JP6376047B2 - タイヤ加温システム - Google Patents

タイヤ加温システム Download PDF

Info

Publication number
JP6376047B2
JP6376047B2 JP2015115386A JP2015115386A JP6376047B2 JP 6376047 B2 JP6376047 B2 JP 6376047B2 JP 2015115386 A JP2015115386 A JP 2015115386A JP 2015115386 A JP2015115386 A JP 2015115386A JP 6376047 B2 JP6376047 B2 JP 6376047B2
Authority
JP
Japan
Prior art keywords
tire
temperature
heater
heating
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115386A
Other languages
English (en)
Other versions
JP2017001452A (ja
Inventor
丹野 篤
丹野  篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2015115386A priority Critical patent/JP6376047B2/ja
Publication of JP2017001452A publication Critical patent/JP2017001452A/ja
Application granted granted Critical
Publication of JP6376047B2 publication Critical patent/JP6376047B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ加温システムに関する。
車両の燃費の改善には、タイヤの転がり抵抗が寄与する。タイヤの転がり抵抗の要因の一つとして、走行中の繰り返し変形に起因するエネルギー損失が挙げられる。タイヤのエネルギー損失は、タイヤの温度と相関すると言われている。タイヤの温度が上昇すると、転がり抵抗は低減する(例えば特許文献1参照)。
特開平05−016623号公報
タイヤが停止状態においては、タイヤの温度と外気の温度との差は小さくなる。外気の温度が低い寒冷地では、停止状態のタイヤの温度は低くなる。そのため、寒冷地では停止状態のタイヤの走行を開始しても、タイヤが温まるまでに時間を要し、車両の燃費の改善の障害となる。
本発明の態様は、転がり抵抗を低減して車両の燃費の改善に寄与できるタイヤ加温システムを提供することを目的とする。
本発明の態様に従えば、車両の走行装置に装着されたタイヤを加温するタイヤ加温システムであって、充電設備と、前記車両に設けられ、前記走行装置が停止状態において前記充電設備から供給される電流により前記タイヤを加温可能な加温装置と、前記加温装置を制御する制御部と、を備えるタイヤ加温システムが提供される。
本発明の態様によれば、タイヤを含む走行装置の停止状態において、充電設備から供給される電流により加温装置でタイヤが加温される。これにより、タイヤの走行が開始される前にタイヤが温められ、タイヤの走行の開始直後から転がり抵抗が低減される。したがって、タイヤが装着された車両の燃費が改善される。
本発明の態様において、前記充電設備は、前記車両に設けられた二次電池を充電可能であり、前記車両は、前記充電設備から前記二次電池に供給される電流が流れる第1導電路と、前記加温装置に供給される電流が流れる第2導電路とを有し、前記充電設備による前記二次電池の充電と並行して、前記第2導電路は、前記充電設備からの電流の少なくとも一部を前記加温装置に供給してもよい。
例えば、車両が電気自動車又はプラグインハイブリッド自動車である場合、その車両には走行装置の動力源である電動機に電力を供給するための二次電池(EV駆動バッテリー)が設けられる。その二次電池は、例えば数百[V]及び数百[A]のような高い電力で充電設備によって充電される場合が多い。そのような二次電池を充電するための電力は、タイヤを加温する加温装置に必要な電力に比べてはるかに大きい。そのため、二次電池の充電と並行して加温装置に電流が供給されても、二次電池の充電に対する影響は小さく、二次電池の充電と並行して、タイヤを効率良く加温することができる。なお、二次電池は、回生ブレーキが発生する回生電力を蓄える回生専用バッテリーでもよいし、ランプ類及びカーナビゲーションシステムのような電子機器を駆動するための低電圧バッテリー(50V以下のバッテリー等)でもよい。
本発明の態様において、前記二次電池の充電率を示す充電率データを取得する充電率データ取得部を備え、前記第2導電路は、変圧器を介して前記第1導電路から供給された電流又は前記二次電池から供給された電流を前記加温装置に供給し、前記制御部は、前記充電率データに基づいて、前記加温装置に対する電流の供給を制御してもよい。
充電率データに基づいて加温装置に対する電流の供給が制御されることにより、二次電池の充電率不足が抑制されつつ、タイヤが加温される。二次電池がEV駆動バッテリーのような高電圧バッテリーの場合、二次電池の充電と並行して加温装置に電流が供給されても、二次電池の充電に対する影響は小さい可能性が高いものの、二次電池の種類によっては、加温装置に対する電流の供給により、二次電池の充電に影響がもたらされる可能性がある。二次電池の充電率が低い場合、制御部は、充電設備から加温装置に対する電流の供給を停止する。これにより、充電設備から二次電池に電流が十分に供給され、二次電池の充電率不足が抑制される。二次電池の充電率が高い場合、制御部は、充電設備から加温装置に対して電流を供給する。これにより、タイヤは加温される。また、変圧器を介して第1導電路から供給される電流又は二次電池から供給される電流が第2導電路を介して加温装置に供給されるので、適正な値の電流が加温装置に供給される。
本発明の態様において、ユーザにより操作される操作装置から出力された指令データを受信する受信部を有し、前記制御部は、前記受信部で受信された前記指令データに基づいて前記加温装置を制御してもよい。
これにより、ユーザが意図する制御条件でタイヤを加温することができる。
本発明の態様において、前記指令データは、前記加温装置による前記加温の開始を示す開始指令データを含んでもよい。
指令データが加温の開始を示す開始指令データを含むことにより、ユーザが意図するタイミングでタイヤの加温が開始される。
本発明の態様において、前記指令データは、停止状態の前記走行装置の走行を開始させる出発予定時刻を示す出発予定時刻データを含み、前記制御部は、前記出発予定時刻データに基づいて、前記出発予定時刻に前記タイヤが規定温度になるように、前記加温装置を制御してもよい。
指令データが出発予定時刻データを含むことにより、充電設備が置かれている場所(例えば自宅)から車両が出発する前にタイヤが加温される。そのため、車両が出発した直後からタイヤの転がり抵抗が低減される。
本発明の態様において、停止状態の前記走行装置の走行を開始させる出発予定時刻を示す出発予定時刻データを取得する出発予定時刻データ取得部を備え、前記制御部は、前記出発予定時刻データに基づいて、前記出発予定時刻に前記タイヤが規定温度になるように、前記加温装置を制御してもよい。
出発予定時刻データが出発予定時刻データ取得部に取得されることにより、充電設備が置かれている場所(例えば自宅)から車両が出発する前にタイヤが加温される。そのため、車両が出発した直後からタイヤの転がり抵抗が低減される。
本発明の態様において、前記タイヤ又は外気の温度を示す温度データを取得する温度データ取得部を備え、前記制御部は、前記温度データに基づいて、前記加温装置を制御してもよい。
温度データが温度データ取得部に取得されることにより、タイヤは転がり抵抗が低減される規定温度に調整される。
本発明の態様において、前記タイヤ又は前記外気の温度が規定温度以上か否かを判定する判定部を有し、前記制御部は、前記規定温度以上であると判定されたとき、前記加温装置による前記加温を行わなくてもよい。
タイヤの温度又は外気の温度が低い場合にはタイヤを加温装置で加温し、タイヤの温度又は外気の温度が高い場合にはタイヤを加温装置で加温しない制御が行われる。これにより、タイヤは効率良く加温されるとともに、タイヤが無駄に加温されることが抑制される。
本発明の態様において、前記走行装置は、前記タイヤが装着されるタイヤホイールを有し、前記加温装置は、前記タイヤの内面に設けられ、前記タイヤホイールに支持されるホイール電線と接続される導電部材と、前記タイヤの内面に設けられ、前記ホイール電線及び前記導電部材を介して前記充電設備より供給される電力により発熱するシート状のヒータと、を有してもよい。
シート状のヒータがタイヤの内面にダイレクトに設けられるので、タイヤのゴム及びコードは効率良く加熱される。ゴム及びコードの温度が上昇することにより、走行中のエネルギー損失が低減され、転がり抵抗が低減される。転がり抵抗が低減されることにより、タイヤが装着された車両の燃費が改善される。また、タイヤの走行においては、導電部材及びヒータに遠心力又は繰り返し曲げが作用する。導電部材及びヒータがタイヤ内面にダイレクトに設けられるので、タイヤの走行においても、導電部材及びヒータはタイヤ内面に支持され続ける。そのため、導電部材及びヒータの耐久性は向上する。
本発明の態様によれば、転がり抵抗を低減して車両の燃費の改善に寄与できるタイヤ加温システムが提供される。
図1は、車両及びタイヤ加温システムを示す図である。 図2は、タイヤ加温システムの機能ブロック図である。 図3は、タイヤ加温方法を示すフローチャートである。 図4は、タイヤ加温方法を示すフローチャートである。 図5は、タイヤ加温方法を示すフローチャートである。 図6は、車両及びタイヤ加温システムを示す図である。 図7は、車両及びタイヤ加温システムを示す図である。 図8は、タイヤを示す断面図である。 図9は、タイヤのトレッド部を示す図である。 図10は、タイヤホイールに装着された状態のタイヤを示す断面図である。 図11は、図10の一部を拡大した図である。 図12は、タイヤの一部を破断した斜視図である。 図13は、ヒータを模式的に示す斜視図である。 図14は、図13の一部を拡大した平面図である。 図15は、ヒータとタイヤ内面との接続構造を模式的に示す図である。 図16は、ヒータの変形例を模式的に示す斜視図である。 図17は、タイヤの変形例を破断した斜視図である。 図18は、ヒータの一部を模式的に示す平面図である。 図19は、ヒータの一部を模式的に示す平面図である。 図20は、ヒータの一部を模式的に示す平面図である。 図21は、ヒータの一部を模式的に示す平面図である。 図22は、ヒータとタイヤ内面との接続構造を示す図である。 図23は、ヒータとタイヤ内面との接続構造を模式的に示す図である。 図24は、ヒータとタイヤ内面との接続構造を模式的に示す図である。 図25は、ヒータとタイヤ内面との接続構造を模式的に示す図である。 図26は、ヒータを模式的に示す図である。 図27は、タイヤを破断した斜視図である。 図28は、タイヤを破断した斜視図である。 図29は、タイヤを破断した斜視図である。 図30は、タイヤを破断した斜視図である。 図31は、タイヤを破断した斜視図である。 図32は、トレッド部を模式的に示す図である。 図33は、タイヤ内面を模式的に示す図である。 図34は、タイヤ内面を模式的に示す図である。
以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[車両及びタイヤ加温システムの構成]
図1は、車両300及びタイヤ加温システム200の一例を示す図である。タイヤ加温システム200は、車両300の走行装置301に装着されたタイヤ1を加温する。タイヤ1は、空気入りタイヤである。
