JP6376697B2 - 光発生装置および光発生方法 - Google Patents

光発生装置および光発生方法 Download PDF

Info

Publication number
JP6376697B2
JP6376697B2 JP2014543330A JP2014543330A JP6376697B2 JP 6376697 B2 JP6376697 B2 JP 6376697B2 JP 2014543330 A JP2014543330 A JP 2014543330A JP 2014543330 A JP2014543330 A JP 2014543330A JP 6376697 B2 JP6376697 B2 JP 6376697B2
Authority
JP
Japan
Prior art keywords
light
resonator
phase
output
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014543330A
Other languages
English (en)
Other versions
JPWO2014065332A1 (ja
Inventor
バーンズ・ティモシー
喜久 山本
喜久 山本
ルーク・ペーター・ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inter University Research Institute Corp Research Organization of Information and Systems
Original Assignee
Inter University Research Institute Corp Research Organization of Information and Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter University Research Institute Corp Research Organization of Information and Systems filed Critical Inter University Research Institute Corp Research Organization of Information and Systems
Publication of JPWO2014065332A1 publication Critical patent/JPWO2014065332A1/ja
Application granted granted Critical
Publication of JP6376697B2 publication Critical patent/JP6376697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1307Stabilisation of the phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4006Injection locking

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、非古典光を発生させる光発生装置および光発生方法、特に、負のウィグナー関数値を有する光を発生させる光発生装置および光発生方法に関する。
量子光学分野においては、光の量子状態を表現する際にウィグナー関数が用いられる。このウィグナー関数は、光が古典的な状態においては、確率密度関数であって負の値をとることはない。古典的な光は、光が生成されるときに光子間に相互作用が全く生じていないときに現れるものであり、古典的な光子間は相互作用がないことから、通常の古典的な光のウィグナー関数値は正である。
しかし、光の間に有効的な相互作用が存在する場合など、非古典的な状態においては、ウィグナー関数は負の値をとることが知られている。負のウィグナー関数値を有する非古典光には、量子コンピューティング(連続変数量子コンピューティング)における演算や情報伝送の手段としての大きな期待が寄せられており、従来、負のウィグナー関数値を有する光を発生させるための手法が提案されている。
鈴木 重成、外3名、"光の量子状態制御"、[online]、[平成24年8月31日検索]、インターネット<URL:http://www2.nict.go.jp/advanced_ict/quantum/about/03kasai.html>
非特許文献1には、スクィーズド光から負のウィグナー関数値を有する非古典光を得る手法が紹介されている。この手法は、スクィーズド光を、所定の反射率を有するビームスプリッタに入射させ、ビームスプリッタにより反射された光の検出をトリガとして、ビームスプリッタを透過した光に対しゲーティング処理を施すことによって、スクィーズド光から負のウィグナー関数値を有する非古典光を得るものである。
しかしながら、上記の手法では、その原理上、負のウィグナー関数値を有する非古典光は所定の確率においてのみ生成される。すなわち、上記の手法では、非古典光は確率論的にのみ生成され、定常的に発生させることはできない、という問題がある。量子コンピューティング(連続変数量子コンピューティング)の一般的実現には、定常的な非古典光の発生が求められており、非特許文献1のような確率的手法とは異なる、負のウィグナー関数値を有する非古典光を発生する新規な手法が求められている。
本発明は、上記課題を解決するためになされたものであり、その目的とするところは、負のウィグナー関数値を有する非古典光を定常的に出力可能な光発生装置、光発生方法を提供することにある。
