JP2020131136A - Anaerobic water flowing system and water flowing anaerobic bio system - Google Patents

Anaerobic water flowing system and water flowing anaerobic bio system Download PDF

Info

Publication number
JP2020131136A
JP2020131136A JP2019029210A JP2019029210A JP2020131136A JP 2020131136 A JP2020131136 A JP 2020131136A JP 2019029210 A JP2019029210 A JP 2019029210A JP 2019029210 A JP2019029210 A JP 2019029210A JP 2020131136 A JP2020131136 A JP 2020131136A
Authority
JP
Japan
Prior art keywords
anaerobic
volatile organic
organic chlorine
water
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019029210A
Other languages
Japanese (ja)
Other versions
JP7279400B2 (en
Inventor
浩基 緒方
Hiromoto Ogata
浩基 緒方
雄太 藤井
Yuta Fujii
雄太 藤井
祐輔 佐藤
Yusuke Sato
祐輔 佐藤
憲司 西田
Kenji Nishida
憲司 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2019029210A priority Critical patent/JP7279400B2/en
Publication of JP2020131136A publication Critical patent/JP2020131136A/en
Application granted granted Critical
Publication of JP7279400B2 publication Critical patent/JP7279400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

To provide an anaerobic water flowing system for use in a water flowing anaerobic bio system for an efficient clarification of soil and groundwater contaminated with volatile organic chlorine compound, and a method of using the system.SOLUTION: The anaerobic water flowing system is provided that removes volatile organic chlorine compound from water contaminated with the volatile organic chlorine compound containing an anaerobic microorganism which decomposes volatile organic chlorine compound (VOCs). The system includes: an aerator for vaporizing the volatile organic chlorine compound by an aeration treatment of the water contaminated with volatile compound; a deoxidizing device which contains deoxidant for adsorbing and removing oxygen from the gas used in the aeration treatment; a clarification device for adsorbing and removing the volatile organic chlorine compound vaporized by the aeration treatment; and a gas transfer device for transferring and circulating the gas recovered from the clarification device to the aerator.SELECTED DRAWING: Figure 2

Description

本発明は、揮発性有機塩素化合物に汚染された土壌及び地下水を効率的に浄化するための嫌気性通水システム、及び当該嫌気性通水システムを用いた通水嫌気性バイオシステムに関する。 The present invention relates to an anaerobic water flow system for efficiently purifying soil and groundwater contaminated with volatile organochlorine compounds, and a water flow anaerobic biosystem using the anaerobic water flow system.

揮発性有機塩素化合物であるテトラクロロエチレン、トリクロロエチレン、ジクロロエチレンは、金属類の脱脂・洗浄、ドライクリーニングの洗浄、冷媒等に用いられ、産業上の利用価値は高いが、人体にとっては肝障害や腎障害等を引き起こす有害物質となる。その為、これら有機塩素化合物による土壌や地下水汚染は深刻な社会問題となっている。 Tetrachlorethylene, trichlorethylene, and dichloroethylene, which are volatile organochlorine compounds, are used for degreasing / cleaning of metals, cleaning for dry cleaning, refrigerants, etc., and have high industrial utility value, but for the human body, liver damage, renal damage, etc. It becomes a harmful substance that causes. Therefore, soil and groundwater pollution caused by these organochlorine compounds has become a serious social problem.

これら有機塩素化合物を分解し、汚染された土壌や地下水を浄化するための技術が多数存在し、その一つに揚水曝気処理による浄化方法がある。この方法は、汚染された地下水を揚水し、その地下水に含まれる揮発性有機塩素化合物を曝気処理することにより気化させ、気化した揮発性有機塩素化合物を活性炭などに吸着させて除去することで、汚染された地下水を浄化するという方法である(例えば特許文献1)。 There are many technologies for decomposing these organochlorine compounds and purifying contaminated soil and groundwater, one of which is a purification method by pumped storage aeration treatment. In this method, contaminated groundwater is pumped up, the volatile organic chlorine compounds contained in the groundwater are vaporized by aeration treatment, and the vaporized volatile organic chlorine compounds are adsorbed on activated carbon and removed. This is a method of purifying contaminated groundwater (for example, Patent Document 1).

その他の技術として、汚染された土壌及び地下水を嫌気性微生物による還元的脱塩素化処理によって浄化する方法がある開発された(バイオレメディエーション)。この方法は、汚染された土壌及び地下水に存在する嫌気性微生物を用いて有機塩素化合物の塩素を水素に置換することで汚染された土壌及び地下水を浄化する方法である(例えば、特許文献2又は3)。 Another technique has been developed to purify contaminated soil and groundwater by reductive dechlorination with anaerobic microorganisms (bioremediation). This method is a method of purifying contaminated soil and groundwater by substituting chlorine of an organochlorine compound with hydrogen using anaerobic microorganisms present in contaminated soil and groundwater (for example, Patent Document 2 or 3).

またこれらの技術を組み合わせて、曝気処理することにより揮発性有機塩素化合物を気化させ、気化した揮発性有機塩素化合物を活性炭などに吸着させて除去させつつ、嫌気性微生物による還元的脱塩素化処理によって浄化を促進する方法も本願発明者らによって開発された(特許文献4)。 In addition, by combining these technologies, volatile organic chlorine compounds are vaporized by aeration treatment, and while the vaporized volatile organic chlorine compounds are adsorbed on activated carbon and removed, they are reductively dechlorinated by anaerobic microorganisms. A method for promoting purification by the present invention has also been developed by the inventors of the present application (Patent Document 4).

特開2003−154356号公報Japanese Unexamined Patent Publication No. 2003-154356 特開平10−216694号公報Japanese Unexamined Patent Publication No. 10-216694 特開2000−263032号公報Japanese Unexamined Patent Publication No. 2000-263032 特許4821097号公報Japanese Patent No. 4821097

大林組技術研究所報 No.73 2009Obayashi Technical Research Institute Bulletin No.73 2009 Journal of Environmental Biotechnology Vol. 13, No. 1, 13-18, 2013Journal of Environmental Biotechnology Vol. 13, No. 1, 13-18, 2013 Nature Biotechnology vol 23 no.10, 2005Nature Biotechnology vol 23 no.10, 2005

本願発明者らは、特許文献4に記載のように、窒素ガスを添加して嫌気曝気を行うことにより、揚水した地下水中の嫌気的分解菌の活性を落とすことなく、地下水中の揮発性有機塩素化合物(VOCs)を除去して、再度地盤中に嫌気的分解菌を含む地下水を注水し、VOC汚染の嫌気分解を促進する技術を開発した。しかしながら、曝気中も外部より空気(酸素)の侵入があるため、曝気処理中に偏性嫌気性細菌である、ジクロロエチレン(DCE)や塩化ビニル(VC)を分解するDehalococcoides属細菌などがダメージを受ける(非特許文献1〜3)。したがって曝気処理に用いた廃ガスを循環利用するためには、窒素ガスを継続的に添加し、酸素濃度を抑制する必要がある。窒素ガスを添加することで一定程度量の排ガスを大気開放しなければならず、窒素ガスを添加しての嫌気曝気には、窒素ガス追加添加及び排ガスの放出のための制御システムが必要であった。 As described in Patent Document 4, the inventors of the present application add nitrogen gas to perform anaerobic aeration without deteriorating the activity of anaerobic degrading bacteria in the pumped groundwater, and volatile organic compounds in the groundwater. We have developed a technology to remove chlorine compounds (VOCs) and inject groundwater containing anaerobic degrading bacteria into the ground again to promote anaerobic decomposition of VOC contamination. However, since air (oxygen) invades from the outside during aeration, obligate anaerobic bacteria such as Dehalococcoides bacteria that decompose dichloroethylene (DCE) and vinyl chloride (VC) are damaged during aeration treatment. (Non-Patent Documents 1 to 3). Therefore, in order to recycle the waste gas used for the aeration treatment, it is necessary to continuously add nitrogen gas to suppress the oxygen concentration. A certain amount of exhaust gas must be released to the atmosphere by adding nitrogen gas, and anaerobic aeration by adding nitrogen gas requires a control system for additional addition of nitrogen gas and emission of exhaust gas. It was.

