JP6374239B2 - Nutrient for contaminated soil purification - Google Patents

Nutrient for contaminated soil purification Download PDF

Info

Publication number
JP6374239B2
JP6374239B2 JP2014137626A JP2014137626A JP6374239B2 JP 6374239 B2 JP6374239 B2 JP 6374239B2 JP 2014137626 A JP2014137626 A JP 2014137626A JP 2014137626 A JP2014137626 A JP 2014137626A JP 6374239 B2 JP6374239 B2 JP 6374239B2
Authority
JP
Japan
Prior art keywords
oil
parts
nutrient
contaminated soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014137626A
Other languages
Japanese (ja)
Other versions
JP2016013527A (en
Inventor
浩基 緒方
浩基 緒方
瑞世 四本
瑞世 四本
佐藤 祐司
祐司 佐藤
隆洋 宮崎
隆洋 宮崎
真樹 妹尾
真樹 妹尾
正典 岡崎
正典 岡崎
元威 村上
元威 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Megmilk Snow Brand Co Ltd
Original Assignee
Obayashi Corp
Megmilk Snow Brand Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Megmilk Snow Brand Co Ltd filed Critical Obayashi Corp
Priority to JP2014137626A priority Critical patent/JP6374239B2/en
Publication of JP2016013527A publication Critical patent/JP2016013527A/en
Application granted granted Critical
Publication of JP6374239B2 publication Critical patent/JP6374239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、有機塩素化合物が含まれた汚染土壌を現場(原位置)で浄化するための土壌浄化用栄養剤に関する。さらに詳しくは、汚染土壌に含まれる有機塩素化合物を分解する微生物を活性化するための土壌浄化用栄養剤に関する。   The present invention relates to a soil purification nutrient for purifying contaminated soil containing an organochlorine compound in the field (in situ). More specifically, the present invention relates to a nutrient for soil purification for activating microorganisms that decompose organochlorine compounds contained in contaminated soil.

有機塩素化合物であるテトラクロロエチレン、トリクロロエチレン、ジクロロエチレン等は、金属類の脱脂・洗浄、ドライクリーニングの洗浄、冷媒等、幅広く利用されており、産業上の利用価値が高い。しかし、有機塩素化合物は、人体に肝障害や腎障害等を引き起こす有害物質でもあるため、これらの物質による土壌汚染は深刻な社会問題となっている。
そこで、これら有機塩素化合物に汚染された土壌の浄化方法のひとつとして、土壌中に常在する微生物に栄養剤を添加して、有機塩素化合物分解菌を活性化する方法が開発されており、この栄養剤として液体油脂を原料とする水中油型乳化物を使用する方法が数多く提案されている。
Tetrachloroethylene, trichlorethylene, dichloroethylene, and the like, which are organochlorine compounds, are widely used for degreasing and cleaning metals, cleaning for dry cleaning, refrigerants, and the like, and have high industrial utility value. However, organochlorine compounds are also harmful substances that cause liver damage and kidney damage to the human body, so soil contamination by these substances has become a serious social problem.
Therefore, as a method for remediating soil contaminated with these organic chlorine compounds, a method has been developed to activate nutrient-degrading bacteria by adding nutrients to microorganisms that are resident in the soil. Many methods of using an oil-in-water emulsion using liquid oil as a raw material as a nutrient have been proposed.

例えば、特許文献1には、液体油脂、ノニオン系界面活性剤、多価アルコールと水とを水中油型に乳化した乳化物よりなる土壌、地下水用浄化剤が開示されており、融点15℃以下の液体油脂を20〜70部配合することを特徴のひとつとしている。
特許文献2には、液体油脂、界面活性剤と水とを水中油型に乳化した乳化物よりなる土壌、地下水用浄化剤が開示されており、液体油脂を20〜80部配合することを特徴のひとつとしている。
特許文献3には、植物性油脂のエマルションと安定化成分としてカゼインナトリウムを含有する汚染土壌浄化用栄養剤が開示されており、窒素源及びリン源をさらに含有することを特徴のひとつとしている。
これらの土壌、地下水用浄化剤や、汚染土壌浄化用栄養剤は、いずれも土壌の浄化において有効に作用するものといえるが、主要な成分が液体油脂の乳化物であるため分解活性が高く、土壌に注入しても早期に分解されてしまうという問題があった。
For example, Patent Document 1 discloses a liquid and fat, a nonionic surfactant, a soil and a groundwater purifier made of an emulsion obtained by emulsifying polyhydric alcohol and water in an oil-in-water type, and a melting point of 15 ° C. or lower. One of the features is that 20 to 70 parts of the liquid oil or fat is blended.
Patent Document 2 discloses a soil and groundwater purification agent composed of an emulsion obtained by emulsifying liquid oil and fat, a surfactant and water in an oil-in-water type, and is characterized by blending 20 to 80 parts of liquid oil and fat. One of them.
Patent Document 3 discloses a nutrient for purifying contaminated soil containing a vegetable oil emulsion and sodium caseinate as a stabilizing component, and is characterized by further containing a nitrogen source and a phosphorus source.
These soil, groundwater purification agents, and contaminated soil purification nutrients can all be said to work effectively in soil purification, but because the main component is an emulsion of liquid fats and oils, the decomposition activity is high, There was a problem that even if it was injected into the soil, it was decomposed early.

また、常温で固体の脂肪酸を主要な成分とするものとして、例えば、特許文献4には、炭素数が10以上の脂肪酸を土壌中に埋設し、土壌中における硝酸態窒素および揮発性有機化合物を低減する方法が開示されており、特許文献5には、炭素数が14以上の脂肪酸やアルコールと、界面活性剤とを有する土壌と地下水の浄化組成物が開示されている。
これらの常温で固体の脂肪酸を含むものも土壌の浄化において有効に作用するものといえるが、固体の脂肪酸そのままでは浸透性が悪く、油分だけ凝集してしまい、十分に効果を発揮できないという問題があった。
そこで、これらの問題を解決し得る、土壌への浸透性が高く、かつ、常温で長期間安定性が高い、より有用な汚染土壌浄化用栄養剤の提供が望まれている。
Moreover, as what makes a solid fatty acid a main component at normal temperature, for example, in patent document 4, the C10 or more fatty acid is embed | buried in soil, nitrate nitrogen and volatile organic compound in soil are included. A reduction method is disclosed, and Patent Document 5 discloses a soil and groundwater purification composition having a fatty acid or alcohol having 14 or more carbon atoms and a surfactant.
It can be said that those containing solid fatty acids at normal temperature also work effectively in soil purification, but the solid fatty acids as such are poorly permeable, agglomerating only the oil, and not being effective enough. there were.
Therefore, it is desired to provide a more useful nutrient for purifying contaminated soil that can solve these problems and has high soil permeability and high long-term stability at room temperature.