実施の態様において、両端部に配された一対のミラー部と、当該一対のミラー部に挟まれた量子井戸部とを備え、当該量子井戸部において励起子ポラリトン凝縮体を形成可能な共振器と、前記量子井戸部内に励起子を生成する励起部と、前記共振器から出力される出力光の位相を安定化させる位相安定化部とを備えた光発生装置が提供される。
実施の態様において、両端部に配された一対のミラー部と、当該一対のミラー部に挟まれた量子井戸部とを備え、当該量子井戸部において励起子ポラリトン凝縮体を形成可能な共振器の前記量子井戸部内に励起子を生成する段階と、前記共振器から出力される出力光の位相を安定化させる段階とを備えた光発生方法が提供される。
本発明によれば、負のウィグナー関数値を有する非古典光を定常的に出力することが可能となる。
第1の実施形態の光発生装置の構成を示すブロック図 励起子ポラリトン凝縮体を形成可能な共振器の構成を示す図 共振器の詳細な設計例を示す図 共振器内のエネルギー準位を示すグラフ 共振器内に生成された励起子ポラリトン凝縮体から発せられる光の複素振幅の数値シミュレーション結果を示したグラフ 図5中の矢示点線断面におけるウィグナー関数の様子を示すグラフ 注入同期を施さない共振器内に生成された励起子ポラリトン凝縮体から発せられる光の複素振幅の数値シミュレーション結果を示したグラフ 注入同期を施した共振器内に生成された励起子ポラリトン凝縮体から発せられる光の複素振幅の数値シミュレーション結果を示したグラフ 注入同期を施した高いQ値を有する共振器内に生成された励起子ポラリトン凝縮体から発せられる光の複素振幅の数値シミュレーション結果を示したグラフ シミュレーションパラメータとウィグナー関数の値との関係を示したグラフ 第2の実施形態の光発生装置の構成を示すブロック図 光発生装置の出力光の複素振幅の数値シミュレーション結果を示したグラフ 光発生装置の出力光の複素振幅の数値シミュレーション結果を示したグラフ 光発生装置の出力光の複素振幅の数値シミュレーション結果を示したグラフ 第3の実施形態の光発生装置の構成を示すブロック図 第4の実施形態の光発生装置の構成を示すブロック図 第4の実施形態における共振器に設けられた励起子注入のための電極を説明するための図 第4の実施形態における電子(または正孔)を注入するための電極の形状を説明するための図 第5の実施形態における共振器に配置された金属膜を説明するための図
以下、添付の図面を参照して、本実施形態の光発生装置、光発生方法を説明する。
[第1の実施形態]
[1.光発生装置の構成]
図1を参照して、本実施形態の光発生装置の構成について説明する。同図に示されるように、光発生装置100は、ポンプレーザ1と共振器2と注入同期レーザ3とを備えている。光発生装置100は、これらの構成によってコヒーレントな出力光を発生する装置である。
ポンプレーザ1は、共振器2を励起させるための励起レーザを出射する構成である。例えば、ポンプレーザ1としては、チタンサファイアレーザを採用することができる。チタンサファイアレーザは、出力光の波長を調整可能である。この出力光の波長は、例えば760〜780(nm)程度に調整してもよい。また、ポンプレーザ1の出力は、400〜4000(W/cm)程度以上としてもよい。ポンプレーザ1としてチタンサファイアレーザを採用した場合には、レーザ光の出力として連続出力だけでなくパルス出力を得ることも可能となる。一般に、ポンプレーザ1を効率よく動作させるためには、レーザ媒質に蓄積されているエネルギーを十分に抽出する必要があるために、レーザ光がレーザ媒質内を空間的にむらなく、多数回パスできる構造としておくことが好ましい。
図2は、半導体層からなる共振器2の構造を示している。同図に示されるように、共振器2は、GaAs基板上において、AlAs層の両端部(上下端)に一対の誘電体多層膜反射鏡(DBR)である反射鏡DBRtおよび反射鏡DBRbを備えて形成されている。図2に示される通り、本実施形態の反射鏡DBRtおよび反射鏡DBRbは、AlAs−GaAlAs多層膜で構成されている。反射鏡DBRtおよび反射鏡DBRbの間のAlAs層中には複数の量子井戸QW(GaAs層)が形成されている。反射鏡DBRtおよび反射鏡DBRbの反射率は、後述の強結合条件を満たすほど長く光子を閉じ込められるだけのものでなくてはならない。強結合条件をより確かに実現するために、量子井戸QWは、共振モードの腹の部分に形成されることが好ましい。量子井戸QWには、励起により形成される電子−正孔対の励起子exが存在している。この励起子exは、ポンプレーザ1からのポンピング光によって励起可能な状態となっている。すなわち、ポンプレーザ1は量子井戸QW内に励起子を生成する励起部である。量子井戸QWにおいて、励起子exが励起されると、励起子−光子の強結合状態が作り出す励起子ポラリトンが確認される。
図3は、共振器2の積層膜構造について、より詳細な設計例を示している。同図に示されるように、共振器2は、GaAs基板上の積層膜構造からなっている。共振器2は、両端部に配された一対の反射鏡DBRtおよびDBRbと、この反射鏡DBRtおよびDBRbに挟まれた量子井戸部QW1〜QW4とを備えている。量子井戸部QW1〜QW4では、励起子ポラリトン凝縮体が形成可能となっている。このうち、反射鏡DBRtは、膜厚568オングストロームのGa0.8Al0.2As層と膜厚659オングストロームのAlAs層とを、前者は17層、後者は16層、積層して形成される。また、反射鏡DBRbは、膜厚568オングストロームのGa0.8Al0.2As層と膜厚659オングストロームのAlAs層とを各20層積層して形成される。量子井戸部QW1,QW2,QW3,QW4は、いずれも4層のGaAs層(膜厚各70オングストローム)とその間を仕切るバリア層(膜厚30オングストロームのAlAs層)から構成されている。なお、バリア層の材質は、AlAsには限られない。図3のような設計を採用すれば、量子井戸部QW1〜QW4での共振モードの振幅を強くすることができ、効果的な励起子ポラリトンの生成を実現することができる。