窒素ガス追加添加及び排ガスの放出のための制御を不要とするため、本願発明者らは鋭意研究の結果、脱酸素剤を含有する脱酸素装置で、曝気ガスの脱酸素ができることを新たに見出した。とりわけ、上記脱酸素装置を、曝気直後に設置することにより、酸素を効率よく除去し、これにより、曝気ガスの制御の簡略化に成功した。 As a result of diligent research, the inventors of the present application have newly found that an aeration gas can be deoxidized with an oxygen scavenger containing an oxygen scavenger in order to eliminate the need for additional addition of nitrogen gas and control for emission of exhaust gas. It was. In particular, by installing the deoxidizer immediately after aeration, oxygen was efficiently removed, which succeeded in simplifying the control of the aeration gas.

従って、本願発明は以下の[1]〜[3A]である。
[1]揮発性有機塩素化合物(VOCs)を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水から、前記揮発性有機塩素化合物を除去する嫌気性通水システムであって、
前記揮発性有機塩素化合物に汚染された水を曝気処理して、前記揮発性有機塩素化合物を気化するための曝気装置と、
前記曝気処理に用いるガスから酸素を除去するための脱酸素剤を含有する脱酸素装置と、
前記曝気処理により気化した前記揮発性有機塩素化合物を吸着除去するための浄化装置と、
前記浄化装置から回収されたガスを前記曝気装置に移送循環させるガス移送装置と、
を含む、嫌気性通水システム。
[2]前記曝気処理により、加水された曝気ガスから水分を除去するための気液分離装置をさらに含む、請求項1に記載の嫌気性通水システム。
[3]前記脱酸素剤が鉄粉を含む、[2]に記載の嫌気性通水システム。
[4]前記浄化装置が活性炭を含む、[1]〜[3]のいずれか一項に記載の嫌気性通水システム。
Therefore, the invention of the present application is the following [1] to [3A].
[1] An anaerobic water flow system that removes the volatile organic chlorine compounds from water contaminated with the volatile organic chlorine compounds, which contains anaerobic microorganisms that decompose volatile organic chlorine compounds (VOCs). ,
An aeration device for aerating water contaminated with the volatile organic chlorine compound to vaporize the volatile organic chlorine compound.
An oxygen scavenger containing an oxygen scavenger for removing oxygen from the gas used for the aeration treatment, and
A purification device for adsorbing and removing the volatile organic chlorine compound vaporized by the aeration treatment, and
A gas transfer device that transfers and circulates the gas recovered from the purification device to the aeration device, and
Anaerobic water flow system, including.
[2] The anaerobic water flow system according to claim 1, further comprising a gas-liquid separation device for removing water from the hydrated aeration gas by the aeration treatment.
[3] The anaerobic water flow system according to [2], wherein the oxygen scavenger contains iron powder.
[4] The anaerobic water flow system according to any one of [1] to [3], wherein the purification device contains activated carbon.

[5]揮発性有機塩素化合物(VOCs)に汚染された土壌及び地下水を含む地盤を浄化するための通水嫌気バイオシステムであって、
(A)上記汚染された地盤から、揮発性有機塩素化合物を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水を取水するための取水井戸と;
(B)[1]〜[4]のいずれか一項に記載の嫌気性通水システムと;そして
(C)上記嫌気性通水システムによって前記揮発性有機塩素化合物が除去された水を地盤に戻すための注水井戸を含み、
前記地盤中を流れる地下水の下流側に前記取水井戸(A)は設けられ、そして上流側に前記注水井戸(C)は設けられている、
上記通水嫌気バイオシステム。
[6]さらに(6)嫌気的微生物分解促進剤を貯蔵するための分解促進剤貯槽を含み、前記分解促進剤貯槽から、前記揮発性有機塩素化合物が除去された水と共に、注水井戸に嫌気的微生物分解促進剤が注入される[5]に記載の通水嫌気バイオシステム。
[5] A water-permeable anaerobic biosystem for purifying soil containing soil and groundwater contaminated with volatile organic chlorine compounds (VOCs).
(A) An intake well for taking in water contaminated with volatile organic chlorine compounds, which contains anaerobic microorganisms that decompose volatile organic chlorine compounds from the contaminated ground;
(B) The anaerobic water flow system according to any one of [1] to [4]; and (C) the water from which the volatile organic chlorine compounds have been removed by the anaerobic water flow system is used as the ground. Includes water injection well for return
The intake well (A) is provided on the downstream side of the groundwater flowing through the ground, and the water injection well (C) is provided on the upstream side.
The above water flow anaerobic biosystem.
[6] Further (6) anaerobic to the water injection well together with water from which the volatile organic chlorine compound has been removed from the decomposition accelerator storage tank, which includes a decomposition accelerator storage tank for storing the anaerobic microbial decomposition accelerator. The water flow anaerobic biosystem according to [5], wherein the microbial decomposition accelerator is injected.

[1A]揮発性有機塩素化合物(VOCs)を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水から、揮発性有機塩素化合物(VOCs)を分解する嫌気性微生物の酸素によるダメージを抑えつつ、前記揮発性有機塩素化合物を除去された水を回収する方法であって、
前記汚染された水を曝気装置に注水し、
工程1)曝気処理して、前記揮発性有機塩素化合物を気化し、
工程2)前記曝気処理に用いた曝気ガスを、脱酸素剤を含有する脱酸素装置に通して酸素を除去し、
工程3)任意選択で、前記酸素を除去した曝気ガスを気液分離装置を通して、水分を除去し、
工程4)前記曝気処理により気化した前記揮発性有機塩素化合物を浄化装置を通して吸着除去し、
工程5)前記酸素及び前記揮発性有機塩素化合物を除去した曝気ガスをガス移送装置を用いて前記曝気装置に循環移送させ、
工程1)〜5)を繰り返すことにより、
嫌気曝気を行い、
前記揮発性有機塩素化合物を除去された水を回収する方法。
[1A] From water contaminated with volatile organic chlorine compounds containing anaerobic microorganisms that decompose volatile organic chlorine compounds (VOCs), by oxygen of anaerobic microorganisms that decompose volatile organic chlorine compounds (VOCs) It is a method of recovering water from which the volatile organic chlorine compounds have been removed while suppressing damage.
The contaminated water is poured into the aeration device and
Step 1) Aeration treatment is performed to vaporize the volatile organic chlorine compound.
Step 2) Oxygen is removed by passing the aeration gas used for the aeration treatment through an oxygen scavenger containing an oxygen scavenger.
Step 3) Arbitrarily, the aeration gas from which oxygen has been removed is passed through a gas-liquid separator to remove water.
Step 4) The volatile organic chlorine compound vaporized by the aeration treatment is adsorbed and removed through a purification device.
Step 5) The aeration gas from which the oxygen and the volatile organic chlorine compound have been removed is circulated and transferred to the aeration device using a gas transfer device.
By repeating steps 1) to 5)
Perform anaerobic aeration,
A method for recovering water from which the volatile organic chlorine compound has been removed.

