JP2010158653A - Decontaminating agent for soil and ground water - Google Patents

Decontaminating agent for soil and ground water Download PDF

Info

Publication number
JP2010158653A
JP2010158653A JP2009004130A JP2009004130A JP2010158653A JP 2010158653 A JP2010158653 A JP 2010158653A JP 2009004130 A JP2009004130 A JP 2009004130A JP 2009004130 A JP2009004130 A JP 2009004130A JP 2010158653 A JP2010158653 A JP 2010158653A
Authority
JP
Japan
Prior art keywords
soil
oil
groundwater
weight
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009004130A
Other languages
Japanese (ja)
Inventor
Seiji Suzuki
誠治 鈴木
Tetsuaki Sato
徹朗 佐藤
Ichiro Minegishi
一郎 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI ENVIRONMENTAL SOLUTIONS CO Ltd
Original Assignee
KOKUSAI ENVIRONMENTAL SOLUTIONS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI ENVIRONMENTAL SOLUTIONS CO Ltd filed Critical KOKUSAI ENVIRONMENTAL SOLUTIONS CO Ltd
Priority to JP2009004130A priority Critical patent/JP2010158653A/en
Publication of JP2010158653A publication Critical patent/JP2010158653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decontaminating agent for soil and ground water, of which particle size of an oil drop is small enough and which is excellent in diffusibility in soil and can be uniformly distributed in soil and ground water to achieve sufficient decontamination of a contaminant. <P>SOLUTION: The decontaminating agent for soil and ground water decomposes the contaminant by activating microorganisms existing in either or both of contaminated soil and contaminated ground water. The decontaminating agent comprises oil-in-water type emulsion obtained by emulsifying liquid oil and fat, water and a surfactant of 0.3 to 10 wt.% of weight of the liquid oil and fat. A mean particle size of the oil drops is 1 to 3 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハロゲン化炭化水素、油等の汚染物質で汚染された土壌又は地下水中のうち何れか一方又は両方中に存在する微生物を活性化して、前記汚染物質を分解するための土壌、地下水用浄化剤に関するものである。   The present invention provides a soil, groundwater for activating microorganisms present in either or both of soil and groundwater contaminated with a pollutant such as halogenated hydrocarbons and oil to decompose the pollutant It is related with the purification agent for urine.

近年、環境破壊の要因又は生物体に対して悪影響を及ぼす要因となる汚染物質が土壌や地下水中において検出されており、これらの汚染物質による環境汚染が問題となっている。汚染土壌・地下水の浄化には様々な方法が用いられており、従来は汚染土壌・地下水を掘削、吸引、或いは揚水して外部で水や溶媒により洗浄又は熱処理して無害化する方法等の物理化学的方法が多く用いられていた。しかし、このような物理化学的方法はコストが高く、操作性が低いため、高濃度でかつ狭域の汚染帯の浄化での適用に限られていた。また、汚染土壌・地下水の上にプラントなど操業中の設備がある場合は、土壌を掘削するなどの方法が不可能な場合も多々ある。
土壌・地下水の汚染地域が広範囲に亘る場合には、原位置での処理が望まれており、近年は汚染物質で汚染された土壌の浄化方法として、安価でかつ簡単に浄化処理が可能である生物学的な浄化方法が提案、実用化されている。
In recent years, pollutants that cause environmental destruction or have an adverse effect on living organisms have been detected in soil and groundwater, and environmental pollution due to these pollutants has become a problem. Various methods have been used to purify contaminated soil and groundwater. Conventionally, physical methods such as excavating, sucking, or pumping contaminated soil and groundwater, washing them with water or solvent externally, or detoxifying them, etc. Many chemical methods were used. However, such a physicochemical method is high in cost and low in operability, so that it has been limited to application in purification of a high-concentration and narrow contaminated zone. In addition, when there is an operating facility such as a plant on contaminated soil or groundwater, there are many cases where a method such as excavating the soil is impossible.
When soil and groundwater contaminated areas cover a wide area, in-situ treatment is desired. In recent years, it is possible to easily and inexpensively purify soil contaminated with pollutants. Biological purification methods have been proposed and put into practical use.

生物学的な浄化方法は、微生物の化学物質分解能力を利用して汚染土壌を修復する浄化技術である。これは、汚染土壌・地下水中に元々存在する微生物を利用して汚染物質を減衰させる方法であり、汚染土壌の掘削や汚染物質の抽出の必要がなく、原位置において土壌を浄化できることから低コストで広範囲に利用できるため汚染土壌の浄化に有効な技術として注目されている。このような技術として、土壌・地下水中に栄養剤を供給して元々土壌中に存在していた微生物を活性化し、汚染物質の減衰を促進させる技術が知られており、微生物の増殖及び生存に効果的な栄養剤を土壌・地下水中に添加することにより、汚染土壌・地下水に土着している微生物の分解活性を高め汚染土壌・地下水を浄化し、効率良く汚染物質の分解除去を行なえることが判っている。   The biological purification method is a purification technique for repairing contaminated soil using the ability of microorganisms to decompose chemical substances. This is a method of attenuating pollutants by using microorganisms originally present in contaminated soil and groundwater, which eliminates the need for excavating contaminated soil and extracting pollutants and reduces the cost of soil in situ. Therefore, it is attracting attention as an effective technology for the purification of contaminated soil. As such a technology, a technology is known in which nutrients are supplied to soil and groundwater to activate microorganisms originally present in the soil and promote the decay of pollutants. By adding effective nutrients to soil and groundwater, the decomposition activity of microorganisms indwelling in contaminated soil and groundwater can be increased to purify contaminated soil and groundwater, and to efficiently decompose and remove pollutants. Is known.

前記微生物の増殖及び生存に効果的な栄養剤として、例えば特許文献1には液体油脂と、液体油脂重量の0.5〜50重量%のノニオン系界面活性剤と、ノニオン系界面活性剤重量の50〜400重量%の多価アルコールと水とを、水中油型に乳化した乳化物よりなり、油滴の平均粒径50μm以下である土壌、地下水用浄化剤が開示されている。   As nutrients effective for the growth and survival of the microorganism, for example, Patent Document 1 discloses liquid fats and oils, 0.5 to 50% by weight of the weight of liquid fats and oils, and the weight of nonionic surfactants. Disclosed is a soil and groundwater purifier comprising an emulsion obtained by emulsifying 50 to 400% by weight of a polyhydric alcohol and water in an oil-in-water type, and having an average particle size of oil droplets of 50 μm or less.