特開2007−83169号公報JP 2007-83169 A 特開2010−158653号公報JP 2010-158653 A 特開2011−224497号公報JP 2011-224497 A 特開2002−370085号公報JP 2002-370085 A 特開2005−66425号公報JP 2005-66425 A

本発明は、従来の液体油脂の乳化物や、常温で固体の脂肪酸を主要な成分とする汚染土壌浄化用栄養剤等に対して、土壌への浸透性が高く、かつ、常温で長期間安定性が高い、より有用な汚染土壌浄化用栄養剤の提供を課題とする。   The present invention is highly permeable to soil and stable for a long period of time at room temperature, with respect to conventional emulsions of liquid fats and oils, and other contaminated soil purification nutrients containing fatty acids that are solid at room temperature as the main component. The objective is to provide a more useful and more useful nutrient for soil purification.

本発明者らは、上記課題を解決するために鋭意検討した結果、20℃におけるSFC(固体脂含量)が1〜60である植物性油脂および/または該油脂の加工油脂を原料油脂として得た水中油型乳化組成物であれば、土壌への浸透性が高く、かつ、常温で長期間安定性が高い、有用な汚染土壌浄化用栄養剤となることを見出し、本発明に至った。
本発明の汚染土壌浄化用栄養剤は、有機塩素化合物で汚染された土壌に混合して浸透させることで、有機塩素化合物を分解する微生物を活性化し、有機塩素化合物の分解を長期間安定して促進させることが可能である。
As a result of intensive studies to solve the above problems, the present inventors obtained vegetable oils and fats and / or processed fats and oils having an SFC (solid fat content) of 1 to 60 at 20 ° C. as raw oils and fats. The oil-in-water emulsified composition has been found to be a useful nutrient for purifying contaminated soil, having high soil permeability and high long-term stability at room temperature.
The contaminated soil purification nutrient of the present invention activates microorganisms that decompose organic chlorine compounds by mixing and infiltrating soil contaminated with organic chlorine compounds, and stabilizes the decomposition of organic chlorine compounds over a long period of time. It is possible to promote.

すなわち、本発明は次の(1)〜(7)に示される汚染土壌浄化用栄養剤等に関するものである。
(1)植物性油脂および/または該油脂の加工油脂を原料油脂とする水中油型乳化組成物を含有する汚染土壌浄化用栄養剤であって、原料油脂の20℃におけるSFCが1〜60である汚染土壌浄化用栄養剤。
(2)原料油脂の20℃におけるSFCが1〜30である、上記(1)に記載の汚染土壌浄化用栄養剤。
(3)平均粒子径が0.5〜1.0μmである水中油型乳化組成物を含有する、上記(1)または(2)に記載の汚染土壌浄化用栄養剤。
(4)有機酸モノグリセリドを含む、上記(1)〜(3)のいずれかに記載の汚染土壌浄化用栄養剤。
(5)前記有機酸モノグリセリドがジアセチル酒石酸モノグリセリドである、上記(4)に記載の汚染土壌浄化用栄養剤。
(6)上記(1)〜(5)のいずれかに記載の汚染土壌浄化用栄養剤を土壌に注入する工程を含む、汚染土壌の浄化方法。
(7)植物性油脂および/または該油脂の加工油脂を原料油脂として含有する油相と水相を混合し、均質化する工程を含む、上記(1)〜(5)のいずれかに記載の汚染土壌浄化用栄養剤の製造方法。
That is, the present invention relates to a nutrient for purifying contaminated soil shown in the following (1) to (7).
(1) A nutrient for purifying contaminated soil containing a vegetable oil and / or an oil-in-water emulsified composition using a processed oil and fat of the oil and fat as a raw oil and fat, wherein the raw oil and fat has an SFC of 1 to 60 A contaminated soil cleanup nutrient.
(2) The nutrient for purifying contaminated soil according to (1) above, wherein the SFC at 20 ° C. of the raw material fat is 1-30.
(3) The nutrient for purifying contaminated soil according to (1) or (2) above, comprising an oil-in-water emulsion composition having an average particle size of 0.5 to 1.0 μm.
(4) The nutrient for contaminated soil purification according to any one of (1) to (3) above, comprising an organic acid monoglyceride.
(5) The nutrient for purifying contaminated soil according to (4) above, wherein the organic acid monoglyceride is diacetyltartaric acid monoglyceride.
(6) A method for purifying contaminated soil, comprising a step of injecting the nutrient for purifying contaminated soil according to any one of (1) to (5) into soil.
(7) The method according to any one of (1) to (5) above, comprising a step of mixing and homogenizing an oil phase and a water phase containing vegetable oil and / or processed oil and fat of the oil and fat as a raw oil and fat. A method for producing a nutrient for cleaning contaminated soil.

本発明の汚染土壌浄化用栄養剤は、常温で長期に安定な植物性油脂の水中油型乳化物であるため、該栄養剤の提供により、汚染土壌の浄化を長期間安定して行うことが可能となる。   Since the nutrient for purifying contaminated soil according to the present invention is an oil-in-water emulsion of vegetable oil that is stable at room temperature for a long time, it is possible to stably purify contaminated soil for a long time by providing the nutrient. It becomes possible.

実施例品4におけるVOC分解試験の結果を示した図である(試験例4)。It is the figure which showed the result of the VOC decomposition | disassembly test in Example goods 4 (Test Example 4). 実施例品5におけるVOC分解試験の結果を示した図である(試験例4)。It is the figure which showed the result of the VOC decomposition | disassembly test in Example goods 5 (Test Example 4). 比較例品1におけるVOC分解試験の結果を示した図である(試験例4)。It is the figure which showed the result of the VOC decomposition | disassembly test in the comparative example product 1 (Test Example 4). 比較例品3におけるVOC分解試験の結果を示した図である(試験例4)。It is the figure which showed the result of the VOC decomposition | disassembly test in the comparative example product 3 (Test Example 4). 各乳化油脂組成物を添加したときのpHの変化を示した図である(試験例4)。It is the figure which showed the change of pH when adding each emulsified oil-fat composition (Test Example 4).