[2A]揮発性有機塩素化合物(VOCs)に汚染された土壌及び地下水を含む地盤を浄化する方法であって、
工程A)上記汚染された地盤中に設置された取水井戸から、揮発性有機塩素化合物を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水を回収し、
工程B)[1A]の記載の方法により、前記揮発性有機塩素化合物の除去された水を回収し、
工程C)前記揮発性有機塩素化合物が除去された水を地盤に戻すための注水井戸に、注水する
ことを含み、
前記取水井戸は、前記地盤中を流れる地下水の下流側に設けられ、前記注水井戸は、前記地盤中を流れる地下水の上流側に設けられている、上記方法。
[3A]工程C)において、前記揮発性有機塩素化合物が除去された水と共に、嫌気的微生物分解促進剤が注入される[2A]に記載の方法。
[2A] A method for purifying soil containing soil and groundwater contaminated with volatile organic chlorine compounds (VOCs).
Step A) Water contaminated with volatile organic chlorine compounds containing anaerobic microorganisms that decompose volatile organic chlorine compounds is recovered from the intake well installed in the contaminated ground.
Step B) The water from which the volatile organic chlorine compound has been removed is recovered by the method described in [1A].
Step C) Including water injection into a water injection well for returning the water from which the volatile organic chlorine compounds have been removed to the ground.
The above method, wherein the intake well is provided on the downstream side of the groundwater flowing in the ground, and the water injection well is provided on the upstream side of the groundwater flowing in the ground.
[3A] The method according to [2A], wherein in step C), an anaerobic microbial decomposition accelerator is injected together with water from which the volatile organic chlorine compound has been removed.

本発明により、窒素ガスを添加しての嫌気曝気が不要になり、ガスの制御のためのシステムを簡素化することが可能である。また脱酸素処理したガスを100%回収するため、脱酸素処理を速やかに進めることができ、曝気処理中に好気性微生物の増殖を抑え、揮発性有機塩素化合物を分解する嫌気性微生物のダメージを減らし、その後の地中に地下水を戻した時のバイオスティミュレーションへの悪影響を減らすことが可能になった。
加えて、脱酸素剤を含有する脱酸素装置自体が、VOC吸着除去作用を有しており、従来の揮発性有機塩素化合物を吸着除去するための浄化装置の効果も兼ねることにより、より効率よく、揮発性有機塩素化合物を除去できることが可能となった。
According to the present invention, anaerobic aeration by adding nitrogen gas becomes unnecessary, and it is possible to simplify the system for controlling the gas. In addition, since 100% of the deoxidized gas is recovered, the deoxidizing treatment can proceed quickly, the growth of aerobic microorganisms is suppressed during the aeration treatment, and the damage of anaerobic microorganisms that decompose volatile organic chlorine compounds is damaged. It has become possible to reduce the adverse effects on biostimulation when the groundwater is returned to the ground thereafter.
In addition, the oxygen scavenger itself containing the oxygen scavenger has a VOC adsorption / removal action, and also has the effect of a conventional purification device for adsorbing / removing volatile organic chlorine compounds, so that it is more efficient. , It has become possible to remove volatile organic chlorine compounds.

嫌気性微生物による有機塩素化合物の還元的脱塩素化反応とその生成物を反応過程とともに示した図である。It is a figure which showed the reduction dechlorination reaction of an organic chlorine compound by an anaerobic microorganism and the product thereof together with the reaction process. 本発明の一実施例として説明する嫌気性通水システムの構成を示す図である。It is a figure which shows the structure of the anaerobic water flow system described as one Example of this invention. 本発明の一実施例として説明する通水嫌気バイオシステムの構成を示す図である。It is a figure which shows the structure of the water flow anaerobic biosystem which is described as one Example of this invention. 実施例1に記載の嫌気曝気実験装置の模式図Schematic diagram of the anaerobic aeration experimental device according to Example 1. 嫌気性微生物によるVOC分解に対する、30度における嫌気曝気及び好気曝気の影響を示す図である。It is a figure which shows the influence of anaerobic aeration and aerobic aeration at 30 degree on VOC decomposition by an anaerobic microorganism. 嫌気性微生物によるVOC分解に対する、35度における嫌気曝気及び好気曝気の影響を示す図である。It is a figure which shows the influence of anaerobic aeration and aerobic aeration at 35 degree on VOC decomposition by an anaerobic microorganism.

以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not necessarily limited thereto. The object, feature, advantage, and idea thereof of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention, and are shown for illustration or explanation, and the present invention is described in them. It is not limited. It will be apparent to those skilled in the art that various modifications and modifications can be made based on the description of the present specification within the intent and scope of the present invention disclosed in the present specification.

嫌気性通水システム
本願発明の一態様は、揮発性有機塩素化合物(VOCs)を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水から、前記揮発性有機塩素化合物を除去する嫌気性通水システムであって、前記揮発性有機塩素化合物に汚染された水を曝気処理して、前記揮発性有機塩素化合物を気化するための曝気装置と、前記曝気処理に用いるガスから酸素を除去するための脱酸素剤を含有する脱酸素装置と、前記曝気処理により気化した前記揮発性有機塩素化合物を吸着除去するための浄化装置と、前記浄化装置から回収されたガスを前記曝気装置に移送循環させるガス移送装置と、を含む、嫌気性通水システムである。管路を通じて、前記曝気装置、前記脱酸素装置、前記浄化装置、前記ガス移送装置の順で連結されていることが好ましい。
嫌気性通水システムは、曝気処理により、加水された曝気ガスから水分を除去するための気液分離装置をさらに含んでよい。かかる場合、管路を通じて、前記曝気装置、前記脱酸素装置、前記気液分離装置、前記浄化装置、前記ガス移送装置の順で連結されていることが好ましい。
嫌気性通水システムにおいて、前記脱酸素剤が鉄粉を含んでいてもよい。
嫌気性通水システムにおいて、前記浄化装置が活性炭を含んでいてもよい。
Anaerobic water flow system One aspect of the present invention is to remove the volatile organic chlorine compound from water contaminated with the volatile organic chlorine compound, which contains anaerobic microorganisms that decompose volatile organic chlorine compounds (VOCs). An anaerobic water flow system that aerates water contaminated with the volatile organic chlorine compound to vaporize the volatile organic chlorine compound, and oxygen from the gas used for the aeration treatment. A deoxidizer containing a deoxidizing agent for removing the gas, a purifying device for adsorbing and removing the volatile organic chlorine compound vaporized by the aeration treatment, and the aeration device for the gas recovered from the purifying device. An anaerobic water flow system, including a gas transfer device that transfers and circulates to. It is preferable that the aeration device, the oxygen scavenger device, the purification device, and the gas transfer device are connected in this order through the pipeline.
The anaerobic water flow system may further include a gas-liquid separator for removing water from the hydrated aeration gas by aeration treatment. In such a case, it is preferable that the aeration device, the oxygen scavenger device, the gas-liquid separation device, the purification device, and the gas transfer device are connected in this order through a pipeline.
In an anaerobic water flow system, the oxygen scavenger may contain iron powder.
In an anaerobic water flow system, the purification device may contain activated carbon.