車両300は、電気自動車又はプラグインハイブリッド自動車のような二次電池400が搭載された二次電池式自動車である。車両300は、二次電池400から供給される電力で走行する。二次電池400は、EV駆動バッテリーのような高電圧バッテリーである。車両300は、4輪車両である。タイヤ1は、左前輪タイヤ、右前輪タイヤ、左後輪タイヤ、及び右後輪タイヤを含む。
タイヤ加温システム200は、充電設備201と、車両300に設けられ、走行装置301が停止状態において充電設備201から供給される電流によりタイヤ1を加温可能な加温装置500と、加温装置500を制御する制御装置600とを備える。制御装置600は、車両300に設けられたエンジンコントロールユニット(ECU: Engine Control Unit)を含む。
車両300は、タイヤ1を含む走行装置301と、走行装置301に支持される車体302と、走行装置301を駆動するための動力源303と、車体302に設けられ、充電設備201の電気プラグ202が接続されるコネクタ部401と、コネクタ部401を介して充電設備201から供給される電流により充電される二次電池400とを備える。動力源303は、二次電池400から供給される電力で作動する電動機を含む。車両300がハイブリッド自動車である場合、動力源303は、電動機及び内燃機関を含む。
走行装置301は、タイヤ1が装着されるタイヤホイール100と、タイヤホイール100を支持する車軸105と、走行装置301の進行方向を変えるための操舵装置304と、走行装置301を減速又は停止させるためのブレーキ装置305とを有する。
車体302は、運転者が搭乗する運転室を有する。運転室に、動力源303の出力を調整するためのアクセルペダルと、ブレーキ装置305を作動するためのブレーキペダルと、操舵装置304を操作するためのステアリングホイールとが配置される。運転者は、アクセルペダル、ブレーキペダル、及びステアリングホイールを操作する。運転者の操作により車両300は走行する。
また、車両300は、車体302の運転室に設けられ、運転者により操作される操作装置306を有する。
加温装置500は、タイヤ1に設けられるヒータ50を有する。ヒータ50は、タイヤ1の内面に設けられる。ヒータ50は、充電設備201から供給される電流により発熱して、タイヤ1を加温する。
タイヤ1には、タイヤ1の温度を検出する温度センサ70が設けられる。温度センサ70は、タイヤ1の内面に設けられる。二次電池400には、二次電池400の充電率(SOC:State Of Charge)を測定する測定装置407が設けられる。
充電設備201は、ヒータ50及び二次電池400の両方に電流を供給可能である。充電設備201は、車両300に設けられた二次電池400に電流を供給して、二次電池400を充電可能である。充電設備201は、タイヤ1に設けられたヒータ50に電流を供給して、タイヤ1を加温可能である。
車両300は、充電設備201から二次電池400に供給される電流が流れる第1導電路403と、加温装置500に供給される電流が流れる第2導電路404とを有する。導電路は、例えば電気ケーブルを含む。
車両300は、充電設備201から供給される電力の電圧値を下げる変圧器402を有する。変圧器402は、DC/DCコンバータである。第2導電路404は、変圧器201を介して、第1導電路403と接続される。充電設備201から供給された電流の少なくとも一部は、第1導電路403を流れた後、二次電池400に供給される。また、充電設備201から供給された電流の少なくとも一部は、第1導電路403を流れた後、変圧器402を介して、第2導電路404に供給される。第2導電路404は、変圧器402を介して第1導電路403から供給された電流を、加温装置500に供給する。すなわち、本実施形態においては、充電設備201から供給された電力は、変圧器402を介して加温装置500に供給される。加温装置500に印加される電圧は、12[V]以上48[V]以下が好ましい。なお、変圧器402として、二次電池400から動力源303に供給される電力の電圧値を変換する変圧器が使用されてもよいし、その変圧器とは別の変圧器が使用されてもよい。
なお、図1は、4つのタイヤ1のそれぞれに設けられる加温装置500のうち、左前輪タイヤの加温装置500と第2導電路404とが接続されている状態を示す。右前輪タイヤの加温装置500、左後輪タイヤの加温装置500、及び右後輪タイヤの加温装置500のそれぞれが第2導電路404と接続される。4つのタイヤ1のそれぞれが、充電設備201から供給される電力により加温される。
[制御装置]
次に、制御装置600について説明する。図2は、制御装置600を含むタイヤ加温システム200の機能ブロック図である。
図2に示すように、制御装置600は、加温装置500を制御する制御信号を出力する制御部601と、二次電池400の充電率を示す充電率データを取得する充電率データ取得部602と、タイヤ1の温度を示す温度データを取得する温度データ取得部603と、停止状態の走行装置301の走行を開始させる出発予定時刻を示す出発予定時刻データを取得する出発予定時刻データ取得部604と、充電率データ取得部602で取得された充電率が規定値以上か否か又は温度データ取得部603で取得された温度が規定温度以上か否かを判定する判定部605と、運転者(ユーザ)により操作される操作装置306又は携帯端末308から出力された指令データを受信する受信部606と、データを記憶する記憶部607と、を有する。
制御部601は、加温装置500を制御する。加温装置500の制御は、充電設備201から加温装置500に対する電力の供給及び供給停止を含む。また、加温装置500の制御は、充電設備201から加温装置500に対する電流量の調整を含む。
充電率データ取得部602は、二次電池400の充電率(SOC:State Of Charge)を示す充電率データを取得する。充電率を測定する測定装置407が二次電池400に設けられる。測定装置407は、二次電池400の充電率を示す充電率データを制御装置600に出力する。充電率データ取得部602は、測定装置407から出力された充電率データを取得する。制御部601は、充電率データに基づいて、加温装置500に対する電流の供給を制御することができる。
判定部605は、充電率データ取得部602で取得された充電率データに基づいて、二次電池400の充電率が規定値以上か否かを判定する。規定値を示す規定値データは、記憶部607に記憶されている。制御部601は、判定部605の判定結果に基づいて、加温装置500を制御することができる。制御部601は、判定部605の判定結果に基づいて、充電設備201から加温装置500に対する電力の供給又は供給停止を制御する。制御部601は、二次電池400の充電率が規定値以上であると判定されたとき、加温装置500によるタイヤ1の加温を行い、二次電池400の充電率が規定値よりも低いと判定されたとき、加温装置500によるタイヤ1の加温を行わない。
温度データ取得部603は、タイヤ1の温度を示す温度データを取得する。タイヤ1の温度を検出する温度センサ70がタイヤ1に設けられる。温度センサ70は、タイヤ1の温度を示す温度データを制御装置600に出力する。温度データ取得部603は、温度センサ70から出力された温度データを取得する。制御部601は、温度データに基づいて、加温装置500を制御することができる。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度以上か否かを判定する。規定温度を示す規定温度データは、記憶部607に記憶されている。制御部601は、判定部605の判定結果に基づいて、加温装置500を制御することができる。制御部601は、判定部605の判定結果に基づいて、充電設備201から加温装置500に対する電力の供給又は供給停止を制御する。制御部601は、タイヤ1の温度が規定温度よりも低いと判定されたとき、加温装置500によるタイヤ1の加温を行い、タイヤ1の温度が規定温度以上であると判定されたとき、加温装置500によるタイヤ1の加温を行わない。
出発予定時刻データ取得部604は、車両300の出発予定時刻を示す出発予定時刻データを取得する。車両300の出発予定時刻は、運転者に指定される。運転者は、運転室に設けられている操作装置306を操作して、車両300の出発予定時刻を指定することができる。また、運転者は、携帯端末308を操作して、運転室外又は運転室内から、車両300の出発予定時刻を指定することができる。携帯端末308は、スマートフォン又はタブレット型パーソナルコンピュータであり、運転者によって操作される操作入力部を有する。
受信部606は、操作装置306又は携帯端末308から出力された指令データを受信する。指令データは、出発予定時刻データを含む。操作装置306又は携帯端末308が操作されることにより生成された車両300の出発予定時刻を示す出発予定時刻データは、受信部606に受信される。受信部606は、携帯端末308から出力された指令データを無線受信することができる。
受信部606に受信された出発予定時刻データは、出発予定時刻データ取得部604に出力される。出発予定時刻データ取得部604は、受信部606から出力された出発予定時刻データを取得する。制御部601は、出発予定時刻データに基づいて、加温装置500を制御することができる。
制御部601は、出発予定時刻データに基づいて、出発予定時刻にタイヤ1が規定温度になるように、加温装置500を制御する。規定温度を示す規定温度データは、記憶部607に記憶されている。
また、制御部601は、温度データ取得部603で取得された温度データに基づいて、タイヤ1が目標温度になるように、加温装置500を制御することができる。例えば、制御部601は、タイヤ1の目標温度と温度センサ70の検出値との差が小さくなるように、ヒータ50に供給される電流値を制御することができる。
また、操作装置306又は携帯端末308の操作により出力される指令データは、加温装置500によるタイヤ1の加温の開始を示す開始指令データを含む。受信部606は、操作装置306又は携帯端末308から出力された開始指令データを受信する。制御部601は、受信部606で受信された開始指令データに基づいて、加温装置500を制御することができる。
[タイヤ加温方法1]
次に、タイヤ加温システム200を用いるタイヤ加温方法について説明する。図3は、タイヤ加温方法の一例を示すフローチャートである。
車両300は、充電設備201が置かれている場所に停車している。充電設備201が置かれている場所として、例えば自宅のガレージ、駐車施設、及びガソリンスタンドなどが例示される。以下の説明においては、充電設備201が自宅のガレージに置かれていることとする。
ガレージにおいて、車両300は、充電設備201により充電可能な状態で停車している。充電可能な状態とは、充電設備201の電気プラグ202と車両300のコネクタ部401とが接続された状態である。例えば夜間において、車両300は、充電可能な状態でガレージに停車している。夜間において、充電設備201により二次電池400が充電される。
例えば寒冷地の夜間において車両300がガレージに長時間停車していると、タイヤ1の温度は−10[℃]から−20[℃]程度まで低下する可能性がある。
朝になり車両300を使用する場合、運転者は、車両300を走行させる前に、操作装置306又は携帯端末308を操作して、加温装置500によるタイヤ1の加温の開始を示す開始指令データを生成する(ステップSA1)。生成された開始指令データは、受信部606に受信される。
開始指令データが受信部606に受信されたことをトリガとして、温度センサ70の検出値が制御装置600に出力される。温度データ取得部603は、温度センサ70から出力された、タイヤ1の温度を示す温度データを取得する(ステップSA2)。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度以上か否かを判定する(ステップSA3)。規定温度は、例えば5[℃]である。なお、規定温度は、10[℃]から−5[℃]の間に設定されてもよい。