図4は、共振器2内のエネルギー準位を説明するグラフである。同図において、縦軸はエネルギー、横軸は量子井戸平面内の運動量を示している。また、図4において、Eはキャビティの光子エネルギーレベル、Eexは励起子exのエネルギーレベルを示しており、その重ね合わせの状態として、EUPは励起子ポラリトンの高エネルギー準位レベル、ELPは励起子ポラリトンの低エネルギー準位レベルを示している。
キャビティ内の励起子exは、光子pとの間で強結合を行い、光子pと励起子exの重ね合わせ状態として新しい量子状態である励起子ポラリトンexplが形成される。すなわち、励起子exの放出した光子pが、反射鏡DBRtおよび反射鏡DBRbにて跳ね返されて再度同じ位相状態の励起子exを形成することを繰り返すことによって、光子pと励起子exとのコヒーレントな結合状態が形成される。
図4に示されるように、光子pが励起子exと強結合をすれば、励起子ポラリトンexplとなって、低エネルギー準位レベルELPに落ち込み、更なる冷却により、励起子ポラリトン凝縮体explcとなる。この励起子ポラリトン凝縮体explcは、GaAsからなる量子井戸QW(QW1〜QW4)の中であれば、10〜100K程度の凝縮温度となる。したがって、共振器2は、液体ヘリウム槽にて冷却されることが好ましい。なお、量子井戸QWをGaNやZnOによって形成すれば、凝縮温度をより高く設定することができる。凝縮温度が高くなれば、液体ヘリウム槽ではなく、液体窒素槽によって冷却したり、室温環境下において冷却不要としたりすることも可能となる。
すなわち、共振器2は、ポンプレーザ1からのポンピング光を入射することにより量子井戸QW(QW1〜QW4)において励起子ポラリトン凝縮体explcを形成可能な構造となっている。これにより、共振器2は、コヒーレントな光を出射することができる。
なお、励起子ポラリトン構造体における量子井戸部内に励起子を生成させる方法は、ポンプレーザ1からポンピング光を入射する手法に限られない。共振器を構成する励起子ポラリトン構造体に電極を設け、この電極から量子井戸QW(QW1〜QW4)に対し電子及び正孔を注入する公知の励起子注入部を用いることによっても励起子を生成することが可能である。すなわち、このような励起子注入部を量子井戸QW内に励起子を生成する励起部として用いることができる。このような電子及び正孔の注入(すなわち、励起子の電気注入)による励起手法は、ポンプレーザが不要となることから、ポンプレーザ1からポンピング光を入射する励起手法と比較して、光発生装置のデバイス構造をコンパクトに設計し易いという利点を有している。なお、励起子注入部を有する光発生装置の詳細については、第4の実施形態において説明する。
励起子ポラリトン凝縮体explcから発せられる光は、ポラリトン同士の相互作用を反映して、そのウィグナー関数値が負となる非古典光を含むものである。しかし、この光の位相は、出力を続けていくうちに位相拡散により変化していき、そのウィグナー関数値が負となる性質が失われてしまう。
なぜなら、励起子ポラリトン凝縮体explcから発せられる光のウィグナー関数値が負となるのは、ポラリトン同士の相互作用によって、出力光位相に特殊な分布が形成されることに起因すると考えられる。それゆえ、レーザの出力継続によって出力光の位相が変化してランダムに近づくと、一旦形成された位相分布の特殊性が失われてしまうと考えられるからである。
したがって、単に、励起子ポラリトン構造体に、励起部によってポンピング光を入射したり、電子注入したりするだけでは、ウィグナー関数の値が負となる非古典光を定常的に発生することはできない。本願発明者は、ウィグナー関数の値が負となる非古典光の定常的な発生を実現するには、ポラリトン同士の相互作用によって形成された位相の特殊な分布を固定する必要があると考えた。
そこで、本実施形態の光発生装置100では、共振器2から出力される出力光の位相を安定化させる位相安定化部として注入同期レーザ3を備え、これによって、共振器2の出力光の位相変化を抑制している。図1に示されるように、注入同期レーザ3は、その出力する注入同期レーザ光を共振器2に入射する構成である。
一般に、注入同期は、マスターレーザからの狭帯化・周波数安定化された光をスレーブレーザに注入することにより、スレーブレーザの出力波長をロック(同期)する技術である。本実施形態においては、共振器2の出力光が立ち上がる段階で、マスター(注入同期レーザ3)により特定の波長を共振器2内に与え、立ち上がり時のエネルギーに差異を与えている。これにより、特定の波長のみをスレーブ(共振器2によるポラリトン凝縮光)から発振させることができる。
ここでは、位相の安定した注入同期レーザ3の出力光を共振器2に注入することによって、共振器2からの出力光の位相を固定し、共振器2がウィグナー関数の値が負となるような非古典光を定常的に出射するようにするようにしている。なお、注入同期レーザ3に用いるレーザの種類は特に問わない。
周波数安定度の高い注入同期レーザ3によって、共振器2の励起子ポラリトン凝縮体が発する出力光の発振周波数を制御し、出力光の位相を固定することが可能となる。
図5は、光発生装置100から発せられる光の複素振幅の数値シミュレーション結果の一例を示したグラフである。同図の複素平面において、横軸は実部(Re)を縦軸は虚部(Im)を表している。また、同図の複素平面においては、中心からの距離が振幅に対応し、その角度が位相に対応している。グラフ中の特に黒みがかった色の部分は、ウィグナー関数の値が負となる部分を示している。