通水嫌気バイオシステム
本願発明の一態様は、揮発性有機塩素化合物(VOCs)に汚染された土壌及び地下水を含む地盤を浄化するための通水嫌気バイオシステムであって、(A)上記汚染された地盤から、揮発性有機塩素化合物を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水を取水するための取水井戸と;(B)上記嫌気性通水システムと;そして(C)上記嫌気性通水システムによって前記揮発性有機塩素化合物が除去された水を地盤に戻すための注水井戸を含み、前記地盤中を流れる地下水の下流側に前記取水井戸(A)は設けられ、そして上流側に前記注水井戸(C)は設けられている、通水嫌気バイオシステムである。
通水嫌気バイオシステムは、さらに嫌気的微生物分解促進剤を貯蔵するための分解促進剤貯槽を含んでよく、前記分解促進剤貯槽から、前記揮発性有機塩素化合物が除去された水と共に、注水井戸に嫌気的微生物分解促進剤が注入されてもよい。
Water flow anaerobic biosystem One aspect of the present invention is a water flow anaerobic biosystem for purifying soil containing soil and groundwater contaminated with volatile organic chlorine compounds (VOCs), and (A) the above-mentioned contaminated. With an intake well for taking in water contaminated with volatile organic chlorine compounds, which contains anaerobic microorganisms that decompose volatile organic chlorine compounds; (B) with the above-mentioned anaerobic water flow system; (C) The intake well (A) is provided on the downstream side of the groundwater flowing through the ground, including a water injection well for returning the water from which the volatile organic chlorine compound has been removed by the anaerobic water flow system to the ground. It is a water flow anaerobic biosystem in which the water injection well (C) is provided on the upstream side.
The water flow anaerobic biosystem may further include a decomposition accelerator storage tank for storing the anaerobic microbial decomposition accelerator, and the water injection well together with water from which the volatile organic chlorine compound has been removed from the decomposition accelerator storage tank. An anaerobic microbial decomposition accelerator may be injected into the well.

「揮発性有機塩素化合物(VOCs)」とは揮発性の高い有機塩化物を指す。特に限定しないが、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、ジクロロエチレン(cis又はtrans−DCE)などが含まれる。 "Volatile organic chlorine compounds (VOCs)" refer to highly volatile organic chlorides. Although not particularly limited, tetrachlorethylene (PCE), trichlorethylene (TCE), dichloroethylene (cis or trans-DCE) and the like are included.

「揮発性有機塩素化合物(VOCs)を分解する嫌気性微生物」とは、嫌気的条件下で増殖でき、揮発性有機塩素化合物(VOCs)を分解する微生物を指す。特に限定しないが、Dehalobacter、Dehalococcoides、Desulfitobacterium、Desulfuromonas、Geobacter、Sulfurospirillum、Clostridium属の細菌などがあげられる。とりわけ、偏性嫌気性細菌である、ジクロロエチレン(DCE)や塩化ビニル(VC)を分解するDehalococcoides属が含まれていることが好ましい(図1)。 The "anaerobic microorganism that decomposes volatile organic chlorine compounds (VOCs)" refers to a microorganism that can grow under anaerobic conditions and decomposes volatile organic chlorine compounds (VOCs). Although not particularly limited, bacteria of the genus Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfuromonas, Geobacter, Sulfurospirillum, Clostridium and the like can be mentioned. In particular, it preferably contains the genus Dehalococcoides, which decomposes obligately anaerobic bacteria, dichloroethylene (DCE) and vinyl chloride (VC) (FIG. 1).

「曝気処理」とは、液体に気体を吹き込む(エアレーション)ことを指し、「曝気装置」とはそのための装置を指す。当該技術分野で、曝気槽、エアレーションタンクとして用いられるものを含む。「曝気装置」は、管路を介して下記「脱酸素剤を含有する脱酸素装置」、「気液分離装置」、「揮発性有機塩素化合物を吸着除去するための浄化装置」及び「ガス移送装置」が連結してしてよく、エアレーションのための散気装置を内包していてもよく、その場合、散気装置はガス移送装置に連結していることが好ましい。 "Aeration treatment" refers to blowing a gas into a liquid (aeration), and "aeration device" refers to a device for that purpose. In the technical field, it includes those used as an aeration tank and an aeration tank. The "aeration device" includes the following "oxygen scavenger containing oxygen scavenger", "gas-liquid separation device", "purification device for adsorbing and removing volatile organic chlorine compounds" and "gas transfer" via a pipeline. The "device" may be connected, and may include an aeration device for aeration, in which case the aeration device is preferably connected to a gas transfer device.

「脱酸素剤」とは、酸素を吸着除去する物質を指す。特に限定しないが、鉄(鉄粉、鉄スポンジ、鉄ホイル、鉄ロッドなど)、グルコースとグルコースオキシターゼ、レダクトン(ビタミンC)等が好ましい。「脱酸素剤を含有する脱酸素装置」としては、脱酸素剤を含むカラムなどがあげられるが、これに限定しない。
「曝気処理に用いるガス」は本願発明に係る嫌気性通水システム製造時において空気であっても、「脱酸素剤を含有する脱酸素装置」を循環通過することによって脱酸素化される。
"Oxygen scavenger" refers to a substance that adsorbs and removes oxygen. Although not particularly limited, iron (iron powder, iron sponge, iron foil, iron rod, etc.), glucose and glucose oxidase, reductone (vitamin C) and the like are preferable. Examples of the "deoxidizer containing an oxygen scavenger" include, but are not limited to, a column containing an oxygen scavenger.
The "gas used for aeration treatment" is deoxidized by circulating through a "deoxidizer containing an oxygen scavenger" even if it is air at the time of manufacturing the anaerobic water flow system according to the present invention.

「気液分離装置」とは、気体と液体を分離する機能を有している、例えば、気液分離膜などを備えている装置やガラスビーズを充填したカラム等が好ましい。かかる装置により、「揮発性有機塩素化合物を吸着除去するための浄化装置」に気体のみが送られ、以下の「揮発性有機塩素化合物を吸着除去するための浄化装置」に含まれる、揮発性有機塩素化合物を吸着除去する物質が吸水することを防ぐ。上記「脱酸素剤を含有する脱酸素装置」が水分を吸収する場合、「気液分離装置」としての機能も有しうる。 The "gas-liquid separation device" is preferably a device having a function of separating gas and liquid, for example, a device provided with a gas-liquid separation membrane or the like, a column filled with glass beads, or the like. By such a device, only gas is sent to the "purification device for adsorbing and removing volatile organic chlorine compounds", and the volatile organic substances included in the following "purification device for adsorbing and removing volatile organic chlorine compounds". Prevents substances that adsorb and remove chlorine compounds from absorbing water. When the above-mentioned "oxygen scavenger containing an oxygen scavenger" absorbs water, it may also have a function as a "gas-liquid separator".