ステップSA3において、タイヤ1の温度が規定温度以上であると判定されたとき(ステップSA3:Yes)、制御部601は、加温装置500によるタイヤ1の加温を行うことなく、処理を終了する。
ステップSA3において、タイヤ1の温度が規定温度以上でないと判定されたとき(ステップSA3:No)、制御部601は、受信部606で受信された開始指令データに基づいて、加温装置500によるタイヤ1の加温を開始する(ステップSA4)。
加温装置500によるタイヤ1の加温の開始後においても、温度センサ70は、温度データを出力し続け、温度データ取得部603は、温度データを取得し続ける。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度に到達したか否かを判定する(ステップSA5)。
ステップSA5において、タイヤ1の温度が規定温度に到達したと判定されたとき(ステップSA5:Yes)、制御部601は、加温装置500によるタイヤ1の加温を終了する。
ステップSA5において、タイヤ1の温度が規定温度に到達していないと判定されたとき(ステップSA5:No)、制御部601は、加温装置500によるタイヤ1の加温を継続する。
タイヤ1が規定温度以上になった後、運転者は車両300の運転を開始する。タイヤ1を含む走行装置301の走行が開始される前の走行装置301の停止状態において、充電設備201から供給される電力により加温装置500がタイヤ1を加温し、タイヤ1が規定温度以上に加温された後、タイヤ1の走行が開始されるので、タイヤ1の走行の開始直後から転がり抵抗が低減される。したがって、タイヤ1が装着された車両300の燃費が改善される。
また、本実施形態においては、充電設備201による二次電池400の充電と並行して、充電設備201からの電流の少なくとも一部が、変圧器402及び第2導電路404を介して、加温装置500に供給される。すなわち、充電設備201からの電流の一部が第1導電路403を介して二次電池400に供給され、その二次電池400に対する電流の供給と並行して、充電設備201からの電流の一部が変圧器402及び第2導電路404を介して加温装置500に供給される。本実施形態において、車両300は、電気自動車又はプラグインハイブリッド自動車のような二次電池400が搭載された二次電池式自動車である。二次電池400は、例えば数百[V]及び数百[A]のような高い電力で充電設備201によって充電される。二次電池400を充電するための電力は、タイヤ1を加温する加温装置500に必要な電力に比べてはるかに大きい。そのため、二次電池400の充電と並行して加温装置500に電流が供給されても、二次電池400の充電に対する影響は小さく、二次電池400の充電と並行して、タイヤ1を効率良く加温することができる。
また、本実施形態においては、変圧器402を介して第1導電路403から供給される電流が第2導電路404を介して加温装置500に供給されるので、適正な値の電流が加温装置500に供給される。
また、操作装置306又は携帯端末308の操作により生成された開始指令データに基づいて加温装置500が制御されるので、運転者が意図するタイミングでタイヤ1の加温を開始することができる。
また、制御部601は、温度データ取得部603で取得された温度データに基づいて加温装置500を制御する。温度データ取得部603が設けられることにより、タイヤ1は転がり抵抗が低減される規定温度に調整される。
また、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度以上か否かが判定部605で判定される。タイヤ1の温度が規定温度以上でないと判定されたとき、加温装置500による加温が行われ、タイヤ1の温度が規定温度以上であると判定されたとき、加温装置500による加温が行われない。転がり抵抗が高い可能性がある規定温度未満のときだけタイヤ1が加温され、転がり抵抗が低い規定温度以上のときにはタイヤ1が加温されないので、タイヤ1を無駄に加温してしまうことが抑制され、タイヤ1の加温が必要なときだけ効率良く加温することができる。
[タイヤ加温方法2]
次に、図4のフローチャートを参照して、タイヤ加温方法の別の例について説明する。
ガレージにおいて、車両300は充電設備201により充電可能な状態で停車している。車両300を使用する場合、運転者は、車両300を走行させる前に、操作装置306又は携帯端末308を操作して、加温装置500によるタイヤ1の加温の開始を示す開始指令データを生成する(ステップSB1)。生成された開始指令データは受信部606に受信される。
開始指令データが受信部606に受信されたことをトリガとして、温度センサ70の検出値が制御装置600に出力される。温度データ取得部603は、温度センサ70から出力された、タイヤ1の温度を示す温度データを取得する(ステップSB2)。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度以上か否かを判定する(ステップSB3)。
ステップSB3において、タイヤ1の温度が規定温度以上であると判定されたとき(ステップSB3:Yes)、制御部601は、加温装置500によるタイヤ1の加温を行うことなく、処理を終了する。
ステップSB3において、タイヤ1の温度が規定温度以上でないと判定されたとき(ステップSB3:No)、判定部605は、充電率データ取得部602で取得された二次電池400の充電率データに基づいて、二次電池400の充電率が規定値以上か否かを判定する(ステップSB4)。規定値を示す規定値データは記憶部607に記憶されている。
ステップSB4において、二次電池400の充電率が規定値以上であると判定されたとき(ステップSB4:Yes)、制御部601は、受信部606で受信された開始指令データに基づいて、加温装置500によるタイヤ1の加温を開始する(ステップSB5)。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度に到達したか否かを判定する(ステップSB6)。
ステップSB6において、タイヤ1の温度が規定温度に到達していないと判定されたとき(ステップSB6:No)、制御部601は、加温装置500によるタイヤ1の加温を継続する。
ステップSB6において、タイヤ1の温度が規定温度に到達したと判定されたとき(ステップSB6:Yes)、制御部601は、加温装置500によるタイヤ1の加温を終了する。
ステップSB4において、二次電池400の充電率が規定値以上でないと判定されたとき(ステップSB4:No)、制御部601は、加温装置500によるタイヤ1の加温を行わず、二次電池400の充電を優先させる(ステップSB7)。
判定部605は、二次電池400の測定装置407から出力された充電率データに基づいて、二次電池400の充電率が規定値に到達したか否かを判定する(ステップSB8)。
ステップSB8において、二次電池400の充電率が規定値に到達していないと判定されたとき(ステップSB8:No)、制御部601は、二次電池400の優先的な充電を継続する。
ステップSB8において、二次電池400の充電率が規定値に到達したと判定されたとき(ステップSB8:Yes)、制御部601は、加温装置500によるタイヤ1の加温を開始する(ステップSB5)。
このように、充電率データに基づいて加温装置500に対する電流の供給が制御されることにより、二次電池400の充電率不足が抑制されつつ、タイヤ1が加温される。二次電池400がEV駆動バッテリーのような高電圧バッテリーの場合、二次電池400の充電と並行して加温装置500に電流が供給されても、二次電池400の充電に対する影響は小さい可能性が高いものの、二次電池400の種類によっては、加温装置500に対する電流の供給により、二次電池400の充電に影響がもたらされる可能性がある。二次電池400の充電率が規定値よりも低い場合、制御部601は、充電設備201から加温装置500に対する電流の供給を停止するので、充電設備201から二次電池400に電流が十分に供給され、二次電池400の充電率不足が抑制される。二次電池400の充電率が規定値以上の場合、制御部601は、充電設備201から加温装置500に対して電流を供給するので、二次電池400の充電率不足が解消された状態で、タイヤ1を加温することができる。
[タイヤ加温方法3]
次に、図5のフローチャートを参照して、タイヤ加温方法の別の例について説明する。
運転者により出発予定時刻が指定される。例えば、出発予定時刻の日の前日に、運転者は、操作装置306又は携帯端末308を操作して、出発予定時刻データを生成する(ステップSC1)。出発予定時刻データは、受信部606に受信され、記憶部607に記憶される。記憶部607は、不揮発性メモリを含み、二次電池400からの電力供給が停止されても、出発予定時刻データを保持し続ける。
ガレージにおいて、車両300は充電設備201により充電可能な状態で停車する。夜間において、車両300が停車している状態で、充電設備201により二次電池400が充電される。
制御部601は、出発予定時刻の所定時間前の時点にトリガ信号を生成する(ステップSC2)。例えば、出発予定時刻が午前7時に指定された場合、制御部601は、午前6時45分にトリガ信号を生成する。
トリガ信号に基づいて、温度センサ70の検出値が制御装置600に出力される。温度データ取得部603は、温度センサ70から出力された、タイヤ1の温度を示す温度データを取得する(ステップSC3)。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度以上か否かを判定する(ステップSC4)。
ステップSC4において、タイヤ1の温度が規定温度以上であると判定されたとき(ステップSC4:Yes)、制御部601は、加温装置500によるタイヤ1の加温を行うことなく、処理を終了する。
ステップSC4において、タイヤ1の温度が規定温度以上でないと判定されたとき(ステップSC4:No)、制御部601は、加温装置500によるタイヤ1の加温を開始する(ステップSC5)。
判定部605は、温度データ取得部603で取得された温度データに基づいて、タイヤ1の温度が規定温度に到達したか否かを判定する(ステップSC6)。
ステップSC6において、タイヤ1の温度が規定温度に到達していないと判定されたとき(ステップSC6:No)、制御部601は、加温装置500によるタイヤ1の加温を継続する。
ステップSC6において、タイヤ1の温度が規定温度に到達したと判定されたとき(ステップSC6:Yes)、制御部601は、タイヤ1が規定温度を維持するように、加温装置500によるタイヤ1の保温を開始する(ステップSC7)。
判定部605は、車両300の走行装置301の走行が開始されたか否かを判定する(ステップSC8)。判定部605は、走行装置301の走行速度を検出する速度センサの検出値に基づいて、走行装置301の走行が開始されたか否かを判定することができる。
ステップSC8において、車両300の走行装置301の走行が開始されたと判定されたとき(ステップSC8:Yes)、制御部601は、加温装置500によるタイヤ1の加温(保温)を終了する。
ステップSC8において、車両300の走行装置301の走行が開始されていないと判定されたとき(ステップSC8:No)、判定部605は、出発予定時刻(午前7時)を経過したかを判定する(ステップSC9)。
ステップSC9において、出発予定時刻を経過していないと判定されたとき(ステップSC9:No)、制御部601は、タイヤ1の保温を継続する(ステップSC7)。
