無人状態であると判定された区間の信号を用いて推定された雑音モデルを用いて、次のステップS118における処理を行う。
ステップS118で、動体検知システム1は、雑音を補正する。例えば、雑音補正部45は、推定された雑音スペクトルをセンサ信号の振幅スペクトルからスペクトル減算することで、センサ信号の雑音成分を除去してもよい。他にも、雑音補正部45は、基準となる基準雑音スペクトルと推定された雑音スペクトルとの相違に基づいて、センサ信号の振幅スペクトルの雑音成分を基準となる基準雑音成分へ補正してもよい。
次に、ステップS120で、動体検知システム1は、IFFTを行う。例えば、雑音補正部45は、補正後の振幅スペクトルにIFFTを適用して、時間関数に戻した補正後のセンサ信号を出力する。雑音補正部45は、補正後のセンサ信号を記憶部30に記憶してもよい。
次いで、ステップS122で、動体検知システム1は、時刻tにおける完全無人判定特徴量D(t)を算出する。例えば、動体判定部41は、補正後のセンサ信号の瞬時振幅の区間平均値の時間微分値の絶対値を算出する。
次に、ステップS124で、動体検知システム1は、完全無人判定特徴量D(t)を記憶部30に記憶する。記憶部30に記憶された時刻t時点の完全無人判定特徴量D(t)は、時刻t+1時点における上記ステップS110で参照される。
以上、本実施形態に係る動体検知システム1の動作処理例を説明した。
<3.まとめ>
これまで、図1〜図14を参照して、本発明の一実施形態について説明した。本実施形態に係る動体検知システム1は、動体検知センサ10の検知対象範囲内における動体の有無を判定し、動体が存在しないと判定された区間のセンサ信号のスペクトルに基づいて雑音スペクトルを推定し、推定された雑音スペクトルに基づいてセンサ信号の雑音成分を補正する。動体検知システム1は、センサの個体差が雑音としてそのまま反映される、完全無人状態のセンサ信号を用いて推定された、雑音スペクトルによりセンサ信号の雑音成分を補正するので、センサ信号の個体差を低減することができる。これにより、動体検知システム1は、動体検知センサ10の感度のバラつきを較正することが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、本明細書において説明した動体検知システム1は、単独の装置として構成されてもよく、一部または全部が別々の装置で構成されても良い。例えば、図1に示した動体検知システム1の機能構成例のうち、記憶部30が、雑音処理部40とネットワーク等で接続されたサーバ等の装置に備えられていても良い。記憶部30がサーバ等の装置に備えられる場合は、雑音処理部40からの情報がネットワーク等を通じて当該サーバ等の装置に送信され、記憶部30に記憶される。そして、雑音処理部40は、ネットワーク等を通じ当該サーバ等に設けられた記憶部30に記憶された情報を参照して各種処理を行う。信号処理部20及び雑音処理部40、並びに雑音処理部40が有する各構成要素についても同様である。
また、上記では、動体判定部41は、雑音補正部45による補正後のセンサ信号を用いて、完全無人判定の評価式D(t)を算出すると説明したが、本発明はかかる例に限定されない。例えば、評価式D(t)は、補正前の時刻tのセンサ信号を用いて算出されてもよい。
なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、コンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。
また、情報処理装置に内蔵されるCPU、ROM及びRAM等のハードウェアに、上記情報処理装置の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供される。
1 動体検知システム
10 動体検知センサ
11 検知限界範囲
13 検知設定範囲
20 信号処理部
30 記憶部
40 雑音処理部
41 動体判定部
43 雑音推定部
45 雑音補正部
47 故障予測部

Claims (14)

