WO2016147726A1 - 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム - Google Patents

異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム Download PDF

Info

Publication number
WO2016147726A1
WO2016147726A1 PCT/JP2016/053131 JP2016053131W WO2016147726A1 WO 2016147726 A1 WO2016147726 A1 WO 2016147726A1 JP 2016053131 W JP2016053131 W JP 2016053131W WO 2016147726 A1 WO2016147726 A1 WO 2016147726A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
upstream
cause
recovery support
support system
Prior art date
Application number
PCT/JP2016/053131
Other languages
English (en)
French (fr)
Inventor
晃治 陰山
剛 武本
田所 秀之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017506132A priority Critical patent/JP6368031B2/ja
Publication of WO2016147726A1 publication Critical patent/WO2016147726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to an abnormality prediction / recovery support system abnormality prediction / recovery support method and a water treatment system that diagnoses abnormality prediction of a plant and presents a recovery support target and a recovery support method as a result.
  • Patent Document 1 performs at least one of behavior prediction and statistical processing / analysis of process data output from a target plant, thereby obtaining at least one information of the prediction result and the result of statistical processing / analysis of the target plant. It is intended to provide a guidance device and a server that are provided as support information for an operator and that allow only a less skilled operator to operate the target plant without any problem.
  • another object of the present invention is to provide a logical expression created using process data and a predetermined logical operator in addition to at least one of behavior prediction and statistical processing / analysis of process data output from the target plant.
  • Patent Document 1 uses a root cause database in which process data, time data, a logical expression, a truth value of a logical expression, and identification information of components of a target plant are stored correspondingly.
  • the root cause analysis unit retrieves the time data using the retrieval key, and the process data corresponding to the time data when the truth value of the logical expression changes is read.
  • Patent Document 1 searches for the root cause as a process that has changed at the same time (or the latest past) in time.
  • the change point immediately before the time when the guidance information occurred is not always the root cause, and the root cause may have occurred in the past.
  • physical causes such as the influence of the upstream treated water quality is affected by the downstream water quality measurement value, or the upstream pressure measurement value is affected by the downstream clogging. The relationship is not considered.
  • the present invention has been made in view of these problems.
  • the problem to be solved by the present invention is that an abnormality prediction / recovery support system capable of estimating a location that is assumed to be a root cause immediately after an abnormality prediction in a plant based on a causal relationship and capable of implementing measures in a short time.
  • An object is to provide an abnormality prediction / recovery support method and a water treatment system.
  • an abnormality prediction / recovery provided with an abnormality prediction engine that is applied to a plant having a relationship between upstream and downstream and configured by a plurality of facilities and that predicts an abnormality of the plant from an input item of the plant.
  • a support system that predicts the degree of abnormality based on the value of an input item, and at the same time, predicts an input item that has a large influence on the abnormality in the prediction, and upstream and downstream of a plurality of facilities constituting the plant
  • Knowledge data constructed by combining the first data storing the relationship and the second data stored as the relationship between the cause and the result of the relationship between the upstream and downstream influences at the time of occurrence of abnormality for each facility in the plant.
  • a plant simulator is provided for calculating the relationship between the upstream and downstream influences when an abnormality occurs for each facility.
  • the present invention also relates to an abnormality prediction / recovery support method applied to a plant having a plurality of facilities having an upstream and downstream relationship, and predicts the degree of abnormality based on the value of an input item from the plant.
  • the input items having a large influence on the abnormality are obtained
  • the first data storing the upstream and downstream relationships for the plurality of facilities constituting the plant, and the upstream and downstream at the time of occurrence of the abnormality for each facility in the plant
  • Holds the knowledge data constructed by combining the second data that stores the relationship of the influence as the relationship between the cause and the result refers to the knowledge data for the input item having a large influence on the abnormality, and the root cause of the abnormality
  • the equipment and its cause are obtained and presented as candidates.
  • the present invention when an abnormality is predicted in a plant, it is possible to provide information related to a candidate for the root cause in a short time, and at the same time, it can be easily deployed horizontally and used for plants having different equipment flows. It becomes possible.
  • the figure which shows the example of whole structure at the time of applying the abnormality prediction and recovery assistance system which concerns on one Example of this invention to a pH adjustment plant The figure which shows the apparatus structural example of the pH adjustment plant shown in FIG.