特開2007−83169号公報JP 2007-83169 A

しかしながら、特許文献1に開示されている土壌、地下水用浄化剤は、油滴の平均粒径が50μm以下と大きく、土壌中に添加したときの土壌中での拡散性の面で充分とはいえず、浄化剤が行き届かない箇所が局所的に存在し、汚染物質の浄化が充分に行えない可能性がある。   However, the soil and groundwater purifier disclosed in Patent Document 1 has a large average particle diameter of oil droplets of 50 μm or less, and is sufficient in terms of diffusibility in the soil when added to the soil. Therefore, there is a local area where the purifier is not reachable, and there is a possibility that the pollutant cannot be sufficiently purified.

従って、本発明はかかる従来技術の問題に鑑み、油滴の粒径が充分に小さく、土壌中での拡散性に優れ、土壌・地下水中に均一に行き届かせることができるため、汚染物質を充分に浄化することができる土壌、地下水用浄化剤を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention has a sufficiently small oil droplet size, excellent diffusibility in the soil, and can be uniformly distributed in the soil and groundwater. The object is to provide a soil and groundwater purification agent that can be sufficiently purified.

上記課題を解決するため本発明においては、汚染土壌又は地下水のうち何れか一方又は両方の中に存在する微生物を活性化して汚染物質を分解する土壌、地下水用浄化剤において、液体油脂と、該液体油脂重量の0.3〜10重量%の界面活性剤と、水とを、水中油型に乳化した乳化物よりなり、油滴の平均粒径1〜3μmであることを特徴とする。
これにより、油滴の粒径が充分に小さく、土壌中で拡散性に優れ、土壌・地下水中に均一に行き届かせることができるため、汚染物質を充分に浄化することができる。
In order to solve the above problems, in the present invention, soil that activates microorganisms present in either or both of contaminated soil and groundwater and decomposes the pollutant, a groundwater purifier, liquid oil and fat, It is made of an emulsion obtained by emulsifying a surfactant of 0.3 to 10% by weight of liquid oil and fat and water in an oil-in-water type, and has an average particle diameter of oil droplets of 1 to 3 μm.
Thereby, the particle size of the oil droplets is sufficiently small, excellent in diffusibility in the soil, and can be uniformly distributed in the soil / ground water, so that the contaminants can be sufficiently purified.

また、汚染土壌又は地下水のうち何れか一方又は両方の中に存在する微生物を活性化して汚染物質を分解する土壌、地下水用浄化剤において、液体油脂と、該液体油脂重量の0.3〜10重量%の界面活性剤と、該界面活性剤重量の20〜300重量%の多糖類と、水とを、水中油型に乳化した乳化物よりなり、油滴の平均粒径1〜3μmであることを特徴とする。
これにより、油滴の粒径が充分に小さく、土壌中で拡散性に優れ、土壌・地下水中に均一に行き届かせることができるため、汚染物質を充分に浄化することができる。
さらに、多糖類を使用することにより、乳化物の安定性を増大させることができる。
Moreover, in the soil which activates the microorganisms which exist in any one or both in contaminated soil or groundwater, and decomposes | disassembles a pollutant, ground oil purifier, liquid fat and oil, and 0.3 to 10 of this liquid fat weight It consists of an emulsion obtained by emulsifying a weight percent surfactant, a polysaccharide of 20 to 300 weight percent of the surfactant weight, and water into an oil-in-water type, and has an average particle diameter of oil droplets of 1 to 3 μm. It is characterized by that.
Thereby, the particle size of the oil droplets is sufficiently small, excellent in diffusibility in the soil, and can be uniformly distributed in the soil / ground water, so that the contaminants can be sufficiently purified.
Furthermore, the stability of the emulsion can be increased by using polysaccharides.

また、前記界面活性剤が、ノニオン系界面活性剤であることを特徴とする。
これにより、乳化物を安定して得ることができる。
The surfactant is a nonionic surfactant.
Thereby, an emulsion can be obtained stably.

また、前記界面活性剤が、ノニオン系界面活性剤と、該ノニオン系界面活性剤重量の20〜300重量%のアニオン系界面活性剤との混合物であることを特徴とする。
アニオン系界面活性剤は、ノニオン系界面活性剤と比較すると水生生物に対する毒性が低いため、アニオン系界面活性剤を混合させて界面活性剤として使用することで水性生物に対する安全性が高くなる。
The surfactant is a mixture of a nonionic surfactant and an anionic surfactant in an amount of 20 to 300% by weight based on the weight of the nonionic surfactant.
Anionic surfactants are less toxic to aquatic organisms than nonionic surfactants. Therefore, mixing anionic surfactants and using them as surfactants increases the safety for aqueous organisms.

また、前記液体油脂が、前記乳化物中に20〜80重量%配合されることを特徴とする。
これにより、流動性を有し、安定した水中油型の乳化物を得ることができる。
Moreover, the said liquid fats and oils are mix | blended 20 to 80weight% in the said emulsion.
As a result, a stable oil-in-water emulsion having fluidity can be obtained.

以上記載のごとく本発明によれば、油滴の粒径が充分に小さく、土壌中で拡散性に優れ、土壌・地下水中に均一に行き届かせることができるため、汚染物質を充分に浄化することができる土壌、地下水用浄化剤を提供することができる。   As described above, according to the present invention, the particle size of the oil droplets is sufficiently small, excellent in diffusibility in the soil, and can be uniformly distributed in the soil and groundwater, so that the contaminants are sufficiently purified. It can provide a soil and groundwater purification agent.