  1. 動体検知センサから出力されたセンサ信号に基づいて前記動体検知センサの検知対象範囲内における動体の有無を判定する動体判定部と、
    前記動体判定部により動体が存在しないと判定された区間の前記センサ信号のスペクトルに基づいて雑音スペクトルを推定する雑音推定部と、
    前記雑音推定部により推定された前記雑音スペクトルに基づいて前記センサ信号の内部雑音成分を補正する雑音補正部と、
    を備える、信号処理装置。
  2. 前記動体判定部は、センサ信号に関する特徴量の時間微分値の絶対値を閾値判定することで動体の有無を判定する、請求項1に記載の信号処理装置。
  3. 前記センサ信号に関する特徴量の時間微分値とは、前記センサ信号の瞬時振幅の時間微分値である、請求項2に記載の信号処理装置。
  4. 前記センサ信号に関する特徴量の時間微分値とは、前記センサ信号の瞬時振幅の区間平均値の時間微分値である、請求項2に記載の信号処理装置。
  5. 前記雑音推定部は、前記センサ信号のスペクトルを一次近似することで、前記雑音スペクトルを推定する、請求項1〜4のいずれか一項に記載の信号処理装置。
  6. 前記雑音推定部は、前記センサ信号のスペクトルを周波数−振幅特性の両対数スケール上で一次近似することで、前記雑音スペクトルを推定する、請求項5に記載の信号処理装置。
  7. 前記雑音推定部は、前記センサ信号のスペクトルを2以上の周波数帯に分けて一次近似することで、前記雑音スペクトルを推定する、請求項5又は6に記載の信号処理装置。
  8. 前記センサ信号のスペクトルは、周波数毎に前記センサ信号の振幅スペクトルを指数平均したものである、請求項5〜7のいずれか一項に記載の信号処理装置。
  9. 前記雑音補正部は、基準となる基準雑音スペクトルと推定された前記雑音スペクトルとの相違に基づいて、前記センサ信号の内部雑音成分を基準となる基準雑音成分へ補正する、請求項1〜8のいずれか一項に記載の信号処理装置。
  10. 前記雑音補正部は、推定された前記雑音スペクトルを前記センサ信号からスペクトル減算することで前記センサ信号の内部雑音成分を除去する、請求項1〜8のいずれか一項に記載の信号処理装置。
  11. 前記信号処理装置は、前記雑音補正部による補正結果の記録に基づいて、前記動体検知センサの故障を予測する故障予測部をさらに備える、請求項1〜10のいずれか一項に記載の信号処理装置。
  12. 前記動体検知センサは、ドップラーセンサである、請求項1〜11のいずれか一項に記載の信号処理装置。
  13. 動体検知センサから出力されたセンサ信号に基づいて前記動体検知センサの検知対象範囲内における動体の有無を判定するステップと、
    動体が存在しないと判定された区間の前記センサ信号のスペクトルに基づいて雑音スペクトルを推定するステップと、
    推定された前記雑音スペクトルに基づいて前記センサ信号の内部雑音成分を補正するステップと、
    を含む、信号処理方法。
  14. コンピュータを、
    動体検知センサから出力されたセンサ信号に基づいて前記動体検知センサの検知対象範囲内における動体の有無を判定する動体判定部と、
    前記動体判定部により動体が存在しないと判定された区間の前記センサ信号のスペクトルに基づいて雑音スペクトルを推定する雑音推定部と、
    前記雑音推定部により推定された前記雑音スペクトルに基づいて前記センサ信号の内部雑音成分を補正する雑音補正部と、
    として機能させるためのプログラム。
JP2014125049A 2014-06-18 2014-06-18 信号処理装置、信号処理方法及びプログラム Expired - Fee Related JP6379709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125049A JP6379709B2 (ja) 2014-06-18 2014-06-18 信号処理装置、信号処理方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125049A JP6379709B2 (ja) 2014-06-18 2014-06-18 信号処理装置、信号処理方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2016003975A JP2016003975A (ja) 2016-01-12
JP6379709B2 true JP6379709B2 (ja) 2018-08-29