  • generation of 2/6 part among the matrix of the whole system divided into six The figure which shows the example of a production
  • the plant targeted by the abnormality prediction / recovery support system of the present invention is not particularly limited as long as the operation state is given as numerical data.
  • an embodiment of the present invention when a plant for adjusting pH is targeted will be described with reference to the drawings.
  • FIG. 1 is a diagram showing an example of the overall configuration when an abnormality prediction / recovery support system according to an embodiment of the present invention is applied to a pH adjustment plant.
  • the overall configuration includes an abnormality prediction / recovery support system 48, a pH adjustment plant 10, and a monitoring control device 12.
  • the monitoring control device 12 has a function of collecting and monitoring operation data of each device constituting the pH adjustment plant 10.
  • the abnormality prediction / recovery support system 48 and the monitoring control device 3 are connected, but may be connected via a communication network such as the Internet or the cloud.
  • the monitoring control device 12 collects the measured values 24 such as the flow rate, pressure, temperature, water quality and the like from the pH adjustment plant 10 and inputs them into the measured value database 14 of the abnormality prediction / recovery support system 48 as the monitoring signal 28.
  • the abnormality prediction / recovery support system 48 includes a measurement value database 14, an abnormality prediction engine 30 for determining the degree of abnormality based on the input item information 16 to the abnormality prediction engine stored in the measurement value database 14, and facility flow information in the plant.
  • In-plant facility flow database 20 upstream and downstream impact data set database 22 when an abnormality occurs for each facility, and upstream and downstream impact data set database 22 when an abnormality occurs for each facility
  • the knowledge database 42 constructed by automatically combining the facility flow information 44 in the plant and the upstream and downstream influence data set information 46 at the time of occurrence of abnormality for each facility, the knowledge database information 40 and the input having a large influence on the abnormality Root cause candidate for obtaining root cause candidate information 36 based on item information 34 Estimated engine 38, a display unit 18 for displaying the candidate information 36 degree information 32 and root cause of the abnormality on the screen, comprising a.
  • the abnormality prediction engine 30, the knowledge database 42, and the root cause candidate estimation engine 38 are realized by software, and a program corresponding to the processing content described later is stored in a ROM or the like. It is realized by reading from the apparatus and executing by a processor such as a CPU. The contents of these calculation means will be described later.
  • FIG. 2 is a diagram showing a device configuration example of the pH adjustment plant 10 shown in FIG. FIG. 2 shows only the main part of the pH adjustment plant 10.
  • the raw raw water tank 62 of the pH adjusting plant 10 is supplied with raw raw water 84 from the outside, and the NaOH tank 50 is supplied with supplied NaOH 86.
  • a predetermined amount of NaOH solution in the NaOH tank 50 is mixed to adjust the pH value.
  • the raw water in the raw water tank 62 is measured for pH value by the raw water pH measuring device 82. Thereafter, the raw water is fed by the raw water pump 66 through the raw water feed pipe 64, and fed to the two-liquid mixing unit 70 at the subsequent stage of the raw water feed pipe 68.
  • the NaOH solution is fed by the NaOH chemical injection pump 54 through the NaOH feeding pipe 52, and is given to the two-liquid mixing unit 70 through the NaOH feeding pipe 56, the NaOH valve 58, and the NaOH feeding pipe 60.
  • the raw water and the NaOH solution are mixed and sent to the mixed solution feeding pipe 72 and sent to the mixed solution feeding pipe 76 via the mixed solution valve 74.
  • the water quality and flow rate of the liquid mixture in the liquid mixture feeding pipe 76 are measured by the liquid mixture pH measuring device 78 and the liquid mixture flow rate measuring device 80.
  • each measuring instrument (raw water pH measurement device 82, mixed solution pH measurement device 78, mixed solution flow rate measurement device 80) shown in FIG. This can be used as the monitoring signal 28 to enable prediction of abnormality and estimation of the root cause.
  • the abnormality prediction engine 30 included in the abnormality prediction / recovery support system 48 will be described.
  • Various methods have been proposed for predicting an abnormality based on various measurement values. Examples of statistical methods include local subspace method, Mahalanobis Taguchi method, invariant analysis method, vector quantization clustering, similarity-based monitoring method, adaptive resonance theory, and the like.
  • any of the above-described method or the improvement method may be used as long as the abnormality degree information 32 and the input item information 34 having a large influence on the abnormality are output.
  • the conventional abnormality prediction engine can do this, but the cause at this time is not the malfunction of the mixed solution pH measuring device 78 but may be a malfunction of other parts of the plant. It is an object of the present invention to present this defect, that is, the root cause, in as short a time as possible without any omissions.
  • the knowledge database 42 and the root cause candidate estimation engine 38 are used.
  • the knowledge database 42 is provided with plant facility flow information 44 from the plant facility flow database 20.
  • This in-plant facility flow information 44 is electronic information describing in what order each facility is connected.
  • FIG. 3 shows a conceptual diagram that is the basis of the plant facility flow information 44 corresponding to the equipment configuration diagram of the pH adjustment plant shown in FIG.
  • equipment configuration diagram in addition to equipment such as pumps, valves, tanks, and membrane modules, piping is also expressed as one facility for each connection.
  • the equipment and piping that make up the NaOH system of the pH adjustment plant 10 are connected in the order of 86-50-52-54-56-58-60, and the equipment that makes up the raw water system of the pH adjustment plant 10
  • the piping is connected in the order of 84-62 (-82) -64-66-68, and the equipment and piping that make up the mixed system of the pH adjustment plant 10 are connected in the order of 70-72-74-76 (-78) -89.
  • the storage format of the in-plant facility flow information 44 in the database may be a text format, a csv format, or an Excel description format. An example of the description of the plant facility flow information 44 is shown in FIG.
  • the devices and pipes constituting the pH adjustment plant 10 are defined and stored by the equipment number 101, equipment name 102, equipment type 103, and connection equipment number 104.
  • the upstream equipment and piping are specified as 104a and 104b.
  • the equipment designation 102 is a NaOH tank
  • the equipment type 103 is classified as a tank
  • 86 is arranged on the upstream side 104a as the connection equipment number 104. Means.
  • the equipment type 101 is 70
  • the equipment name 102 is a two-component mixing part
  • the equipment type 103 is classified as a merge part
  • 60 is arranged as the connection equipment number 104 on the upstream side 104a, and on the upstream side. This means that 68 is arranged.
  • the connection relationship in FIG. 2 is expressed and stored.
  • upstream and downstream influence data set information 46 when an abnormality occurs for each facility from the upstream and downstream influence data set database 22 when the abnormality occurs for each facility.
  • the upstream and downstream influence data set information 46 at the time of occurrence of an abnormality for each facility is standard for each of equipment (pumps, valves, tanks, membrane modules, etc.) and piping constituting the pH adjustment plant 10. It is a matrix of causal relationships that have been created.
  • the influence data set information 46 shown in FIG. 5 shows the case where the equipment is the pump (46P), the pipe (46C), and the tank (46T) in order from the top, but as the information items to be held, the equipment type 103, Cause 201 and result 202. Further, as detailed items of the cause 201, the upstream condition change 201a of the relevant equipment, the malfunction of the relevant equipment itself, and the operating condition change 201b are cited. Furthermore, as a specific example of the upstream condition change 201a of the corresponding equipment, a plurality of types of states such as an excessive flow rate, an excessive flow rate, an excessive water quality, and an insufficient water quality in the upstream are defined according to the level.
  • the result 202 which is the other of the causal relations is defined by being divided into a fluid system 202a and an electric system 202b. Further, the detailed definition contents of the fluid system 202a and the electrical system 202b are described by the upstream 1 side pressure, the upstream 2 side pressure, the water quality by level, and the flow rate state (over, under, no influence, no existence, etc.) in the fluid system 202a.
  • the electric system 202b the state of water quality, current measurement value, flow rate measurement value (over, under, no influence, no existence, etc.) by upstream and downstream levels is described.
  • the state of these vertical axis items and horizontal axis items is defined so as to fill the matrix.
  • the result when pump clogging is the cause, the result may be that the upstream system has an excessive pressure, the downstream flow rate is excessive, and the electrical system has an excessive current measurement value.
  • the result when pipe clogging is the cause, the result may be an upstream one overpressure and a downstream underflow rate for the fluid system.
  • upstream and downstream influence data set information 46 is given in advance when an abnormality occurs for each facility.
  • the relationship between the upstream and downstream influences is obtained by calculation.