本発明の「汚染土壌浄化用栄養剤」とは、有機塩素化合物で汚染された土壌に混合させることで、有機塩素化合物を分解する微生物を活性化し、土壌中の有機塩素化合物の分解を促進させることができる栄養剤のことをいう。
ここで、本実施形態において分解対象となる「有機塩素化合物」とは、揮発性の有機塩素化合物であって微生物によって分解可能なもののことをいう。このような有機塩素化合物としては、例えば、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、シス−1,2ジクロロエチレン(cis−1、2−DCE)等が挙げられる。
The “nutrient for cleaning contaminated soil” of the present invention is activated by a microorganism that decomposes organic chlorine compounds by mixing with soil contaminated with organic chlorine compounds, and promotes the decomposition of organic chlorine compounds in the soil. A nutrient that can be used.
Here, the “organochlorine compound” to be decomposed in this embodiment means a volatile organochlorine compound that can be decomposed by microorganisms. Examples of such organic chlorine compounds include tetrachloroethylene (PCE), trichlorethylene (TCE), cis-1,2 dichloroethylene (cis-1, 2-DCE) and the like.

これらの有機塩素化合物の分解能を有する微生物は、汚染土壌に含まれる有機塩素化合物を分解できる微生物であればいずれの微生物であっても良い。このような微生物として、例えば、メタノバクテリウム属、メタノサルシナ属、メタノロブス属等の嫌気性古細菌、アセトバクテリウム属、デスルフォバクテリウム属、デハロバクター属、デハロバクテリウム属、デハロコッコイデス属、クロストリジウム属等の嫌気性微生物が挙げられる。
これらの嫌気性微生物による還元的塩素化反応により、テトラクロロエチレンやトリクロロエチレンは、シス−1,2ジクロロエチレン、及び、塩化ビニルを順に経て、エチレンまでに分解することができる。すなわち、これらの嫌気性微生物は、水素をエレクトロンドナーとし、テトラクロロエチレン等をエレクトロンアクセプターとする還元塩素化素反応により、エネルギーを獲得して増殖することができる。
Any microorganism capable of decomposing organochlorine compounds contained in contaminated soil may be used as the microorganism having the ability to resolve these organochlorine compounds. Examples of such microorganisms include, for example, anaerobic archaea such as Methanobacteria, Methanosarcina, and Methanolobus, Acetobacteria, Desulfobacteria, Dehalobacter, Dehalobacterium, Dehalococoides And anaerobic microorganisms such as Clostridium.
By the reductive chlorination reaction by these anaerobic microorganisms, tetrachloroethylene and trichlorethylene can be decomposed into ethylene through cis-1,2 dichloroethylene and vinyl chloride in this order. That is, these anaerobic microorganisms can acquire energy and proliferate by a reductive chlorination reaction using hydrogen as an electron donor and tetrachloroethylene or the like as an electron acceptor.

このような本発明の「汚染土壌浄化用栄養剤」は、植物性油脂および/または該油脂の加工油脂を原料油脂とする水中油型乳化組成物を含有する汚染土壌浄化用栄養剤であって、原料油脂の20℃におけるSFCが1〜60である汚染土壌浄化用栄養剤であれば良い。
本発明の「汚染土壌浄化用栄養剤」が植物性油脂および/または該油脂の加工油脂を原料油脂とする水中油型乳化組成物の状態で供給され、上記のような有機塩素化合物の分解能を有する微生物である、嫌気性微生物が有機塩素化合物を還元脱塩素化するための水素供与体となる。すなわち、植物性油脂のエマルションは徐々に分解されて有機酸を生成し、有機酸はさらに分解されて水素を生成する。この水素は、土壌が嫌気状態とされた後において、嫌気性微生物が有機塩素化合物を還元脱塩素化する際に用いられる。
Such a “contaminated soil cleaning nutrient” according to the present invention is a contaminated soil cleaning nutrient containing an oil-in-water emulsified composition using vegetable oil and / or processed oil of the oil as raw material fat. The nutrient oil for purifying contaminated soil having an SFC of 1 to 60 at 20 ° C. of the raw material fats and oils may be used.
The “nutrient for purifying contaminated soil” of the present invention is supplied in the state of an oil-in-water emulsion composition using vegetable oils and / or processed oils of the oils as raw oils and fats, and has the above-mentioned ability of organochlorine compounds. An anaerobic microorganism, which is a microorganism, has a hydrogen donor for reductive dechlorination of an organic chlorine compound. That is, the vegetable oil emulsion is gradually decomposed to produce an organic acid, and the organic acid is further decomposed to produce hydrogen. This hydrogen is used when anaerobic microorganisms reductively dechlorinate organochlorine compounds after the soil is anaerobic.

本発明の「汚染土壌浄化用栄養剤」は、上記のように原料油脂の20℃におけるSFCが1〜60である汚染土壌浄化用栄養剤であれば良く、同温度におけるSFCが1〜30であることがさらに好ましい。   As described above, the “nutrient for purifying contaminated soil” of the present invention may be a nutrient for purifying contaminated soil having an SFC of 1 to 60 at 20 ° C. of the raw oil and fat, and the SFC at the same temperature is 1 to 30. More preferably it is.

本発明の「原料油脂」は植物性油脂および/または植物性油脂の加工油脂であれば良い。なお、この「原料油脂」は、微生物によって分解されるものであるから、食用であることが好ましい。
このような植物性油脂として、例えば、パーム油、ヤシ油が挙げられる。このような「原料油脂」の油脂の融点は硬化、エステル交換、分別など化学的な処理によって調整することができ、目的の融点を得るためにこれらの化学的処理いずれを用いても構わない。
「原料油脂」は、汚染土壌浄化用栄養剤となる「水中油型乳化物」において、10〜60重量部の配合量で含まれることが好ましい。植物性油脂の配合量が10重量部未満であると、乳化物の安定性が低下し、常温で安定な水中油型乳化物を得ることが困難になる。
また、「原料油脂」の配合量が多いほど、本発明の「汚染土壌浄化用栄養剤」の汚染土壌への注入量が少なく済むことから、適用場所への運搬量の低減、適用場所での貯蔵量の低減、注入のための施工作業時間の短縮など、運用面でのメリットは大きい。このため、「原料油脂」の配合量を20重量部以上とすることがさらに好ましい。
一方、「原料油脂」の配合量が多いほど、粘度が高くなり、汚染土壌への注入の際に目詰まりが起こりやすくなるため、「原料油脂」の配合量を50重量部未満にすることがさらに好ましい。すなわち、「水中油型乳化物」における「原料油脂」の配合量は、20〜50重量部の範囲とすることがより好ましい。
The “raw oil / fat” of the present invention may be any vegetable oil and / or processed oil / fat of vegetable oil. In addition, since this "raw material fat" is decomposed | disassembled by microorganisms, it is preferable that it is edible.
Examples of such vegetable oils include palm oil and coconut oil. The melting point of the fats and oils of such “raw oils and fats” can be adjusted by chemical treatment such as curing, transesterification and fractionation, and any of these chemical treatments may be used to obtain the desired melting point.
The “raw oil and fat” is preferably contained in an amount of 10 to 60 parts by weight in the “oil-in-water emulsion” serving as a nutrient for purifying contaminated soil. When the blending amount of the vegetable oil is less than 10 parts by weight, the stability of the emulsion is lowered, and it becomes difficult to obtain an oil-in-water emulsion that is stable at room temperature.
In addition, the greater the amount of “raw oil” blended, the less the amount of the “contaminated soil purification nutrient” of the present invention injected into the contaminated soil. There are significant operational advantages such as reduction of storage amount and shortening of construction work time for injection. For this reason, it is still more preferable that the compounding quantity of "raw material fat" shall be 20 weight part or more.
On the other hand, the greater the amount of “raw oil” is, the higher the viscosity is, and clogging is likely to occur when injected into contaminated soil. Therefore, the amount of “raw oil” may be less than 50 parts by weight. Further preferred. That is, the blending amount of the “raw oil and fat” in the “oil-in-water emulsion” is more preferably in the range of 20 to 50 parts by weight.