乳化装置の構成図である。It is a block diagram of an emulsification apparatus. 油滴径の違いによる乳化安定性、微生物の利用度合、残存度合、施工適正の結果をまとめた表である。It is the table | surface which put together the result of the emulsification stability by the difference in oil droplet diameter, the utilization degree of microorganisms, a residual degree, and construction appropriateness. 油粒子を観察した結果をまとめた表である。It is the table | surface which put together the result of having observed the oil particle. PCE、TCE、cis−DCEの濃度、ORP、TOCの測定結果をまとめた表である。It is the table | surface which put together the measurement result of the density | concentration of PCE, TCE, cis-DCE, ORP, and TOC.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

本発明の浄化剤に用いる液体油脂としては、例えば大豆油、ナタネ油、サフラワー油、ごま油、ぬか油、コーン油、綿実油、落花生油、ひまし油、つばき油、ひまわり油、ホホバ油、パーム油などが挙げられる。
乳化物中の液体油脂の配合量は20〜80重量%であることが好ましい。乳化物中の液体油脂の配合量が20重量%未満であると、乳化物の安定性が低下し、保存中に不均一となることがあるため好ましくない。また乳化物中の液体油脂の配合量が80重量%よりも多いと、水中油型の乳化物を得ることが困難となり、水中油型の乳化物が得られてもほとんど流動性を有しないため、取り扱いが難しいことに加え、汚染土壌・地下水中への注入が困難となる。従って、高い安定性と、汚染土壌中へ容易に注入可能な流動性を有する乳化物を得るためには、乳化物中の液体油脂の配合量は前述の通り20〜80重量%とすることが好ましい。
さらに、液体油脂の配合量が少ないと土壌・地下水への浄化剤注入量が多くなるため、輸送や保管のコスト、施工時の時間を考慮すると前記配合量は30重量%以上とすることがさらに好ましい。一方、液体油脂の配合量が多いと得られる乳化物の粘土が高くなり、土壌・地下水中へ注入が困難となり、場合によっては特殊な装置が必要となるので、特殊な装置が必要なく容易に土壌・地下水中へ注入するためには前記配合量は70重量%以下とすることがさらに好ましい。即ち、乳化物中の液体油脂の配合量を30〜70重量%とすることがより好ましい。
Examples of the liquid oil used in the purification agent of the present invention include soybean oil, rapeseed oil, safflower oil, sesame oil, bran oil, corn oil, cottonseed oil, peanut oil, castor oil, camellia oil, sunflower oil, jojoba oil, palm oil and the like. Is mentioned.
It is preferable that the compounding quantity of the liquid fat in an emulsion is 20 to 80 weight%. If the blended amount of the liquid fats and oils in the emulsion is less than 20% by weight, the stability of the emulsion is lowered and it may become non-uniform during storage, which is not preferable. Further, if the blending amount of the liquid fat in the emulsion is more than 80% by weight, it becomes difficult to obtain an oil-in-water emulsion, and even if an oil-in-water emulsion is obtained, it has almost no fluidity. In addition to being difficult to handle, injection into contaminated soil and groundwater becomes difficult. Therefore, in order to obtain an emulsion having high stability and fluidity that can be easily injected into contaminated soil, the amount of liquid oil in the emulsion should be 20 to 80% by weight as described above. preferable.
Furthermore, if the blending amount of the liquid fat is small, the amount of the cleaning agent injected into the soil / groundwater increases, so that the blending amount should be 30% by weight or more in consideration of transportation and storage costs and construction time. preferable. On the other hand, if the amount of liquid oil and fat is large, the emulsion clay obtained becomes high, making it difficult to inject into soil and groundwater, and in some cases, a special device is required. In order to inject into soil / ground water, the blending amount is more preferably 70% by weight or less. That is, it is more preferable that the blending amount of the liquid fat in the emulsion is 30 to 70% by weight.

また、界面活性剤は、液体油脂量の0.3〜10重量%配合され、より好ましくは液体油脂重量の1〜7重量%である。
界面活性剤の配合量が液体油脂量の0.3重量%未満であると、油滴平均粒径3μm以下に乳化することはできるが、長期間安定に乳化状態を維持することが困難となる。また液体油脂重量の10重量%を超えると油滴平均粒径3μm以下の安定した乳化物を得ることはできるが、浄化剤を製造するための界面活性剤の使用量が多くなり、コストが上昇するため好ましくない。
Further, the surfactant is blended in an amount of 0.3 to 10% by weight of the amount of liquid fat, and more preferably 1 to 7% by weight of the weight of liquid fat.
When the blending amount of the surfactant is less than 0.3% by weight of the liquid fat / oil, it is possible to emulsify to an oil droplet average particle diameter of 3 μm or less, but it becomes difficult to maintain the emulsified state stably for a long period of time. . In addition, if it exceeds 10% by weight of the liquid fat, a stable emulsion having an oil droplet average particle diameter of 3 μm or less can be obtained, but the amount of the surfactant used for producing the purifier is increased, resulting in an increase in cost. Therefore, it is not preferable.

界面活性剤は、ノニオン系界面活性剤、又はノニオン系界面活性剤と該ノニオン系界面活性剤重量の20〜300重量%のアニオン系界面活性剤との混合物である。
ノニオン系界面活性剤としては、アルキルポリオキシエチレンエーテル、脂肪酸メチルエステルエトキシレート、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレングリセリン脂肪酸エステル、コカミドジエタノールアミン、サポニンなどが挙げられる。
アニオン系界面活性剤としては、脂肪酸ナトリウム、脂肪酸カリウム、アルキルサルフェート、アルキルエーテルサルフェート(ナトリウム高級アルコールエトキシサルフェート)、カゼインナトリウム塩、乳酸脂肪酸エステル(ステアロイル乳酸ナトリウムなど)、グルタミン酸脂肪酸エステル(ステアロイルグルタミン酸ナトリウムなど)、ココイルグリシンカリウム、リゾレシチンなどが挙げられる。
The surfactant is a nonionic surfactant or a mixture of a nonionic surfactant and an anionic surfactant in an amount of 20 to 300% by weight based on the weight of the nonionic surfactant.
Nonionic surfactants include alkyl polyoxyethylene ether, fatty acid methyl ester ethoxylate, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene glycerin fatty acid ester. , Cocamide diethanolamine, saponin and the like.
Anionic surfactants include fatty acid sodium, fatty acid potassium, alkyl sulfate, alkyl ether sulfate (sodium higher alcohol ethoxy sulfate), sodium caseinate, lactic acid fatty acid ester (such as sodium stearoyl lactate), glutamic acid fatty acid ester (such as sodium stearoyl glutamate) ), Cocoylglycine potassium, lysolecithin and the like.