図5のグラフでは、ウィグナー関数の値が負となる部分(グラフ中で黒みがかった部分)とウィグナー関数の値が正となる部分(グラフ中で白みがかった部分)とが交互に隣接した縞状模様の領域が現れている。図6は、図5中の矢示点線断面におけるウィグナー関数の様子を示すグラフである。図6のグラフにおいては、ウィグナー関数Wが振動しており、0より小さい負の値となっている領域が複数存在する様子が明確に読み取れる。このように、光発生装置100は、ウィグナー関数の値が負となる非古典光を出力することができる。
次に、共振器のポラリトン凝縮に注入同期レーザを適用しない場合と、本実施形態の光発生装置100のように共振器2のポラリトン凝縮に注入同期レーザ3を適用した場合との出力光の複素振幅の数値シミュレーション結果を示す。
図7は、共振器のポラリトン凝縮に、注入同期レーザを適用しない場合の出力光の複素振幅の数値シミュレーション結果を示すグラフである。図7の(a)〜(d)においては、時間tが0から2まで進展するにつれて、出力光の位相は大きく拡散していることがわかる。また、これらの出力光は、いずれも白色で示された古典光であることが読み取れる。
これに対して、図8は、本実施形態の光発生装置100のように、共振器2のポラリトン凝縮に、注入同期レーザ3を適用した場合の出力光の複素振幅の数値シミュレーション結果を示すグラフである。図8の(a)〜(c)において、時間tが0から2まで進展する間、出力光の位相は僅かに拡散している。しかし、図8の(b)〜(c)(時間tが0.2〜2)においては、ウィグナー関数の値が負となる部分(グラフ中で黒みがかった部分)が発生しており、出力光はいずれもウィグナー関数の値が負となる非古典光となっている。
図8のシミュレーション結果から、共振器2のポラリトン凝縮に、注入同期レーザ3を適用する光発生装置100は、ウィグナー関数の値が負となる非古典光を、時間が経過しても定常的に出力することがわかる。
近時、例えば励起子ポラリトン構造体において、誘電体多層膜反射鏡(DBR)の構造を改善することにより、極めて高いQ値を実現し、ポラリトンの寿命を100ピコ秒オーダにまで伸ばした実験例が報告されている。ここでは、共振器2のQ値を高めて、ポラリトンを長寿命化した場合の出力光の複素振幅の数値シミュレーション結果を示す。
図9は、注入同期レーザ3の出力を図8のときの10分の1とし、ポラリトンの寿命が1ナノ秒程度となる極めて高いQ値を有する共振器2の励起子ポラリトン構造体に、注入同期レーザ光を入射した場合の出力光の複素振幅の数値シミュレーション結果を示すグラフである。図9の(a)〜(c)において、時間tが0から10まで進展する間、出力光の位相は僅かに拡散している。しかし、図9の(b)〜(c)(時間tが0.1〜10)においては、ウィグナー関数の値が負となる部分(グラフ中で黒みがかった部分)が図8よりも強く現れていることが読み取れる。一般には、注入同期レーザ3の出力が大きい方が負のウィグナー関数の光を得る上では有利であるが、図8と図9とを対比すると、注入同期レーザ3の出力が小さくても、共振器2のQ値が高く、ポラリトンが長寿命であれば、負領域の大きいウィグナー関数の光が得られることがわかる。
図10は、上述のシミュレーションにおいて、励起子−ポラリトンの相互作用強度を示すパラメータUを変化させたときに、ウィグナー関数の有する負領域の程度がどのように変化するのかを示すグラフである。同図のグラフで、縦軸はウィグナー関数の有する負領域の積分値を示すパラメータNを表し、横軸は注入同期レーザ3の出力強度を示すパラメータKを表している。図10(a)は、共振器2のQ値がポラリトンの寿命にして100ピコ秒であるときの結果、図10(b)は、共振器2のQ値がポラリトンの寿命にして1ナノ秒であるときの結果を示している。
図10の結果から、大略の傾向として、傾向A)励起子−ポラリトンの相互作用が強くなるほどウィグナー関数の負領域の程度が増大することが読み取れる。すなわち、図10(a)において、パラメータUが0.1,0.5,1と大きくなるにつれて、縦軸に示されたウィグナー関数の有する負領域の程度Nの絶対値(ピーク値)は大きくなっている。同様に、図10(b)において、パラメータUが0.1,0.5,0.9と大きくなるにつれて、縦軸に示されたウィグナー関数の有する負領域の程度Nの絶対値は大きくなっている。
また、図10の結果から、大略の傾向として、傾向B)共振器のQ値が高くなると(すなわち、ポラリトンが長寿命化すると)ウィグナー関数の負領域の程度が増大することが読み取れる。例えば、図10(a)に示されたU=0.5のグラフと図10(b)に示されたU=0.5のグラフとを比較すると、後者の方が前者よりもウィグナー関数の有する負領域の程度N(絶対値)が3倍程度大きくなっている。この関係、および図10(a)に示されたU=1のグラフと図10(b)に示されたU=0.9のグラフとの関係も参考にすれば、上記傾向B)は励起子−ポラリトンの相互作用が強い例で顕著に現れることが推測される。一般に、ウィグナー関数の負領域の程度は、前述の位相安定化において、位相を固定しようとする作用と位相を回転させようとする作用、励起子−ポラリトンの相互作用との関係によって決まる。
以上のように、本実施形態の光発生装置100によれば、ポンプレーザ1が共振器2に対してポンピング光を照射することにより、または電子注入部が共振器2の量子井戸部QW(QW1〜QW4)に対し電極から電子注入することにより、共振器2の量子井戸部に励起子ポラリトン凝縮体が生成される。そして、この励起子ポラリトン凝縮体から出力光が放出される。このとき、注入同期レーザ3によって安定した注入同期レーザ光を共振器2に照射することにより、共振器2からの出力光は、位相が安定し、負のウィグナー関数値を有する非古典光となる。