本発明の汚染土壌浄化用栄養剤となる「水中油型乳化物」は、油相と水相を混合し、乳化することで調製することができる。これにより汚染土壌中への分散性を高め、常温で長期に安定な「水中油型乳化物」の提供が可能となる。
この油相には、原料油脂としてラウリン系油脂や界面活性剤を添加することが好ましく、ラウリン系油脂と界面活性剤をいずれも添加することが特に好ましい。
このようなラウリン系油脂として、例えば、ヤシ油、またはパーム核油等の植物性油脂が挙げられ、これらを一種、または二種以上組み合わせて添加しても良い。
また、油相に添加する界面活性剤としては、特にジアセチル酒石酸モノグリセリド、コハク酸モノグリセリド等の有機酸モノグリセリドが好ましく、これらを一種または二種以上組み合わせて添加しても良い。有機酸モノグリセリドを添加することにより、本発明の「水中油型乳化物」に耐酸性や耐熱性を付与できる。なお、この界面活性剤も微生物によって分解されるものであるから、食用であることが好ましい。
この油相には、さらに、必要に応じてグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、大豆油リン脂質等の界面活性剤を添加することができる。
また、水相には必要に応じてグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、大豆油リン脂質等の界面活性剤、さらにはクエン酸塩やリン酸塩などのpH調整剤、さらにはホエーやカゼイン、脱脂粉乳などのタンパク質を添加することができる。
The “oil-in-water emulsion” serving as a nutrient for purifying contaminated soil of the present invention can be prepared by mixing and emulsifying an oil phase and an aqueous phase. As a result, dispersibility in contaminated soil is enhanced, and it becomes possible to provide an “oil-in-water emulsion” that is stable at room temperature for a long period of time.
In this oil phase, it is preferable to add lauric fats and surfactants as raw material fats, and it is particularly preferable to add both lauric fats and surfactants.
Examples of such lauric fats and oils include vegetable oils such as coconut oil or palm kernel oil, and these may be added singly or in combination of two or more.
As the surfactant added to the oil phase, organic acid monoglycerides such as diacetyltartaric acid monoglyceride and succinic acid monoglyceride are particularly preferable, and these may be added singly or in combination. By adding an organic acid monoglyceride, acid resistance and heat resistance can be imparted to the “oil-in-water emulsion” of the present invention. In addition, since this surfactant is also decomposed | disassembled by microorganisms, it is preferable that it is edible.
If necessary, a surfactant such as glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, soybean oil phospholipid can be added to this oil phase.
In the aqueous phase, surfactants such as glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, soybean oil phospholipid, and pH such as citrate and phosphate as necessary. Conditioners, and further proteins such as whey, casein, and nonfat dry milk can be added.

このように調製される「水中油型乳化物」は、固体脂を含む植物性油脂および/または該油脂の加工油脂を原料油脂とし、乳化物の平均粒子径を0.5〜1.0μmの範囲に調整したものであることが好ましい。
さらに有機酸モノグリセリドであるジアセチル酒石酸モノグリセリドを0.5〜2.0重量部添加することにより水中油型乳化物の常温での長期安定性を付与したものであることが好ましい。
The “oil-in-water emulsion” prepared in this way is made from vegetable oil and fat containing solid fat and / or processed oil and fat as raw material fat, and the average particle size of the emulsion is 0.5 to 1.0 μm. It is preferable to adjust to the range.
Furthermore, it is preferable that 0.5 to 2.0 parts by weight of diacetyltartaric acid monoglyceride which is an organic acid monoglyceride is added to provide long-term stability at room temperature of the oil-in-water emulsion.

本発明の「汚染土壌の浄化方法」とは、本発明の「汚染土壌浄化用栄養剤」を土壌に注入する工程を含む浄化方法のことをいい、汚染土壌が浄化できる方法であれば、従来知られているその他の工程を含むものであっても良い。
「汚染土壌浄化用栄養剤」の土壌への注入には、本発明の「汚染土壌浄化用栄養剤」を、例えば20〜30倍程度の必要な濃度に希釈した上で汚染土壌に散布する、注入用の井戸を汚染土壌中に堀り、連続的に注入する等の方法が挙げられる。
本発明の「汚染土壌浄化用栄養剤」は希釈以外に、pH調整剤を添加して微生物の至適pHに調整した上で「汚染土壌の浄化方法」に使用してもよい。
The "contaminated soil purification method" of the present invention refers to a purification method including the step of injecting the "contaminated soil purification nutrient" of the present invention into the soil, and if the contaminated soil can be purified, It may include other known processes.
Injecting the “contaminated soil purification nutrient” into the soil, the “contaminated soil purification nutrient” of the present invention is diluted to a necessary concentration of, for example, about 20 to 30 times, and then sprayed onto the contaminated soil. For example, a well for injection may be dug into contaminated soil and continuously injected.
In addition to dilution, the “nutrient for purifying contaminated soil” of the present invention may be used in a “contaminated soil purification method” after adding a pH adjusting agent to adjust to an optimum pH of microorganisms.