ステップSC9において、出発予定時刻を経過したと判定されたとき(ステップSC9:Yes)、判定部605は、予め決められている待機時間を超えたか否かを判定する(ステップSC10)。待機時間は、例えば1時間である。判定部605は、出発予定時間(午前7時)から待機時間(1時間)を超えたか否か(午前8時を経過したか否か)を判定する。
ステップSC10において、待機時間を超えてないと判定されたとき(ステップSC10:No)、制御部601は、タイヤ1の保温を継続する。
ステップSC10において、待機時間を超えたと判定されたとき(ステップSC10:Yes)、制御部601は、加温装置500によるタイヤ1の加温(保温)を終了する。
このように、出発予定時刻が指定されることにより、出発予定時刻に到達する前に、タイヤ1を規定温度に加温することができる。すなわち、タイヤ加温システム200が出発予定時刻よりも所定時間前の時点で加温装置500を起動させるタイマー機能を有することにより、出発予定時刻が経過する前にタイヤ1を十分に温めておくことができる。出発予定時刻が経過する前にタイヤ1の温度が規定温度に到達しているので、車両300がガレージから出発した直後からタイヤ1の転がり抵抗が低減される。
また、待機時間が設定されることにより、例えば運転者のスケジュールが変更され、出発予定時刻に車両300が出発しない状況になっても、加温装置500でタイヤ1が無駄に加温され続けてしまうことが抑制される。
なお、上述の実施形態において、温度センサ70によりタイヤ1の温度が検出され、温度センサ70で検出されたタイヤ1の温度が規定温度以上か否かが判定部605により判定され、規定温度以上であると判定されたとき、加温装置500によるタイヤ1の加温が行われず、規定温度未満であると判定されたとき、加温装置500によるタイヤ1の加温が行われることとした。ガレージの外気の温度を示す温度データを取得可能な温度センサが設けられ、その温度センサにより外気の温度が検出され、温度センサで検出された外気の温度を示す温度データが温度データ取得部603に取得され、温度データ取得部603で取得された温度データに基づいて外気の温度が規定温度以上か否かが判定部605により判定され、外気の温度が規定温度以上であると判定されたとき、加温装置500によるタイヤ1の加温が行われず、外気の温度が規定温度未満であると判定されたとき、加温装置500によるタイヤ1の加温が行われてもよい。また、外気の温度に基づいてヒータ50に供給される電流量が調整されることによって、タイヤ1の温度が調整されてもよい。
なお、外気の温度を検出する温度センサの検出結果によらずに、気象予報データが示す外気の温度に基づいて、加温装置500によるタイヤ1の加温を実施するか否かが判定されてもよい。
なお、上述の実施形態において、加温装置500によるタイヤ1の加温(ヒータ50に対する充電設備201からの電流の供給)は、二次電池400の充電(二次電池400に対する充電設備201からの電流の供給)と同時に行われてもよいし、交互に行われてもよい。
なお、上述の実施形態においては、タイヤ1が規定温度に到達したと判定されたとき、加温装置500による加温を終了することとした。タイヤ1の空気圧の上昇率に基づいて、加温装置500による加温が終了してもよい。タイヤ1の温度が規定温度に到達しなくても、タイヤ1の空気圧が規定値を超えたとき、加温装置500による加温を終了してもよい。これにより、空気圧の過度な上昇による車両300の運動性能の低下が抑制される。
なお、上述の実施形態においては、タイヤ1の温度が規定温度未満である場合、車両300の4つのタイヤ1の全てが加温されることとした。4つのタイヤ1のうち選択されたタイヤ1が加温され、他のタイヤ1が加温されなくてもよい。例えば、駆動輪タイヤが優先的に加温されてもよいし、従動輪タイヤが優先的に加温されてもよい。従動輪タイヤは駆動輪タイヤに比べて走行中に温まり難いので、走行前に従動輪タイヤが十分に加温されることにより、走行後短時間で、4つのタイヤ1の温度が均一化され、車両300の燃費が改善される。
なお、上述の実施形態においては、第2導電路404は、変圧器201を介して第1導電路403から供給された電流を加温装置500に供給することとした。図6及び図7に示すように、第2導電路404は、二次電池である高電圧バッテリー400Aから供給された電流を加温装置500に供給してもよい。図6及び図7に示す車両300は、二次電池である高電圧バッテリー400Aと、二次電池である低電圧バッテリー400Bと、既存の低電圧バッテリー充電用DC/DCコンバータである変圧器402Jとを有する。
図6に示す例では、充電設備201からの電流は、第1導電路403を介して、高電圧バッテリー400Aに供給される。高電圧バッテリー400Aは、第1導電路403を介して供給された電流により充電される。高電圧バッテリー400Aと変圧器402Jとは、導電路405を介して接続される。高電圧バッテリー400Aからの電流の一部は、変圧器402Jを介して、第2導電路404に供給される。第2導電路404は、変圧器402Jを介して高電圧バッテリー400Aから供給された電流を加温装置500に供給する。また、高電圧バッテリー400Aからの電流の一部は、導電路406を介して、低電圧バッテリー400Bに供給される。低電圧バッテリー400Bは、高電圧バッテリー400Aから供給された電流により充電される。
図7に示す例では、充電設備201からの電流は、第1導電路403を介して、高電圧バッテリー400Aに供給される。高電圧バッテリー400Aは、第1導電路403を介して供給された電流により充電される。高電圧バッテリー400Aと変圧器402Jとは、導電路405を介して接続される。また、変圧器402Jと低電圧バッテリー400Bとは、導電路408を介して接続される。高電圧バッテリー400Aからの電流は、変圧器402J及び導電路408を介して、低電圧バッテリー400Bに供給される。低電圧バッテリー400Bは、第2導電路404を介して、加温装置500と接続される。第2導電路404は、低電圧バッテリー400Bから供給された電流を、加温装置500に供給する。
図6及び図7に示した例によれば、変圧器402Jとして、既存の低電圧バッテリー充電用DC/DCコンバータが使用されるため、コストが低減される。
なお、上述の実施形態においては、充電設備201の電気プラグ202と車両300のコネクタ部401とが接続された状態で充電設備201から車両300に電力が供給されることとした。ワイヤレス充電方式で二次電池400及び加温装置500の少なくとも一方に電力が供給されてもよい。
なお、上述の実施形態においては、制御装置600が車両300に設けられることとした。制御装置600は、コネクタ部401を介して充電設備201に制御信号を出力してもよいし、ワイヤレスで充電設備201に制御信号を出力してもよい。また、タイヤ加温システム200の制御装置600が充電設備201に設けられてもよい。
なお、上述の実施形態においては、車両300が電気自動車又はプラグインハイブリッド自動車のような二次電池式自動車であり、二次電池400が走行装置301を駆動するための動力源303の電動機に電力を供給する高電圧バッテリー(EV駆動バッテリー)であることとした。車両300はガソリン車又はディーゼル車でもよい。また、二次電池400は、回生ブレーキが発生する回生電力を蓄える回生専用バッテリーでもよいし、ランプ類及びカーナビゲーションシステムのような電子機器を駆動するための低電圧バッテリー(50V以下のバッテリー等)でもよい。
[タイヤ]
以下、タイヤ1について説明する。図8は、タイヤ1の一部を拡大した断面図である。タイヤ1は、空気入りタイヤである。タイヤ1は、タイヤホイール100に装着された状態で、中心軸AXを中心に回転可能である。図8は、タイヤ1の中心軸AXを通る子午断面を示す。
以下の説明においては、タイヤ周方向、タイヤ径方向、及びタイヤ幅方向という用語を用いて、各部の位置関係について説明する。タイヤ1は、中心軸AXを中心に回転し、中心軸AXの周囲に配置される。タイヤ周方向とは、タイヤ1の中心軸AXを中心とする回転方向である。タイヤ径方向とは、タイヤ1の中心軸AXに対する放射方向である。タイヤ幅方向とは、タイヤ1の中心軸AXと平行な方向である。
タイヤ1の中心軸AXは、タイヤ1の赤道面CLと直交する。赤道面CLとは、タイヤ幅方向のタイヤ1の中心を通る面である。
タイヤ径方向の内側とは、中心軸AXに近い側である。タイヤ径方向の外側とは、中心軸AXから遠い側である。タイヤ幅方向の内側とは、赤道面CLに近い側である。タイヤ幅方向の外側とは、赤道面CLから遠い側である。
タイヤ1は、カーカス2と、ベルト3と、ベルトカバー4と、ビード部5と、トレッドゴム6と、サイドゴム7と、インナーライナー8と、タイヤ内面13に設けられた導電部材30と、タイヤ内面13に設けられたシート状のヒータ50とを備える。加温装置500は、導電部材30及びヒータ50を含む。
カーカス2、ベルト3、及びベルトカバー4のそれぞれは、有機繊維、合成樹脂繊維、又は金属繊維のコードを含む。カーカス2、ベルト3、及びベルトカバー4のようなコードを含む層は、コード層と総称される。コード層は、トレッドゴム6に埋設される。
タイヤ1は、路面に接触する接地面14を有するトレッド部10と、トレッド部10のタイヤ幅方向の両側に配置されるサイド部9とを有する。トレッド部10は、トレッドゴム6及びトレッドゴム6に埋設されたコード層を含む。サイド部9は、サイドゴム8及びカーカス2を含む。
カーカス2は、タイヤ1の骨格を形成する強度部材であり、タイヤ1の内部空間15に空気が充填されたときの圧力容器として機能する。カーカス2は、ビード部5に支持される。ビード部5は、カーカス2のタイヤ幅方向の両側に配置される。カーカス2は、ビード部5において折り返される。カーカス2は、有機繊維、合成樹脂繊維、又は金属繊維のカーカスコードと、カーカスコードを覆うゴムとを含む。カーカスコードは、ポリエステル製、ナイロン製、アラミド製、及びレーヨン製のいずれでもよい。
ベルト3は、タイヤ1の形状を保持する強度部材であり、カーカス2よりもタイヤ径方向の外側に設けられる。ベルト3は、有機繊維、合成樹脂繊維、又は金属繊維のベルトコードと、ベルトコードを覆うゴムとを含む。ベルト3は、第1ベルトプライ3Aと、第2ベルトプライ3Bとを含む。第1ベルトプライ3Aと第2ベルトプライ3Bとは、第1ベルトプライ3Aのベルトコードと第2ベルトプライ3Bのベルトコードとが交差するように積層される。ベルトコードは、スチール製でもよい。
ベルトカバー4は、ベルト3を保護し補強する強度部材であり、ベルト3よりもタイヤ径方向の外側に設けられる。ベルトカバー4は、有機繊維、合成樹脂繊維、又は金属繊維のカバーコードと、カバーコードを覆うゴムとを含む。カバーコードは、スチール製でもよい。
ビード部5は、カーカス2の両端部を固定する強度部材であり、タイヤ1をタイヤホイール100のリム101に固定させる。ビード部5は、スチールワイヤ又は炭素鋼ワイヤの束である。
トレッドゴム6は、カーカス2を保護する。トレッドゴム6は、複数の溝20と、溝20の間に設けられる接地面14とを有する。接地面14は、溝20の間の陸部の表面を含み、路面に接触する。
サイドゴム7は、カーカス2を保護する。サイドゴム7は、トレッドゴム6のタイヤ幅方向の両側に設けられる。
インナーライナー8は、トレッドゴム6の内面及びサイドゴム7の内面に貼付されるゴム、熱可塑性エラストマー、熱可塑性樹脂又は熱可塑性樹脂とエラストマーとをブレンドした熱可塑性エラストマー組成物のいずれかで構成される層である。タイヤ内面13は、インナーライナー8の内面である。
内部空間15は、タイヤホイール100と、タイヤホイール100に装着されたタイヤ1との間に形成される。タイヤ内面13とタイヤホイール100の外周面とにより、内部空間15が規定される。タイヤ内面13は、内部空間15に面するように設けられる。内部空間15は、適切な内圧の空気で満たされる。
導電部材30及びヒータ50は、タイヤ内面13に接着される。ヒータ50は、導電部材30よりもタイヤ幅方向の内側に設けられる。