「揮発性有機塩素化合物を吸着除去するための浄化装置」とは曝気ガスに含まれる気化した揮発性有機塩素化合物を吸着除去する物質を含む装置を指し、かかる物質として活性炭が好ましいが、例えば、セラミック分離膜のようなガス分離膜を内包する装置であってもよい。かかる装置により、曝気ガスは無害化され、再利用されうる。 The "purification device for adsorbing and removing volatile organic chlorine compounds" refers to a device containing a substance that adsorbs and removes vaporized volatile organic chlorine compounds contained in aeration gas, and activated carbon is preferable as such a substance, for example. The device may include a gas separation membrane such as a ceramic separation membrane. With such a device, the aerated gas can be detoxified and reused.

「ガス移送装置」とは上記無害化された曝気ガスを再度曝気装置に移送し、曝気処理に用いるための装置を指す。コンプレッサーなどがこれにあたり、圧力を高めて曝気装置内の散気装置に送ることによりそのままエアレーションを可能にすることもできる。特に限定しないが、揮発性有機塩素化合物や湿度による劣化を防ぐため、「ガス移送装置」は上記「脱酸素剤を含有する脱酸素装置」及び「浄化装置」の下流に設置されることが好ましい。 The "gas transfer device" refers to a device for transferring the detoxified aeration gas to the aeration device again and using it for aeration treatment. A compressor or the like corresponds to this, and it is possible to enable aeration as it is by increasing the pressure and sending it to the aeration device in the aeration device. Although not particularly limited, the "gas transfer device" is preferably installed downstream of the above-mentioned "oxygen scavenger-containing deoxidizer" and "purification device" in order to prevent deterioration due to volatile organic chlorine compounds and humidity. ..

「嫌気的微生物分解促進剤」とは、揮発性有機塩素化合物の塩素と水素を置換する還元的脱塩素化反応における水素供与体、又は水との反応によって水素を影響する鉄(鉄粉、鉄スポンジ、鉄ホイル、鉄ロッドなど)があげられる。水素供与体としては、例えば、これに限定しないが、メタノール若しくはエタノールなどのアルコール、グルコース若しくはスクロースなどの低分子の有機物、酢酸、プロピオン酸、乳酸、若しくは酪酸などの低級脂肪酸、又はポリ乳酸エステルであるHRC(Hydrogen Release Compound:水素供与化合物)、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体などがある。 "Aerobic microbial decomposition accelerator" is a hydrogen donor in a reductive dechlorination reaction that replaces chlorine and hydrogen in a volatile organochlorine compound, or iron that affects hydrogen by reaction with water (iron powder, iron). Sponge, iron foil, iron rod, etc.). Examples of the hydrogen donor include, but are not limited to, alcohols such as methanol or ethanol, low molecular weight organic substances such as glucose or sucrose, lower fatty acids such as acetic acid, propionic acid, lactic acid, or butyric acid, or polylactic acid esters. There are certain HRCs (Hydrogen Release Compounds), gluconic acid and gluconate salts, gluconic acid amides, gluconic acid esters, gluconic acid derivatives such as gluconic acid anhydride, and the like.

本願発明に係る「嫌気性通水システム」の一態様は、図2に記載のように、曝気装置(1)、脱酸素装置(2)、気液分離装置(3)、浄化装置(4)、及びガス移送装置(5)を含んでよい。これらは、管路を介して連結しており、閉回路を形成していてよい。なお、脱酸素装置(2)が水分を吸収する場合は、気液分離装置(3)は含まなくてもよい。
曝気装置(1)には揮発性有機塩素化合物に汚染された水(以下、「汚染水」)を注水するための配管と、揮発性有機塩素化合物を取り除いた水(以下、「汚染除去水」)を排水する配管を有する。1つの配管で注水と排水を行ってもよい。
汚染水が曝気装置(1)に注水され、曝気ガスにより曝気処理が行われる。曝気処理後の曝気ガスは、汚染水注入時に混入した酸素及び気化した揮発性有機塩素化合物を含んでおり、かつ湿度を含んでいる。かかるガスを脱酸素装置(2)に通過させると、その湿度の高さ故、混入した酸素が効率よく吸収される。加えて、気化した揮発性有機塩素化合物自体も部分的に吸収される。したがって、浄化装置(4)の消耗を防ぐ。
One aspect of the "anaerobic water flow system" according to the present invention is, as shown in FIG. 2, an aeration device (1), a deoxidizer (2), a gas-liquid separation device (3), a purification device (4). , And the gas transfer device (5) may be included. These may be connected via a pipeline to form a closed circuit. When the oxygen scavenger (2) absorbs water, the gas-liquid separator (3) may not be included.
The aeration device (1) has a pipe for injecting water contaminated with volatile organic chlorine compounds (hereinafter, "contaminated water") and water from which volatile organic chlorine compounds have been removed (hereinafter, "contamination-removed water"). ) Has a pipe to drain. Water injection and drainage may be performed with one pipe.
The contaminated water is injected into the aeration device (1), and the aeration treatment is performed by the aeration gas. The aeration gas after the aeration treatment contains oxygen mixed during injection of contaminated water and vaporized volatile organic chlorine compounds, and also contains humidity. When such a gas is passed through the oxygen scavenger (2), the mixed oxygen is efficiently absorbed due to its high humidity. In addition, the vaporized volatile organochlorine compounds themselves are partially absorbed. Therefore, the depletion of the purification device (4) is prevented.

脱酸素装置(2)を通過後の湿度を含んだ曝気ガスは、水分を除去するために気液分離装置(3)を通過する。かかる処理により、浄化装置(4)の消耗を抑える。分離された水分は、曝気装置(1)に戻されてもよい。その際、別の配管により、脱酸素装置(2)を経由せずに曝気装置(1)に戻してもよい。 The aerated gas containing humidity after passing through the oxygen scavenger (2) passes through the gas-liquid separator (3) in order to remove water. By such a treatment, the consumption of the purification device (4) is suppressed. The separated water may be returned to the aeration device (1). At that time, it may be returned to the aeration device (1) by another pipe without passing through the deoxidizer (2).

水分を除去した曝気ガスを浄化装置(4)に通過させることにより、曝気ガス中に含まれる、気化した揮発性有機塩素化合物が吸収除去される。 By passing the aeration gas from which the water has been removed through the purification device (4), the vaporized volatile organic chlorine compound contained in the aeration gas is absorbed and removed.

浄化装置(4)を通過した曝気ガスは再利用のため、ガス移送装置(5)により、曝気装置(1)に戻される。 The aerated gas that has passed through the purification device (4) is returned to the aeration device (1) by the gas transfer device (5) for reuse.