[第2の実施形態]
図11を参照して、光発生装置の更なる実施形態の構成について説明する。第1の実施形態では、位相安定化部として注入同期レーザ3を設けていたが、第2の実施形態では、位相安定化部として光学的PLL(Phase−locked loop)30を設けた例を説明する。
図11に示されるように、光発生装置200は、ポンプレーザ1と共振器2と光学的PLL30とを備えている。光発生装置200は、これらの構成によって、コヒーレントな出力光を発生する装置である。ここで、ポンプレーザ1と共振器2との構造は、光発生装置100と同様であるから、その詳細な説明を省略する。
光発生装置200は、光学的PLL3の働きにおいて、共振器2から出力される出力光の位相を検出し、検出された出力光の位相に注入同期レーザ33から出力される注入同期レーザ光の位相を同期させることによって、共振器2の出力光の位相変化を抑制している。図1に示されるように、光学的PLL3は、位相検出器31,ループフィルタ32,注入同期レーザ33を備えている。すなわち、光学的PLL3は、共振器2の出力光と位相の同期した光を注入同期レーザ33から出力するPLL回路である。
位相検出器31は、共振器2から出射される出力光の一部を入力し、さらに、注入同期レーザ33のレーザ光を入力して、共振器2から出射される出力光と注入同期レーザ33のレーザ光との位相のずれを示す位相誤差信号を生成する。そして、位相検出器31は、この位相誤差信号をループフィルタ32に出力する。ループフィルタ32は、入力された位相誤差信号を整形して注入同期レーザ33に出力する。なお、位相検出器31とループフィルタ32との間には適宜のゲイン調整器を設けてもよい。
注入同期レーザ33は、入力される位相誤差信号の値がゼロになるように、出力光の位相を制御する。これにより、共振器2の出力光と注入同期レーザ33の出力光との位相が揃った状態となる。そして、この注入同期レーザ33の出力光が、位相検出器31と共振器2とに入射される。
本実施形態では、光学的PLL3を設けて、注入同期レーザ光の位相を調整し、共振器2の出力光の位相と揃えることによって、共振器2から出力される出力光の位相を安定化させる構成となっている。これにより、注入同期レーザ33の出力が弱くても、共振器2から出力される出力光の位相を効果的に安定化させることができる。
図12は、光発生装置200の出力光の複素振幅の数値シミュレーション結果を示すグラフである。図12の(a)〜(f)において、時間tが0から10まで進展する間、出力光の位相は拡散している。しかし、図12の(b)〜(f)(時間tが1〜10)においては、グラフ中で黒みがかった領域が現れており、出力光はいずれもウィグナー関数の値が負となる非古典光となっている。
図13は、その他の条件は図12と同じで、注入同期レーザ33の出力を図12のときの10倍としたときの光発生装置200の出力光の複素振幅の数値シミュレーション結果を示すグラフである。図13の(a)〜(f)において、時間tが0から10まで進展する間、出力光の位相は拡散している。しかし、図13の(b)〜(f)(時間tが1〜10)においては、グラフ中で黒みがかった領域が現れており、出力光はいずれもウィグナー関数の値が負となる非古典光となっている。
図14は、その他の条件は図12と同じで、励起子−ポラリトンの相互作用強度を示すシミュレーションパラメータを、図12のときの10倍とし、さらに、注入同期レーザ33の出力を図12のときの100倍とした場合の光発生装置200の出力光の複素振幅の数値シミュレーション結果を示すグラフである。図14の(a)〜(f)において、時間tが0から2まで進展する間、出力光の位相は拡散している。しかし、図14の(b)〜(f)(時間tが0.1〜10)においては、グラフ中で黒みがかった領域が強く現れており、出力光はいずれもウィグナー関数の値が負となる非古典光となっている。
図12〜図14に示したシミュレーション結果から、共振器2の励起子ポラリトン構造に、光学的PLL30を適用する光発生装置200は、ウィグナー関数の値が負となる非古典光を、時間が経過しても定常的に出力することがわかる。
以上のように、本実施形態の光発生装置200によれば、ポンプレーザ1が共振器2に対してポンピング光を照射することにより、または電子注入部が共振器2の量子井戸部QW(QW1〜QW4)に対し電極から電子注入することにより、共振器2の量子井戸部に励起子ポラリトン凝縮体が生成される。そして、この励起子ポラリトン凝縮体から出力光が放出される。このとき、光学的PLL3によって共振器2からの出力光と同期した位相の注入同期レーザ光を共振器2に照射することにより、共振器2からの出力光は、位相が安定し、負のウィグナー関数値を有する非古典光となる。
[第3の実施形態]
図15を参照して、光発生装置の更なる実施形態について説明する。第1および第2の実施形態では、位相安定化部として注入同期レーザ3や光学的PLL30を設けていたが、第3の実施形態では、位相安定化部として、上記のような光学的手段ではなく、共振器長制御部40およびPZT(piezoelectric transducer)44を設けた例を説明する。
図15に示されるように、光発生装置300は、ポンプレーザ1と共振器2と共振器長制御部40とを備えている。光発生装置300は、これらの構成によって、コヒーレントな出力光を発生する装置である。ここで、ポンプレーザ1と共振器2との構造は、光発生装置100ないし光発生装置200と同様であるから、その詳細な説明を省略する。
共振器長制御部40は、位相検出器41,ループフィルタ42,ピエゾドライバ43を備えている。さらに、ピエゾドライバ43の出力は、共振器2のPZT44に接続されている。