多糖類は、界面活性剤重量の20〜300重量%配合され、より好ましくは30〜150重量%である。多糖類は液体に粘性を付与する性質を持つため、多糖類を使用することにより乳化剤の安定性を増大させることができる。
多糖類の割合が界面活性剤重量の20重量%未満であると、多糖類を使用しない場合と比較して乳化安定性で有利な効果が得られない。また多糖類の割合が界面活性剤重量の300重量%を超えると油滴平均粒径3μm以下で安定な水中油型乳化物とすることが困難である。
The polysaccharide is blended in an amount of 20 to 300% by weight of the surfactant, and more preferably 30 to 150% by weight. Since the polysaccharide has the property of imparting viscosity to the liquid, the stability of the emulsifier can be increased by using the polysaccharide.
When the ratio of the polysaccharide is less than 20% by weight of the surfactant, an advantageous effect in emulsion stability cannot be obtained as compared with the case where the polysaccharide is not used. On the other hand, when the ratio of the polysaccharide exceeds 300% by weight of the surfactant, it is difficult to obtain a stable oil-in-water emulsion having an oil droplet average particle diameter of 3 μm or less.

多糖類としては、デキストリン、還元水飴、オリゴ糖、カルボキシメチルセルロース(CMC)などを挙げることができ、乳化剤の安定性増大の観点から特にデキストリン、CMCを用いることが好ましい。   Examples of the polysaccharide include dextrin, reduced starch syrup, oligosaccharide, carboxymethyl cellulose (CMC), and it is particularly preferable to use dextrin and CMC from the viewpoint of increasing the stability of the emulsifier.

水としては、純水でもよく、窒素、リンを含む化合物を混合した水を使用してもよい。
窒素を含む化合物としては、尿素、硫酸アンモニウムなどが挙げられる。
リンを含む化合物としては、燐酸一水素二カリウム、燐酸二水素一カリウム、トリポリ燐酸ナトリウムなどが挙げられる。
As water, pure water may be used, or water in which a compound containing nitrogen and phosphorus is mixed may be used.
Examples of the compound containing nitrogen include urea and ammonium sulfate.
Examples of the compound containing phosphorus include dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, and sodium tripolyphosphate.

本発明の浄化剤により土壌や地下水に含まれる揮発性有機塩素化合物等の汚染物質を浄化するためには、地盤に井戸を掘削し、該井戸に本発明の浄化剤を注入する方法が挙げられる。本発明の浄化剤は土壌中での拡散性が良好であるため、浄化剤を一箇所の井戸から注入しても浄化剤が地下水の流れの下流方向に地下水の流れの下流方向に拡散するとともに土壌中にも浸透し、広範囲の浄化を行うことができる。本発明の浄化剤は、必要に応じて数倍から数十倍程度に希釈してから地盤に注入しても良い。また、本発明の浄化剤を地盤に注入する際に、糖、アミノ酸等の有機栄養を併用して注入すると浄化剤による汚染物質浄化作用の即効性を向上することができる。   In order to purify contaminants such as volatile organic chlorine compounds contained in soil and groundwater with the purification agent of the present invention, a method of drilling a well in the ground and injecting the purification agent of the present invention into the well can be mentioned. . Since the purifying agent of the present invention has good diffusibility in soil, the purifying agent diffuses in the downstream direction of the flow of groundwater in the downstream direction of the flow of groundwater even if it is injected from one well. It penetrates into the soil and can perform a wide range of purification. The purification agent of the present invention may be diluted into several to several tens of times as needed and then injected into the ground. In addition, when the purifying agent of the present invention is injected into the ground, injecting organic nutrients such as sugars and amino acids in combination can improve the immediate effect of the pollutant purification action by the purifying agent.

(乳化装置)
図1は乳化装置の構成図である。
図1においては、槽T1、T2の2つの槽が用意され、槽T1は水相成分を収容し、槽T2は油相成分を収容するものである。
また、槽T1、T2にはそれぞれ槽内の原料を供給する原料供給路C1、C2が設けられており、それぞれの原料供給路C1、C2にはポンプP1、P2が設けられている。さらに、原料供給路C1、C2の下流側は合流路1に合流しており、該合流路1の途中には混合室10が設けられている。
(Emulsifying device)
FIG. 1 is a configuration diagram of an emulsification apparatus.
In FIG. 1, two tanks T1 and T2 are prepared, the tank T1 contains a water phase component, and the tank T2 contains an oil phase component.
The tanks T1 and T2 are respectively provided with raw material supply paths C1 and C2 for supplying the raw materials in the tank, and the raw material supply paths C1 and C2 are respectively provided with pumps P1 and P2. Further, the downstream sides of the raw material supply paths C1 and C2 merge into the combined flow path 1, and a mixing chamber 10 is provided in the middle of the combined flow path 1.

混合室10は、合流路1の流路断面積の2倍以上の流路断面積を有する同芯状のハウジング筒部11を介装し、該ハウジング筒部11内に径が合流路1の内径より大きく周縁部位に上流側に向かって突出する縁部13を有した衝突板12を、ハウジング筒部11と同芯状に固定して設置し、衝突板12の縁部13の外周面とハウジング筒部11の内周面との間隙で構成される流路断面積と、衝突板12の下流側面とハウジング筒部11の下流側端面との間隙で構成される流路断面積とを、ともに合流路1の流路断面積と略等しいかそれ以上となるように設定している。   The mixing chamber 10 is provided with a concentric housing tube portion 11 having a flow passage cross-sectional area that is twice or more the flow passage cross-sectional area of the combined flow passage 1. A collision plate 12 having an edge portion 13 that protrudes toward the upstream side at a peripheral portion larger than the inner diameter is fixed and installed concentrically with the housing tube portion 11, and the outer peripheral surface of the edge portion 13 of the collision plate 12 A flow path cross-sectional area constituted by a gap between the inner peripheral surface of the housing cylinder part 11 and a flow path cross-sectional area constituted by a gap between the downstream side surface of the collision plate 12 and the downstream end face of the housing cylinder part 11; Both are set to be substantially equal to or larger than the cross-sectional area of the combined flow path 1.