かかる曝気ガスの循環により、汚染水から揮発性有機塩素化合物が吸収除去される。曝気ガスは嫌気的状態が保たれるため、汚染水に含まれていた揮発性有機塩素化合物(VOCs)を分解する偏性嫌気性細菌のダメージは抑制される。
したがって本願発明に係る「嫌気性通水システム」によって揮発性有機塩素化合物が取り除かれた汚染除去水を地盤に戻すことにより、汚染地盤のバイオスティミュレーション(微生物による揮発性有機塩素化合物(VOCs)の分解)は促進する。
By such aeration gas circulation, volatile organic chlorine compounds are absorbed and removed from the contaminated water. Since the aerated gas is maintained in an anaerobic state, damage to obligate anaerobic bacteria that decompose volatile organic chlorine compounds (VOCs) contained in contaminated water is suppressed.
Therefore, by returning the decontaminated water from which the volatile organic chlorine compounds have been removed by the "anaerobic water flow system" according to the present invention to the ground, biostimulation of the contaminated ground (volatile organic chlorine compounds (VOCs) by microorganisms). (Decomposition) is promoted.

本願発明に係る「通水嫌気バイオシステム」の一態様は図3にあるように、揮発性有機塩素化合物(VOCs)に汚染された地盤中に設置された、取水井戸から採取された汚染水を、本願発明に係る「嫌気性通水システム」で処理することにより揮発性有機塩素化合物(VOCs)は除去され、その除去された水を注水井戸に戻すことにより、汚染地盤の原位置嫌気性バイオスティミュレーションは促進する。
あるいは、VOCを分解する嫌気性微生物が多く存在する地盤に取水井戸を設け、VOCを分解する嫌気性微生物が存在しない又は少ない地盤に注水井戸を設置することにより、VOCを分解する嫌気性微生物が存在しない又は少ない汚染地盤のバイオスティミュレーションを促進させることができる。
その際、任意選択により、前記揮発性有機塩素化合物が除去された水と共に、嫌気的微生物分解促進剤が注水井戸に注入される。かかる処理により、汚染地盤のバイオスティミュレーションはさらに促進する。
As shown in FIG. 3, one aspect of the "water flow anaerobic biosystem" according to the present invention is to use contaminated water collected from an intake well installed in the ground contaminated with volatile organic chlorine compounds (VOCs). Volatile organic chlorine compounds (VOCs) are removed by treatment with the "anaerobic water flow system" according to the present invention, and the removed water is returned to the water injection well to allow the in-situ anaerobic bio of contaminated ground. Stimulation is promoted.
Alternatively, by providing an intake well in the ground where many anaerobic microorganisms that decompose VOCs are present and installing a water injection well in the ground where there are no or few anaerobic microorganisms that decompose VOCs, anaerobic microorganisms that decompose VOCs can be used. It can promote biostimulation of non-existent or less contaminated ground.
At that time, an anaerobic microbial decomposition accelerator is injected into the water injection well together with the water from which the volatile organic chlorine compound has been removed, by an option. Such treatment further promotes biostimulation of contaminated ground.

以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1:鉄粉カラムを用いた嫌気曝気実験
嫌気状態を維持するために、曝気ガス中の酸素を脱酸素剤である鉄粉を通過させて除去し、活性炭を通過させてVOCを除去し、再度、循環利用することが可能か検証した。
Example 1: Anaerobic aeration experiment using an iron powder column In order to maintain an anaerobic state, oxygen in the aeration gas is removed by passing through iron powder, which is an oxygen scavenger, and VOC is removed by passing through activated carbon. , Again, verified whether it can be recycled.

1.試験方法
(1)鉄粉カラム槽の作製
和光純薬製の試薬鉄粉(<150μm;090-04781;CAS.NO439-89-6)を用いて、表1に記載の鉄粉カラム槽(以下鉄粉槽)を作製した。

Figure 2020131136
1. 1. Test Method (1) Preparation of Iron Powder Column Tank The iron powder column tank (hereinafter referred to as Table 1) shown in Table 1 using the reagent iron powder (<150 μm; 090-04781; CAS.NO439-89-6) manufactured by Wako Pure Chemical Industries, Ltd. Iron powder tank) was prepared.
Figure 2020131136

(2)試験装置(図4)
曝気槽:3L容積(内径10cm、高さ40cm、円柱)(トリクロロエチレン溶液2L、水道水にトリクロロエチレン試薬を添加)
トリクロロエチレン濃度:1mg/L
曝気量:1L/分
酸素濃度計:JICKO OXY−1−M
気液分離槽:ガラスビーズを充填したプラスチックカラム(内径5cm、長さ20cm)
活性炭槽:顆粒状活性炭(和光純薬試薬)1000gを含む
(2) Test equipment (Fig. 4)
Air exposure tank: 3L volume (inner diameter 10cm, height 40cm, cylinder) (trichlorethylene solution 2L, add trichlorethylene reagent to tap water)
Trichlorethylene concentration: 1 mg / L
Aeration amount: 1 L / min Oxygen concentration meter: JICKO OXY-1-M
Gas-liquid separation tank: Plastic column filled with glass beads (inner diameter 5 cm, length 20 cm)
Activated carbon tank: Contains 1000 g of granular activated carbon (Wako Pure Chemical Reagent)

2.結果
(1)酸素濃度
鉄粉槽(脱酸素装置)の設置位置における脱酸素の効果を見るために、鉄粉槽を曝気槽直後に設置したケースと、気液分離槽直後に設置したケースで、酸素濃度の時間変化を調べた。
酸素濃度は、酸素濃度計((株)イチネンジコー製、OXY−1−M)で測定した。鉄粉槽を曝気槽直後に設置した場合は、酸素濃度は約20分間で0.5%以下となった。一方、気液分離槽直後に設置すると長時間経過しても酸素濃度は14%程度までしか低下することができなかった(表2)。酸素濃度を十分低下させるには、湿度が十分高い状態である必要がある。

Figure 2020131136
2. 2. Results (1) Oxygen concentration In order to see the effect of deoxidization at the installation position of the iron powder tank (oxygen scavenger), in the case where the iron powder tank was installed immediately after the aeration tank and the case where it was installed immediately after the gas-liquid separation tank. , The time change of oxygen concentration was investigated.
The oxygen concentration was measured with an oxygen concentration meter (OXY-1-M, manufactured by Ichinenjiko Co., Ltd.). When the iron powder tank was installed immediately after the aeration tank, the oxygen concentration was 0.5% or less in about 20 minutes. On the other hand, when installed immediately after the gas-liquid separation tank, the oxygen concentration could only drop to about 14% even after a long period of time (Table 2). Humidity must be sufficiently high to sufficiently reduce the oxygen concentration.
Figure 2020131136

(2)排ガス中のVOC濃度
曝気直後のVOC濃度を検知管(ガステック社製、132M、132LL)を用いて測定した。鉄粉カラム通過直後に85%濃度低下した。さらに活性炭槽通過後に、ほぼゼロとなった(表3)。

Figure 2020131136
(2) VOC concentration in exhaust gas The VOC concentration immediately after aeration was measured using a detector tube (manufactured by Gastec, 132M, 132LL). Immediately after passing through the iron powder column, the concentration decreased by 85%. Furthermore, after passing through the activated carbon tank, it became almost zero (Table 3).
Figure 2020131136

(3)溶液中のVOC濃度
溶液中のVOC濃度をヘッドスペース法で測定した(分析機器は、日本電子GC−8610 PID検出器)。1時間後(総曝気量60L)には、VOC濃度はほぼ0になった(表4)。