また、本発明の「汚染土壌浄化用栄養剤の製造方法」とは、植物性油脂および/または該油脂の加工油脂を原料油脂として含有する油相と水相を混合し、均質化する工程を含む汚染土壌浄化用栄養剤の製造方法のことをいう。
ここで、「均質化」とは、均質機等により、「汚染土壌浄化用栄養剤」の平均粒子径を0.5〜1.0μmの範囲に調整することをいう。
この製造方法は、本発明の「汚染土壌浄化用栄養剤」が製造できる方法であれば、従来知られているその他の工程を含むものであっても良い。
The “method for producing a nutrient for purifying contaminated soil” according to the present invention includes a step of mixing and homogenizing an oil phase and a water phase containing vegetable oil and / or processed oil of the oil as raw oil and fat. It refers to the manufacturing method of the contaminated soil purification nutrient.
Here, “homogenization” means adjusting the average particle diameter of the “nutrient for purifying contaminated soil” to a range of 0.5 to 1.0 μm using a homogenizer or the like.
If this manufacturing method is a method which can manufacture the "nutrient for contaminated soil purification" of this invention, you may include the other process conventionally known.

以下、実施例、比較例等を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example, a comparative example, etc. are given and this invention is demonstrated further in detail, this invention is not limited to these.

次の実施例1〜10により、本発明の(実施例品1〜10)を得た。また、比較として比較例品1〜7を得た。これらの乳化安定性および浸透性を次の評価基準に従って調べ、評価した。
また、これらの平均粒子径を、レーザ回折式粒子径分布測定機器(SALD−3100、島津製作所)にて測定するとともに、この粒子径を調整するための均質機における均質圧(前均質圧、後均質圧)を記録した。
なお、本発明において「%」及び「部」は特に断らない限り、「重量%」及び「重量部」を表す。
By the following Examples 1 to 10, (Example products 1 to 10) of the present invention were obtained. Moreover, the comparative example goods 1-7 were obtained as a comparison. These emulsion stability and permeability were examined and evaluated according to the following evaluation criteria.
In addition, these average particle sizes are measured by a laser diffraction type particle size distribution measuring instrument (SALD-3100, Shimadzu Corp.), and a homogenous pressure (pre-homogeneous pressure, post-homogeneous) in a homogenizer for adjusting the particle size is measured. Homogeneous pressure) was recorded.
In the present invention, “%” and “part” represent “% by weight” and “part by weight” unless otherwise specified.

〔乳化安定性評価基準〕
本発明の土壌改良剤(水中油型乳化物)または比較例品にアジ化ナトリウム500ppmを加えて防腐処理した後、スタンディングパウチに約200ml分注した。これを各種温度帯(5℃、25℃、35℃、5℃⇔40℃)の保管条件にて2週間放置した場合の液状安定性を目視にて評価した。
評価において、いずれかの温度条件においても凝固が観察されたものを×、凝固が観察されなかったものを○とした。
[Emulsification stability evaluation criteria]
The soil improver (oil-in-water emulsion) of the present invention or a comparative example product was added with 500 ppm of sodium azide for antiseptic treatment, and then dispensed in a standing pouch of about 200 ml. The liquid stability when this was left for 2 weeks under storage conditions in various temperature zones (5 ° C., 25 ° C., 35 ° C., 5 ° C. to 40 ° C.) was visually evaluated.
In the evaluation, the case where coagulation was observed under any temperature condition was rated as x, and the case where coagulation was not observed was rated as ◯.

〔浸透性評価基準〕
本発明の土壌改良剤(水中油型乳化物)または比較例品を水に溶解し、0.3%溶液を得た。ガラス瓶に湿土(山砂+粘土(関東化成株式会社製:トチクレー))50gと上記の0.3%溶液100mlを添加し、初期のTOC(総有機炭素濃度)値を測定した。その後、30分間振とうした後に、1〜6時間静置し、上澄みをサンプリングし、上澄み中のTOC値を測定し、初期のTOC値の比較から土壌吸着量(乾燥土中の吸着量)[mg/kg]を次の式1によって算出した。なお、乾燥土重量は前記湿土50gを別途乾燥し、測定した。なお、関東化成株式会社製の粘土であるトチクレーは、二酸化ケイ素(SiO)が約70%、酸化アルミニウム(Al)が約14%、及び酸化第二鉄が(Fe)が約6%含まれている。
(Permeability evaluation criteria)
The soil improver (oil-in-water emulsion) or the comparative product of the present invention was dissolved in water to obtain a 0.3% solution. 50 g of wet earth (mountain sand + clay (manufactured by Kanto Kasei Co., Ltd .: Tochi clay)) and 100 ml of the above 0.3% solution were added to a glass bottle, and the initial TOC (total organic carbon concentration) value was measured. Then, after shaking for 30 minutes, let stand for 1 to 6 hours, sample the supernatant, measure the TOC value in the supernatant, and compare the initial TOC value with the amount of soil adsorption (adsorption amount in dry soil) [ mg / kg] was calculated by the following formula 1. The dry soil weight was measured by separately drying 50 g of the wet soil. In addition, the tochi clay which is clay made by Kanto Kasei Co., Ltd. is about 70% of silicon dioxide (SiO 2 ), about 14% of aluminum oxide (Al 2 O 3 ), and ferric oxide (Fe 2 O 3 ). About 6%.

[式1]

Figure 0006374239
[Formula 1]
Figure 0006374239

次に上澄み中のTOC値と土壌吸着量から次の式2および式3によって遅延係数Rを算出した。遅延係数とは各溶質が土粒子へ吸着することによる移動の遅れを、水の移動を1とした場合の比で表したものである。この遅延係数Rを浸透性評価基準とし、数値が100以上のものを×、100未満のものを○とした。評価では、この数値が低いほど浸透性が良いことになる。   Next, the delay coefficient R was calculated by the following formulas 2 and 3 from the TOC value in the supernatant and the amount of soil adsorption. The delay coefficient represents the delay in movement due to the adsorption of each solute to the soil particles as a ratio when the water movement is 1. This delay coefficient R was used as a permeability evaluation criterion, and those having a numerical value of 100 or more were rated as x, and those having a value less than 100 were rated as ◯. In the evaluation, the lower this value, the better the permeability.

[式2]

Figure 0006374239
[Formula 2]
Figure 0006374239

[式3]

Figure 0006374239
[Formula 3]
Figure 0006374239

〔実施例1〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:5)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品1)を得た。
[Example 1]
Palm oil heated to 75 ° C. and processed fats and oils made from palm oil (SFC at 20 ° C .: 5) 30.5 parts, diacetyl tartaric acid monoglyceride 1.4 parts, soybean lecithin 0.32 parts, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 1) was obtained by cooling to 0 degreeC.

〔実施例2〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:30)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品2)を得た。
[Example 2]
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 30) 30.5 parts, 1.4 parts diacetyl tartaric acid monoglyceride, 0.32 parts soybean lecithin, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 2) was obtained by cooling to 0 degreeC.