前記合流路1と混合室10とは中心軸を共通する断面円形に構成され、混合室10は、円盤状の垂直プレート10b、10cが設けられ、該垂直プレート10b、10c部位で段状に拡径、縮径している。ハウジング筒部11内に固定した衝突板12は、混合室10と同芯に設けられている。   The joint channel 1 and the mixing chamber 10 are configured to have a circular cross section with a common central axis. The mixing chamber 10 is provided with disc-shaped vertical plates 10b and 10c, and expands stepwise at the vertical plates 10b and 10c. The diameter is reduced. The collision plate 12 fixed in the housing cylinder portion 11 is provided concentrically with the mixing chamber 10.

このような構成により、合流路1を流れる流体は、その全量が衝突板12に衝突し、衝突した流体の一部は跳ね返り渦流を生じ流体が攪拌される。
また、衝突した流体の多くは、流れ方向を変え衝突板12に沿ってその遠心方向に流れ、縁部13まで流れると、流体が縁部13を乗り越えようとして、一部で合流路1と逆方向の流れが生じる。そして、この逆流は、さらに新たに合流路1より順次送られてくる流体と衝突して、該衝突による攪拌・混合が行われる。
With such a configuration, the entire amount of the fluid flowing through the combined flow path 1 collides with the collision plate 12, and a part of the collided fluid rebounds to generate a vortex and the fluid is agitated.
In addition, most of the fluids that have collided change the flow direction, flow in the centrifugal direction along the collision plate 12, and flow to the edge 13. Directional flow occurs. And this backflow collides with the fluid newly sent sequentially from the combined flow path 1, and stirring and mixing by this collision are performed.

そして、縁部13より漏れ出た流体は、縁部13の外周面とハウジング筒部11との間隙と、衝突板12の下流側面とハウジング筒部11の下流側端面との間隙とを通過して、下流側に流れるが、衝突板12の下流側で流れが合流して、この合流で攪拌・混合がなされるものである。   The fluid leaking from the edge portion 13 passes through the gap between the outer peripheral surface of the edge portion 13 and the housing cylinder portion 11 and the gap between the downstream side surface of the collision plate 12 and the downstream end face of the housing cylinder portion 11. The flow flows downstream, but the flow is merged on the downstream side of the collision plate 12, and stirring and mixing are performed by this merge.

そして、前記合流路1に設けられた混合室10より下流側に排出路2を設け、該排出路2より、攪拌混合されて乳化された乳化組成物が得られるようにしてある。また、合流路1は、図示するように循環用ポンプPを有した循環流路5を形成しており、一対の弁3a、3bからなる切換弁3によって、混合室10によって攪拌混合された原料が混合不十分である場合には循環して混合室10で再度混合し、混合十分である場合には排出路2から排出するようにしている。なお、ポンプPはポンプP1を兼用している。   And the discharge path 2 is provided in the downstream from the mixing chamber 10 provided in the said combined flow path 1, The emulsified composition emulsified by stirring and mixing from this discharge path 2 is obtained. The combined flow path 1 forms a circulation flow path 5 having a circulation pump P as shown in the drawing, and the raw material stirred and mixed by the mixing chamber 10 by the switching valve 3 including a pair of valves 3a and 3b. Is mixed and re-mixed in the mixing chamber 10, and is discharged from the discharge passage 2 when mixing is sufficient. The pump P also serves as the pump P1.

このような乳化装置を使用することにより、平均粒径3μm以下の小径であっても乳化物を安定して得ることができる。   By using such an emulsifying device, an emulsion can be stably obtained even if the average particle size is 3 μm or less.

(油滴径の最適化)
図1を用いて説明した乳化装置を使用して、油滴の平均粒径0.5μm未満(試料A)、1〜3μm(試料B)、5〜15μm(試料C)を用意するとともに、従来より用いられているD相法を使用して15〜50μm(試料D)を用意し、前記試料A〜Dに関して乳化安定性、微生物の利用度合、残存度合、施工適正について比較を行った。結果を図2に示す。
(Optimization of oil droplet diameter)
Using the emulsifying device described with reference to FIG. 1, oil droplets having an average particle diameter of less than 0.5 μm (sample A), 1 to 3 μm (sample B), and 5 to 15 μm (sample C) are prepared. 15-50 micrometers (sample D) were prepared using the D phase method used more, and the emulsion AD, the utilization degree of microorganisms, a residual degree, and construction appropriateness were compared regarding the said samples AD. The results are shown in FIG.