PZT44は、圧電体に加えられた電圧を力や体積変化に変換する逆圧電効果を利用した素子である。PZT44は、例えば圧電セラミックなどの圧電材料から構成される。PZT44は、ピエゾドライバ43から印加された直流電圧に応じて伸張または収縮し、共振器2の共振器長、すなわち反射鏡DBRtと反射鏡DBRbとの間隔(図2参照)を伸張させたり、収縮させたりする。共振器2にPZT44を備える態様は、PZT44の伸縮によって、共振器2の共振器長、すなわち反射鏡DBRtと反射鏡DBRbとの間隔を調整できるものであれば特に限定されない。
光発生装置300は、共振器長制御部40の働きによって、共振器2から出力される出力光の位相を検出し、この検出結果に応じて、共振器2に備えられたアクチュエータとしてのPZT44を駆動する。これにより、共振器2の共振器長を物理的に調整して、共振器2から出力される出力光の位相を制御する。
具体的には、位相検出器41は、共振器2から出射される出力光の一部を入力して、基準信号と比較し、両者の位相差を示す位相差信号を生成する。位相差信号は、積分回路とローパスフィルタとを組み合わせて形成されたループフィルタ42において直流信号に変換される。この直流信号が、ピエゾドライバ43において直流電圧に変換され、この直流電圧が、共振器2のPZT44に印加される。
このように、光発生装置300の共振器長制御部40は、共振器2から出力される出力光の位相を検出し、この測定結果をフィードバックしながら、上記出力光の位相を安定化させるように、PZT44の伸縮を制御する。これにより、共振器2の共振器長、すなわち反射鏡DBRtと反射鏡DBRbとの間隔が変化する。出力光の位相を安定化させるには、共振器2の共振器長を極めて高精度で制御することが必要になる。PZT44は、印加電圧の変化に精度よく、例えばナノメートルの精度で反応することができるので、目的の達成に好適である。
すなわち、光発生装置300は、共振器2の共振器長を制御することによって、共振器2から出力される出力光の位相を安定化させる構成を位相安定化部として採用している。これにより、注入同期技術を用いなくても、共振器2から出力される出力光の位相を効果的に安定化させることが可能となる。
[第4の実施形態]
共振器を構成する励起子ポラリトン構造体に電極を設け、この電極から量子井戸QW(QW1〜QW4)に対して、電子及び正孔を注入(換言すれば、励起子を電気注入)することで、励起子を生成する光発生装置の構成を説明する。
図16に、第4の実施形態の光発生装置の構成を示す。図16に示すように、本実施形態の光発生装置400は、ポンプレーザに代えて、ポラリトン励起子を励起するための電子及び正孔を共振器2に注入する励起子注入部50を備えている。励起子注入部50により、共振器2の量子井戸QW(QW1〜QW4)に対して電子及び正孔を注入するため、図17に示すように、共振器2の一端面に電子を注入する電極51が設けられ、他端面に正孔を注入する電極52が設けられている。電極51は図18に示すように中央に開口を有するリング状形状を有する。なお、電極51に正孔が注入され、電極52に電子が注入されてもよい。
電子注入部50により電極51と電極52間に所定の直流電圧が印加されて共振器2に電子及び正孔が注入される。これにより共振器2の量子井戸QW内に励起子が生成される。同時に、注入同期レーザ3により、電極51の中央の開口を介して共振器2に注入同期レーザ光が照射される。これにより位相の安定した特定波長の非古典光が、リング状の電極51の中央の開口から出力される。
このような励起子注入部50を備える構成によれば、ポンプレーザが不要となることから、ポンプレーザ1からポンピング光を入射する構成と比較して、光発生装置の構造をコンパクトに設計できるという利点がある。
[第5の実施形態]
第1の実施形態において、図19に示すように共振器2表面において金属膜(metal mask)80をさらに配置してもよい。この金属膜80により、ポラリトンが存在する領域を限定された領域内に制限することが可能となり、相互作用を増大することができる。
特に、金属膜80は、図19(b)に示すように、非古典光が出力される領域の周囲を囲うように、すなわち開口領域82を有するように共振器2の表面に配置される。ポラリトンは、金属膜80が配置されていない領域下においては、DBRミラーの境界条件により、低いポテンシャルを有する。一方、金属膜80が配置されている領域下において、ポラリトンは、高いエネルギを有し、開口領域82の下部に留まろうとする。金属膜80により、ポラリトンが存在する領域をより小さくすることにより、ポラリトン間の平均距離が近くなり、相互作用が増大する。
以上説明した金属膜80を配置し、ポラリトンが存在する領域を制限して相互作用を増大させるという思想は、第1〜第3の実施形態の構成においても適用することができる。
[まとめ]
以上、本発明に係る光発生装置の実行する光発生方法は、両端部に配された一対の反射鏡DBRtおよび反射鏡DBRbと、反射鏡DBRtおよび反射鏡DBRbに挟まれた量子井戸部QW1〜QW4とを備え、量子井戸部QW1〜QW4において励起子ポラリトン凝縮体を形成可能な共振器2の量子井戸部QW1〜QW4内に励起子を生成する段階と、共振器2から出力される出力光の位相を安定化させる段階とを備えるものである。
本発明の光発生装置ないし光発生方法によれば、負のウィグナー関数値を有する非古典光を定常的に出力することが可能となる。
上記の思想は、上記の実施の形態に限られず、種々の実施の形態において実施可能である。発明の精神を逸脱しない範囲で、本発明には各種の変形を施すことができる。
本発明の光発生装置ないし光発生方法は、量子コンピューティングにおける演算や情報伝送の手段など、量子情報工学分野、量子光学分野において広く利用可能である。