〔実施例3〕
75℃に加温したパーム核油を原料とする加工油脂(20℃でのSFC:60)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品3)を得た。
Example 3
30.5 parts of processed fats and oils (SFC at 20 ° C .: 60) made from palm kernel oil heated to 75 ° C., 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerol fatty acid ester 0 .24 parts were added to prepare an oil phase.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 3) was obtained by cooling to 0 degreeC.

〔実施例4〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:8)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品4)を得た。
Example 4
Palm oil heated to 75 ° C. and processed fats and oils made from palm oil (SFC at 20 ° C .: 8) 30.5 parts, diacetyl tartaric acid monoglyceride 1.4 parts, soy lecithin 0.32 parts, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 4) was obtained by cooling to 0 degreeC.

〔実施例5〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:24)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品5)を得た。
Example 5
30.5 parts of palm oil and palm oil heated to 75 ° C. (SFC at 20 ° C .: 24) 30.5 parts, diacetyl tartaric acid monoglyceride 1.4 parts, soybean lecithin 0.32 parts, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 5) was obtained by cooling to 0 degreeC.

〔比較例品1〕
75℃に加温したナタネ油(20℃でのSFC:0)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品1)を得た。
[Comparative product 1]
To 30.5 parts of rapeseed oil (SFC: 0 at 20 ° C.) heated to 75 ° C., 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, and 0.24 part of polyglycerol fatty acid ester were added. An oil phase was prepared.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, By cooling to 0 ° C., an oil-in-water emulsion (Comparative Example Product 1) was obtained.

〔比較例品2〕
75℃に加温したパーム核油を原料とする加工油脂(20℃でのSFC:65)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品2)を得た。
[Comparative product 2]
30.5 parts of processed oil (SFC at 20 ° C .: 65) made from palm kernel oil heated to 75 ° C., 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerin fatty acid ester 0 .24 parts were added to prepare an oil phase.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, By cooling to ° C., an oil-in-water emulsion (Comparative Example Product 2) was obtained.

〔比較例品3〕
75℃に加温したパーム核油を原料とする加工油脂(20℃でのSFC:82)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品3)を得た。
[Comparative product 3]
30.5 parts of processed oil (SFC at 20 ° C .: 82) made from palm kernel oil heated to 75 ° C., 1.4 parts diacetyl tartaric acid monoglyceride, 0.32 parts soybean lecithin, polyglycerin fatty acid ester 0 .24 parts were added to prepare an oil phase.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, By cooling to ° C., an oil-in-water emulsion (Comparative Example product 3) was obtained.

〔試験例1〕
これらの実施例品1〜5、比較例品1〜3について、評価基準に従い乳化安定性および浸透性を調べ、得られた結果を表1に示した。
なお、総合評価は乳化安定性、浸透性の少なくともどちらかの評価結果が×の場合は×とした。以下、実施例、比較例において同様に総合評価を示した。
[Test Example 1]
With respect to these Example products 1 to 5 and Comparative Example products 1 to 3, the emulsion stability and permeability were examined according to the evaluation criteria, and the results obtained are shown in Table 1.
In addition, comprehensive evaluation was set to x when the evaluation result of at least one of emulsification stability and permeability was x. Hereinafter, overall evaluation was similarly shown in the Examples and Comparative Examples.

Figure 0006374239
Figure 0006374239

〔実施例6〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.5μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品6)を得た。
Example 6
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.5 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 6) was obtained by cooling to 0 degreeC.

〔実施例7〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品7)を得た。
Example 7
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 7) was obtained by cooling to 0 degreeC.

〔実施例8〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が1.0μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品8)を得た。
Example 8
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and aqueous phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer so that the average particle size was 1.0 μm, heated at 144 ° C. for 8 seconds, By cooling to 0 ° C., an oil-in-water emulsion (Example Product 8) was obtained.

〔比較例品4〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.3μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品4)を得た。
[Comparative product 4]
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.3 μm, heated at 144 ° C. for 8 seconds, By cooling to 0 ° C., an oil-in-water emulsion (Comparative Example Product 4) was obtained.

〔比較例品5〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド1.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が1.5μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品5)を得た。
[Comparative product 5]
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, 1.4 parts of diacetyl tartaric acid monoglyceride, 0.32 parts of soybean lecithin, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 64.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 1.5 μm, heated at 144 ° C. for 8 seconds, By cooling to ° C., an oil-in-water emulsion (Comparative Example Product 5) was obtained.

〔試験例2〕
実施例品6〜8、比較例品4、5について、評価基準に従い乳化安定性および浸透性を調べ、得られた結果を表2に示した。
[Test Example 2]
The example products 6 to 8 and the comparative example products 4 and 5 were examined for emulsion stability and permeability according to the evaluation criteria, and the results obtained are shown in Table 2.

Figure 0006374239
Figure 0006374239

〔実施例9〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド1.0部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水65.06部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品9)を得た。
Example 9
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, diacetyl tartaric acid monoglyceride 1.0 part, soy lecithin 0.32 part, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerol fatty acid ester, 1.68 parts of sodium caseinate and 0.8 part of sodium citrate to 65.06 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, By cooling to 0 ° C., an oil-in-water emulsion (Example Product 9) was obtained.

〔実施例10〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド2.0部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水64.06部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(実施例品10)を得た。
Example 10
Palm oil heated to 75 ° C. and processed fats and oils made from palm oil (SFC at 20 ° C .: 10) 30.5 parts, diacetyl tartaric acid monoglyceride 2.0 parts, soybean lecithin 0.32 parts, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 parts of polyglycerin fatty acid ester, 1.68 parts of sodium caseinate and 0.8 parts of sodium citrate to 64.06 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, The oil-in-water emulsion (Example product 10) was obtained by cooling to 0 degreeC.

〔比較例品6〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド0.4部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水65.66部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品6)を得た。
[Comparative product 6]
Palm oil heated to 75 ° C. and processed fats and oils made from palm oil (SFC at 20 ° C .: 10) 30.5 parts, diacetyl tartaric acid monoglyceride 0.4 parts, soybean lecithin 0.32 parts, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerol fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 65.66 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, By cooling to 0 ° C., an oil-in-water emulsion (Comparative Example Product 6) was obtained.