図2を参照しながら比較項目ごとに結果を説明する。
(1)乳化安定性
安定して乳化できるか否か、乳化した状態を安定して維持できるか否かをまとめた。
以下のことが言える。
a、油滴の平均粒径が大きくなるに従い、不安定となる。
b、油滴の平均粒径3μm以下では3か月以上の長期間に渡って安定して乳化した状態を維持することができる。
従って、平均粒径は3μm以下が適切であると言える。
(2)微生物の利用度合
微生物が油滴を栄養剤として利用する度合をまとめた。
以下のことが言える。
a、平均粒径が0.5μmより小さい場合、該平均粒径は微生物よりも小さいため、浄化に関わる微生物が入り込むことができない1μmより小さな土壌の間隙に乳化物の油滴が入り込んでしまい、油滴の全てを栄養成分として有効に利用できない。
b、平均粒径1〜3μmでは、該平均粒径は微生物と略同じであるので、微生物が付着しやすく油滴を栄養成分として有効に利用できる。
c、平均粒径5〜15μm、更に15〜50μmでは、微生物の油滴への付着し易さは平均粒径1〜3μmである場合と大差ないと考えられるが、単位重量当たりの油滴の表面積が小さいため、栄養成分としての利用度合は低下する。
従って、平均粒径は1〜3μmが適切であると言える。
(3)残存度合
土壌中に注入後に、土壌中に残存、滞留している度合をまとめた。
乳化安定性、土壌間隙への吸着の観点から、土壌の地下水中に油滴として残存、滞留している時間は平均粒径1〜3μmの場合が最も長く、土壌中での拡散領域が大きく、栄養剤としての影響範囲が広い。
(4)施工適正
注入やサンプルの採取等の施工のしやすさをまとめた。
油滴が15μm以上と大きい場合には、土壌中の地下水中で油が分離しやすいため、地下水の試料採取等の際に、地下水に接触する機材を油で汚染する。そのため、前記機材には油が付着して、作業性が悪化する。
The results will be described for each comparison item with reference to FIG.
(1) Emulsification stability It was summarized whether or not it can be stably emulsified and whether or not the emulsified state can be stably maintained.
The following can be said.
a, It becomes unstable as the average particle size of the oil droplets increases.
b. When the average particle size of the oil droplets is 3 μm or less, it is possible to maintain a stable emulsified state for a long period of 3 months or more.
Therefore, it can be said that an average particle size of 3 μm or less is appropriate.
(2) Degree of utilization of microorganisms The degree to which microorganisms use oil droplets as nutrients is summarized.
The following can be said.
a, when the average particle size is smaller than 0.5 μm, since the average particle size is smaller than the microorganism, the oil droplets of the emulsion enter the gaps of the soil smaller than 1 μm where the microorganisms involved in purification cannot enter, Not all oil droplets can be used effectively as a nutrient.
b. When the average particle size is 1 to 3 μm, the average particle size is substantially the same as that of microorganisms, so that microorganisms are easily attached and oil droplets can be effectively used as a nutrient component.
c, when the average particle size is 5 to 15 μm, and further 15 to 50 μm, it is considered that the ease of attachment of microorganisms to oil droplets is not much different from the case where the average particle size is 1 to 3 μm. Since the surface area is small, the degree of utilization as a nutrient component decreases.
Therefore, it can be said that an average particle size of 1 to 3 μm is appropriate.
(3) Remaining degree The degree of remaining and remaining in the soil after pouring into the soil was summarized.
From the viewpoint of emulsification stability and adsorption to the soil gap, the time of remaining and staying as oil droplets in the ground water of the soil is the longest when the average particle size is 1 to 3 μm, and the diffusion region in the soil is large, Wide range of influence as a nutrient.
(4) Proper construction The ease of construction, such as injection and sample collection, was summarized.
When oil droplets are as large as 15 μm or more, the oil is easily separated in the groundwater in the soil. Therefore, equipment that contacts the groundwater is contaminated with oil when sampling the groundwater. Therefore, oil adheres to the equipment and workability deteriorates.

以上のことから、油滴の最適粒径は1〜3μmであるといえる。   From the above, it can be said that the optimum particle diameter of the oil droplets is 1 to 3 μm.

(試料1の調製)
図1に示した乳化装置を使用し、原料として、大豆油60.0部、ノニオン系界面活性剤として油脂(大豆油)の5重量%のポリグリセリン脂肪酸エステル、水37重量部を用い、水を槽T1に収容し、大豆油とポリグリセリン脂肪酸エステルを槽T2に収容して攪拌混合した。そして、槽T2で攪拌混合して得た液を、混合室10とポンプPとの間で循環している状態にある水と合流路1で合流させ、混合室10で混合させ、油滴の平均粒径1μmの水中油型乳化物(試料1)を得た。
(Preparation of sample 1)
Using the emulsifier shown in FIG. 1, 60.0 parts of soybean oil as a raw material, 5% polyglycerin fatty acid ester of oil (soybean oil) as a nonionic surfactant, 37 parts by weight of water, Was stored in tank T1, and soybean oil and polyglycerin fatty acid ester were stored in tank T2 and mixed with stirring. Then, the liquid obtained by stirring and mixing in the tank T2 is merged with the water circulating between the mixing chamber 10 and the pump P in the combined flow path 1, mixed in the mixing chamber 10, and the oil droplets are mixed. An oil-in-water emulsion (sample 1) having an average particle diameter of 1 μm was obtained.

(試料2の調製)
図1に示した乳化装置を使用し、原料として、大豆油60.0部、ノニオン系界面活性剤として油脂重量の3重量%のポリグリセリン脂肪酸エステル、アニオン系界面活性剤として油脂重量の2重量%の脂肪酸カリウム、水37重量部を用い、水を槽T1に収容し、大豆油とポリグリセリン脂肪酸エステルと脂肪酸カリウムを槽T2に収容して攪拌混合した。そして、槽T2で攪拌混合して得た液を、混合室10とポンプPとの間で循環している状態にある水と合流路1で合流させ、混合室10で混合させ、油滴の平均粒径1μmの水中油型乳化物(試料2)を得た。
(Preparation of sample 2)
1 is used as a raw material, 60.0 parts of soybean oil as a raw material, 3% polyglycerin fatty acid ester of fats and oils as a nonionic surfactant, and 2% of fats and oils as an anionic surfactant. % Of fatty acid potassium and 37 parts by weight of water were used. Water was stored in the tank T1, and soybean oil, polyglycerin fatty acid ester and fatty acid potassium were stored in the tank T2 and mixed. Then, the liquid obtained by stirring and mixing in the tank T2 is merged with the water circulating between the mixing chamber 10 and the pump P in the combined flow path 1, mixed in the mixing chamber 10, and the oil droplets are mixed. An oil-in-water emulsion (sample 2) having an average particle size of 1 μm was obtained.

(比較試料の調製)
参考のため従来のD相法を使用し、大豆油60.0重量部、ノニオン系界面活性剤として油脂重量の5重量%のポリグリセリン脂肪酸エステル、水37重量部を用い、ポリグリセリン脂肪酸エステルに6重量部の水を添加、攪拌混合後、引き続き攪拌しながら大豆油を添加し、均一となってから31重量部の水を添加することにより、油滴の平均粒径15μmの水中油型乳化物(比較試料)を得た。
(Preparation of comparative sample)
For reference, using the conventional D phase method, using 60.0 parts by weight of soybean oil, polyglycerin fatty acid ester of 5% by weight of fat and oil as the nonionic surfactant, and 37 parts by weight of water, After adding 6 parts by weight of water, stirring and mixing, then adding soybean oil while stirring, and adding 31 parts by weight of water after homogenization, an oil-in-water emulsification with an average particle size of oil droplets of 15 μm A product (comparative sample) was obtained.

(比較)
砂質シルト層が有機塩素化合物により汚染されたサイトにおいて、試料1、試料2、比較試料の水中油型乳化物を、水で50倍に希釈して注入した後、定期的に地下水を採取し、地下水の外観と地下水中での油粒子の様子を顕微鏡観察にて調べた。結果を図3に示す。
(Comparison)
At the site where the sandy silt layer is contaminated with organochlorine compounds, the oil-in-water emulsions of Sample 1, Sample 2, and Comparative Sample are injected 50 times diluted with water, and then groundwater is collected periodically. The appearance of groundwater and the appearance of oil particles in the groundwater were examined by microscopic observation. The results are shown in FIG.

