JP6368031B2 - 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム - Google Patents

異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム Download PDF

Info

Publication number
JP6368031B2
JP6368031B2 JP2017506132A JP2017506132A JP6368031B2 JP 6368031 B2 JP6368031 B2 JP 6368031B2 JP 2017506132 A JP2017506132 A JP 2017506132A JP 2017506132 A JP2017506132 A JP 2017506132A JP 6368031 B2 JP6368031 B2 JP 6368031B2
Authority
JP
Japan
Prior art keywords
abnormality
upstream
cause
recovery support
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017506132A
Other languages
English (en)
Other versions
JPWO2016147726A1 (ja
Inventor
晃治 陰山
晃治 陰山
剛 武本
剛 武本
田所 秀之
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2016147726A1 publication Critical patent/JPWO2016147726A1/ja
Application granted granted Critical
Publication of JP6368031B2 publication Critical patent/JP6368031B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

本発明は、プラントの異常予知を診断し、その結果として回復支援対象や回復支援方法を提示する異常予知・回復支援システム異常予知・回復支援方法及び水処理システムに関する。
現在、各種の産業分野ではさまざまなプラントが稼動して各種の製品を生産している。プラントが異常となって停止すると、製品の製造が停止するとともに修理費用が発生し、大きな損失が発生する可能性がある。異常や故障の発生は完全に0とすることは現実的に難しいため、運転データに基づいてできるだけ早い時期に異常を予知し、その根本原因をできるだけ短時間で明示できる技術が必要となっている。
このようなニーズに関連し、特許文献1に記載の技術が知られている。特許文献1は、対象プラントから出力されるプロセスデータの挙動予測および統計処理・解析のうち少なくとも一方を行うことにより、当該予測結果および統計処理・解析の結果のうち少なくとも一方の情報を対象プラントの運転員の支援情報として提供し、熟練度の低い運転員だけであっても、対象プラントの運転を支障なく行うことを可能とするガイダンス装置およびサーバを提供することを目的としたものである。
さらに、この発明の他の目的は、対象プラントから出力されるプロセスデータの挙動予測および統計処理・解析のうち少なくとも一方に加え、プロセスデータと所定の論理演算子とを用いて作成される論理式の真理値の変化からガイダンス情報の発生した根本原因を特定し、予測結果と根本原因の特定結果に基づいて、当該予測結果を回避する回避方策を抽出することにより、予め定められたガイダンス情報の他に、様々な支援情報を提供することを可能とするガイダンス装置およびサーバを提供することにあるとしている。
この課題の解決のために特許文献1においては、プロセスデータ、時刻データ、論理式、論理式の真理値、および対象プラントの構成要素の識別情報が対応して記憶されている根本原因データベースを用いており、根本原因解析部により時刻データを検索キーとして検索され、論理式の真理値が変化した時刻データに対応したプロセスデータが読み出される。
すなわち、特許文献1の手法は、根本原因は時間的に同時(あるいは直近の過去)に変化したプロセスにあるとして探索するものである。
特開2003−167621号公報
しかしながら、例えば水処理プラントなど時定数が大きいシステムにおいては、ガイダンス情報が発生した時刻の直前の変化箇所が根本原因であるとは限らず、根本原因がずっと過去に発生していた可能性もある。そのような場合であっても、それぞれの設備ごとでは上流の処理水質の影響を下流の水質計測値が受ける、あるいは下流の詰まりの影響を上流の圧力計測値が受ける、などの物理的な因果関係については考慮されていない。
水処理プラントの場合、ポンプ、弁、槽、膜モジュールなどそれぞれの設備は常に同じように繋がっているのではなく、設備によってその接続や個数は異なる。したがって、プラントごとにこれらを組合わせた上で因果関係のルールを設計者がその都度準備して組み込むことは多大な労力と時間を必要とし、因果関係の列挙にモレが生ずることも有り得る。
本発明はこれらの課題に鑑みて為されたものである。本発明が解決する課題は、プラント内の異常予知直後に根本原因と想定される箇所を因果関係に基づいて推定し、短時間で対策を実施できるよう支援することができる異常予知・回復支援システム異常予知・回復支援方法及び水処理システムを提供することにある。
以上のことから本発明においては、上流と下流の関係を有し複数の設備で構成されたプラントに適用され、プラントの入力項目からプラントの異常を予知する異常予知エンジンを備えた異常予知・回復支援システムであって、入力項目の値に基づいて異常の程度を予知すると同時に、予知にあたって異常への影響が大きい入力項目を求める異常予知エンジンと、プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持する知識データベースと、異常予知エンジンが示す異常への影響が大きい入力項目に対して、知識データベースを参照し、異常の根本原因の候補として設備とその原因を求める根本原因候補推定エンジンと、異常の程度に加えて根本原因の候補を画面表示する表示手段を備えたことを特徴とする。また、設備ごとに異常発生時の上流および下流への影響の関係を計算で求めるプラントシミュレータを備えたことを特徴とする。
また本発明は、上流と下流の関係を有し複数の設備で構成されたプラントに適用される異常予知・回復支援方法であって、プラントからの入力項目の値に基づいて異常の程度を予知するとともに異常への影響が大きい入力項目を求め、プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持し、異常への影響が大きい入力項目に対して、知識データを参照し、異常の根本原因の候補として設備とその原因を求め、提示する。
本発明によれば、プラントにおいて異常を予知した際にその根本原因の候補に関する情報を短時間で提供することができると同時に、異なる設備フローのプラントに対しても容易に横展開して利用することが可能となる。
本発明の一実施例に係る異常予知・回復支援システムをpH調整プラントに適用した際の全体構成例を示す図。 図1に示すpH調整プラントの機器構成例を示す図。 図2に示すpH調整プラントの機器構成図をプラント内設備フロー情報に転換する際に基となる概念を示す図。 プラント内設備フロー情報の記述例を示す図。 設備ごとの異常発生時の上流および下流への影響データセット情報46の記述例を示す図。 上流および下流への影響の関係を計算で求めるプラントシミュレータ88を示す図。 6分割されたシステム全体のマトリクスのうち1/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち2/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち3/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち4/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち5/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち6/6部分の生成例を示す図。 抽出された根本原因の候補情報の例を示す図。 根本原因候補推定エンジン38の処理内容を一般化して示したフローチャート。
本発明の異常予知・回復支援システムが対象とするプラントは、運転状態が数値データとして与えられるプラントであればとくに制限はない。以下では具体的な例のひとつとして、pHを調整するプラントを対象とした場合の本発明の実施形態について図面を用いて説明する。
図1は、本発明の一実施例に係る異常予知・回復支援システムをpH調整プラントに適用した際の全体構成例を示す図である。この全体構成には、異常予知・回復支援システム48、pH調整プラント10、及び監視制御装置12が含まれる。監視制御装置12は、pH調整プラント10を構成する各機器の運転データを収集して監視する機能を有する。異常予知・回復支援システム48と監視制御装置3は接続されているが、インターネットやクラウドなど通信ネットワークを介して接続される構成であってもよい。
監視制御装置12は、pH調整プラント10から流量、圧力、温度、水質などの計測値24を収集し、監視信号28として異常予知・回復支援システム48の計測値データベース14に入力する。
異常予知・回復支援システム48は、計測値データベース14、計測値データベース14に格納される異常予知エンジンへの入力項目情報16に基づいて異常の程度を求める異常予知エンジン30、プラント内の設備フロー情報を記憶しているプラント内設備フローデータベース20、設備ごとの異常発生時の上流および下流への影響データセット情報を記憶している設備ごとの異常発生時の上流および下流への影響データセットデータベース22、プラント内設備フロー情報44と設備ごとの異常発生時の上流および下流への影響データセット情報46を自動的に組み合わせて構築される知識データベース42、知識データベース情報40と異常への影響が大きい入力項目情報34に基づいて根本原因の候補情報36を求める根本原因候補推定エンジン38、異常の程度情報32と根本原因の候補情報36を画面に表示する表示手段18、を備える。
異常予知・回復支援システム48を構成するこれらの要素のうち、異常予知エンジン30、知識データベース42および根本原因候補推定エンジン38はソフトウェアにより実現され、後述する処理内容に対応するプログラムをROM等の記憶装置から読み出し、CPU等のプロセッサが実行することにより実現される。これらの計算手段の中身については後述する。
図2は、図1に示すpH調整プラント10の機器構成例を示す図である。図2ではpH調整プラント10として、その主要部分のみを示している。
pH調整プラント10の原水槽62には、供給原水84が外部から与えられ、NaOH槽50には供給NaOH86が与えられている。pH調整プラント10では、NaOH槽50に入っているNaOH溶液を所定量混合してpHの値が調整される。原水槽62の中の原水は、原水pH計測装置82によってpHの値を測定される。その後原水は原水送液管64を通じて原水ポンプ66により送液され、原水送液管68の後段で二液混合部70に与えられる。
一方、NaOH溶液はNaOH送液管52を通じてNaOH薬注ポンプ54により送液され、NaOH送液管56、NaOH弁58、NaOH送液管60を経由して二液混合部70に与えられる。二液混合部70では原水とNaOH溶液が混合されて混合液送液管72に送られ、混合液弁74を介して混合液送液管76に送られる。混合液送液管76内の混合液は、混合液pH計測装置78と混合液流量計測装置80によって水質と流量が計測される。
ここで示した各計測器(原水pH計測装置82、混合液pH計測装置78、混合液流量計測装置80)からの計測値24を図1の監視制御装置12が受け取り、監視制御装置12内ではこれを監視信号28として使用して、異常の予知や根本原因の推定を可能とする。
ここで、異常予知・回復支援システム48に含まれる異常予知エンジン30について説明する。各種の計測値に基づいて異常を予知する方法には様々な手法が提案されている。例えば統計的な手法であれば、局所部分空間法、マハラノビスタグチ法、インバリアント分析法、ベクトル量子化クラスタリング、類似度ベースモニタリング法、適応共鳴理論、などがある。本発明における異常予知エンジン30としては、異常の程度情報32と異常への影響が大きい入力項目情報34が出力されるのであれば、上述の手法あるいは改善手法のいずれを用いても良い。
この実施例1では一例として何らかの異常が予知され、異常への影響が大きい入力項目情報34として混合液pH計測装置78で計測されたpH値が低かったものと仮定する。従来の異常予知エンジンで可能なのはここまでであるが、このときの原因は混合液pH計測装置78の不具合ではなく、プラントのほかの箇所の不具合である可能性もある。この不具合すなわち根本原因をできるだけ短時間に漏れなく優先順位を付けて提示するのが本発明の目的であり、そのために知識データベース42と根本原因候補推定エンジン38を用いる。
知識データベース42には、プラント内設備フローデータベース20からプラント内設備フロー情報44が与えられる。このプラント内設備フロー情報44は、それぞれの設備がどのような順番で繋がっているかを記述した電子情報である。
図2に示すpH調整プラントの機器構成図に対応するプラント内設備フロー情報44の基となる概念図を図3に示す。この機器構成図では、ポンプ、弁、槽、膜モジュールなどの機器に加え、配管もそれぞれの接続ごとに1つの設備として表現する。
この事例によれば、pH調整プラント10のNaOH系統を構成する機器や配管が86−50−52−54−56−58−60の順に接続され、pH調整プラント10の原水系統を構成する機器や配管が84−62(−82)−64−66−68の順に接続され、pH調整プラント10の混合系統を構成する機器や配管が70−72−74−76(−78)−89の順に接続されていることが理解できる。
係るプラント内設備フロー情報44のデータベース内における記憶形式は、テキスト形式やcsv形式、あるいはエクセルの記述形式のいずれであっても良い。プラント内設備フロー情報44の記載の一例を図4に示す。
図4の記憶形式によれば、pH調整プラント10を構成する機器や配管が、設備番号101、設備呼称102、設備種類103、接続設備番号104により定義され記憶されている。なお図4の接続設備番号104の記載例では、上流側の機器や配管を104a、104bとして特定している。図示の例では例えば、設備番号101が50のものは、設備呼称102がNaOH槽であって、設備種類103は槽に分類され、接続設備番号104として上流側104aに86を配置していることを意味している。また例えば設備番号101が70のものは、設備呼称102が二液混合部であって、設備種類103は合流部に分類され、接続設備番号104として上流側104aに60を配置し、上流側に68を配置していることを意味している。この上流側機器、配管の関係を辿ることで、図2の接続関係が表現され、記憶されていることになる。
図1の知識データベース42には、さらに設備ごとの異常発生時の上流および下流への影響データセットデータベース22から、設備ごとの異常発生時の上流および下流への影響データセット情報46が与えられる。設備ごとの異常発生時の上流および下流への影響データセット情報46は、pH調整プラント10を構成する機器(ポンプ、弁、槽、膜モジュールなど)や配管などのそれぞれに対して、標準的に作られた因果関係のマトリクスである。
ここで因果関係の一方の原因としては、該当設備の上流条件の変化に加え、該当設備自身の不具合や運転条件変更をできる限り漏れなく記述して準備する。そして、それらの原因によって引き起こされる上流設備および下流設備への影響を記述して準備するものである。また原因と結果の標準的マトリクスであればいかなる記述形式でも良いが、一例としてポンプ、配管、槽に関する設備ごとの異常発生時の上流および下流への影響データセット情報46を図5に示す。
図5に示す影響データセット情報46は、上から順に設備がポンプ(46P)、配管(46C)、槽(46T)の場合を示すが、保持される情報項目としては共通に、設備種類103、原因201、結果202である。さらに原因201の詳細項目として、該当設備の上流条件変化201a、該当設備自身の不具合、運転条件変更201bを挙げている。さらに該当設備の上流条件変化201aの具体事例として、上流における流量過大、流量過小、水質過大、水質過小などの状態がレベルに応じて複数種類定義されている。また該当設備自身の不具合、運転条件変更201bの具体事例は、設備毎に内容相違するが設備種類がポンプ(46P)であるときには、ポンプ詰まり、モータブラシ損傷、吐出側は損益漏れ、回転数過大、回転数過小などの事象が複数種類定義されている。
また因果関係の他方である結果202について、流体系202aと電気系202bに分けて定義されている。また流体系202aと電気系202bの詳細定義内容は、流体系202aでは上流1側圧力、上流2側圧力、レベル別水質、流量の状態(過大、過小、影響なし、存在なしなど)で記述され、電気系202bでは、上流と、下流のレベル別水質、電流測定値、流量測定値の状態(過大、過小、影響なし、存在なしなど)で記述されている。また、これらの縦軸項目、および横軸項目はマトリクスを埋める形で状態が定義されている。
図5の因果関係のマトリクスによれば、例えばポンプ詰まりが原因である時、結果としては流体系について上流1の圧力過大、下流の流量過小、電気系について電流測定値過大が生じ得る。同様に配管詰まりが原因である時、結果としては流体系について上流1の圧力過大、下流の流量過小が生じ得る。
図5のマトリクス全体として、設備がポンプである場合には、流体系以外にも電気系との関連を精査すべきであるが、電気系を持たない配管や槽の場合には流体系内の関連を考慮すればよい。また、結果は下流側に表れる場合のみではなく、上流側に表れる場合や、計測レベルに反映される場合などがあるので、これらの相関をなるべく多くのケースについて事前把握しておくのがよい。
なお、実際のプラントにおける上流条件の変化や不具合の事例については、図5の一例よりもずっと多岐に亘るが、ここでは実施例1として示すpH調整プラント10に関係が深い箇所の事例のみを一例として抽出して示した。
図5では設備ごとの異常発生時の上流および下流への影響データセット情報46があらかじめ与えられえている場合を想定したが、図6で示すように上流および下流への影響の関係を計算で求めるプラントシミュレータ88を備え、シミュレーションで求めた上流および下流への影響データセット情報90を生成して設備ごとの異常発生時の上流および下流への影響データセット情報46として用いることでもよい。これにより、影響データセットの構築を容易に実現することが可能となる。
図1において、知識データベース42では、以上に示したプラント内設備フロー情報44(図4)と、設備ごとの異常発生時の上流および下流への影響データセット情報46(図5)をもとに、システム全体のマトリクスを自動生成する。たとえば図3では「配管」が複数存在するが、そのそれぞれに図5で示した「配管」の標準的マトリクスをはめ込み、上流側の設備と下流側の設備との関係をたどれるようにする。これは、図4のデータと図5のデータをマージしたものを生成することである。
pH調整プラント10に対するシステム全体のマトリクスの生成例を図7〜図12に示す。マトリクスの規模が大きいため、ここでは6つに分けて図7〜図12として示した。図7〜図12は、いずれも同じ記載要領により記述されたものであるので、図7を代表例として説明する。これらの図の縦軸側には、図3の機器や配管の接続順序に従って、設備が記述されている。図7の場合、図3のpH調整プラント10のNaOH系統を構成する機器や配管のうち、50−52−54−56までの部分が記述されている。以下同様に以降の図においても接続順序に従って、設備が記述されている。横軸には、図4、図5で用いた項目が全て記述されている。これらは図4について101、102、103、104(104a、104b)の項目、図5について201(201a、201b)、202(202a、202b)の項目を網羅したことを意味している。
図7〜図12は、説明のために行列の番号を表示している。マトリクスの左端には行番号L1〜L245、上端には列番号C1〜C19を示した。行の方向に各設備を記述しており、行の方向に上記図4、図5の項目を採用して記述している。因みに図7にのみ図4、図5の項目を表示しているが、列番号C1が項目101、列番号C2が項目102、列番号C3が項目103、列番号C4、C5が項目104、列番号C6、C7が項目201、列番号C8からC13が項目202a、列番号C14からC19が項目202bにそれぞれ対応している。このように構築されたシステム全体のマトリクスを、本発明では知識データベース情報40と呼ぶこととする。
このようにして構築された知識データベース情報40は、根本原因推定エンジン38に与えられる。根本原因推定エンジン38はもう一つの入力として異常への影響が大きい入力項目情報34を有している。根本原因推定エンジン38には、一次記憶場所のメモリMと距離レジスタRが備えられる。根本原因推定エンジン38において、知識データベース情報40と異常への影響が大きい入力項目情報34に基づいて根本原因の候補情報36を求める方法の一例を以下に述べる。
まず異常への影響が大きい入力項目情報34として、図2の混合液pH計測装置82で計測した混合液pH値が「小さい」と与えられたとする。なお、ここではpHは水質(1)に相当すると設定したと仮定する。このとき根本原因推定エンジン38では、一次記憶場所のメモリMをクリアし、距離レジスタRの値を0とする。次に根本原因推定エンジン38は、図7〜図12の知識データベース情報40を参照し、結果の列C8〜C19のうち水質(1)の測定値がある列を横方向に探索する。その結果、C15が「水質(1)の測定値」に該当することが分かる。
次に、C15の列の中で「混合液」「過小」の記載がある行を縦方向に図7から図12まで探索する。その結果、図12のL207、L209、L211、L213が該当することが分かる。
次に、L207の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「標準液劣化」との記載があるため、C2の「混合液pH計測装置78」の情報および距離レジスタRの値「0」とともに一次記憶場所のメモリMに記憶する。
次にL209の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「電極劣化」との記載があるため、C2の「混合液pH計測装置78」の情報および距離レジスタRの値「0」とともに一次記憶場所のメモリMに記憶する。
同様にL211の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「電極付着物発生」との記載があるため、C2の「混合液pH計測装置78」の情報および距離レジスタRの値「0」とともに一次記憶場所のメモリMに記憶する。
最後にL213の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。カラムC4およびC5を参照すると76番の設備が上流側に存在することが分かる。そこで、次の段階で76番の設備での上流水質(1)過小に絞った探索を実行する。なお、L213の行のC7には記載がないため、以上でL213の行の処理を終了し、距離レジスタRの値を1つプラスして1とする。
根本原因推定エンジン38では、上流側設備探索の指示に従いC1列を縦方向に探索し、76番の設備を探す処理を実行すると、図11のL192からL204が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L192からL204のうちL196とL200のC10のカラムに「水質(1)」が「過小」の記載があり、該当することが分かる。
まずL196の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「混合液送液管76」の情報および距離レジスタRの値「1」とともに一次記憶場所のメモリMに記憶する。
次に、L200の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、74番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で74番の設備での上流水質(1)過小に絞って探索を実施する。なお、L200の行のC7には記載がないため、以上でL200の処理を終了し、距離レジスタRの値を1つプラスして2とする。
C1列を縦方向に探索し、74番の設備を探す処理を実行すると、L179からL191が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L179からL191のうちL187のC10のカラムに「水質(1)」が「過小」の記載が見つかり、該当することが分かる。 L187の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、72番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で72番の設備での上流水質(1)過小に絞って探索を実施する。なお、L187の行のC7には記載がないため、以上でL187の処理を終了し、距離レジスタRの値を1つプラスして3とする。
C1列を縦方向に探索し、72番の設備を探す処理を実行すると、L166からL178が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L166からL178のうちL170とL174のC10のカラムに「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L170の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「混合液送液管72」の情報および距離レジスタRの値「3」とともに一次記憶場所のメモリMに記憶する。
次に、L174の行において原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、70番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で70番の設備での上流水質(1)過小に絞って探索を実施する。なお、L174の行のC7には記載がないため、以上でL174の行の処理を終了し、距離レジスタRの値を1つプラスして4とする。
C1列を縦方向に探索し、70番の設備を探す処理を実行すると、図10のL125からL165が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L129〜L133、L135、L140、L143、L152、L154〜L157、L159、L161のカラムに「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
この二液混合部では、上流の条件が2種類あり、それぞれの水質の大小によりL130〜L135とL148−L153をセットで、あるいはL136〜L141とL154〜L159をセットで用いる。いずれのセットを用いるかは、想定される上流側の濃度で決定する。ここでは、L130〜L135とL148−L153のセットを用いる場合について以下記載する。
L129〜L133の行について、原因のカラムC6とC7を参照する。いずれもC6には記載がないため、上流条件までは遡らない。C7には「混合後内面付着物発生」「上流1破損液漏れ」「上流1詰まり」「上流1凍結」「上流1内面付着物発生」との記載があるため、C2の「二液混合部70」の情報および距離レジスタRの値「4」とともに一次記憶場所のメモリMに記憶する。
L135の行において、原因のカラムC6とC7を参照する。C6には「上流1流量過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、上流1として60番の設備が存在することが分かる。そこで、次の段階で60番の設備での流量過小に絞って探索を実施する。
L143の行において、原因のカラムC6とC7を参照する。C6には「上流1水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L135の場合と同様に、上流1として60番の設備が存在することが分かる。そこで、次の段階で60番の設備での上流水質(1)過小に絞って探索を実施する。
L152の行において、原因のカラムC6とC7を参照する。C6には「上流2流量過大」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、上流2として68番の設備が存在することが分かる。そこで、次の段階で68番の設備での流量過大に絞って探索を実施する。
L161の行において、原因のカラムC6とC7を参照する。C6には「上流2水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L152の場合と同様に、C4およびC5を参照すると上流2として68番の設備が存在することが分かる。そこで、次の段階で68番の設備での上流水質(1)過小に絞って探索を実施する。
以上で70番の設備の処理を終了し、距離レジスタRの値を1つプラスして5とする。
C1列を縦方向に探索し、60番の設備を探す処理を実行すると、図8のL63からL75が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L67とL71の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L67の行において、原因のカラムC6とC7を参照する。C6には記載がないので、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「NaOH送液管60」の情報および距離レジスタRの値「5」とともに一次記憶場所のメモリMに記憶する。つぎに、L71の行における原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、58番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で58番の設備での上流水質(1)過小に絞って探索を実施する。
C1列を縦方向に探索し、68番の設備を探す処理を実行すると、図9のL112からL124が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L116とL120の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L116の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「原水送液管68」の情報および距離レジスタRの値「5」とともに一次記憶場所のメモリMに記憶する。
L120の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると66番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で66番の設備での上流水質(1)過小に絞って探索を実施する。なお、L75の行のC10には記載がないため、以上でL75の処理を終了し、距離レジスタRの値を1つプラスして6とする。
C1列を縦方向に探索し、58番の設備を探す処理を実行すると、図8のL50からL62が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L58の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L58の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると56番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で56番の設備での上流水質(1)過小に絞って探索を実施する。
C1列を縦方向に探索し、66番の設備を探す処理を実行すると、図9のL99からL111が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L107の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L107の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると64番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で64番の設備での上流水質(1)過小に絞って探索を実施する。なお、L107の行のC7には記載がないため、以上でL107の処理を終了し、距離レジスタRの値を1つプラスして7とする。
C1列を縦方向に探索し、56番の設備を探す処理を実行すると、図7のL37からL49が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L41とL45の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L41の行において、原因のカラムC6とC7を参照する。C7には「内面付着物発生」との記載があるため、C2の「NaOH送液管56」の情報および距離レジスタRの値「7」とともに一次記憶場所のメモリMに記憶する。次に、L45の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L45の行でC4およびC5を参照すると54番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で54番の設備での上流水質(1)過小に絞って探索を実施する。なお、L45の行のC7には記載がないため、以上でL45の処理を終了する。
C1列を縦方向に探索し、64番の設備を探す処理を実行すると、図9のL86からL98が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L90とL94の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L90の行において、原因のカラムC6とC7を参照する。C7には「内面付着物発生」との記載があるため、C2の「原水送液管64」の情報および距離レジスタRの値「7」とともに一次記憶場所のメモリMに記憶する。次いで、L94の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L94の行でC4およびC5を参照すると62番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で62番の設備での上流水質(1)過小に絞って探索を実施する。なお、L94の行のC5には記載がないため、以上でL94の処理を終了し、距離レジスタRの値を1つプラスして8とする。
C1列を縦方向に探索し、54番の設備を探す処理を実行すると、図7のL24からL36が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L32の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L32の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L32の行でC4およびC5を参照すると、52番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で52番の設備での上流水質(1)過小に絞って探索を実施する。なお、L32の行のC5には記載がないため、以上でL32の処理を終了する。
C1列を縦方向に探索し、62番の設備を探す処理を実行すると、図8のL76からL85が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L81の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L81の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L81の行でC4およびC5を参照すると、84番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で84番の設備での上流水質(1)過小に絞って探索を実施する。なお、L81の行のC5には記載がないため、以上でL81の処理を終了し、距離レジスタRの値を1つプラスして9とする。
C1列を縦方向に探索し、52番の設備を探す処理を実行すると、図7のL11からL23が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L15およびL19の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L15の行において、原因のカラムC6とC7を参照する。C7には「内面付着物発生」との記載があるため、C2の「NaOH送液管52」の情報および距離レジスタRの値「9」とともに一次記憶場所のメモリMに記憶する。次に、L19の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L19の行でC4およびC5を参照すると、50番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で50番の設備での上流水質(1)過小に絞って探索を実施する。なお、L19の行のC5には記載がないため、以上でL19の処理を終了する。
C1列を縦方向に探索し、84番の設備を探す処理を実行すると、図12のL234からL239が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L234の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L234の行において、原因のカラムC6とC7を参照する。C7には「供給水質(1)が薄過ぎ」との記載があるため、C2の「供給原水84」の情報および距離レジスタRの値「9」とともに一次記憶場所のメモリMに記憶する。以上でL234の処理を終了し、距離レジスタRの値を1つプラスして10とする。
C1列を縦方向に探索し、50番の設備を探す処理を実行すると、図7のL1からL10が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L6の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L6の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L6の行でC4およびC5を参照すると、86番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で86番の設備での上流水質(1)過小に絞って探索を実施する。以上でL6の処理を終了し、距離レジスタRの値を1つプラスして11とする。
C1列を縦方向に探索し、86番の設備を探す処理を実行すると、図12のL240からL245が該当することが分かる。ここで、下流への結果を示すC10〜C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L240の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
L240の行において、原因のカラムC6とC7を参照する。C7には「供給水質(1)が薄過ぎ」との記載があるため、C2の「NaOH液86」の情報および距離レジスタRの値「11」とともに一次記憶場所のメモリMに記憶する。
以上のように、原因のカラムC6の「該当設備の上流条件変化」が無くなるまで探索を続ける。これにより、漏れなく原因候補を列挙することが可能となる。
上述のように、結果、その原因、その原因を引き起こす上流側設備、の探索を根本原因推定エンジン38は知識データベース情報40を用いて実行する。その結果、一次記憶場所のメモリMに対象設備名称、原因、距離レジスタRの組合せが格納される。上述の結果として、例えば図13に示す形態の組合わせ情報が得られる。
図13の根本原因候補抽出事例によれば、距離レジスタRが0の混合液PH計測装置78に関して、標準液劣化、電極劣化、電極付着物発生の3要因が抽出され、距離レジスタRが1の混合液送液管76に関して内面付着物発生の1要因が抽出され、距離レジスタRが3の混合液送液管72に関して内面付着物発生の1要因が抽出され、距離レジスタRが4の二液混合部70に関して混合後内面付着物発生、上流1破損液漏れ、上流1詰まり、上流1凍結、上流1面付着物発生の5要因が抽出され、距離レジスタRが5のNaOH送液管60と原水送液管68に関してそれぞれ内面付着物発生の1要因が抽出され、距離レジスタRが7のNaOH送液管56と原水送液管64に関してそれぞれ内面付着物発生の1要因が抽出され、距離レジスタRが9のNaOH送液管52と供給原水84に関してそれぞれ内面付着物発生と供給水質(1)薄過ぎの1要因が抽出され、距離レジスタRが11の供給NaOH86に関して供給水質(1)薄過ぎの1要因が抽出されていることが理解できる。
本発明の処理後にはこれらの根本原因候補抽出事例が一覧表示される。これらが、混合液pH計測装置82で計測したpH値が異常への影響が大きい入力項目情報34として与えられた場合の根本原因の候補情報36である。表示手段18において異常の程度情報32とともに根本原因候補抽出事例が画面表示される。運転監視員は、これらの候補について、現場に赴むき対策するなど所定の確認復旧作業を行うことで、回復対策を短時間で漏れなく実施することが可能となる。
処理の手続きを上述のように言葉であらわすと長いが、現実的には上述の処理は計算機内で実行されるため、図13の結果は即座に表示される。図13の中に含まれる「供給原水84」は海水や河川水なども含んでおり、これらにおいてはそのpHが自然現象に起因して変化するのが一般的である。自然現象に起因して変化する影響因子はpHのみではなく、天気予報、気温、水温、降水量、水質、赤潮情報などがあるため、これらも入力として図5で示した設備ごとの異常発生時の上流および下流への影響データセット情報にあらかじめ組み込んでおくのが良い。
図13では、距離レジスタRの値が小さい順にリストを表示している。距離レジスタは、異常への影響が大きい入力項目情報34として与えられた設備を0として、そこからいくつの設備を遡ったかを示す値である。画面表示する際の優先順位を求める際には、異常への影響が最も大きい入力項目の設備の設備フロー上の位置から近い箇所の根本原因の候補に大きい重み係数を与え、その大きい値の順に表示するのがいずれの設備も同等に異常原因となる可能性がある場合には適している。
一方、設備によっては異常原因となる可能性に大きな違いがある場合がある。一般的に、可動部のある設備(ポンプ、ブロワ、モーター、電磁弁など)のほうが可動部のない設備(配管など)よりも異常の原因となる可能性が高いことが多い。そのような場合には可動部を有する設備に対する根本原因の候補に大きい重み係数を与え、その大きい値の順に表示するのが良い場合もある。これを実現するためには、図4で示したプラント内設備フロー情報に可動部を有するか有さないかを入力できるようにしておく、あるいは図5で示した設備ごとの異常発生時の上流および下流への影響データセット情報に可動部がある設備か否かを情報として持たせておく、のいずれでも良い。
さらに、対象とする物質の物性にもよるが、電極を用いたセンサのほうが単なる配管やポンプよりも繊細で、故障する可能性が高いこともある。そのような場合には過去の故障履歴に基づき、より頻度が高い根本原因の候補に大きい重み係数を与え、その大きい値の順に表示するのが良い場合もある。これを実現するためには、図4で示したプラント内設備フロー情報に故障可能性の大小を入力できるようにしておく、あるいは図5で示した設備ごとの異常発生時の上流および下流への影響データセット情報に故障可能性の大小を情報として持たせておく、のいずれでも良い。
さらに、上流および下流への影響の関係を計算で求めるプラントシミュレータ88を備える場合には、上述の手順でたどって絞り込んだ根本原因候補がどの程度確からしいか計算で求めて表示するようにしてもよい。
図14は、上記一連の処理を実行する根本原因候補推定エンジン38の処理内容を一般化して示したフローチャートである。
図14のフローチャートの最初の処理ステップS1では、異常への影響が大きい入力項目34に対し、知識データベース42の結果欄を参照し、該当部を探索する。次に処理ステップS2では、該当した行における原因の欄を参照する。次の処理ステップS3では、参照した該当行の原因欄に「該当設備自身の不具合」が記載されているかを確認し、記載されている場合には処理ステップS4でこれを一時記憶して処理ステップS5に移る。一時記憶の際には、距離レジスタRを逐次更新し、一次記憶場所のメモリMに記憶をしていく。記載されていない場合には直ちに処理ステップS5に移る。
処理ステップS5では、「上流条件の変化」の有無を確認し、ない場合には処理ステップS6に移り一連の処理を終了する。ある場合には処理ステップS7に移り、上流の設備の欄に移動する。そのうえで処理ステップS8では、「上流条件の変化」に対応する「結果」欄を探索する。その後、処理ステップS2に移り、次の条件のものについて繰り返し実行するこの繰り返し実行は、該当する要件がなくなるまで行われる。
上述の内容は、電子的に情報が伝達できれば実現できるため、現場の監視制御装置3の中になくとも、インターネットやクラウドなど通信ネットワーク経由で情報を処理できるサーバがあれば実現できる。このような形態をとる場合には、複数のプラントを対象とした異常検知が可能なため少人数での集中管理を実現することができる。さらに、それぞれのプラントにこのシステムを実現するソフトウェアを保有する必要がないため、プラント側の計算機パワーがほぼ不要となり、ソフトウェアの保守管理もきわめて容易となるメリットがある。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
また本発明が適用されるプラントに関して、実施例では水処理プラントのpH調整プラントに適用する事例を説明したが、これは他の上下水の水処理プラントへの適用が可能である。さらには製品(水などの流体を含む)が上流から下流に移動しながら適宜の処理を施されるプラント一般に適用が可能である。
10:pH調整プラント
12:監視制御装置
14:計測値データベース
16:異常予知エンジンへの入力項目情報
18:表示手段
20:プラント内設備フローデータベース
22:設備ごとの異常発生時の上流および下流への影響データセットデータベース
24:計測値
26:制御信号
28:監視信号
30:異常予知エンジン
32:異常の程度情報
34:異常への影響が大きい入力項目情報
36:根本原因の候補情報
38:根本原因候補推定エンジン
40:知識データベース情報
42:知識データベース
44:プラント内設備フロー情報
46:設備ごとの異常発生時の上流および下流への影響データセット情報
48:異常予知・回復支援システム
50:NaOH槽
52:NaOH送液管
54:NaOH薬注ポンプ
56:NaOH送液管
58:NaOH弁
60:NaOH送液管
62:原水槽
64:原水送液管
66:原水ポンプ
68:原水送液管
70:二液混合部
72:混合液送液管
74:混合液弁
76:混合液送液管
78:混合液pH計測装置
80:混合液流量計測装置
82:原水pH計測装置
84:供給原水
86:供給NaOH
88:プラントシミュレータ
90:シミュレーションで求めた上流および下流への影響データセット情報

Claims (14)

  1. 上流と下流の関係を有し複数の設備で構成されたプラントに適用され、該プラントの入力項目からプラントの異常を予知する異常予知エンジンを備えた異常予知・回復支援システムであって、
    前記入力項目の値に基づいて異常の程度を予知すると同時に、予知にあたって異常への影響が大きい入力項目を求める異常予知エンジンと、
    前記プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持する知識データベースと、
    前記異常予知エンジンが示す前記異常への影響が大きい入力項目に対して、前記知識データベースを参照し、異常の根本原因の候補として前記設備とその原因を求める根本原因候補推定エンジンと、
    異常の程度に加えて根本原因の候補を画面表示する表示手段と、
    を備え、
    前記知識データは、前記プラントを構成する複数の設備のそれぞれについて、異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶するとともに、原因の欄では異常事象を規定し、結果の欄では前記入力項目並びにその状態を規定しており、
    前記根本原因候補推定エンジンは、前記異常予知エンジンが与える異常への影響が大きい入力項目を用いて、前記知識データの結果の欄を参照し、与えられた入力項目並びにその状態に合致する設備と原因の欄に記載された異常事象を抽出し、異常の根本原因の前記候補とすることを特徴とする異常予知・回復支援システム。
  2. 請求項1に記載の異常予知・回復支援システムであって、
    前記第1のデータは複数の設備を種類分けしており、前記第2のデータは種類分けされた設備毎に構成され、前記知識データは上流から下流に至る順番の全ての設備について前記原因と結果の関係を含んで構成されていることを特徴とする異常予知・回復支援システム。
  3. 請求項2に記載の異常予知・回復支援システムであって、
    前記知識データベースは、行列のマトリクス状に構成され、行に前記上流と下流の設備の関係を配し、列に原因と結果の関係を配して構成されていることを特徴とする異常予知・回復支援システム。
  4. 請求項3に記載の異常予知・回復支援システムであって、
    前記根本原因候補推定エンジンは、前記異常への影響が大きい入力項目について前記知識データベースを参照し、知識データベースの結果から該当部を探索して原因の欄を参照し、参照した該当行の原因欄に記載の情報を一時記憶し、上流探索の有無に応じて上流の設備の欄に移動し、該当する要件がなくなるまで繰り返し実行することで、異常の根本原因の候補を抽出することを特徴とする異常予知・回復支援システム。
  5. 請求項2から請求項4のいずれか1項に記載の異常予知・回復支援システムであって、
    前記原因と結果の関係において、結果の内容には上流の他に下流の関係を含んでいることを特徴とする異常予知・回復支援システム。
  6. 請求項2から請求項5のいずれか1項に記載の異常予知・回復支援システムであって、
    前記原因と結果の関係において、結果の内容には上流から下流に至る流体系についての関係とともに、前記設備を駆動する駆動系についての関係を含んでいることを特徴とする異常予知・回復支援システム。
  7. 請求項2から請求項6のいずれか1項に記載の異常予知・回復支援システムであって、
    前記第2のデータは種類分けされた設備毎に標準的に構成されていることを特徴とする異常予知・回復支援システム。
  8. 請求項1から請求項7のいずれか1項に記載の異常予知・回復支援システムであって、
    前記入力項目として、天気予報、気温、水温、降水量、水質、赤潮情報など自然現象に起因する項目を少なくとも1つは含むことを特徴とする異常予知・回復支援システム。
  9. 請求項1から請求項8のいずれか1項に記載の異常予知・回復支援システムであって、
    前記根本原因候補推定エンジンにおいて、予知にあたって異常への影響が最も大きい入力項目の設備の設備フロー上の位置から近い箇所の根本原因の候補に大きい重み係数を与えることを特徴とする異常予知・回復支援システム。
  10. 請求項1から請求項9のいずれか1項に記載の異常予知・回復支援システムであって、
    前記根本原因候補推定エンジンにおいて、可動部を有する設備に対する根本原因の候補に大きい重み係数を与えることを特徴とする異常予知・回復支援システム。
  11. 請求項1から請求項10のいずれか1項に記載の異常予知・回復支援システムであって、
    前記根本原因候補推定エンジンにおいて、過去の故障履歴に基づき、より頻度が高い根本原因の候補に大きい重み係数を与えることを特徴とする異常予知・回復支援システム。
  12. 請求項1から請求項11のいずれか1項に記載の異常予知・回復支援システムが適用された水処理システム。
  13. 上流と下流の関係を有し複数の設備で構成されたプラントに適用される異常予知・回復支援方法であって、
    前記プラントからの入力項目の値に基づいて異常の程度を予知するとともに異常への影響が大きい入力項目を求め、
    前記プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持し、
    前記異常への影響が大きい入力項目に対して、前記知識データを参照し、異常の根本原因の候補として前記設備とその原因を求め、提示するとともに、
    前記知識データは、前記プラントを構成する複数の設備のそれぞれについて、異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶するとともに、原因の欄では異常事象を規定し、結果の欄では前記入力項目並びにその状態を規定しており、
    前記異常への影響が大きい入力項目を用いて、前記知識データの結果の欄を参照し、与えられた入力項目並びにその状態に合致する設備と原因の欄に記載された異常事象を抽出し、異常の根本原因の前記候補とすることを特徴とする異常予知・回復支援方法。
  14. 請求項13に記載の異常予知・回復支援方法であって、
    前記知識データは、行列のマトリクス状に構成され、行に前記上流と下流の設備の関係を配し、列に原因と結果の関係を配して構成され、
    前記異常への影響が大きい入力項目について前記知識データの結果から該当部を探索して原因の欄を参照し、参照した該当行の原因欄に記載の情報を一時記憶し、上流探索の有で、異常の根本原因の候補を抽出することを特徴とする異常予知・回復支援方法。
JP2017506132A 2015-03-16 2016-02-03 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム Active JP6368031B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015052010 2015-03-16
JP2015052010 2015-03-16
PCT/JP2016/053131 WO2016147726A1 (ja) 2015-03-16 2016-02-03 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム

Publications (2)

Publication Number Publication Date
JPWO2016147726A1 JPWO2016147726A1 (ja) 2017-09-21
JP6368031B2 true JP6368031B2 (ja) 2018-08-01

Family

ID=56919804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017506132A Active JP6368031B2 (ja) 2015-03-16 2016-02-03 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム

Country Status (2)

Country Link
JP (1) JP6368031B2 (ja)
WO (1) WO2016147726A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147726A1 (ja) * 2015-03-16 2016-09-22 株式会社日立製作所 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム
JP6758155B2 (ja) * 2016-11-04 2020-09-23 日立Geニュークリア・エナジー株式会社 プラントの診断システム及び診断方法