〔比較例品7〕
75℃に加温したパーム油とヤシ油を原料とする加工油脂(20℃でのSFC:10)30.5部に、ジアセチル酒石酸モノグリセリド2.8部、大豆レシチン0.32部、ポリグリセリン脂肪酸エステル0.24部を添加して油相を調製した。
70℃に加温した水63.26部にポリグリセリン脂肪酸エステル0.4部、カゼインナトリウム1.68部、クエン酸ナトリウム0.8部を添加して水相を調製した。
これら油相と水相の混合物をTKホモミクサーにて1400rpmで予備乳化を行った後、均質機にて平均粒子径が0.7μmとなるように均質し、144℃で8秒間加熱した後、10℃まで冷却することで水中油型乳化物(比較例品7)を得た。
[Comparative product 7]
Palm oil heated to 75 ° C and processed fats and oils made from palm oil (SFC at 20 ° C: 10) 30.5 parts, diacetyl tartaric acid monoglyceride 2.8 parts, soybean lecithin 0.32 parts, polyglycerin fatty acid An oil phase was prepared by adding 0.24 parts of ester.
A water phase was prepared by adding 0.4 part of polyglycerol fatty acid ester, 1.68 parts of sodium caseinate, and 0.8 part of sodium citrate to 63.26 parts of water heated to 70 ° C.
These oil phase and water phase mixtures were pre-emulsified with a TK homomixer at 1400 rpm, then homogenized with a homogenizer to an average particle size of 0.7 μm, heated at 144 ° C. for 8 seconds, By cooling to ° C., an oil-in-water emulsion (Comparative Example product 7) was obtained.

〔試験例3〕
実施例品6、9、10、比較例品6、7について、評価基準に従い乳化安定性および浸透性を調べ、得られた結果を表3に示した。
[Test Example 3]
The example products 6, 9, and 10 and the comparative example products 6 and 7 were examined for emulsion stability and permeability according to the evaluation criteria, and the obtained results are shown in Table 3.

Figure 0006374239
Figure 0006374239

〔試験例4〕
実施例品4、実施例品5、比較例品1、比較例品3を用いて、揮発性有機化合物(VOC)の分解能の評価を実施した。
評価は、140mL容のメジューム瓶に、土(山砂:粘土(関東化成株式会社製/トチクレー)=10:1)を140g(湿土)添加し、水道水を75mL、易分解性の栄養剤として、10%グルコン酸ソーダ溶液を2.3mL、5%重曹溶液を1.4mL、VOC分解菌培養液5mL、トリクロロエチレン(TCE)溶液(TCE濃度:約900mg/L)を5mL添加し、約2ヶ月23〜25℃で培養し、VOC分解微生物を増殖させ、TCE及びTCEの分解生成物である1,2−ジクロロエチレンが分解されたことを確認した。
次に、実施例品4、実施例品5、比較例品1、比較例品3の乳化油脂組成物溶液(約30%溶液)を7.7mL添加し、同時に、TCE溶液(TCE濃度:約900mg/L)2mL添加した時の、VOC濃度を測定した。なお、分解能の持続性を確認するため、VOCが分解されたことを確認した時点で、TCE溶液(TCE濃度:約900mg/L)2mLを追加で添加し、同様にVOC濃度を測定した。結果を図1〜図4に示す。
また、合せて各試験区におけるpHの変化について、図5に示す。対照区としては、乳化油脂組成物溶液を添加しない区の数値を図示した。
[Test Example 4]
Using Example Product 4, Example Product 5, Comparative Product 1 and Comparative Product 3, the resolution of the volatile organic compound (VOC) was evaluated.
Evaluation is made by adding 140 g (wet earth) of soil (mountain sand: clay (manufactured by Kanto Kasei Co., Ltd./tochi clay) = 10: 1) to a 140 mL-medium bottle, 75 mL of tap water, and a readily degradable nutrient As follows: 2.3 mL of 10% sodium gluconate solution, 1.4 mL of 5% sodium bicarbonate solution, 5 mL of VOC-degrading bacteria culture solution, 5 mL of trichlorethylene (TCE) solution (TCE concentration: about 900 mg / L), about 2 By culturing at 23 to 25 ° C. for a month, VOC-decomposing microorganisms were grown, and it was confirmed that TCE and 1,2-dichloroethylene which is a decomposition product of TCE were decomposed.
Next, 7.7 mL of the emulsified oil / fat composition solution (about 30% solution) of Example Product 4, Example Product 5, Comparative Product 1 and Comparative Product 3 was added, and at the same time, a TCE solution (TCE concentration: about 30%). The VOC concentration when 2 mL of 900 mg / L) was added was measured. In order to confirm the persistence of the resolution, when it was confirmed that VOC was decomposed, 2 mL of a TCE solution (TCE concentration: about 900 mg / L) was additionally added, and the VOC concentration was measured in the same manner. The results are shown in FIGS.
In addition, FIG. 5 shows changes in pH in each test section. As a control group, the numerical value of the group which does not add an emulsified oil-fat composition solution was illustrated.

図1から図4の結果から、比較例品1は液体油脂であるが、TCEを追加で添加した日以降について分解能が持続しないことが明らかとなった。一方、実施例品4、実施例品5については、良好なVOC分解能が持続し、添加後、60日経過時点においても良好なVOC分解能を示した。また比較例品3については、分解速度が実施例品4、実施例品5と比較して遅く、分解効率が悪いことが明らかとなった。
また、図5の結果から、比較例品1では、他の乳化油脂組成物よりもpHが顕著に低下していることが明らかとなった。すなわち、比較例品1において、VOC分解が進まない要因の1つとして、比較例品1が微生物分解されやすく有機酸が過剰に生成されたために、pHが低下したと考えられる。
From the results of FIGS. 1 to 4, it was revealed that the comparative product 1 is a liquid fat, but the resolution does not last after the day when TCE was additionally added. On the other hand, Example Product 4 and Example Product 5 maintained good VOC resolution, and showed good VOC resolution even after 60 days had elapsed after addition. Further, it was clarified that the comparative example product 3 has a lower decomposition rate than the example product 4 and the example product 5, and the decomposition efficiency is poor.
Moreover, from the result of FIG. 5, it became clear that the pH of the comparative example product 1 is significantly lower than that of the other emulsified oil and fat compositions. That is, in Comparative Example Product 1, as one of the factors that cause VOC decomposition not proceeding, it is considered that the Comparative Example Product 1 was easily microbially decomposed and an organic acid was excessively generated, so that the pH was lowered.

試験例1から試験例4の結果から、汚染土壌浄化用栄養剤として、乳化安定性と浸透性を両立させ、かつ効率的なVOC分解能を長期的に持続的させることを期待するためには、20℃におけるSFCの値を1〜60の範囲内とすることが適当であることが明らかとなった。   From the results of Test Example 1 to Test Example 4, as a contaminated soil purification nutrient, in order to expect both emulsification stability and permeability, and to maintain efficient VOC resolution in the long term, It has become clear that it is appropriate to set the SFC value at 20 ° C. within the range of 1-60.