ヒータ50は、タイヤ幅方向のベルト3の一方の端部3Ea及び他方の端部3Ebよりも、タイヤ幅方向の内側に設けられる。ヒータ50の少なくとも一部は、タイヤ内面13のタイヤ幅方向の中心部に設けられる。
図9は、タイヤ1のトレッド部10の一例を示す図である。図9に示すように、トレッド部10は、溝20と、溝20の間に設けられる接地面14とを有する。溝20は、タイヤ周方向に延在する主溝(周方向溝)21と、少なくとも一部がタイヤ幅方向に延在するラグ溝(横溝)22と、少なくとも一部がタイヤ幅方向に延在するサイプ23とを含む。
溝20の周囲に陸部が設けられる。陸部は、溝20とその溝20に隣り合う溝20との間に設けられる。接地面14は、陸部に配置される。トレッド部10は、複数の陸部を有する。複数の陸部のうち、主溝21とその主溝21の隣の主溝21との間に設けられる陸部は、リブ16と呼ばれる。リブ16は、接地面14を有し、タイヤ周方向に延在する。
主溝21は、タイヤ周方向に延在する。主溝21は、内部にスリップサイン(トレッドウェアインジケータ)を有する。スリップサインは、摩耗末期を示す。主溝21は、4.0[mm]以上の幅及び5.0[mm]以上の深さを有する。図9に示す例において、主溝21は、4つの主溝21A,21B,21C,21Dを含み、リブ16は、3つのリブ16A,16B,16Cを含む。タイヤ赤道面CLを含むリブ16Bは、センターリブ16Bと呼ばれる。センターリブ16Bのタイヤ幅方向両側のリブ16A,16Cは、セカンドリブ16A,16Cと呼ばれる。
ラグ溝22の少なくとも一部は、タイヤ幅方向に延在する。ラグ溝22は、1.5[mm]以上の幅及び4.0[mm]以上の深さを有する。なお、ラグ溝22は、部分的に4.0[mm]未満の深さを有していてもよい。
サイプ23の少なくとも一部は、タイヤ幅方向に延在する。サイプ23は、タイヤ1の陸部に形成される。サイプ23は、1.5[mm]未満の幅を有する。
トレッド部10は、タイヤ赤道面CLを含むセンター部11と、センター部11のタイヤ幅方向の両側に設けられるショルダー部12とを有する。トレッド部10のセンター部11は、タイヤ赤道面CLを含む。トレッド部10のショルダー部12は、センター部11のタイヤ幅方向の両側に設けられる。主溝21は、センター部11に設けられる。ラグ溝22は、センター部11及びショルダー部12のそれぞれに設けられる。サイプ23は、ショルダー部12に設けられる。
センター部11のタイヤ幅方向の両側に設けられるショルダー部12のうち、一方のショルダー部12Aは、タイヤ赤道面CLからタイヤ幅方向の一方側に向かってトレッド部10の接地幅の15[%]以上40[%]以下の距離に存在する第1の主溝21よりも、タイヤ幅方向の一方側の領域をいう。一方のショルダー部12Aは、一方の接地端を含む。
他方のショルダー部12Bは、タイヤ赤道面CLからタイヤ幅方向の他方側に向かってトレッド部10の接地幅の15[%]以上40[%]以下の距離に存在する第2の主溝21よりも、タイヤ幅方向の他方側の領域をいう。他方のショルダー部12Bは、他方の接地端を含む。
センター部11は、第1の主溝21と第2の主溝21との間の領域をいう。
図9に示す例では、主溝21Aが第1の主溝21であり、主溝21Aを境界として一方のショルダー部12Aが規定される。主溝21Dが第2の主溝21であり、主溝21Dを境界として他方のショルダー部12Bが規定される。
トレッド部10の接地端とは、タイヤ1を正規リムにリム組みして、正規内圧を充填して、平面上に垂直に置いて、正規荷重を加えた負荷状態のときにトレッド部10が接地する部分のタイヤ幅方向の端部をいう。
「正規リム」とは、タイヤ1が基づく規格を含む規格体系において、その規格がタイヤ1毎に定めているリムであり、JATMAであれば標準リム、TRAであれば“Design Rim”、ETRTOであれば“Measuring Rim”である。但し、タイヤ1が新車装着タイヤの場合には、このタイヤ1が組まれる純正ホイールを用いる。
「正規内圧」とは、タイヤ1が基づく規格を含む規格体系において、その規格がタイヤ1毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”である。但し、タイヤ1が新車装着タイヤの場合には、車両に表示された空気圧とする。
「正規荷重」とは、タイヤ1が基づく規格を含む規格体系において、その規格がタイヤ1毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”である。但し、タイヤ1が乗用車である場合には前記荷重の88[%]に相当する荷重とする。タイヤ1が新車装着タイヤの場合には、車両の車検証記載の前後軸重をそれぞれタイヤの数で除して求めた輪荷重とする。
図10は、タイヤホイール100に装着された状態のタイヤ1を示す断面図である。図11は、図10の一部を拡大した図である。図10及び図11に示すように、タイヤホイール100にホイール電線102が支持される。ホイール電線102は、タイヤホイール100のスポーク103に配置される。タイヤ1の導電部材30は、ホイール電線102と接続される。充電設備201から供給された電力(電流)が、ホイール電線102に供給される。ホイール電線102に供給された電力は、導電部材30に供給される。導電部材30に供給された電力は、ヒータ50に供給される。ヒータ50は、ホイール電線102及び導電部材30を介して供給される電力により発熱する。
図10に示すように、車両は、懸架装置のナックル104と、車軸105に支持されるハブ106と、ナックル104とハブ106との間に設けられ、中心軸AXを中心に車軸105及びハブ106を回転可能に支持する軸受装置107とを有する。タイヤホイール100のスポーク103は、ハブ106に固定される。スリップリングのようなロータリーコネクタがハブ106に設けられる。車両に設けられている電源から出力された電力は、ナックル104に設けられている配線(不図示)、及びハブ106に設けられているロータリーコネクタを介して、タイヤホイール100のホイール電線102に供給される。
図12は、タイヤ1を破断した斜視図であり、タイヤ内面13を示す図である。図12に示すように、ヒータ50は、シート状であり、タイヤ内面13に固定される。
ヒータ50がシート状とは、タイヤ径方向のヒータ50の寸法が、タイヤ幅方向のヒータ50の寸法及びタイヤ周方向のヒータ50の寸法よりも小さいことをいう。タイヤ径方向のヒータ50の寸法とは、ヒータ50の厚みを意味する。ヒータ50の厚みは、0.2[mm]以上1.0[mm]以下が好ましい。
ヒータ50は、タイヤ周方向に延在する。ヒータ50は、タイヤ周方向に連続的に設けられる環状の部材である。
ヒータ50のタイヤ幅方向の寸法は、トレッド部10のセンター部11のタイヤ幅方向の寸法と等しい。ヒータ5は、センター部11とタイヤ幅方向の同じ範囲に設けられる。すなわち、ヒータ50は、センター部11に対応する領域(センター部11の直下)に設けられる。
導電部材30は、線状であり、タイヤ内面13に固定される。導電部材30は、タイヤ内面13に接着された導電性糸である。導電部材30は、例えば、金属繊維のような複数の導電性繊維を撚り合わせた糸状コードである。導電部材30の線抵抗率は、1×10[Ω/cm]未満であることが好ましい。導電部材30の総繊度は、20[dtex]以上5000[dtex]以下であることが好ましい。導電部材30の総繊度が20[dtex]よりも小さい場合、導電部材30の製造時又は導電部材30をタイヤ内面13に接着させる作業時において、導電部材30が切断する可能性が高くなり、導電部材30の総繊度が5000[dtex]よりも大きい場合、タイヤ1の走行中に導電部材30が切断する可能性が高くなるためである。また、導電部材30の伸び率は、1.0[%]以上70.0[%]以下であることが好ましい。伸び率は、JIS L 1017化学繊維タイヤコード試験方法8.5引張り強さ及び伸び率に準拠して測定される。
図13は、ヒータ50の一例を模式的に示す斜視図である。図14は、図13に示したヒータ50の一部を拡大した平面図であり、図13のA部分に相当する。図13及び図14に示すように、ヒータ50は、導電性材料で形成され、導電部材30から供給された電力により発熱する線状の発熱素子53と、非導電性材料で形成され、発熱素子53を被覆するシート部材54とを有する。
線状の発熱素子53は、導電性繊維である。発熱素子53は、導電性を有する炭素繊維である。導電性繊維は、単一の繊維でもよいし、複数の繊維の束でもよい。
シート部材54は、発熱素子53よりも導電性が十分に低い。シート部材54は、ゴムのような絶縁性材料で形成される。シート部材54は、シリコンゴムである。なお、シート部材54は、合成樹脂製でもよいし、不織布でもよい。
発熱素子53は、シート部材54に埋め込まれている。ヒータ50の表面は、シート部材54の表面である。なお、発熱素子53が2つのシート部材54に挟まれることによって、ヒータ50が形成されてもよい。
ヒータ50は、タイヤ周方向に延在する第1電極線51と、第1電極線51とはタイヤ幅方向の異なる位置に設けられ、タイヤ周方向に延在する第2電極線52とを有する。第1電極線51は、タイヤ周方向に連続的に設けられる環状の部材である。第2電極線52も、タイヤ周方向に連続的に設けられる環状の部材である。
シート部材54は、発熱素子53のみならず、第1電極線51及び第2電極線52も被覆する。第1電極線51及び第2電極線52は、シート部材54に埋め込まれてもよいし、2つのシート部材54で挟まれてもよい。
第1電極線51と第2電極線52とは、平行に配置される。発熱素子53は、第1電極線51と第2電極線52との間において、第1電極線51及び第2電極線52と直交するように配置される。発熱素子53の一端部は、第1電極線51と接続される。発熱素子53の他端部は、第2電極線52と接続される。発熱素子53は、第1電極線51と第2電極線52との間において、タイヤ周方向に複数設けられる。複数の発熱素子53は、平行に配置される。
導電部材30は、第1電極線51と接続される第1導電部材30Aと、第2電極線52と接続される第2導電部材30Bとを含む。
発熱素子53は、第1電極線51及び第2電極線52を介して、導電部材30(30A,30B)と接続される。第1電極線51及び第2電極線52を介して第1導電部材30A及び第2導電部材30Bから供給された電力により、発熱素子53は発熱する。
導電部材30と同様、第1電極線51及び第2電極線52は、金属繊維のような複数の導電性繊維を撚り合わせた糸状コードである導電性糸でもよい。第1電極線51及び第2電極線52の線抵抗率は、1×10[Ω/cm]未満であることが好ましく、総繊度は、20[dtex]以上5000[dtex]以下であることが好ましく、伸び率は、1.0[%]以上70.0[%]以下であることが好ましい。
図15は、ヒータ50とインナーライナー8のタイヤ内面13との接続構造の一例を模式的に示す図である。ヒータ50は、タイヤ内面13に接触するように配置される。タイヤ内面13に接触するヒータ50を覆うカバー部材55が設けられる。カバー部材55は、シート状の部材である。カバー部材55は、絶縁機能及び防水機能を有する。カバー部材55は、ゴム製でもよいし、合成樹脂製でもよい。
カバー部材55のタイヤ幅方向の寸法は、ヒータ50のタイヤ幅方向の寸法よりも大きい。カバー部材55の一部は、タイヤ内面13と接触する。カバー部材55の一部とタイヤ内面13とが接着剤を含む接着層を介して接着される。カバー部材55は、タイヤ内面13に接触するヒータ50を覆った状態でタイヤ内面13に接着して、ヒータ50をタイヤ内面13に固定する。