Claims (9)

  1. 両端部に配された一対のミラー部と、当該一対のミラー部に挟まれた量子井戸部とを備え、当該量子井戸部において励起子と光子とが強結合しポラリトンが形成され、励起子ポラリトン凝縮体を形成可能な共振器と、
    前記量子井戸部内に励起子を生成する励起部と、
    前記共振器から出力される出力光の位相にポラリトン同士の相互作用による特殊な分布が形成されることにより、ウィグナー関数の値が負となる光を発するように、出力光の位相を安定化させる位相安定化部とを備えた光発生装置。
  2. 前記励起部は、前記共振器に対しポンピング光を照射する光源である請求項1に記載の光発生装置。
  3. 前記励起部は、前記共振器の量子井戸部に対し電極から電子及び正孔を注入する電気注入部である請求項1に記載の光発生装置。
  4. 前記位相安定化部は、注入同期レーザ光を前記共振器に照射する注入同期レーザである請求項1乃至3のいずれか1項に記載の光発生装置。
  5. 前記位相安定化部は、前記共振器から出力される出力光の位相を検出し、検出された出力光の位相に前記注入同期レーザ光の位相を同期させる請求項4に記載の光発生装置。
  6. 前記位相安定化部は、前記共振器から出力される出力光の位相を検出し、検出された出力光の位相に応じて、前記共振器の共振器長を調整する請求項1乃至3のいずれか1項に記載の光発生装置。
  7. 前記ミラー部は、誘電体多層膜反射鏡である請求項1乃至6のいずれか1項に記載の光発生装置。
  8. 前記共振器の出力光を出射する端面において、出力光を出射する領域の周囲に金属膜を配置した請求項1乃至6のいずれか1項に記載の光発生装置。
  9. 両端部に配された一対のミラー部と、当該一対のミラー部に挟まれた量子井戸部とを備え、当該量子井戸部において励起子と光子とが強結合しポラリトンが形成され、励起子ポラリトン凝縮体を形成可能な共振器の前記量子井戸部内に励起子を生成する段階と、
    前記共振器から出力される出力光の位相にポラリトン同士の相互作用による特殊な分布が形成されることにより、ウィグナー関数の値が負となる光を発するように、出力光の位相を安定化させる段階とを備えた光発生方法。
JP2014543330A 2012-10-26 2013-10-23 光発生装置および光発生方法 Active JP6376697B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012237119 2012-10-26
JP2012237119 2012-10-26
PCT/JP2013/078722 WO2014065332A1 (ja) 2012-10-26 2013-10-23 光発生装置および光発生方法