本発明の汚染土壌浄化用栄養剤は、常温で長期に安定な植物性油脂の水中油型乳化物であるため、該栄養剤の提供により、汚染土壌の浄化を長期間安定して行うことが可能となる。さらに、水中油型乳化物に含まれる、油脂の物理的性状を調整することにより、温度環境に応じて最適な浄化速度、有効期間を有する汚染土壌浄化用栄養剤の提供も可能となる。   Since the nutrient for purifying contaminated soil according to the present invention is an oil-in-water emulsion of vegetable oil that is stable at room temperature for a long time, it is possible to stably purify contaminated soil for a long time by providing the nutrient. It becomes possible. Furthermore, by adjusting the physical properties of fats and oils contained in the oil-in-water emulsion, it is possible to provide a nutrient for purifying contaminated soil having an optimum purification rate and effective period according to the temperature environment.

Claims (5)

植物性油脂および/または該油脂の加工油脂を原料油脂とする平均粒子径が0.5〜1.0μmの水中油型乳化組成物を含有する汚染土壌浄化用栄養剤であって、原料油脂の20℃におけるSFCが1〜60であり、かつ、有機酸モノグリセリドを0.5〜2.0重量部含む汚染土壌浄化用栄養剤。 A nutrient for purifying contaminated soil, comprising an oil- in- water emulsion composition having an average particle size of 0.5 to 1.0 μm using vegetable oil and / or processed oil and fat as raw material fat, Ri SFC 1 to 60 der at 20 ° C., and contaminated soil purifying nutrient containing 0.5 to 2.0 parts by weight of organic acid monoglyceride. 原料油脂の20℃におけるSFCが1〜30である、請求項1に記載の汚染土壌浄化用栄養剤。   The nutrient for purifying contaminated soil according to claim 1, wherein the raw oil and fat has an SFC of 1 to 30 at 20 ° C. 前記有機酸モノグリセリドがジアセチル酒石酸モノグリセリドである、請求項1または2に記載の汚染土壌浄化用栄養剤。 The nutrient for purifying contaminated soil according to claim 1 or 2 , wherein the organic acid monoglyceride is diacetyltartaric acid monoglyceride. 請求項1〜のいずれかに記載の汚染土壌浄化用栄養剤を土壌に注入する工程を含む、汚染土壌の浄化方法。 The purification method of contaminated soil including the process of inject | pouring the nutrient for contaminated soil purification in any one of Claims 1-3 into soil. 植物性油脂および/または該油脂の加工油脂を原料油脂として含有する油相と水相を混合し、均質化する工程を含む、請求項1〜のいずれかに記載の汚染土壌浄化用栄養剤の製造方法。 The nutrient for purifying contaminated soil according to any one of claims 1 to 3 , comprising a step of mixing and homogenizing an oily phase containing vegetable oil and / or a processed oil and fat of the oil and fat as a raw material oil and an aqueous phase. Manufacturing method.
JP2014137626A 2014-07-03 2014-07-03 Nutrient for contaminated soil purification Active JP6374239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137626A JP6374239B2 (en) 2014-07-03 2014-07-03 Nutrient for contaminated soil purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137626A JP6374239B2 (en) 2014-07-03 2014-07-03 Nutrient for contaminated soil purification

Publications (2)

Publication Number Publication Date
JP2016013527A JP2016013527A (en) 2016-01-28
JP6374239B2 true JP6374239B2 (en) 2018-08-15

Family

ID=55230185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137626A Active JP6374239B2 (en) 2014-07-03 2014-07-03 Nutrient for contaminated soil purification

Country Status (1)

Country Link
JP (1) JP6374239B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440981B2 (en) * 2014-07-16 2018-12-19 Dowaエコシステム株式会社 Purification treatment agent and purification treatment method
CN109089450A (en) * 2018-07-16 2018-12-28 青岛远辉生物环保科技有限公司 Soil remediation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041840A (en) * 2002-07-09 2004-02-12 Matsushita Electric Ind Co Ltd Soil, ground water decontamination material
JP2010158653A (en) * 2009-01-09 2010-07-22 Kokusai Environmental Solutions Co Ltd Decontaminating agent for soil and ground water
JP2011224497A (en) * 2010-04-21 2011-11-10 Ohbayashi Corp Nutritive material for cleaning contaminated soil and method for cleaning contaminated soil

Also Published As

Publication number Publication date
JP2016013527A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2012161726A8 (en) Composition and method for delivery of substances in a dry mode having a surface layer
WO2004020339A3 (en) Substrate and method for anaerobic remediation
JP6374239B2 (en) Nutrient for contaminated soil purification
JP2007083169A (en) Decontaminating agent for soil and ground water
CN102578110A (en) Preparation method of artemisinin slow-release body
JP4079976B2 (en) Purification agent and organic chlorine compound purification method using the purification agent
Yu et al. Cellular changes of microbial consortium GY1 during decabromodiphenyl ether (BDE-209) biodegradation and identification of strains responsible for BDE-209 degradation in GY1
JP5052721B2 (en) Spray-type nutritional microemulsion useful as a biodegradation accelerator
WO2012009594A3 (en) Accelerated bioremediation using supplemental compositions and oxygenated water
CN109534517A (en) Prosparol and its preparation method and application
JP2011224497A (en) Nutritive material for cleaning contaminated soil and method for cleaning contaminated soil
JP5776175B2 (en) Purification material and purification method for contaminated ground
US9309136B2 (en) Bioremediation of soil and groundwater
JP6622958B2 (en) Circulating water treatment method
JP2011025105A (en) Method of decontaminating soil and underground water contaminated with organic chlorine compound
JP2020131136A (en) Anaerobic water flowing system and water flowing anaerobic bio system
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
CN107758821A (en) A kind of coagulant for sanitary sewage disposal and preparation method thereof
KR102000743B1 (en) Eco-friendly disinfection and deodorization block, deodorization appartus comprising the same, and manufacturing method thereof
JP2018175529A (en) Decomposition accelerator, and environmental cleanup method using the decomposition accelerator
JP2008031126A (en) Hand cream and method for producing the same
JP3817534B2 (en) Soil and groundwater purification composition and purification method
TWI524914B (en) Composition for microbiological use
US20150076398A1 (en) Bioremediation of soil and groundwater
TWI490334B (en) Microbial composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6374239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250