Figure 2020131136
(3) VOC concentration in solution The VOC concentration in solution was measured by the headspace method (analytical instrument is JEOL GC-8610 PID detector). After 1 hour (total aeration volume 60 L), the VOC concentration became almost 0 (Table 4).
Figure 2020131136

実施例2:曝気時の酸素の影響
VOC分解菌液として、神奈川県のサイトから採取した地下水をトリクロロエチレンとクロロクリン(登録商標)で継代培養したDehalococcoides属細菌を含む分解菌液培養液を用いた。
1.試験方法
(1)曝気方法
曝気時間:6時間
曝気水量(VOC分解菌液培養液):2L
曝気量:1L/分
温度制御:曝気装置を恒温層に入れて、温度制御(温度:30℃及び35℃)を行った。
嫌気曝気には実施例1と同様に脱酸素処理した空気を使った。好気曝気には脱酸素も排ガスの循環利用もしない空気を用いた。
Example 2: Effect of oxygen during aeration As the VOC-degrading bacterial solution, a degrading bacterial solution culture solution containing Dehalococcoides bacteria obtained by subculturing groundwater collected from a site in Kanagawa Prefecture with trichlorethylene and chloroclin (registered trademark) was used. ..
1. 1. Test method (1) Aeration method Aeration time: 6 hours Aeration water volume (VOC-degraded bacterial solution culture solution): 2 L
Amount of air exposure: 1 L / min Temperature control: An air exposure device was placed in a constant temperature layer, and temperature control (temperature: 30 ° C. and 35 ° C.) was performed.
For anaerobic exposure, deoxidized air was used as in Example 1. For aerobic aeration, air that neither deoxidizes nor circulates exhaust gas was used.

(2)室温分解実験
130mL容メジューム瓶に、曝気処理した分解菌液を添加し、水道水、微生物栄養剤[クロロクリン(登録商標)(グルコン酸ソーダ93%、尿素6%、リン酸二水素カリウム1%)]、トクロロエチレン(TCE)溶液を表6の割合で添加し、室温で養生を行った。メジューム瓶中の液をサンプリングして、ヘッドスペース法でガスクロマトグラフ(PID検出器)を用いて測定した。

Figure 2020131136
(2) Room temperature decomposition experiment Add aerated decomposed bacterial solution to a 130 mL medium bottle, tap water, microbial nutrient [chlorocrine (registered trademark) (soda gluconate 93%, urea 6%, potassium dihydrogen phosphate) 1%)], a tochloroethylene (TCE) solution was added at the ratio shown in Table 6, and curing was performed at room temperature. The liquid in the medium bottle was sampled and measured by the headspace method using a gas chromatograph (PID detector).
Figure 2020131136

2.結果
結果を図6及び7に示す。30℃では、鉄粉による酸素を取り除いた空気を用いた嫌気曝気の場合、約10日と極めて分解が速かったのに対して、好気曝気の場合では、約30日と大きく遅延した。35℃でも同様に、嫌気曝気の場合、約20日で分解が完了したのに対して、好気曝気の場合、約40日と倍以上の時間を要して、大きく遅延した。従って、鉄粉による酸素を取り除いた空気で曝気をすると、嫌気菌によるTCEの分解を高める効果があることが分かった。
2. 2. Results The results are shown in FIGS. 6 and 7. At 30 ° C., in the case of anaerobic aeration using air from which oxygen was removed by iron powder, the decomposition was extremely fast at about 10 days, whereas in the case of aerobic aeration, it was significantly delayed at about 30 days. Similarly, at 35 ° C., in the case of anaerobic aeration, the decomposition was completed in about 20 days, whereas in the case of aerobic aeration, it took about 40 days, which was more than double the time, and the delay was large. Therefore, it was found that aeration with air from which oxygen by iron powder has been removed has an effect of enhancing the decomposition of TCE by anaerobic bacteria.

(1) 曝気装置
(2) 脱酸素装置
(3) 気液分離装置
(4) 浄化装置
(5) ガス移送装置
(6) 分解促進剤貯槽
(1) Air exposure device (2) Deoxidizer (3) Gas-liquid separation device (4) Purification device (5) Gas transfer device (6) Decomposition accelerator storage tank

Claims (6)

揮発性有機塩素化合物(VOCs)を分解する嫌気性微生物を含有する、揮発性有機塩素化合物に汚染された水から、前記揮発性有機塩素化合物を除去する嫌気性通水システムであって、
前記揮発性有機塩素化合物に汚染された水を曝気処理して、前記揮発性有機塩素化合物を気化するための曝気装置と、
前記曝気処理に用いるガスから酸素を除去するための脱酸素剤を含有する脱酸素装置と、
前記曝気処理により気化した前記揮発性有機塩素化合物を吸着除去するための浄化装置と、
前記浄化装置から回収されたガスを前記曝気装置に移送循環させるガス移送装置と、
を含む、嫌気性通水システム。
An anaerobic water flow system that removes the volatile organochlorine compounds from water contaminated with the volatile organochlorine compounds, which contains anaerobic microorganisms that decompose volatile organochlorine compounds (VOCs).
An aeration device for aerating water contaminated with the volatile organic chlorine compound to vaporize the volatile organic chlorine compound.
An oxygen scavenger containing an oxygen scavenger for removing oxygen from the gas used for the aeration treatment, and
A purification device for adsorbing and removing the volatile organic chlorine compound vaporized by the aeration treatment, and
A gas transfer device that transfers and circulates the gas recovered from the purification device to the aeration device, and
Anaerobic water flow system, including.
さらに前記曝気処理により、加水された曝気ガスから水分を除去するための気液分離装置を含む、請求項1に記載の嫌気性通水システム。 The anaerobic water flow system according to claim 1, further comprising a gas-liquid separation device for removing water from the hydrated aeration gas by the aeration treatment. 前記脱酸素剤が鉄粉を含む、請求項1又は2に記載の嫌気性通水システム。 The anaerobic water flow system according to claim 1 or 2, wherein the oxygen scavenger contains iron powder. 前記浄化装置が活性炭を含む、請求項1〜3のいずれか一項に記載の嫌気性通水システム。 The anaerobic water flow system according to any one of claims 1 to 3, wherein the purification device contains activated carbon. 揮発性有機塩素化合物(VOCs)に汚染された土壌及び地下水を含む地盤を浄化するための通水嫌気バイオシステムであって、
汚染された地盤から、揮発性有機塩素化合物を分解する嫌気性微生物を含有する、前記揮発性有機塩素化合物に汚染された地下水を取水するための取水井戸と、
請求項1〜4のいずれか一項に記載の嫌気性通水システムと、
前記嫌気性通水システムによって前記揮発性有機塩素化合物が除去された水を地盤に戻すための注水井戸と、
を含み、
前記取水井戸は、前記地盤中を流れる地下水の下流側に設けられ、前記注水井戸は、前記地盤中を流れる地下水の上流側に設けられている、
上記通水嫌気バイオシステム。
A water-permeable anaerobic biosystem for purifying soil and groundwater contaminated with volatile organochlorine compounds (VOCs).
An intake well for taking in groundwater contaminated with the volatile organic chlorine compound, which contains an anaerobic microorganism that decomposes the volatile organic chlorine compound from the contaminated ground.
The anaerobic water flow system according to any one of claims 1 to 4,
A water injection well for returning the water from which the volatile organic chlorine compounds have been removed by the anaerobic water flow system to the ground,
Including
The intake well is provided on the downstream side of the groundwater flowing in the ground, and the water injection well is provided on the upstream side of the groundwater flowing in the ground.
The above water flow anaerobic biosystem.
嫌気的微生物分解促進剤を貯蔵するための分解促進剤貯槽を含み、
前記分解促進剤貯槽から、前記揮発性有機塩素化合物が除去された水と共に、前記注水井戸に前記嫌気的微生物分解促進剤が注入される請求項5に記載の通水嫌気バイオシステム。
Includes a degradation accelerator storage tank for storing anaerobic microbial degradation accelerators,
The water flow anaerobic biosystem according to claim 5, wherein the anaerobic microbial decomposition accelerator is injected into the water injection well together with water from which the volatile organic chlorine compound has been removed from the decomposition accelerator storage tank.
JP2019029210A 2019-02-21 2019-02-21 Anaerobic Permeable System, Permeable Anaerobic Biosystem Active JP7279400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029210A JP7279400B2 (en) 2019-02-21 2019-02-21 Anaerobic Permeable System, Permeable Anaerobic Biosystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029210A JP7279400B2 (en) 2019-02-21 2019-02-21 Anaerobic Permeable System, Permeable Anaerobic Biosystem