次に、ヒータ50の動作について説明する。冬期又は早朝において、走行前のタイヤ1の温度は低下している。車両のエンジンが始動された後、電源からヒータ50に電力が供給される。これにより、発熱素子53が発熱し、タイヤ内面13を有するインナーライナー8が加熱される。タイヤ内面13が加熱されることにより、トレッド部10のカーカス2、ベルト3、ベルトカバー4、及びトレッドゴム6が加熱される。トレッド部10の直下にヒータ50が設けられているので、トレッド部10が効率良く加熱される。
以上説明したように、シート状のヒータ50がタイヤ内面13にダイレクトに設けられるので、タイヤ1のトレッドゴム6及びコード層のコードは効率良く加熱される。タイヤ1のトレッドゴム6及びコード層のコードの温度が上昇することにより、タイヤ1の転がり抵抗が低減される。したがって、タイヤ1が装着された車両の燃費が改善される。
また、タイヤ1の走行においては、導電部材30及びヒータ50に遠心力又は繰り返し曲げが作用する。導電部材30及びヒータ50はタイヤ内面13にダイレクトに設けられるので、タイヤ1の走行においても、導電部材30及びヒータ50はタイヤ内面13に支持され続ける。そのため、導電部材30及びヒータ50の劣化が抑制され、耐久性は向上する。
また、導電部材30として導電糸が使用される。これにより、タイヤ1の走行において導電部材30に遠心力又は繰り返し曲げが作用しても、導電部材30の劣化が抑制され、耐久性は向上する。
また、ヒータ50は、ベルト3の端部3Ea及び端部3Ebよりもタイヤ幅方向の内側に設けられる。これにより、トレッド部10のトレッドゴム6、ベルト3のベルトコード、及びカーカス2のカーカスコードは効率良く加熱される。
また、ヒータ50の少なくとも一部は、タイヤ内面13のタイヤ幅方向の中心部に設けられる。これにより、トレッド部10のうちタイヤ幅方向の中心部が加熱された後、熱がタイヤ幅方向に拡がり、トレッド部10は均一に加熱される。
また、ヒータ50は、タイヤ周方向に延在する。これにより、トレッド部10はタイヤ周方向に一様に加熱されるので、転がり抵抗は効果的に低減される。
また、ヒータ50は、導電性材料で形成された線状の発熱素子53と、発熱素子53を被覆する非導電性材料で形成されたシート部材54とを有する。発熱素子53とシート部材54とでヒータ50がユニット化されることにより、ヒータ50をタイヤ内面13に接着する作業は円滑に実施される。また、発熱素子53が非導電性材料のシート部材54で被覆されることにより、短絡の発生が抑制される。
また、発熱素子53は、炭素繊維のような導電性繊維である。発熱素子53として導電性繊維が使用されることにより、軽量で薄いヒータ50が提供される。軽量で薄いヒータ50が提供されることにより、ヒータ50とタイヤ内面13との接着耐久性は向上する。また、炭素繊維は引張強度が強いので、細い炭素繊維を使用することができ、複数の炭素繊維を狭い間隔で均一に配列することができる。これにより、ヒータ50とタイヤ内面13との接着耐久性はより向上し、トレッド部10は均一に加熱される。
また、ヒータ50は、タイヤ周方向に延在する第1電極線51及び第2電極線52を有し、発熱素子53は、第1電極線51と第2電極線52との間においてタイヤ周方向に複数設けられる。これにより、第1電極線51及び第2電極線52を介して複数の発熱素子53に電力を円滑に供給することができ、トレッド部10を均一に加熱することができる。
また、ヒータ50は、カバー部材55に覆われた状態で、カバー部材55によりタイヤ内面13に固定される。接着機能を有するカバー部材55が使用されることにより、ヒータ50はタイヤ内面13に円滑に固定される。また、カバー部材55が絶縁機能及び防水機能のような様々な機能を有することにより、ヒータ50はカバー部材55で十分に保護される。
(導電部材の変形例)
なお、上述の例では、導電部材30が導電性糸であることとした。導電部材30は、タイヤ内面13に塗布された導電性塗料でもよい。導電部材30として導電性塗料が使用されることによっても、タイヤ1の走行において導電部材30に遠心力又は繰り返し曲げが作用しても、導電部材30の劣化が抑制され、耐久性が向上する。以下の実施形態においても同様である。
(ヒータの変形例)
なお、上述の例においては、ヒータ50が環状であることとした。図16に示すように、ヒータ50は環状でなくてもよい。すなわち、タイヤ周方向においてヒータ50が設けられないヒータ50の間隔部50Nが存在してもよい。なお、タイヤ周方向の間隔部50Nの角度は、8[°]以下であることが好ましい。間隔部50Nの角度が8[°]よりも大きいと、トレッド部10において不均一な摩耗が発生する可能性があるためである。
また、ヒータ50が環状でない場合、図17に示すように、ヒータ50の間隔部50Nには、インナーライナー8又はカーカス2のスプライス部60が配置されてもよい。スプライス部60においてタイヤ内面13の一部が凸形状になる可能性がある。スプライス部60を避けるようにヒータ50が配置されることにより、ヒータ50とタイヤ内面13との接着耐久性が向上する。
(発熱素子の変形例)
図18及び図19は、発熱素子53の変形例を示す図である。発熱素子53は、第1電極線51と接続される一端部と、第2電極線52と接続される他端部と、一端部と他端部との間の中間部とを有する。発熱素子53の中間部の少なくとも一部は曲げられている。図18に示す例では、発熱素子53は、タイヤ幅方向の中央部に設けられ、タイヤ周方向に突出する屈曲部56を有する。複数の発熱素子53の屈曲部56は、タイヤ周方向について同じ方向に曲げられている。また、複数の発熱素子53の屈曲部56の頂点のタイヤ幅方向の位置は、同一である。換言すれば、複数の発熱素子53の形状は、同一(合同)である。
図19に示す例では、発熱素子53は、タイヤ周方向に関して一方向に突出する第1屈曲部56Aと、タイヤ周方向に関して他方向に突出する第2屈曲部56Bとを有する。第1屈曲部56Aと第2屈曲部56Bとのタイヤ幅方向の位置は異なり、第1屈曲部56Aの突出方向と第2屈曲部56Bの突出方向とは、逆方向である。複数の発熱素子53の形状は、同一である。
このように、発熱素子53の少なくとも一部が曲げられていることにより、トレッドゴム6及びインナーライナー8がタイヤ幅方向に伸びた場合、発熱素子53の曲げられている部分がトレッドゴム6及びインナーライナー8と一緒にタイヤ幅方向に伸びることができる。そのため、発熱素子53の破断が抑制される。また、伸縮性を有するゴムのような非導電性材料でシート部材54が形成されることにより、ヒータ50は、トレッドゴム6及びインナーライナー8のタイヤ幅方向の伸びに十分に追従することができる。
(第1電極線及び第2電極線の変形例)
図20及び図21は、第1電極線51及び第2電極線52の変形例を示す図である。図20に示す例では、第1電極線51及び第2電極線52はそれぞれ、屈曲部57を有する。屈曲部57は、タイヤ幅方向のヒータ50の中心に対してタイヤ幅方向の外側に突出する第1屈曲部57Aと、タイヤ幅方向の内側に突出する第2屈曲部57Bとを含む。第1屈曲部57Aと第2屈曲部57Bとは、タイヤ周方向に交互に設けられる。タイヤ周方向の第1屈曲部57Aのピッチ(間隔)と、タイヤ周方向の第2屈曲部57Bのピッチとは等しい。
図21に示す例では、第1電極線51及び第2電極線52はそれぞれ、タイヤ周方向に延在するストレート部58と、タイヤ周方向に一定間隔で設けられた屈曲部59を有する。屈曲部59は、タイヤ幅方向のヒータ50の中心に対してタイヤ幅方向の内側に突出するように屈曲する。
なお、屈曲部59の電極線の太さは、ストレート部58の電極線の太さと同じでもよいし、ストレート部58の電極線の太さよりも細くてもよい。
このように、第1電極線51及び第2電極線52の少なくとも一部が曲げられていることにより、トレッドゴム6及びインナーライナー8がタイヤ周方向に伸びた場合、第1電極線51及び第2電極線52の曲げられている部分がトレッドゴム6及びインナーライナー8と一緒にタイヤ周方向に伸びることができる。そのため、第1電極線51及び第2電極線52の破断が抑制される。また、伸縮性を有するゴムのような非導電性材料でシート部材54が形成されることにより、ヒータ50は、トレッドゴム6及びインナーライナー8のタイヤ周方向の伸びに十分に追従することができる。
(接続構造の変形例)
ヒータ50をインナーライナー8のタイヤ内面13に接続する接続構造の変形例について説明する。
図22は、ヒータ50とタイヤ内面13との接続構造を模式的に示す斜視図である。ヒータ50は、シート部材54と、シート部材54に埋め込まれた第1電極線51、第2電極線52、及び発熱素子53とを有する。図22に示す例では、上述の実施形態で説明したようなカバー部材(55)は設けられてなく、シート部材54とタイヤ内面13との間に設けられる接着層61を介して、ヒータ50とタイヤ内面13とが接続される。
シート部材54が絶縁機能、防水機能、及び耐候機能を有する場合、ヒータ50は、カバー部材(55)で保護されなくてもよい。
例えば、シート部材54とタイヤ内面13との間に、タイヤ内面13(ゴム)と加硫接着し易いナイロン系樹脂層のような樹脂層が接着層61として配置された状態で加硫処理が行われることにより、ヒータ50とタイヤ1のタイヤ内面13とが加硫接着されてもよい。
なお、接着層61は設けられなくてもよい。第1電極線51、第2電極線52、及び発熱素子53が埋め込まれたシート部材54が、タイヤ内面13(ゴム)と加硫接着し易いナイロン系樹脂のような合成樹脂で形成され、そのシート部材54を有するヒータ50がグリーンタイヤ(生タイヤ)のタイヤ内面に接触された状態で加硫処理が行われることにより、ヒータ50とタイヤ1のタイヤ内面13とが加硫接着されてもよい。これにより、使用する部材の数が抑制される。
図23は、第1電極線51、第2電極線52、及び発熱素子53が、接着機能を有するシート部材54Aに保持されている例を示す。シート部材54Aが接着機能及び絶縁機能を有する材料の場合、発熱素子53をタイヤ内面13と接触させ、シート部材54Aで第1電極線51、第2電極線52、及び発熱素子53を覆った状態で、シート部材54Aがタイヤ内面13に接着されてもよい。
シート部材54Aは、タイヤ内面13(ゴム)と加硫接着し易いナイロン系樹脂層のような樹脂層で形成される。第1電極線51、第2電極線52、及び発熱素子53がシート部材54Aとグリーンタイヤのタイヤ内面との間に配置され、シート部材54Aがグリーンタイヤのタイヤ内面に接触された状態で、加硫処理が行われることにより、第1電極線51、第2電極線52、発熱素子53、及びシート部材54Aは、タイヤ内面13に加硫接着されて固定される。
また、図23に示す例では、発熱素子53がタイヤ内面13とダイレクトに接触するので、発熱素子53の熱がタイヤ内面13にダイレクトに伝わる。そのため、トレッド部10のトレッドゴム6及びコード層のコードは効率良く加熱される。
なお、シート部材54(54A)を形成する加硫接着し易い材料は、ナイロン系樹脂のような合成樹脂でなくてもよく、ブチルゴムのようなゴムでもよい。シート部材54(54A)としてゴムが使用され、そのシート部材54(54A)がタイヤ内面13に加硫接着されることにより、防水性及び耐候性が確保される。
図24は、ヒータ50とタイヤ内面13との間に、シート部材54よりも熱伝導率が高く、シート部材54よりも外形が大きい熱伝導部材62が設けられている例を示す。熱伝導部材62は、シート状の部材である。
熱伝導部材62とタイヤ内面13の間に接着層が設けられてもよい。熱伝導部材62とヒータ50のシート部材54との間に接着層が設けられてもよい。
熱伝導部材62により、発熱素子53で発生した熱は、トレッド部10の広い範囲に供給される。これにより、トレッド部10は広範囲において効率良く加熱される。
熱伝導部材62は、熱伝導率が10[W/(m・K)]以上、より好ましくは50[W/(m・K)]以上500[W/(m・K)]以下の熱伝導性材料を含むことが好ましい。一般的なゴムの熱伝導率は、0.1[W/(m・K)]以上0.2[W/(m・K)]以下であるため、熱伝導部材62が上述の熱伝導率を有する熱伝導性材料を含むことにより、良好な伝熱効果を得ることができる。また、熱伝導部材62全体での熱伝導率は0.2[W/(m・K)]以上が好ましい。熱伝導率はASTM E1530の規定に基づいて算出される。