Family

ID=55223341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125049A Expired - Fee Related JP6379709B2 (ja) 2014-06-18 2014-06-18 信号処理装置、信号処理方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6379709B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067629A (ko) 2018-12-04 2020-06-12 삼성전자주식회사 레이더 데이터를 처리하는 장치 및 방법
JP7234803B2 (ja) * 2019-05-29 2023-03-08 日本電気株式会社 目標信号分離装置、パッシブレーダー装置および目標信号分離方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE456117B (sv) * 1984-11-28 1988-09-05 Hans Hellsten Sett for radaravbildning av ett omrade, inkluderande avbildning av strukturer som er dolda av dielektriska skikt samt radaranleggning for genomforande av settet
JPH01162186A (ja) * 1987-12-18 1989-06-26 Honda Denshi Giken:Kk 人体検知センサ
JPH02228890A (ja) * 1989-03-02 1990-09-11 Mitsubishi Electric Corp 赤外線撮像装置
JPH076837B2 (ja) * 1990-10-26 1995-01-30 株式会社淺沼組 焦電形赤外線センサ
JP3829436B2 (ja) * 1997-10-13 2006-10-04 三菱電機株式会社 Fm−cwレーダ装置
JP3961290B2 (ja) * 1999-09-30 2007-08-22 富士通株式会社 雑音抑圧装置
US7089182B2 (en) * 2000-04-18 2006-08-08 Matsushita Electric Industrial Co., Ltd. Method and apparatus for feature domain joint channel and additive noise compensation
JP2007328738A (ja) * 2006-06-09 2007-12-20 Nippon Telegr & Teleph Corp <Ntt> 物体検知システム、および、物体検知方法
JP5343425B2 (ja) * 2008-07-04 2013-11-13 日産自動車株式会社 物体識別装置及び物体識別方法
JP5889920B2 (ja) * 2012-01-13 2016-03-22 パナソニックヘルスケアホールディングス株式会社 生体試料測定装置
JP5477424B2 (ja) * 2012-07-02 2014-04-23 沖電気工業株式会社 物体検知装置、物体検知方法及びプログラム
JP2014023189A (ja) * 2012-07-12 2014-02-03 Nippon Signal Co Ltd:The 列車制御装置及び雑音低減方法
JP2014052442A (ja) * 2012-09-05 2014-03-20 Yamaha Corp エンジン音加工装置

Also Published As

Publication number Publication date
JP2016003975A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
CN105409241B (zh) 麦克风校准
WO2018141198A1 (zh) 无人机飞行高度的检测方法、装置及无人机
KR20100133830A (ko) 도래각 측정 장치 및 방법
US9431024B1 (en) Method and apparatus for detecting noise of audio signals
US20180188104A1 (en) Signal detection device, signal detection method, and recording medium
US8767193B2 (en) Doppler tracking in presence of vehicle velocity uncertainty
JP6379709B2 (ja) 信号処理装置、信号処理方法及びプログラム
KR101813790B1 (ko) 특징 기반 다중 센서 정보 융합 장치 및 방법
JP2015052491A (ja) 信号処理装置、信号処理方法及びコンピュータプログラム
CN106933247B (zh) 无人机的控制方法、装置及系统
JP6871718B6 (ja) 音源探査装置、音源探査方法およびそのプログラム
US20120326918A1 (en) Motion-based adaptive frequency estimation of a doppler velocity sensor
JP2016114577A (ja) 信号処理装置、信号処理方法及びプログラム
US20170307750A1 (en) Waveform estimation device and waveform estimation method
US20230288551A1 (en) Apparatus and method for determining kinetic information
CN104598361A (zh) 一种性能监控方法和装置
KR20190141321A (ko) 강인 필터, 수축 기법에 기반한 거리 추정 방법 및 시스템
KR20210076412A (ko) 차량 센서 성능 평가 장치 및 그의 성능 평가 방법
KR101473592B1 (ko) 교란 신호 검출 장치 및 방법
KR20190090604A (ko) V2v 통신과 레이다 센서 객체 번호 일치 방법 및 장치
RU2660026C1 (ru) Способ и устройство для калибровки приемника данных измерения
JP5854551B2 (ja) リアルタイム周波数解析方法
CN115047413A (zh) 毫米波雷达的动态校准方法、装置和手持终端
KR101688303B1 (ko) 진동 모드의 파라미터 추정 장치 및 방법
KR101912446B1 (ko) 침입 감지 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees