JP6369388B2 - Evaluation method of silicon single crystal substrate - Google Patents

Evaluation method of silicon single crystal substrate Download PDF

Info

Publication number
JP6369388B2
JP6369388B2 JP2015098010A JP2015098010A JP6369388B2 JP 6369388 B2 JP6369388 B2 JP 6369388B2 JP 2015098010 A JP2015098010 A JP 2015098010A JP 2015098010 A JP2015098010 A JP 2015098010A JP 6369388 B2 JP6369388 B2 JP 6369388B2
Authority
JP
Japan
Prior art keywords
substrate
single crystal
silicon single
crystal substrate
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015098010A
Other languages
Japanese (ja)
Other versions
JP2016213399A (en
Inventor
由佳里 鈴木
由佳里 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2015098010A priority Critical patent/JP6369388B2/en
Publication of JP2016213399A publication Critical patent/JP2016213399A/en
Application granted granted Critical
Publication of JP6369388B2 publication Critical patent/JP6369388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコン単結晶基板の評価方法に関する。   The present invention relates to a method for evaluating a silicon single crystal substrate.

例えば、モバイル端末に接続して用いる予備電源(モバイル電源)などに使用されるMOS(Metal Oxide Semiconductor)構造の半導体デバイスにエピタキシャルウェーハが使用されている。近年の省電力化等の観点から、このようなエピタキシャルウェーハに使用される基板の抵抗率を極めて低くすることが求められている。   For example, an epitaxial wafer is used for a semiconductor device having a MOS (Metal Oxide Semiconductor) structure used for a standby power supply (mobile power supply) used by connecting to a mobile terminal. From the viewpoint of power saving in recent years, it is required to make the resistivity of a substrate used for such an epitaxial wafer extremely low.

抵抗率が極めて低い、例えば、n型基板(シリコン単結晶基板)のもとになるシリコン単結晶インゴットを育成する場合は、n型ドーパント種の中で揮発性の低い燐(赤燐)をドーパントとして高濃度に添加する。この添加する赤燐を調整することで、シリコン単結晶インゴットから得られるシリコン基板の抵抗率が調整される。添加する赤燐を調整して、例えば、抵抗率が0.8mΩ・cm以下となったシリコン基板にエピタキシャル層を成長すると、エピタキシャル層の成長時にスタッキングフォルト(積層欠陥)が発生し易くなる。このような積層欠陥が発生したエピタキシャルウェーハを用いて半導体デバイスを作製すると、半導体デバイスの特性に悪影響を及ぼす。そのため、半導体デバイスに使用されるエピタキシャルウェーハに生じる積層欠陥の数が一定数以下となるようにエピタキシャルウェーハの品質を管理する必要がある。   When growing a silicon single crystal ingot having a very low resistivity, for example, an n-type substrate (silicon single crystal substrate), phosphorus (red phosphorus) having low volatility among n-type dopant species is used as a dopant. As a high concentration. By adjusting the added red phosphorus, the resistivity of the silicon substrate obtained from the silicon single crystal ingot is adjusted. For example, when an epitaxial layer is grown on a silicon substrate having a resistivity of 0.8 mΩ · cm or less by adjusting the added red phosphorus, a stacking fault (stacking fault) is likely to occur during the growth of the epitaxial layer. When a semiconductor device is manufactured using an epitaxial wafer in which such a stacking fault has occurred, the characteristics of the semiconductor device are adversely affected. Therefore, it is necessary to control the quality of the epitaxial wafer so that the number of stacking faults generated in the epitaxial wafer used for the semiconductor device is a certain number or less.

エピタキシャルウェーハに発生する積層欠陥の発生源は、インゴットを育成する際に高濃度に赤燐を添加していることから、赤燐に関連した結晶欠陥と推定することができる。エピタキシャルウェーハに用いるシリコン基板は、鏡面研磨が施された状態(ポリッシュトウェーハの状態)であり、このようなシリコン基板の表面から結晶欠陥を検出する装置として、次の欠陥検査装置が広く用いられている。具体的には、KLA−Tencor社製のSurfscan SP1、レーザーテック社製のMAGICSがポリッシュトウェーハ上の結晶欠陥を測定する装置として広く用いられる。しかしながら、これらの装置を使用しても赤燐を添加して抵抗率が0.8mΩ・cm以下となったシリコン基板から結晶欠陥を検出できない。   The generation source of the stacking faults generated in the epitaxial wafer is presumed to be a crystal defect related to red phosphorus because red phosphorus is added at a high concentration when growing the ingot. The silicon substrate used for the epitaxial wafer is mirror-polished (polished wafer state), and the following defect inspection devices are widely used as devices for detecting crystal defects from the surface of such a silicon substrate. ing. Specifically, Surfscan SP1 manufactured by KLA-Tencor and MAGICS manufactured by Lasertec are widely used as apparatuses for measuring crystal defects on a polished wafer. However, even if these apparatuses are used, crystal defects cannot be detected from a silicon substrate having a resistivity of 0.8 mΩ · cm or less by adding red phosphorus.

また、ポリッシュトウェーハ状態のシリコン基板表面を選択エッチングして結晶欠陥等をシリコン基板の表面に顕在化させ、LPD(Light Point Defect)密度を測定し、欠陥を検出する方法がある。しかし、赤燐が添加されて抵抗率が0.8mΩ・cm以下となるシリコン基板では、選択エッチング液として一般的なHF(フッ化水素)、硝酸、酢酸系のエッチングを用いても対象の結晶欠陥が顕在化しない。   Further, there is a method of detecting defects by selectively etching the surface of a silicon substrate in a polished wafer state to reveal crystal defects or the like on the surface of the silicon substrate, measuring an LPD (Light Point Defect) density. However, in the case of a silicon substrate in which red phosphorus is added and the resistivity is 0.8 mΩ · cm or less, the target crystal can be obtained even if general HF (hydrogen fluoride), nitric acid, and acetic acid-based etching is used as a selective etching solution. Defects do not appear.

それ故、エピタキシャルウェーハに積層欠陥を引き起こすと考えられるシリコン基板の結晶欠陥をシリコン基板から直接確認することができない。よって、シリコン基板の結晶欠陥(品質)を評価するには、シリコン基板にエピタキシャル層を成長させてエピタキシャルウェーハに発生する積層欠陥の数を確認する必要があり、非常に不便である。このようにシリコン基板に成長したエピタキシャル層の結晶欠陥を確認することで、シリコン基板の結晶欠陥を検出する方法が、例えば、特許文献1に開示される。   Therefore, the crystal defect of the silicon substrate that is considered to cause a stacking fault in the epitaxial wafer cannot be confirmed directly from the silicon substrate. Therefore, in order to evaluate the crystal defects (quality) of the silicon substrate, it is necessary to confirm the number of stacking faults generated in the epitaxial wafer by growing an epitaxial layer on the silicon substrate, which is very inconvenient. For example, Patent Document 1 discloses a method for detecting crystal defects in a silicon substrate by confirming crystal defects in the epitaxial layer grown on the silicon substrate.

一方、特許文献2には、シリコン基板に熱処理を施すことで、シリコン基板にエピタキシャル層を成長することなく、シリコン基板の結晶欠陥をシリコン基板から直接検出する方法が開示される。   On the other hand, Patent Document 2 discloses a method of directly detecting a crystal defect of a silicon substrate from the silicon substrate by performing a heat treatment on the silicon substrate without growing an epitaxial layer on the silicon substrate.

国際公開第2001/048810International Publication No. 2001/048810 特開2007−019226号公報JP 2007-019226 A

しかしながら、特許文献2の方法は、抵抗率が0.8mΩ・cm以下になるように赤燐が添加されたシリコン基板の欠陥を評価するものではない。   However, the method of Patent Document 2 does not evaluate defects in a silicon substrate to which red phosphorus is added so that the resistivity is 0.8 mΩ · cm or less.

本発明の課題は、赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板の品質を評価することが可能なシリコン単結晶基板の評価方法を提供することにある。   An object of the present invention is to provide a silicon single crystal substrate evaluation method capable of evaluating the quality of a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less with the addition of red phosphorus.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明のシリコン単結晶基板の評価方法は、
ドーパントとして赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板にエッチング作用をもつ雰囲気ガス下において1050℃以上の温度で熱処理を30秒以上施す熱処理工程と、
熱処理工程によりシリコン単結晶基板の表面に形成された欠陥の数に基づきシリコン単結晶基板の品質を評価する評価工程と、
を備えることを特徴とする。
The method for evaluating a silicon single crystal substrate of the present invention is as follows.
A heat treatment step in which heat treatment is performed for 30 seconds or more at a temperature of 1050 ° C. or higher in an atmosphere gas having an etching action on a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less added with red phosphorus as a dopant;
An evaluation step for evaluating the quality of the silicon single crystal substrate based on the number of defects formed on the surface of the silicon single crystal substrate by the heat treatment step;
It is characterized by providing.

ドーパントとして赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板にエピタキシャル層を成長させると、添加した赤燐に起因してエピタキシャル層に積層欠陥が発生し易くなる。この積層欠陥は、エピタキシャル層を成長するシリコン単結晶基板に赤燐が添加されていることから、シリコン単結晶基板中における赤燐に関連した結晶欠陥に起因して発生するものと推定される。また、こうした積層欠陥が発生したエピタキシャルウェーハを半導体デバイスに用いると、デバイス特性に悪影響を与える。そのため、シリコン単結晶基板の時点で、そのシリコン単結晶基板が、将来、エピタキシャルウェーハとなった際に積層欠陥をどの程度有するか(シリコン単結晶基板の品質)を簡易に評価することが望まれる。   When red phosphorus is added as a dopant to grow an epitaxial layer on a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less, stacking faults are likely to occur in the epitaxial layer due to the added red phosphorus. This stacking fault is presumed to be caused by crystal defects related to red phosphorus in the silicon single crystal substrate because red phosphorus is added to the silicon single crystal substrate on which the epitaxial layer is grown. Further, when an epitaxial wafer in which such a stacking fault has occurred is used for a semiconductor device, the device characteristics are adversely affected. Therefore, at the time of the silicon single crystal substrate, it is desired to easily evaluate the degree of stacking fault (quality of the silicon single crystal substrate) when the silicon single crystal substrate becomes an epitaxial wafer in the future. .

そこで、本発明者は、赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板において、将来的に積層欠陥を引き起こすと推定される赤燐に関連する結晶欠陥を検出するために試行錯誤した。その結果、シリコン単結晶基板を熱処理する条件により、積層欠陥の発生源とされる欠陥をシリコン単結晶基板の表面に形成できるとの事実を見出した。即ち、赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板にエッチング作用をもつ雰囲気ガスにより1050℃以上の温度で熱処理を30秒以上施す。こうすることにより、積層欠陥の発生源とされる欠陥をシリコン単結晶基板の表面に顕在化できる。そのため、この欠陥に基づいてシリコン単結晶基板の品質を簡易に評価することが可能となる。熱処理の時間が30秒未満であると、シリコン単結晶基板に形成される欠陥の数にばらつきが生じるため、熱処理を30秒以上実施することで、積層欠陥の発生源とされる欠陥を適切に形成することが可能となる。   Therefore, the present inventor detects a crystal defect related to red phosphorus, which is estimated to cause a stacking fault in the future in a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less when red phosphorus is added. Because of trial and error. As a result, it has been found that the defect that is a generation source of the stacking fault can be formed on the surface of the silicon single crystal substrate under the condition of heat-treating the silicon single crystal substrate. That is, heat treatment is performed for 30 seconds or more at a temperature of 1050 ° C. or higher with an atmospheric gas having an etching action on a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less added with red phosphorus. By doing so, it is possible to make a defect that is a source of stacking faults manifest on the surface of the silicon single crystal substrate. Therefore, the quality of the silicon single crystal substrate can be easily evaluated based on this defect. If the heat treatment time is less than 30 seconds, the number of defects formed in the silicon single crystal substrate varies. Therefore, by performing the heat treatment for 30 seconds or more, the defects that are the source of stacking faults can be appropriately detected. It becomes possible to form.

更に、本発明者は、シリコン単結晶基板に欠陥を生じさせる熱処理条件をもとに鋭意検討を重ねた。その結果、上記熱処理によりシリコン単結晶基板に形成される欠陥の数と、そのシリコン単結晶基板にエピタキシャル層を成長することで形成される積層欠陥の数とが線形の相関を有するとの結論に到達した。   Furthermore, the present inventor conducted extensive studies based on heat treatment conditions that cause defects in the silicon single crystal substrate. As a result, the conclusion is that the number of defects formed in the silicon single crystal substrate by the heat treatment and the number of stacking faults formed by growing an epitaxial layer on the silicon single crystal substrate have a linear correlation. Reached.

よって、上記の熱処理を施したシリコン単結晶基板に形成される欠陥に基づき、そのシリコン単結晶基板にエピタキシャル層を成長させた場合に発生すると予測される積層欠陥の数を取得できる。即ち、シリコン単結晶基板の品質として、当該シリコン単結晶基板にエピタキシャル層を成長させた場合に発生すると予測される積層欠陥の数を評価することが可能となる。   Therefore, it is possible to obtain the number of stacking faults that are predicted to occur when an epitaxial layer is grown on the silicon single crystal substrate based on the defects formed on the silicon single crystal substrate subjected to the heat treatment. That is, as the quality of the silicon single crystal substrate, it is possible to evaluate the number of stacking faults that are expected to occur when an epitaxial layer is grown on the silicon single crystal substrate.

なお、本発明の実施態様では、熱処理工程は、熱処理を60秒以上実施する。熱処理を60秒以上実施すると、シリコン単結晶基板に形成される欠陥の数を安定させるのに効果的である。   In the embodiment of the present invention, the heat treatment step is performed for 60 seconds or more. When the heat treatment is performed for 60 seconds or more, it is effective to stabilize the number of defects formed in the silicon single crystal substrate.

実施例と比較例の熱処理によりシリコン単結晶基板の表面に形成された欠陥の数と、実施例と比較例のエピタキシャル成長によりシリコン単結晶基板にエピタキシャル層を成長することで形成される積層欠陥の数を示すグラフ。The number of defects formed on the surface of the silicon single crystal substrate by the heat treatment of the example and the comparative example, and the number of stacking faults formed by growing an epitaxial layer on the silicon single crystal substrate by the epitaxial growth of the example and the comparative example Graph showing. 熱処理によりシリコン単結晶基板の表面に形成された欠陥の数とシリコン単結晶基板にエピタキシャル層を成長することで形成された積層欠陥の数との相関を示すグラフ。6 is a graph showing the correlation between the number of defects formed on the surface of a silicon single crystal substrate by heat treatment and the number of stacking faults formed by growing an epitaxial layer on the silicon single crystal substrate.

以下、ドーパントとして赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板の品質を評価する本発明の評価方法の一例を説明する。本実施例では、シリコン単結晶基板の品質を評価するために周知の熱処理装置及び欠陥検査装置を用いる。   Hereinafter, an example of the evaluation method of the present invention for evaluating the quality of a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less by adding red phosphorus as a dopant will be described. In this embodiment, a known heat treatment apparatus and defect inspection apparatus are used to evaluate the quality of the silicon single crystal substrate.

周知の熱処理装置としては、シリコン単結晶基板を熱処理する熱処理炉を備える。熱処理時には、例えば、水素ガス、アルゴンガス又はこれらの混合ガスで熱処理炉内が置換され、熱処理炉内は、例えば、1050℃以上、1150℃以下に加熱される。   As a known heat treatment apparatus, a heat treatment furnace for heat treating a silicon single crystal substrate is provided. At the time of heat treatment, for example, the inside of the heat treatment furnace is replaced with hydrogen gas, argon gas, or a mixed gas thereof, and the inside of the heat treatment furnace is heated to, for example, 1050 ° C. or more and 1150 ° C. or less.

また、周知の欠陥検査装置としては、シリコン単結晶基板の表面に形成される欠陥を検出する装置として、例えば、KLA−Tencor社製のSurfscan SP1、又はレーザーテック社製のMAGICS等が用いられる。   As a known defect inspection apparatus, for example, Surfscan SP1 manufactured by KLA-Tencor, MAGICS manufactured by Lasertec, or the like is used as an apparatus for detecting defects formed on the surface of a silicon single crystal substrate.

上記の熱処理装置及び欠陥検査装置を用いて、ドーパントとして赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板の品質を評価する。   Using the above heat treatment apparatus and defect inspection apparatus, the quality of a silicon single crystal substrate having a resistivity of 0.8 mΩ · cm or less when red phosphorus is added as a dopant is evaluated.

先ず、品質を評価するためのシリコン単結晶基板を作製する。例えば、石英るつぼに多結晶シリコンと抵抗率を調整するための赤燐を入れて溶融させた溶融液の液面に種結晶シリコン棒を漬けて引き上げ、シリコン単結晶インゴットを作製する。次に、作製したシリコン単結晶インゴットを所定の厚さに切り出し、切り出したウェーハに粗研磨、エッチング、研磨等を施して表面に鏡面加工がされた状態(ポリッシュトウェーハの状態)のシリコン単結晶基板を複数、作製する。このシリコン単結晶基板は、シリコン単結晶インゴットの作製時にドーパントとして添加した赤燐により抵抗率が0.8mΩ・cm以下となるように調整される。以下、赤燐が添加されて抵抗率が0.8mΩ・cm以下に調整されたシリコン単結晶基板を基板Wとする。なお、基板Wのもとになるシリコン単結晶インゴットは、上記のCZ法に限らず、FZ法など他の方法を採用してもよい。   First, a silicon single crystal substrate for quality evaluation is produced. For example, a silicon single crystal ingot is produced by immersing and pulling up a seed crystal silicon rod on the surface of a melt obtained by adding polycrystalline silicon and red phosphorus for adjusting resistivity in a quartz crucible and melting it. Next, the produced silicon single crystal ingot is cut to a predetermined thickness, and the cut wafer is subjected to rough polishing, etching, polishing, etc., and the surface is mirror-finished (polished wafer state). A plurality of substrates are manufactured. This silicon single crystal substrate is adjusted to have a resistivity of 0.8 mΩ · cm or less by red phosphorus added as a dopant during the production of the silicon single crystal ingot. Hereinafter, a silicon single crystal substrate to which red phosphorus is added and the resistivity is adjusted to 0.8 mΩ · cm or less is referred to as a substrate W. Note that the silicon single crystal ingot that is the base of the substrate W is not limited to the CZ method described above, and other methods such as the FZ method may be employed.

作製された基板Wは、熱処理装置に搬送されて熱処理が施される。基板Wが熱処理炉内に搬送されると、炉内を、例えば、1130℃で水素ガス雰囲気にし、所定の時間(例えば、60秒間)、基板Wに熱処理を施す。   The produced substrate W is transferred to a heat treatment apparatus and subjected to heat treatment. When the substrate W is transferred into the heat treatment furnace, the inside of the furnace is set to a hydrogen gas atmosphere at 1130 ° C., for example, and the substrate W is subjected to heat treatment for a predetermined time (for example, 60 seconds).

基板Wに熱処理が施されると、水素ガス(雰囲気ガス)が基板Wの表面を選択エッチングすることで、基板Wの表面に欠陥(ピット)が顕在化する。そして、熱処理された基板Wの表面に顕在化した欠陥の数を欠陥検査装置(例えば、MAGICS)により測定する。   When heat treatment is performed on the substrate W, hydrogen gas (atmosphere gas) selectively etches the surface of the substrate W, so that defects (pits) are manifested on the surface of the substrate W. Then, the number of defects manifested on the surface of the heat-treated substrate W is measured by a defect inspection apparatus (for example, MAGICS).

次に、このようにして測定した基板Wの表面の欠陥の数に基づいて基板Wの品質を評価する。本実施例のような基板Wにエピタキシャル層を成長すると、基板Wに添加した赤燐に起因してエピタキシャル層に積層欠陥が発生し易くなる。このような積層欠陥が発生したエピタキシャルウェーハを半導体デバイスに用いるとデバイス特性に悪影響を与える。そのため、エピタキシャル層を成長する前の基板Wの時点において、基板Wが、将来、エピタキシャルウェーハとなった際に積層欠陥をどの程度有するかを評価(基板Wの品質を評価)する必要がある。   Next, the quality of the substrate W is evaluated based on the number of defects on the surface of the substrate W thus measured. When an epitaxial layer is grown on the substrate W as in this embodiment, stacking faults are likely to occur in the epitaxial layer due to red phosphorus added to the substrate W. When an epitaxial wafer in which such a stacking fault has occurred is used in a semiconductor device, the device characteristics are adversely affected. Therefore, it is necessary to evaluate the degree of stacking fault (evaluation of the quality of the substrate W) when the substrate W becomes an epitaxial wafer in the future at the time of the substrate W before growing the epitaxial layer.

本発明者は、熱処理が施された基板Wの表面に形成された欠陥の数から、基板Wにエピタキシャル層を成長すると発生する積層欠陥の数を評価するために試行錯誤した。その中で、所定の条件で熱処理が施されて基板Wに形成された欠陥の数と、エピタキシャル層の成長時に発生する積層欠陥の数とが比例の相関を有することを見出した。具体的には、エッチング作用を有する雰囲気ガスにより1050℃以上の温度で熱処理を30秒以上施した基板Wの表面に形成される欠陥の数と、基板Wにエピタキシャル層を成長させることで生じる積層欠陥の数には比例の相関がある。この相関は、例えば、次のようにして決定することができる。   The inventor made trial and error in order to evaluate the number of stacking faults generated when an epitaxial layer is grown on the substrate W from the number of defects formed on the surface of the substrate W that has been subjected to the heat treatment. Among them, it has been found that the number of defects formed in the substrate W by heat treatment under predetermined conditions and the number of stacking faults generated during the growth of the epitaxial layer have a proportional correlation. Specifically, the number of defects formed on the surface of the substrate W that has been heat-treated for 30 seconds or more at a temperature of 1050 ° C. or more with an atmospheric gas having an etching action, and the stacking produced by growing an epitaxial layer on the substrate W There is a proportional correlation in the number of defects. This correlation can be determined as follows, for example.

抵抗率が0.8mΩ・cm以下の複数の基板Wと、各基板Wのもとになる各々同一のインゴットにおける各基板Wの隣接部分から切り出した基板W´の組を用意し、まず用意した複数の基板Wに対してエッチング作用を有する雰囲気ガスにより1050℃以上の温度で30秒以上熱処理を施す(各基板Wに対して同じ条件で熱処理を施す)。次に、熱処理で各基板Wの表面に顕在化した欠陥の数を測定し、測定した欠陥の数が異なる基板Wを複数、選択する。例えば、測定した欠陥の数が1000(個/ウェーハ)前後、2000(個/ウェーハ)前後、3000(個/ウェーハ)前後の3つの基板Wを選択する。次に選択した3つの基板Wと組をなす基板W´に対して同じ成長条件でエピタキシャル層を成長し、成長したエピタキシャル層に発生した積層欠陥をMAGICSなどの欠陥検査装置で測定し、積層欠陥の数を取得する。そして、例えば、取得した基板W´の積層欠陥の数を縦軸、熱処理により基板Wの表面に顕在化した欠陥の数を横軸とし、選択した3つの基板W及びその3つの基板Wに対応する基板W´の組から取得したデータをプロットすることで積層欠陥の数と欠陥の数の相関を取得できる。具体的な相関としては、例えば、下記の実施例で説明する図2のグラフのような相関を取得できる。よって、エッチング作用を有する雰囲気ガスにより1050℃以上の温度で熱処理を30秒以上施した基板Wの表面における欠陥の数に基づいて基板Wの品質(積層欠陥の数)を評価できる。   A set of a plurality of substrates W having a resistivity of 0.8 mΩ · cm or less and a substrate W ′ cut out from an adjacent portion of each substrate W in the same ingot that is the basis of each substrate W was prepared first. A plurality of substrates W are subjected to a heat treatment for 30 seconds or more at a temperature of 1050 ° C. or higher with an atmospheric gas having an etching action (the substrates W are subjected to a heat treatment under the same conditions). Next, the number of defects manifested on the surface of each substrate W by the heat treatment is measured, and a plurality of substrates W having different numbers of measured defects are selected. For example, three substrates W with the measured number of defects around 1000 (pieces / wafer), around 2000 (pieces / wafer), and around 3000 (pieces / wafer) are selected. Next, an epitaxial layer is grown on the substrate W ′ paired with the three selected substrates W under the same growth conditions, and the stacking fault generated in the grown epitaxial layer is measured by a defect inspection apparatus such as MAGICS. Get the number of. For example, the number of stacking faults of the acquired substrate W ′ is the vertical axis, and the number of defects that are manifested on the surface of the substrate W by the heat treatment is the horizontal axis, corresponding to the selected three substrates W and the three substrates W. The correlation between the number of stacking faults and the number of defects can be acquired by plotting the data acquired from the set of the substrates W ′. As a specific correlation, for example, a correlation such as the graph of FIG. 2 described in the following embodiment can be acquired. Therefore, the quality of the substrate W (the number of stacking faults) can be evaluated based on the number of defects on the surface of the substrate W that has been heat-treated at a temperature of 1050 ° C. or higher for 30 seconds or more with an atmospheric gas having an etching action.

以下、実施例と比較例を挙げて本発明を具体的に説明するが、これらは本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, these do not limit this invention.

(比較例)
ドーパントとして赤燐が添加されて抵抗率0.8mΩ・cm以下となるポリッシュトウェーハ状態の基板Wと各々同一インゴットの隣接部分から切り出した基板W´の組を複数用意した。まず用意した各基板Wに対して熱処理装置で熱処理をそれぞれ施した。具体的には、水素ガス雰囲気下において、1130℃、20秒間の熱処理を各基板Wに施した。そして、熱処理後の各基板Wの表面の欠陥の数(以下、「欠陥数」とする)を欠陥測定装置(MAGICS)で測定した。各基板Wに対応する基板W´に対しては、別途、同一条件でエピタキシャル層を成長し、エピタキシャル層を成長することで発生した積層欠陥の数を欠陥測定装置(MAGICS)で測定した。
(Comparative example)
A plurality of sets of substrates W in a polished wafer state in which red phosphorus is added as a dopant and having a resistivity of 0.8 mΩ · cm or less and substrates W ′ cut from adjacent portions of the same ingot were prepared. First, each prepared substrate W was heat-treated with a heat treatment apparatus. Specifically, each substrate W was subjected to heat treatment at 1130 ° C. for 20 seconds in a hydrogen gas atmosphere. The number of defects on the surface of each substrate W after the heat treatment (hereinafter referred to as “number of defects”) was measured with a defect measuring apparatus (MAGICS). For the substrate W ′ corresponding to each substrate W, an epitaxial layer was separately grown under the same conditions, and the number of stacking faults generated by growing the epitaxial layer was measured with a defect measuring apparatus (MAGICS).

(実施例)
熱処理の時間を20秒間から60秒間に代える以外は同一の条件にし、各基板Wに熱処理を施した。そして、比較例と同様にして各基板Wの表面の欠陥数を測定し、別途、各基板Wに対応する基板W´に対して比較例と同様にエピタキシャル層を成長して積層欠陥の数を測定した。
(Example)
Each substrate W was subjected to heat treatment under the same conditions except that the heat treatment time was changed from 20 seconds to 60 seconds. Then, the number of defects on the surface of each substrate W is measured in the same manner as in the comparative example, and separately, the epitaxial layer is grown on the substrate W ′ corresponding to each substrate W in the same manner as in the comparative example to determine the number of stacking faults. It was measured.

更に、実施例では、抵抗率が0.8mΩ・cm以下の基板Wと各々同一インゴットの隣接部分から切り出した基板W´の組を複数、用意した。用意した基板Wとしては、実施例の熱処理条件で基板Wの表面に顕在化する欠陥数が1000(個/ウェーハ)前後、2000(個/ウェーハ)前後、3000(個/ウェーハ)前後となる基板Wを用意した。その後、上記の実施例と同様にして基板Wの表面の欠陥数と、その欠陥を測定した各基板Wに対応する基板W´にエピタキシャル層を成長することで発生した積層欠陥の数を測定した。そして、基板Wの表面に顕在化した欠陥数と、別途、各基板Wに対応する基板W´にエピタキシャル層の成長することで発生した積層欠陥の数との相関を取得した。   Furthermore, in the examples, a plurality of sets of substrates W ′ having a resistivity of 0.8 mΩ · cm or less and substrates W ′ cut from adjacent portions of the same ingot were prepared. As the prepared substrate W, the number of defects that appear on the surface of the substrate W under the heat treatment conditions of the example is about 1000 (pieces / wafer), about 2000 (pieces / wafer), and about 3000 (pieces / wafer). W was prepared. Thereafter, the number of defects on the surface of the substrate W and the number of stacking faults generated by growing an epitaxial layer on the substrate W ′ corresponding to each substrate W where the defects were measured were measured in the same manner as in the above-described example. . Then, a correlation was obtained between the number of defects manifested on the surface of the substrate W and the number of stacking faults generated by growing an epitaxial layer on the substrate W ′ corresponding to each substrate W separately.

図1には、比較例と実施例の熱処理で基板Wの表面に形成された欠陥数(横軸の比較例と実施例)と、比較例と実施例で基板W´に成長させたエピタキシャル層の積層欠陥の数(横軸の積層欠陥の数)が示される。比較例では、基板Wの表面の欠陥数が基板W´に成長させたエピタキシャル層の積層欠陥の数より大幅に小さい値となった。また、比較例では、基板Wの表面の欠陥数が測定した試料間でばらつきが大きく、値が安定しなかった。それに対して、実施例では、基板Wの表面の欠陥数が基板W´に成長させたエピタキシャル層の積層欠陥の数に近い値となった。また、実施例では、基板Wの表面の欠陥数が測定した試料間でばらつきが小さく、値が同程度に収まり安定した。   FIG. 1 shows the number of defects (comparative examples and examples on the horizontal axis) formed on the surface of the substrate W by the heat treatment of the comparative examples and examples, and the epitaxial layers grown on the substrate W ′ in the comparative examples and examples. The number of stacking faults (the number of stacking faults on the horizontal axis) is indicated. In the comparative example, the number of defects on the surface of the substrate W was significantly smaller than the number of stacking faults in the epitaxial layer grown on the substrate W ′. Further, in the comparative example, the number of defects on the surface of the substrate W varied widely between the measured samples, and the value was not stable. On the other hand, in the example, the number of defects on the surface of the substrate W was close to the number of stacking faults in the epitaxial layer grown on the substrate W ′. Further, in the example, the number of defects on the surface of the substrate W was small among the measured samples, and the values were about the same and stabilized.

図1の比較例のように熱処理の時間が20秒(30秒未満)であると、欠陥数がばらつき基板Wに安定した数の欠陥を形成できない。そのため、熱処理の時間としては、30秒以上、好ましくは、図1の実施例のように60秒以上であると、基板Wに安定した数の欠陥を形成できる。   If the heat treatment time is 20 seconds (less than 30 seconds) as in the comparative example of FIG. 1, the number of defects varies and a stable number of defects cannot be formed on the substrate W. Therefore, when the heat treatment time is 30 seconds or longer, preferably 60 seconds or longer as in the embodiment of FIG. 1, a stable number of defects can be formed on the substrate W.

図2には、実施例で、別途、取得した抵抗率が異なる各基板Wの表面の欠陥数と、その各基板Wに対応する基板W´にエピタキシャル層を成長することで発生した積層欠陥の数により得られる相関(グラフ)が示される。図2に示すように熱処理後における基板Wの表面の欠陥数と基板W´に成長させたエピタキシャル層の積層欠陥の数には比例の相関がある。よって、この相関から熱処理における基板Wの表面の欠陥数から基板Wの品質(積層欠陥の数)を評価できる。   In FIG. 2, in the example, the number of defects on the surface of each substrate W obtained separately and the stacking faults generated by growing an epitaxial layer on the substrate W ′ corresponding to each substrate W are shown. The correlation (graph) obtained by the number is shown. As shown in FIG. 2, there is a proportional correlation between the number of defects on the surface of the substrate W after the heat treatment and the number of stacking faults in the epitaxial layer grown on the substrate W ′. Therefore, from this correlation, the quality of the substrate W (number of stacking faults) can be evaluated from the number of defects on the surface of the substrate W in the heat treatment.

以上、本発明の実施例を説明したが、本発明はその具体的な記載に限定されることなく、例示した構成等を技術的に矛盾のない範囲で適宜組み合わせて実施することも可能であるし、またある要素、処理を周知の形態に置き換えて実施することもできる。   The embodiments of the present invention have been described above. However, the present invention is not limited to the specific description, and the illustrated configurations and the like can be appropriately combined within a technically consistent range. In addition, certain elements and processes may be replaced with known forms.

W 基板(シリコン単結晶基板)   W substrate (silicon single crystal substrate)

Claims (2)

ドーパントとして赤燐が添加されて抵抗率0.8mΩ・cm以下となるシリコン単結晶基板に水素ガス雰囲気下において1050℃以上、1150℃以下の温度で熱処理を60秒以上施す熱処理工程と、
前記熱処理工程により前記シリコン単結晶基板の表面に形成された欠陥の数を測定する測定工程と、
前記測定工程により得られた前記欠陥の数と、前記シリコン単結晶基板にエピタキシャル層を実際に成長させて発生した積層欠陥の数との比例の相関を取得する取得工程と、
評価対象の前記シリコン単結晶基板に対して前記熱処理工程及び前記測定工程を実施して得られた前記欠陥の数と、前記取得工程で取得した前記相関とに基づいて該シリコン単結晶基板にエピタキシャル層を成長させた場合に発生すると予測される積層欠陥の数を評価する評価工程と、
を備えることを特徴とするシリコン単結晶基板の評価方法。
A heat treatment step of applying heat treatment at a temperature of 1050 ° C. or more and 1150 ° C. or less for 60 seconds or more in a hydrogen gas atmosphere to a silicon single crystal substrate to which red phosphorus is added as a dopant and having a resistivity of 0.8 mΩ · cm or less;
A measuring step of measuring the number of defects formed on the surface of the silicon single crystal substrate by the heat treatment step ;
An acquisition step of obtaining a proportional correlation between the number of defects obtained by the measurement step and the number of stacking faults generated by actually growing an epitaxial layer on the silicon single crystal substrate;
Based on the number of defects obtained by performing the heat treatment step and the measurement step on the silicon single crystal substrate to be evaluated and the correlation obtained in the obtaining step, the silicon single crystal substrate is epitaxially formed. An evaluation process for evaluating the number of stacking faults expected to occur when the layer is grown ;
A method for evaluating a silicon single crystal substrate, comprising:
前記取得工程では、前記測定工程により得られた前記欠陥の数が異なる複数の前記シリコン単結晶基板を選択し、選択した前記シリコン単結晶基板である第1基板のもとになるインゴットの、前記第1基板の隣接部分から切り出されたシリコン単結晶基板である第2基板に対してエピタキシャル層を成長させ、成長させたエピタキシャル層に発生した積層欠陥の数を取得することで、複数の前記第1基板から得られた前記欠陥の数と、複数の前記第2基板から得られた積層欠陥の数との相関を取得する請求項1に記載のシリコン単結晶基板の評価方法。  In the obtaining step, the plurality of silicon single crystal substrates having different numbers of the defects obtained in the measurement step are selected, and the ingot that is the basis of the first substrate that is the selected silicon single crystal substrate, An epitaxial layer is grown on a second substrate that is a silicon single crystal substrate cut out from an adjacent portion of the first substrate, and the number of stacking faults generated in the grown epitaxial layer is obtained, thereby obtaining a plurality of the first substrates. 2. The method for evaluating a silicon single crystal substrate according to claim 1, wherein a correlation between the number of defects obtained from one substrate and the number of stacking faults obtained from a plurality of the second substrates is acquired.
JP2015098010A 2015-05-13 2015-05-13 Evaluation method of silicon single crystal substrate Active JP6369388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098010A JP6369388B2 (en) 2015-05-13 2015-05-13 Evaluation method of silicon single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098010A JP6369388B2 (en) 2015-05-13 2015-05-13 Evaluation method of silicon single crystal substrate

Publications (2)

Publication Number Publication Date
JP2016213399A JP2016213399A (en) 2016-12-15
JP6369388B2 true JP6369388B2 (en) 2018-08-08

Family

ID=57552098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098010A Active JP6369388B2 (en) 2015-05-13 2015-05-13 Evaluation method of silicon single crystal substrate

Country Status (1)

Country Link
JP (1) JP6369388B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449842B2 (en) * 2005-07-07 2010-04-14 信越半導体株式会社 Measuring method of semiconductor substrate
JP2010048795A (en) * 2008-07-22 2010-03-04 Shin Etsu Handotai Co Ltd Detection method of crystal defect of silicon monocrystal wafer
JP2010118487A (en) * 2008-11-13 2010-05-27 Shin Etsu Handotai Co Ltd Method of evaluating epitaxial wafer and method for manufacturing epitaxial wafer
JP5440693B2 (en) * 2010-04-08 2014-03-12 信越半導体株式会社 Silicon epitaxial wafer, silicon epitaxial wafer manufacturing method, and semiconductor device or integrated circuit manufacturing method
JP5845143B2 (en) * 2012-06-29 2016-01-20 株式会社Sumco Epitaxial silicon wafer manufacturing method and epitaxial silicon wafer

Also Published As

Publication number Publication date
JP2016213399A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP5940238B2 (en) Silicon wafer manufacturing method
CN102396055B (en) Anneal wafer, method for manufacturing anneal wafer, and method for manufacturing device
JP6945805B2 (en) Manufacturing method of epitaxial wafer
TWI548785B (en) Silicon wafer and manufacturing method for the same
KR20150118037A (en) Method for heat treatment of silicon wafer and silicon wafer
JP6025070B2 (en) Quality evaluation method of silicon single crystal
JP2010177233A (en) Method of manufacturing epitaxial wafer, and method of manufacturing solid-state imaging element
WO2015107874A1 (en) Heat-treatment method for single-crystal silicon wafer
JP2010177238A (en) Method of manufacturing epitaxial wafer, and method of manufacturing semiconductor device
JP6369388B2 (en) Evaluation method of silicon single crystal substrate
JP5742742B2 (en) Metal contamination assessment method
JP6447960B2 (en) Manufacturing method of silicon epitaxial wafer
JP6358472B2 (en) Epitaxial wafer manufacturing method
JP6651134B2 (en) Method for detecting crystal defects in semiconductor single crystal substrate
JP5561245B2 (en) Semiconductor substrate evaluation method
JP6489321B2 (en) Epitaxial wafer manufacturing method
JP6432879B2 (en) Epitaxial wafer manufacturing method
CN111279461B (en) Semiconductor wafer composed of monocrystalline silicon
JP4962406B2 (en) Method for growing silicon single crystal
WO2015107875A1 (en) Heat-treatment method for single-crystal silicon wafer
JP6598140B2 (en) Epitaxial wafer manufacturing method
KR102521336B1 (en) Manufacturing method of epitaxial wafer
JP5742739B2 (en) Screening method of silicon substrate for metal contamination assessment
WO2024009659A1 (en) Silicon wafer and manufacturing method therefor
CN111051580B (en) Silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250