図3に示したように、注入7日後には、試料1及び試料2は外観は乳白色で油分は見られなかったが、比較試料は外観は乳白色で少量の油膜が見られた。また油粒子は、試料1及び試料2は1μm程度を維持していたが、比較試料は20〜30μの粒子が見られた。
さらに、注入14日後には、試料1及び試料2は外観は乳白色で油分は見られなかったが、比較試料は外観は乳白色で少量の油膜が見られた。また油粒子は、試料1及び2は1μm程度を維持し、微生物の付着が見られたが、比較試料は20〜30μmの粒子が見られ、微生物の付着は一部に見られた。
以上のことから、試料1及び試料2の本発明の水中油型乳化物は、比較試料の従来の水中油型乳化物と比較して、地下水中での安定性に優れ、地下水中の微生物の栄養として働き易いといえる。
As shown in FIG. 3, 7 days after the injection, Sample 1 and Sample 2 were milky white in appearance and no oil was seen, but the comparative sample was milky in appearance and a small amount of oil film was seen. Moreover, although the oil particle was maintaining about 1 micrometer in the sample 1 and the sample 2, the particle | grains of 20-30 micrometers were seen by the comparative sample.
Furthermore, 14 days after injection, Sample 1 and Sample 2 were milky white in appearance and no oil was seen, but the comparative sample was milky in appearance and a small amount of oil film was seen. In addition, the oil particles were maintained at about 1 μm in the samples 1 and 2, and the adhesion of microorganisms was observed, but in the comparative sample, particles of 20 to 30 μm were observed, and the adhesion of microorganisms was partially observed.
From the above, the oil-in-water emulsions of the present invention of Sample 1 and Sample 2 are superior in stability in groundwater as compared with conventional oil-in-water emulsions of comparative samples, and the microorganisms in groundwater It can be said that it is easy to work as nutrition.

(現場適用例)
砂質シルト層が有機塩素化合物により汚染されたサイトにおいて、水で50倍に希釈した試料1を注入した後、定期的に地下水を採取し、ガスクロマトグラフィーを用いて有機塩素化合物であるテトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、ジクロロエチレン(cis−DCE)の濃度を定量するとともに、微生物の生息環境を把握するために酸化還元電位(ORP)を測定し、さらに栄養剤の残留の程度の指標となる全有機炭素量(TOC)を調べた。
結果を図4に示す。
(Application example on site)
At the site where the sandy silt layer was contaminated with organochlorine compounds, after injecting Sample 1 diluted 50 times with water, groundwater was collected periodically, and tetrachlorethylene (organochlorine compound) was collected using gas chromatography. PCE), trichlorethylene (TCE), and dichloroethylene (cis-DCE) concentrations are quantified, and the redox potential (ORP) is measured to understand the habitat of microorganisms. The total organic carbon content (TOC) was examined.
The results are shown in FIG.

図4に示したように、試料1をサイトに注入後、徐々にOPRが低下し還元状態に移行した。その結果、嫌気性微生物により有機塩素化合物が分解され、PCEについては注入後約2か月で問題のない値まで低下した。また、PCE→TCE→cis−DCEの順に分解して生成されるcis−DCEについても注入後約4か月で問題のない値となった。一方、注入後約5か月後でも、ORP、TOCの値から嫌気性雰囲気が維持され、栄養剤の効果が維持していることがわかった。   As shown in FIG. 4, after the sample 1 was injected into the site, the OPR gradually decreased and shifted to a reduced state. As a result, organochlorine compounds were decomposed by anaerobic microorganisms, and PCE decreased to a value with no problem about two months after injection. Further, cis-DCE generated by decomposition in the order of PCE → TCE → cis-DCE also showed no problem in about 4 months after injection. On the other hand, even after about 5 months after injection, it was found from the ORP and TOC values that the anaerobic atmosphere was maintained and the effect of the nutrient was maintained.

なお、本実施例における油滴平均粒径は全て、乳化物を水で50倍希釈後、100倍の接眼レンズを装着した顕微鏡で視野を写真撮影して油滴の平均粒径を求めたものである。   In addition, all the oil droplet average particle diameters in this example were obtained by diluting the emulsion 50 times with water and then photographing the field of view with a microscope equipped with a 100-times eyepiece to determine the average particle diameter of the oil droplets. It is.

油滴の粒径が充分に小さく、土壌中で拡散性に優れ、土壌・地下水中に均一に行き届かせることができるため、汚染物質を充分に浄化することができる土壌、地下水用浄化剤として利用することができる。   As a soil and groundwater purification agent that can sufficiently purify pollutants because the oil droplets are sufficiently small in particle size, have excellent diffusibility in the soil, and can reach the soil and groundwater evenly. Can be used.

1 合流路
2 排出路
3 切替弁
10 混合室
11 ハウジング筒部
12 衝突板
13 縁部
T1、T2 槽
C1、C2 原料供給路
P、P1、P2 ポンプ
DESCRIPTION OF SYMBOLS 1 Combined flow path 2 Discharge path 3 Switching valve 10 Mixing chamber 11 Housing cylinder part 12 Colliding plate 13 Edge part T1, T2 Tank C1, C2 Raw material supply path P, P1, P2 Pump

Claims (5)

汚染土壌又は地下水のうち何れか一方又は両方の中に存在する微生物を活性化して汚染物質を分解する土壌、地下水用浄化剤において、
液体油脂と、該液体油脂重量の0.3〜10重量%の界面活性剤と、水とを、水中油型に乳化した乳化物よりなり、油滴の平均粒径1〜3μmであることを特徴とする土壌、地下水用浄化剤。
In soil, groundwater purification agent that activates microorganisms present in either or both of contaminated soil and groundwater to decompose pollutants,
It is composed of an emulsion obtained by emulsifying liquid oil and fat, a surfactant of 0.3 to 10% by weight of the liquid oil and fat, and water into an oil-in-water type, and has an average particle size of oil droplets of 1 to 3 μm. Characteristic soil and groundwater purification agent.
汚染土壌又は地下水のうち何れか一方又は両方の中に存在する微生物を活性化して汚染物質を分解する土壌、地下水用浄化剤において、
液体油脂と、該液体油脂重量の0.3〜10重量%の界面活性剤と、該界面活性剤重量の20〜300重量%の多糖類と、水とを、水中油型に乳化した乳化物よりなり、油滴の平均粒径1〜3μmであることを特徴とする土壌、地下水用浄化剤。
In soil, groundwater purification agent that activates microorganisms present in either or both of contaminated soil and groundwater to decompose pollutants,
An emulsified product obtained by emulsifying liquid oil and fat, a surfactant of 0.3 to 10% by weight of the liquid fat and oil, a polysaccharide of 20 to 300% by weight of the surfactant weight, and water into an oil-in-water type. A soil and groundwater purifying agent characterized by comprising an oil droplet having an average particle diameter of 1 to 3 μm.
前記界面活性剤が、ノニオン系界面活性剤であることを特徴とする請求項1又は2記載の土壌、地下水用浄化剤。   The soil or groundwater purifier according to claim 1 or 2, wherein the surfactant is a nonionic surfactant. 前記界面活性剤が、ノニオン系界面活性剤と、該ノニオン系界面活性剤重量の20〜300重量%のアニオン系界面活性剤との混合物であることを特徴とする請求項1又は2記載の土壌、地下水用浄化剤。   The soil according to claim 1 or 2, wherein the surfactant is a mixture of a nonionic surfactant and an anionic surfactant in an amount of 20 to 300% by weight based on the weight of the nonionic surfactant. , Groundwater purifiers. 前記液体油脂が、前記乳化物中に20〜80重量%配合されることを特徴とする請求項1又は2記載の土壌、地下水用浄化剤。   The said liquid fats and oils are mix | blended 20 to 80weight% in the said emulsion, The purification | cleaning agent for soil and groundwater of Claim 1 or 2 characterized by the above-mentioned.
JP2009004130A 2009-01-09 2009-01-09 Decontaminating agent for soil and ground water Pending JP2010158653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004130A JP2010158653A (en) 2009-01-09 2009-01-09 Decontaminating agent for soil and ground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004130A JP2010158653A (en) 2009-01-09 2009-01-09 Decontaminating agent for soil and ground water

Publications (1)

Publication Number Publication Date
JP2010158653A true JP2010158653A (en) 2010-07-22

Family

ID=42576230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004130A Pending JP2010158653A (en) 2009-01-09 2009-01-09 Decontaminating agent for soil and ground water

Country Status (1)

Country Link
JP (1) JP2010158653A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071126A (en) * 2013-10-02 2015-04-16 ケミカルグラウト株式会社 Contaminated soil cleanup method
JP2016013527A (en) * 2014-07-03 2016-01-28 株式会社大林組 Nutrient for purifying contaminated soil
JP2016193415A (en) * 2015-04-01 2016-11-17 株式会社大林組 Clarifier for contaminated ground, manufacturing method of clarifier for contaminated ground and clarification method of contaminated ground
JP2020099881A (en) * 2018-12-25 2020-07-02 栗田工業株式会社 Purification method of groundwater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083169A (en) * 2005-09-22 2007-04-05 Miyoshi Oil & Fat Co Ltd Decontaminating agent for soil and ground water
JP2008049292A (en) * 2006-08-25 2008-03-06 Ecocycle Corp Cleaning agent and cleaning method for organic chlorinated compound using this cleaning agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083169A (en) * 2005-09-22 2007-04-05 Miyoshi Oil & Fat Co Ltd Decontaminating agent for soil and ground water
JP2008049292A (en) * 2006-08-25 2008-03-06 Ecocycle Corp Cleaning agent and cleaning method for organic chlorinated compound using this cleaning agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071126A (en) * 2013-10-02 2015-04-16 ケミカルグラウト株式会社 Contaminated soil cleanup method
JP2016013527A (en) * 2014-07-03 2016-01-28 株式会社大林組 Nutrient for purifying contaminated soil
JP2016193415A (en) * 2015-04-01 2016-11-17 株式会社大林組 Clarifier for contaminated ground, manufacturing method of clarifier for contaminated ground and clarification method of contaminated ground
JP2020099881A (en) * 2018-12-25 2020-07-02 栗田工業株式会社 Purification method of groundwater

Similar Documents

Publication Publication Date Title
US7045339B2 (en) Electron donors for chlorinated solvent source area bioremediation
US20100209194A1 (en) System for soil, groundwater, and surface water remediation, and related methods
US20160257588A1 (en) Systems and methods for diffusing gas into a liquid
CN106277178A (en) A kind of micro-nano bubble degradation treatment system and method containing organic pollution water body
JP4079976B2 (en) Purification agent and organic chlorine compound purification method using the purification agent
JP2010158653A (en) Decontaminating agent for soil and ground water
JP2007083169A (en) Decontaminating agent for soil and ground water
WO2006055054A1 (en) Contaminant eco-remedy and use method
US8740195B2 (en) Systems and methods for diffusing gas into a liquid
US20030059926A1 (en) Contaminant eco-remedy and use method
JP6104122B2 (en) Contaminated soil purification method
CN109534517A (en) Prosparol and its preparation method and application
JP3565476B2 (en) Method and apparatus for purifying contaminated groundwater and / or contaminated stratum
KR20100088758A (en) The method for bioremediation of contaminated soil using microbubble generator
CN109982781A (en) Underground purification method
JP5405936B2 (en) Microbial purification method
JP2011025105A (en) Method of decontaminating soil and underground water contaminated with organic chlorine compound
JP2006297344A (en) Soil purification method and apparatus used for the same
Lackner et al. Extraction of aged hydrocarbons from contaminated soil using plant-oil-in-water emulsions combined with oil/water separation by reusable non-wovens
JP2017023946A (en) Purification construction method of organic contaminant
KR20100088756A (en) The equipment for bioremediation of contaminated soil utilizing microbubble generator
CN110628437A (en) Mixed preparation for repairing petroleum-polluted soil
JP6532584B1 (en) Soil improvement method
CN217367914U (en) Nano microbubble generator
JP4547962B2 (en) Method for purifying contaminated soil and groundwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821