熱伝導部材62は、例えば金属フィルムを含んでもよい。例えば、熱伝導部材62が、アルミ箔のような金属フィルムと、金属フィルムの両側に積層された一対の樹脂層との積層体でもよい。樹脂層は、ポリプロピレン又はポリエステルを主成分とする樹脂層でもよい。金属フィルムと樹脂層との積層体は100[℃]における熱拡散率が0.2×10−7[m2/s]以上、より好ましくは0.5×10−7[m2/s]以上であると良い。金属フィルムは熱伝導性に優れているが、金属フィルム単体では、タイヤ1の走行に伴って破断したり剥離したりする可能性がある。熱伝導部材62が金属フィルムと樹脂層との積層体から構成されることにより、熱伝導性を良好に維持しながら、接着性に優れた樹脂層に基づいて熱伝導部材62の接着性を改善し、かつ金属フィルムの破断を防止することができる。
なお、熱伝導部材62は、マトリックス中に熱伝導性材料の粉末を分散させたものでもよい。マトリックスは樹脂又はゴム組成物から構成することができる。粉末を構成する熱伝導性材料は、特に限定されない。マトリックス中に熱伝導性材料の粉末を分散させてなる熱伝導部材62も、良好な放熱効果を発揮する。
なお、タイヤ内面13と熱伝導部材62との間に接着層が設けられる場合、熱伝導部材62からタイヤ内面13への熱伝導性を確保するために、接着層の熱伝導率は0.2[W/(m・K)]以上、好ましくは0.3[W/(m・K)]以上、更に好ましくは0.5[W/(m・K)]以上となるように設定するのが良い。
また、シート状の熱伝導部材62の厚みは、30[μm]以上150[μm]以下であると良い。これにより、熱伝導部材62の伝熱性及び耐久性を確保することができる。熱伝導部材62の厚みが30[μm]よりも小さいと放熱性が低下し、150[μm]よりも大きいと面外曲げ応力に対する耐久性が低下するためである。
図25は、タイヤ内面13に設けられたヒータ50を覆うように、シート部材54よりも熱伝導率が低い断熱部材63が設けられている例を示す。断熱部材63の厚みは、ヒータ50の厚み及び熱伝導部材62の厚みよりも厚い。断熱部材63は、例えば発泡ウレタン樹脂のような連続気泡を有する多孔質部材である。
ヒータ50が断熱部材63で覆われることにより、ヒータ50で発生した熱が、空気で満たされたタイヤ1の内部空間15に放射されることが抑制される。これにより、トレッド部10は効率良く加熱される。
また、多孔質部材からなる断熱部材63は、吸音部材としても機能する。走行するタイヤ1において、騒音を発生させる原因の一つとして、タイヤ1の内部空間15に充填された空気の振動による空洞共鳴音が挙げられる。空洞共鳴音は、タイヤ1を転動させたときにトレッド部10が路面の凹凸によって振動し、トレッド部19の振動がタイヤ1の内部空間15の空気を振動させることによって生じるものである。多孔質部材からなる断熱部材63は、空洞共鳴音を低減して、騒音を抑制する吸音部材として機能する。
また、図25に示す例においては、断熱部材63とタイヤ内面13との間に、シート状の熱伝導部材62が配置されている。図25に示す例では、断熱部材63のタイヤ幅方向の寸法と熱伝導部材62のタイヤ幅方向の寸法とは等しい。
なお、熱伝導部材62のタイヤ幅方向の寸法を断熱部材63のタイヤ幅方向の寸法よりも大きくしてもよい。熱伝導部材62が断熱部材63からはみ出すように設けられることにより、そのはみ出た熱伝導部材62の一部分は、放熱部として機能する。ヒータ50によりトレッド部10の温度が設定温度より上昇した場合、ヒータ50に対する電力の供給が停止され、ヒータ50によるタイヤ内面13の加熱処理は停止される。トレッド部10の温度が設定温度よりも上昇し、タイヤ1の高速走行に伴ってタイヤ1の発熱が増大すると、トレッド部10の温度が過度に上昇する可能性がある。トレッド部10が過度に温度上昇すると、タイヤ1の高速耐久性が低下するという問題が発生する可能性がある。ヒータ50による加温時においては、断熱部材63は内部空間15に対する熱の放射を抑制して、トレッド部10の効率良い加熱に寄与する。一方、トレッド部10が過度に温度上昇した場合、断熱部材63はトレッド部10から内部空間15への放熱を阻害してしまうこととなり、トレッド部10に熱が蓄積されてしまうこととなる。熱伝導部材62の外形を断熱部材63の外形よりも大きくして、熱伝導部材62の一部を断熱部材63からはみ出すように設けることにより、トレッド部10の熱は、断熱部材63からはみ出た熱伝導部材62の一部分である放熱部から内部空間15に放射される。これにより、トレッド部10が過度に温度上昇することが抑制される。
なお、上述の例においては、ヒータ50は、接着剤を含む接着層又は加硫接着によりタイヤ内面13に接着されることとした。ファスナー又はボタンのような機械的結合により、ヒータ50とタイヤ内面13とが固定されてもよい。以下の例においても同様である。
(ヒータの変形例)
図26は、ヒータ502の一例を示す図である。図26に示すように、ヒータ502は、ニクロム線のような電線からなる発熱素子53Bと、非導電性材料で形成され、発熱素子53Bを被覆するシート部材54Bとを有する。発熱素子53Bは、導電部材30と接続され、導電部材30を介して供給された電力により発熱する。発熱素子53Bは、シート部材54Bに埋め込まれてもよいし、2つのシート部材54Bで挟まれてもよい。シート部材54Bは、ゴム製でもよいし、剛性樹脂製でもよいし、不織布製でもよい。
ヒータ502の厚みは、0.5[mm]以上1.5[mm]以下が好ましい。ヒータ502は、環状でもよいし、間隔部が設けられてもよい。
発熱素子53Bがニクロム線のような電線なので、ヒータ502を安価に製造することができる。
(ヒータの配置の変形例)
ヒータ50の配置の変形例について説明する。図27は、ヒータ50の一例を示す図である。以下の説明においては、第1電極線51、第2電極線52、発熱素子53、及びシート部材54を有するヒータ50がタイヤ内面13に設けられる例について説明する。なお、タイヤ内面13に、図26を参照して説明した、電線を有するヒータ502が設けられてもよい。
上述の例においては、ヒータ50は、トレッド部10のセンター部11の直下に設けられることとした。図27に示すように、ヒータ50は、トレッド部10のセンター部11の直下及びショルダー部12の直下の両方に設けられてもよい。換言すれば、ヒータ50は、センター部11に対応する(センター部11の真裏の)タイヤ内面13の一部の領域、及びショルダー部12に対応する(ショルダー部12の真裏の)タイヤ内面13の一部の領域に設けられてもよい。また、センター部11の直下に設けられるヒータ50と、ショルダー部12の直下に設けられるヒータ50との間に間隙が設けられてもよい。
図28は、ヒータ50がトレッド部10のセンター部11の直下に設けられ、ショルダー部12の直下には設けられていない例を示す。図28に示す例では、ヒータ50は、リブ16とタイヤ幅方向の同じ範囲に設けられ、主溝(周方向溝)21とタイヤ幅方向の異なる範囲に設けられる。すなわち、ヒータ50は、リブ16の直下に設けられるものの、主溝21の直下には設けられない。換言すれば、ヒータ50は、リブ16に対応する(リブ16の真裏の)タイヤ内面13の一部の領域に設けられるものの、主溝21に対応する(主溝21の真裏の)タイヤ内面13の一部の領域には設けられない。
トレッド部10のうち主溝21が設けられている部分は、トレッドゴム6の厚みが薄い部分であり、曲げ変形が大きくなる部分である。主溝21に対応する部分にヒータ50が設けられると、ヒータ50が大きく曲げられ、ヒータ50が劣化したり、ヒータ50とタイヤ内面13との接着耐久性が低下してタイヤ内面13からヒータ50が剥がれたりしてしまう可能性がある。
トレッド部10のうち転がり抵抗を低減するために加熱が必要な部分は、専ら、接地面14を有するリブ16である。そのため、主溝21に対応する部分にはヒータ50を設けずに、リブ16に対応する部分にのみヒータ50を設けることにより、ヒータ50とタイヤ内面13との接着耐久性の低下を抑制しつつ、トレッド部10のうち転がり抵抗を低減するために必要な部分だけを効率良く加熱し、転がり抵抗を低減することができる。
図29は、ヒータ50がセンターリブ16Bの直下にのみ設けられている例を示す。図29に示す例においても、主溝21の直下にはヒータ50は設けられない。図29に示す例でも、ヒータ50とタイヤ内面13との接着耐久性の低下を抑制しつつ、トレッド部10のうち転がり抵抗を低減するために必要な部分だけを効率良く加熱し、転がり抵抗を低減することができる。
図30は、ヒータ50がセンター部11の直下及びショルダー部12の直下の両方に設けられている例を示す。図30に示す例においても、ヒータ50は、主溝21の直下を避けるように設けられる。図30に示す例でも、ヒータ50とタイヤ内面13との接着耐久性の低下を抑制しつつ、トレッド部10のうち転がり抵抗を低減するために必要な部分だけを効率良く加熱し、転がり抵抗を低減することができる。
なお、図31に示すように、ヒータ50がショルダー部12の直下に設けられ、センター部11の直下には設けられなくてもよい。
(ヒータの変形例)
図32は、トレッド部10の一例を模式的に示す図である。図33は、ヒータ50の一例を模式的に示す図である。
図32に示すように、トレッド部10が、溝20と、溝20の間に設けられる接地面14とを有するトレッドパターンを有する場合、図33に示すように、ヒータ50は、トレッド部10のトレッドパターンに合わせてパターン化された状態で、タイヤ内面13に設けられてもよい。ヒータ50は、接地面14の直下に設けられ、溝20の直下には設けられない。すなわち、ヒータ50は、接地面14に対応する(接地面14の真裏の)タイヤ内面13の一部の領域に設けられ、溝20に対応する(溝20の真裏の)タイヤ内面13の一部の領域には設けられない。
トレッド部10のうち溝20が設けられている部分は曲げ変形が大きくなる部分である。トレッド部10のうち転がり抵抗を低減するために加熱が必要な部分は、専ら、接地面14を有する部分(ブロック又はリブ)である。そのため、接地面14の形状に合わせてヒータ50がパターン化されることにより、ヒータ50とタイヤ内面13との接着耐久性の低下を抑制しつつ、トレッド部10のうち転がり抵抗を低減するために必要な部分だけを効率良く加熱し、転がり抵抗を低減することができる。
(温度センサの具体例)
図34は、タイヤ内面13を模式的に示す図である。タイヤ内面13に温度センサ70が設けられる。
図34に示すように、タイヤ内面13において、複数のヒータ50が間隔をあけて配置されている。図34に示す例では、ヒータ50は、タイヤ内面13に設けられた第1ヒータ50Aと、第1ヒータ50Aと間隔を空けてタイヤ内面13に設けられた第2ヒータ50Bとを含む。
温度センサ70は、第1ヒータ50Aが設けられているタイヤ内面13の第1領域と接触し、第1領域の温度を検出する第1温度センサ70Aと、第2ヒータ50Bが設けられているタイヤ内面13の第2領域と接触し、第2領域の温度を検出する第2温度センサ70Bとを含む。
第1温度センサ70Aの検出結果及び第2温度センサ70Bの検出結果は、車両に設けられている制御装置に出力される。制御装置は、第1温度センサ70Aの検出結果及び第2温度センサ70Bの検出結果に基づいて、第1ヒータ50Aの発熱及び第2ヒータ50Bの発熱を制御する。
例えば、第1領域がセンター部11の直下の領域で、第2領域がショルダー部12の直下の領域である場合、センター部11の温度とショルダー12の温度とが異なる場合がある。制御装置は、第1温度センサ70Aの検出結果及び第2温度センサ70Bの検出結果に基づいて、センター部11及びショルダー部12のそれぞれが、予め決められている設定温度(目標温度)になるように、第1ヒータ50Aに供給する電力及び第2ヒータ50Bに供給する電力を制御して、第1ヒータ50Aの発熱及び第2ヒータ50Bの発熱を制御することができる。