JP6943698B2 (ja) * 2017-09-11 2021-10-06 三菱パワー株式会社 プラント異常箇所推定システム
WO2019229916A1 (ja) * 2018-05-31 2019-12-05 三菱電機株式会社 状態監視装置、状態監視方法および状態監視プログラム
JP2020135498A (ja) * 2019-02-21 2020-08-31 三菱電機株式会社 計装制御システム
JP7163941B2 (ja) 2020-06-29 2022-11-01 横河電機株式会社 データ管理システム、データ管理方法、および、データ管理プログラム
CN114146354B (zh) * 2021-12-03 2022-09-16 辰安天泽智联技术有限公司 一种用于建筑消防给水系统的可视化监管方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217009A (ja) * 1982-06-11 1983-12-16 Hitachi Ltd 最適検査順序指示方式
JPS59170908A (ja) * 1983-03-17 1984-09-27 Hitachi Ltd Crt画面自動作成装置
JP2829241B2 (ja) * 1994-07-26 1998-11-25 三菱電機株式会社 プラント支援装置
JP3651693B2 (ja) * 1995-02-24 2005-05-25 株式会社東芝 プラント監視診断装置および方法
JP2000214924A (ja) * 1999-01-27 2000-08-04 Toshiba Corp プラント異常監視装置および異常発生箇所同定方法
JP2003167621A (ja) * 2001-11-29 2003-06-13 Toshiba Corp ガイダンス装置およびサーバ
JP4957423B2 (ja) * 2007-07-13 2012-06-20 東ソー株式会社 プラント保安管理システム
WO2011061793A1 (ja) * 2009-11-18 2011-05-26 株式会社日立製作所 プロセス信号の抽出システムおよび方法
JP5845944B2 (ja) * 2012-02-09 2016-01-20 新日鐵住金株式会社 製造プロセスの操業支援装置、方法及びプログラム
JP2014142752A (ja) * 2013-01-23 2014-08-07 Mitsubishi Electric Corp 上水道運用支援情報表示システム
WO2016147726A1 (ja) * 2015-03-16 2016-09-22 株式会社日立製作所 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム

Also Published As

Publication number Publication date
WO2016147726A1 (ja) 2016-09-22
JPWO2016147726A1 (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6368031B2 (ja) 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム
Amin et al. Risk-based fault detection and diagnosis for nonlinear and non-Gaussian process systems using R-vine copula
US11119451B2 (en) Apparatus, method, program, and recording medium
Wan et al. Literature review of data analytics for leak detection in water distribution networks: A focus on pressure and flow smart sensors
Natarajan et al. An ontology for distributed process supervision of large-scale chemical plants
JP2018152052A (ja) 信頼性監視のためのシステムおよび方法
US20230053175A1 (en) Process network with several plants
JP2019045905A (ja) 挙動予測システム及び挙動予測方法
Jasmani et al. Measurement selections for multicomponent gas path diagnostics using analytical approach and measurement subset concept
CN110337640B (zh) 用于问题警报聚合和识别次优行为的方法、系统和介质
Lindner et al. Data-driven fault detection with process topology for fault identification
Smaili et al. Design of fault monitoring framework for multi-energy systems using Signed Directed Graph
US10429828B2 (en) Plant simulation device and plant simulation method with first parameter adjustable at start and second parameter adjustable during operation of the plant
JP2020004087A (ja) プラント診断システムおよび方法
Ye et al. Data‐driven soft‐sensor modelling for air cooler system pH values based on a fast search pruned‐extreme learning machine
JP2015230576A (ja) プラント診断用データ作成システム
EP4057095B1 (en) Analysis apparatus, analysis method and program
Diedrich et al. Diagnosing Hybrid Cyber-Physical Systems using State-Space Models and Satisfiability Modulo Theory.
EP3048613B1 (en) Method for analysis of plant disturbance propagations
CN115485632A (zh) 工业工厂的上下文数据建模和动态过程干预
US20210389756A1 (en) Dynamic Online Process Flow Diagraming
Arogeti et al. Mode tracking and FDI of hybrid systems
Ma et al. State-of-the-Art Review: The Use of Digital Twins to Support Artificial Intelligence-Guided Predictive Maintenance
Okhuijsen Combining the Process and Maintenance Digital Twin to Create an Autonomous Production Platform
Wang et al. A Fault Diagnosis Strategy based on Qualitative Trend Analysis Integrating Andrews Plot for Industrial Processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6368031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150