Publications (2)

Publication Number Publication Date
JP2020131136A true JP2020131136A (en) 2020-08-31
JP7279400B2 JP7279400B2 (en) 2023-05-23

Family

ID=72277217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029210A Active JP7279400B2 (en) 2019-02-21 2019-02-21 Anaerobic Permeable System, Permeable Anaerobic Biosystem

Country Status (1)

Country Link
JP (1) JP7279400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285321A (en) * 2020-10-09 2021-01-29 合肥工业大学 VOCs polluted soil body aeration repair test device and test method
CN113912242A (en) * 2021-09-26 2022-01-11 宁波新芝生物科技股份有限公司 Nano-scale fluid magnetization mixing bubble generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210100A (en) * 1986-03-10 1987-09-16 Toshiba Corp Anaerobic treatment of organic waste water
US5490941A (en) * 1992-03-25 1996-02-13 Kurita Water Industries, Ltd. Method of treatment of a fluid containing volatile organic halogenated compounds
JP2000176436A (en) * 1998-12-11 2000-06-27 Kurita Water Ind Ltd Gaseous nitrogen circulation type deoxidizing device
JP2004196640A (en) * 2002-12-17 2004-07-15 Fukuhara Co Ltd Method and apparatus for manufacturing gaseous nitrogen
US20040195189A1 (en) * 2001-07-13 2004-10-07 Frank-Dieter Kopinke Method and device for decontaminating waters which are loaded wiith organic halogen compounds (halogenated hydrocarbons)
JP2005058893A (en) * 2003-08-11 2005-03-10 Sasakura Engineering Co Ltd Purification method for underground soil polluted with organic chlorine compound
JP2006026552A (en) * 2004-07-16 2006-02-02 Ohbayashi Corp Water flow anaerobic biosystem and treating method therefor
JP2011020088A (en) * 2009-07-17 2011-02-03 Mitsubishi Rayon Co Ltd Cleaning method for soil and/or ground water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210100A (en) * 1986-03-10 1987-09-16 Toshiba Corp Anaerobic treatment of organic waste water
US5490941A (en) * 1992-03-25 1996-02-13 Kurita Water Industries, Ltd. Method of treatment of a fluid containing volatile organic halogenated compounds
JP2000176436A (en) * 1998-12-11 2000-06-27 Kurita Water Ind Ltd Gaseous nitrogen circulation type deoxidizing device
US20040195189A1 (en) * 2001-07-13 2004-10-07 Frank-Dieter Kopinke Method and device for decontaminating waters which are loaded wiith organic halogen compounds (halogenated hydrocarbons)
JP2004196640A (en) * 2002-12-17 2004-07-15 Fukuhara Co Ltd Method and apparatus for manufacturing gaseous nitrogen
JP2005058893A (en) * 2003-08-11 2005-03-10 Sasakura Engineering Co Ltd Purification method for underground soil polluted with organic chlorine compound
JP2006026552A (en) * 2004-07-16 2006-02-02 Ohbayashi Corp Water flow anaerobic biosystem and treating method therefor
JP2011020088A (en) * 2009-07-17 2011-02-03 Mitsubishi Rayon Co Ltd Cleaning method for soil and/or ground water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285321A (en) * 2020-10-09 2021-01-29 合肥工业大学 VOCs polluted soil body aeration repair test device and test method
CN112285321B (en) * 2020-10-09 2021-06-01 合肥工业大学 VOCs polluted soil body aeration repair test device and test method
CN113912242A (en) * 2021-09-26 2022-01-11 宁波新芝生物科技股份有限公司 Nano-scale fluid magnetization mixing bubble generator
CN113912242B (en) * 2021-09-26 2023-10-24 宁波新芝生物科技股份有限公司 Nanometer fluid magnetization mixing bubble generator

Also Published As

Publication number Publication date
JP7279400B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
Son et al. Microbial reduction of perchlorate with zero-valent iron
Wirasnita et al. Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands
Myers et al. Abiotic and bioaugmented granular activated carbon for the treatment of 1, 4-dioxane-contaminated water
Mohamed et al. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus
Zhao et al. Cometabolic degradation of trichloroethylene in a hollow fiber membrane reactor with toluene as a substrate
CN108453128A (en) A kind of integrated repair system of reinforced soil gas phase extracting and groundwater remediation
Chen et al. Long-term MIBK removal in a tubular biofilter: effects of organic loading rates and gas empty bed residence times
JP7279400B2 (en) Anaerobic Permeable System, Permeable Anaerobic Biosystem
JP2007222823A (en) Cleaning method of soil polluted with chloroorganic compound
JP2004130184A (en) Method and apparatus for decontaminating soil
Tabernacka et al. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JPH10216694A (en) Purifying method of material contaminated with organic chlorine compound
JP5218807B2 (en) Culture composition
Mihopoulos et al. Complete remediation of PCE contaminated unsaturated soils by sequential anaerobic-aerobic bioventing
JP4719094B2 (en) Method for treating liquid containing selenate compound using microorganisms
KR100821780B1 (en) Microorganism-immobilized polymer hydrogel beads for the removal of VOC and odor and the preparing method thereof
Wei et al. Performance and mechanism of nitric oxide removal using a thermophilic membrane biofilm reactor
JP2008272530A (en) Polluted soil decontaminating method
JP2006272118A (en) Method for cleaning substance contaminated by organic chlorine compound
Jianping et al. Simultaneous removal of ethyl acetate and ethanol in air streams using a gas–liquid–solid three-phase flow airlift loop bioreactor
JP2005205299A (en) Method for purifying contaminated soil and contaminated water
JP2010179213A (en) Method and facility for purifying pollutant
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
JP3615116B2 (en) Method and apparatus for treating volatile organochlorine compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7279400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150