なお、一般に、車両には、複数(例えば4つ)のタイヤ1が装着される。車両に複数のタイヤ1が装着される場合において、それぞれのタイヤ1にヒータ50及び温度センサ70が設けられてもよい。車両に設けられた制御装置は、複数のタイヤ1のそれぞれに設けられている温度センサ70の検出結果に基づいて、複数のタイヤ1のそれぞれに設けられているヒータ50の発熱を制御してもよい。例えば、車両に対する日光の照射角度や、ガレージ内の車両の配置状態により、複数のタイヤ1の温度が異なる場合がある。制御装置は、複数のタイヤ1のそれぞれに設けられている温度センサ70の検出結果に基づいて、複数のタイヤ1のそれぞれが、予め決められている設定温度(目標温度)になるように、複数のタイヤ1のそれぞれに設けられているヒータ50に供給する電力を制御して、それら複数のヒータ50の発熱を制御することができる。例えば、制御装置は、温度センサ70の検出結果に基づいて、複数のタイヤ1の温度が均一になるように、複数のヒータ50それぞれの発熱を制御することができる。
1 タイヤ(空気入りタイヤ)
2 カーカス
3 ベルト
3A 第1ベルトプライ
3B 第2ベルトプライ
3Ea 端部
3Eb 端部
4 ベルトカバー
5 ビード部
6 トレッドゴム
7 サイドゴム
8 インナーライナー
9 サイド部
10 トレッド部
11 センター部
12 ショルダー部
13 タイヤ内面
14 接地面
15 内部空間
16 リブ
20 溝
21 主溝
22 ラグ溝
23 サイプ
30 導電部材
50 ヒータ
50B ヒータ
51 第1電極線
52 第2電極線
53 発熱素子
53B 発熱素子
54 シート部材
54A シート部材
54B シート部材
55 カバー部材
56 屈曲部
56A 第1屈曲部
56B 第2屈曲部
57 屈曲部
57A 第1屈曲部
57B 第2屈曲部
58 ストレート部
59 屈曲部
60 スプライス部
61 接着層
62 熱伝導部材
63 断熱部材
70 温度センサ
100 タイヤホイール
101 リム
105 車軸
200 タイヤ加温システム
201 充電設備
202 電気プラグ
300 車両
301 走行装置
302 車体
303 動力源
304 操舵装置
305 ブレーキ装置
306 操作装置
308 携帯端末
400 二次電池
401 コネクタ部
402 変圧器
403 第1導電路
404 第2導電路
407 測定装置
500 加温装置
600 制御装置
601 制御部
602 充電率データ取得部
603 温度データ取得部
604 出発予定時刻データ取得部
605 判定部
606 受信部
607 記憶部

Claims (10)

  1. 車両の走行装置に装着されたタイヤを加温するタイヤ加温システムであって、
    充電設備と、
    前記車両に設けられ、前記走行装置が停止状態において前記充電設備から供給される電流により前記タイヤを加温可能な加温装置と、
    前記加温装置を制御する制御部と、
    を備えるタイヤ加温システム。
  2. 前記充電設備は、前記車両に設けられた二次電池を充電可能であり、
    前記車両は、前記充電設備から前記二次電池に供給される電流が流れる第1導電路と、前記加温装置に供給される電流が流れる第2導電路とを有し、
    前記充電設備による前記二次電池の充電と並行して、前記第2導電路は、前記充電設備からの電流の少なくとも一部を前記加温装置に供給する、
    請求項1に記載のタイヤ加温システム。
  3. 前記二次電池の充電率を示す充電率データを取得する充電率データ取得部を備え、
    前記第2導電路は、変圧器を介して前記第1導電路から供給された電流又は前記二次電池から供給された電流を前記加温装置に供給し、
    前記制御部は、前記充電率データに基づいて、前記加温装置に対する電流の供給を制御する、
    請求項2に記載のタイヤ加温システム。
  4. ユーザにより操作される操作装置から出力された指令データを受信する受信部を有し、
    前記制御部は、前記受信部で受信された前記指令データに基づいて前記加温装置を制御する、
    請求項1から請求項3のいずれか一項に記載のタイヤ加温システム。
  5. 前記指令データは、前記加温装置による前記加温の開始を示す開始指令データを含む、
    請求項4に記載のタイヤ加温システム。
  6. 前記指令データは、停止状態の前記走行装置の走行を開始させる出発予定時刻を示す出発予定時刻データを含み、
    前記制御部は、前記出発予定時刻データに基づいて、前記出発予定時刻に前記タイヤが規定温度になるように、前記加温装置を制御する、
    請求項4又は請求項5に記載のタイヤ加温システム。
  7. 停止状態の前記走行装置の走行を開始させる出発予定時刻を示す出発予定時刻データを取得する出発予定時刻データ取得部を備え、
    前記制御部は、前記出発予定時刻データに基づいて、前記出発予定時刻に前記タイヤが規定温度になるように、前記加温装置を制御する、
    請求項1から請求項4のいずれか一項に記載のタイヤ加温システム。
  8. 前記タイヤ又は外気の温度を示す温度データを取得する温度データ取得部を備え、
    前記制御部は、前記温度データに基づいて、前記加温装置を制御する、
    請求項1から請求項7のいずれか一項に記載のタイヤ加温システム。
  9. 前記タイヤ又は前記外気の温度が規定温度以上か否かを判定する判定部を有し、
    前記制御部は、前記規定温度以上であると判定されたとき、前記加温装置による前記加温を行わない、
    請求項8に記載のタイヤ加温システム。
  10. 前記走行装置は、前記タイヤが装着されるタイヤホイールを有し、
    前記加温装置は、前記タイヤの内面に設けられ、前記タイヤホイールに支持されるホイール電線と接続される導電部材と、前記タイヤの内面に設けられ、前記ホイール電線及び前記導電部材を介して前記充電設備より供給される電力により発熱するシート状のヒータと、を有する、
    請求項1から請求項9のいずれか一項に記載のタイヤ加温システム。
JP2015115386A 2015-06-08 2015-06-08 タイヤ加温システム Active JP6376047B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115386A JP6376047B2 (ja) 2015-06-08 2015-06-08 タイヤ加温システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115386A JP6376047B2 (ja) 2015-06-08 2015-06-08 タイヤ加温システム

Publications (2)

Publication Number Publication Date
JP2017001452A JP2017001452A (ja) 2017-01-05
JP6376047B2 true JP6376047B2 (ja) 2018-08-22

Family

ID=57751358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115386A Active JP6376047B2 (ja) 2015-06-08 2015-06-08 タイヤ加温システム

Country Status (1)

Country Link
JP (1) JP6376047B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047962A (ja) 2017-01-06 2020-03-26 株式会社Nttドコモ ユーザ装置及び基地局
JP2023077274A (ja) * 2021-11-24 2023-06-05 横浜ゴム株式会社 タイヤ
JP2023077273A (ja) * 2021-11-24 2023-06-05 横浜ゴム株式会社 タイヤ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164460B2 (ja) * 2007-07-12 2013-03-21 株式会社ブリヂストン タイヤ電力供給システム
JP2012086811A (ja) * 2010-10-22 2012-05-10 Honda Motor Co Ltd 発電機能を備えた車両用ホイールシステム
JP2012101762A (ja) * 2010-11-12 2012-05-31 Toyota Motor Corp 走行支援装置

Also Published As

Publication number Publication date
JP2017001452A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6413910B2 (ja) 空気入りタイヤ
JP6376047B2 (ja) タイヤ加温システム
CN106457972B (zh) 车辆用制热装置
JP6075285B2 (ja) 空気入りタイヤ
JP5512724B2 (ja) 空気入りタイヤ
US20200130535A1 (en) Method for Preheating a Battery of an Electrically Operated Motor Vehicle, and Charging Device
JP2012059705A (ja) 面状発熱体を利用したシートヒータ及びシートヒータ付き座席
WO2019244349A1 (ja) 空気入りタイヤおよびアセンブリシート
JP5512726B2 (ja) 空気入りタイヤ
JP2012076590A (ja) タイヤのグリップ力制御装置及びグリップ力制御方法
JP6409692B2 (ja) 車両
CN106043209A (zh) 多功能汽车安全带
US20220250419A1 (en) Non-pneumatic tire, mobile power supply device and mobile
US20220088977A1 (en) System and method for harvesting energy for an electronic device, and a tire configured for use with the same
JP7388629B2 (ja) 無線受電システム、移動体、及び車輪
JP7219184B2 (ja) タイヤ・ホイール組立体及びタイヤ
US11845304B2 (en) System and method for harvesting energy for an electronic device, and a tire configured for use with the same
CN111775792A (zh) 座椅加热控制系统、方法及汽车
JP6376052B2 (ja) タイヤ加温システム及び車両
JP5512725B2 (ja) 空気入りタイヤ
EP4005825A1 (en) Tire wheel assembly and tire
US20140069558A1 (en) HotTreads
JP6329434B2 (ja) 空気入りタイヤ
KR101815670B1 (ko) 바퀴 시스템
JP2015177733A (ja) タイヤ発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180514

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6376047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250