Publications (2)

Publication Number Publication Date
JPWO2014065332A1 JPWO2014065332A1 (ja) 2016-09-08
JP6376697B2 true JP6376697B2 (ja) 2018-08-22

Family

ID=50544707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014543330A Active JP6376697B2 (ja) 2012-10-26 2013-10-23 光発生装置および光発生方法

Country Status (2)

Country Link
JP (1) JP6376697B2 (ja)
WO (1) WO2014065332A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037961A (ja) * 2015-08-10 2017-02-16 日本電信電話株式会社 多波長半導体レーザ
CN106254065B (zh) * 2016-08-01 2019-08-27 中国科学技术大学 基于注入锁定技术的量子密钥分发光源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877509A (en) * 1997-11-14 1999-03-02 Stanford University Quantum well exciton-polariton light emitting diode
US6538748B1 (en) * 2000-04-14 2003-03-25 Agilent Technologies, Inc Tunable Fabry-Perot filters and lasers utilizing feedback to reduce frequency noise
JP4803992B2 (ja) * 2004-06-02 2011-10-26 株式会社リコー 発光装置および光伝送システムおよび垂直共振器型面発光半導体レーザ素子
JP2006216722A (ja) * 2005-02-02 2006-08-17 Tokyo Institute Of Technology 変調器集積面発光レーザ
DE102005056949B4 (de) * 2005-09-30 2013-08-22 Osram Opto Semiconductors Gmbh Optisch gepumpter oberflächenemittierender Halbleiterlaser und optische Projektionsvorrichtung mit solch einem Halbleiterlaser
WO2009134456A1 (en) * 2008-05-02 2009-11-05 Corning Incorporated Spectrally and spatially mismatched seeding of a multimode vcsel for modulation bandwidth enhancement
FR2938384B1 (fr) * 2008-11-13 2010-12-17 Centre Nat Rech Scient Systeme d'emission de lumiere suivant un mode polaritonique avec injection electrique de puits quantiques
JP5633435B2 (ja) * 2011-03-09 2014-12-03 日亜化学工業株式会社 面発光レーザ素子

Also Published As

Publication number Publication date
JPWO2014065332A1 (ja) 2016-09-08
WO2014065332A1 (ja) 2014-05-01

Similar Documents

Publication Publication Date Title
Laurain et al. Multiwatt—power highly—coherent compact single—frequency tunable vertical—external—cavity—surface—emitting—semiconductor—laser
JP2007142384A (ja) 高効率の二次高調波生成外部共振器型面発光レーザ
JP2015515132A (ja) セルフモード同期半導体ディスクレーザ(sdl)
JP2006344973A (ja) 光ポンピング方式の面発光レーザー
JP6376697B2 (ja) 光発生装置および光発生方法
JP2011204900A (ja) 量子もつれ光子対発生装置と方法
JP2007049144A (ja) 高出力垂直外部共振器型の面発光レーザ
Cocquelin et al. Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D 2 line
US9300308B2 (en) Light emitting device and atomic oscillator
JP6688218B2 (ja) モード同期半導体ディスクレーザ(sdl)
Curwen et al. Phase locking of a THz QC-VECSEL to a microwave reference
Garnache et al. Design and properties of high-power highly coherent single-frequency VECSEL emitting in the near-to mid-IR for photonic applications
JP6705151B2 (ja) 原子発振器
Chen et al. Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser
Ackemann et al. Dynamics and Interaction of Laser Cavity Solitonsin Broad‐Area Semiconductor Lasers
Tuan et al. Generating high-order transverse patterns in optically pumped semiconductor lasers
JP2014022667A (ja) 面発光レーザ素子及び原子発振器
Tang et al. Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering
JP2007073934A (ja) エンドポンピング垂直外部共振型の表面発光レーザー
WO2021095523A1 (ja) 垂直外部共振器型面発光レーザ
JP6575299B2 (ja) 原子発振器
JP2007316206A (ja) 半導体可飽和吸収体ミラー、半導体可飽和吸収体ミラーの製造方法、レーザ光発生装置およびレーザ光応用システム
Hessenius Novel Cavities and Functionality in High-Power High-Brightness Semiconductor Vertical External Cavity Surface Emitting Lasers
Lee et al. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping
Zhang et al. High power nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6376697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250