  • a plant simulator 88 may be provided, and upstream and downstream influence data set information 90 obtained by simulation may be generated and used as upstream and downstream influence data set information 46 when an abnormality occurs for each facility. This makes it possible to easily construct an influence data set.
  • the knowledge database 42 is based on the in-plant facility flow information 44 (FIG. 4) and the upstream and downstream influence data set information 46 (FIG. 5) when an abnormality occurs for each facility.
  • FIGS. 7 and 7 Examples of matrix generation of the entire system for the pH adjustment plant 10 are shown in FIGS. Since the scale of the matrix is large, it is divided into six parts and shown in FIGS. 7 to 12 are all described in the same way of description, and FIG. 7 will be described as a representative example.
  • FIG. 7 On the vertical axis side of these drawings, facilities are described according to the connection order of the devices and pipes in FIG. In the case of FIG. 7, portions up to 50-52-54-56 are described in the equipment and piping constituting the NaOH system of the pH adjustment plant 10 of FIG. Similarly, in the following drawings, the facilities are described according to the connection order.
  • FIGS. 4 and 5 On the horizontal axis, all items used in FIGS. 4 and 5 are described. These mean that the items 101, 102, 103, and 104 (104a and 104b) in FIG. 4 and the items 201 (201a and 201b) and 202 (202a and 202b) in FIG. 5 are covered.
  • FIGS. 4 and 5 show matrix numbers for explanation. Row numbers L1 to L245 are shown at the left end of the matrix, and column numbers C1 to C19 are shown at the upper end. Each facility is described in the row direction, and the items in FIGS. 4 and 5 are adopted and described in the row direction. 4 and 5 are displayed only in FIG. 7, column number C1 is item 101, column number C2 is item 102, column number C3 is item 103, column numbers C4 and C5 are item 104, column Numbers C6 and C7 correspond to item 201, column numbers C8 to C13 correspond to item 202a, and column numbers C14 to C19 correspond to item 202b, respectively.
  • the matrix of the entire system constructed in this way is referred to as knowledge database information 40 in the present invention.
  • the knowledge database information 40 thus constructed is given to the root cause estimation engine 38.
  • the root cause estimation engine 38 has input item information 34 having a great influence on the abnormality as another input.
  • the root cause estimation engine 38 includes a memory M as a primary storage location and a distance register R.
  • the mixed solution pH value measured by the mixed solution pH measuring device 82 in FIG. 2 is given as “small” as the input item information 34 having a large influence on the abnormality.
  • the pH is set to correspond to the water quality (1).
  • the root cause estimation engine 38 clears the memory M in the primary storage location and sets the value of the distance register R to zero.
  • the root cause estimation engine 38 refers to the knowledge database information 40 shown in FIGS. 7 to 12 and searches the result columns C8 to C19 in the horizontal direction for the column with the measured value of the water quality (1). As a result, it can be seen that C15 corresponds to the “measured value of water quality (1)”.
  • the cause columns C6 and C7 are referred to in the L196 row. Since there is no description in C6, it does not go back to upstream conditions. Since there is a description of “inner surface deposit generation” in C7, it is stored in the memory M of the primary storage location together with the information of “mixed liquid feeding pipe 76” of C2 and the value “1” of the distance register R.
  • L179 to L191 correspond.
  • a search is made for a location where “water quality (1)” is “underly” from the C10 to C13 columns indicating the downstream results.
  • the description of “water quality (1)” is “underly” is found in the column C10 of L187 among L179 to L191.
  • In the row of L187 refer to the cause columns C6 and C7. Since C6 has a description of “upstream water quality (1) too small”, one upstream facility is searched. Referring to C4 and C5, it can be seen that the equipment No. 72 exists on the upstream side.
  • L130 to L135 and L148-L153 are used as a set, or L136 to L141 and L154 to L159 are used as a set. Which set is used is determined by the assumed upstream concentration.
  • L130 to L135 and L148-L153 is used will be described below.
  • C7 has the following descriptions: “Fixed inner surface deposit after mixing”, “Leakage of upstream 1 damaged liquid”, “Upstream 1 clogged”, “Upstream 1 freezing”, “Upstream 1 inner surface deposit generated”. 70 "and the value" 4 "of the distance register R are stored in the memory M of the primary storage location.
  • the cause columns C6 and C7 are referred to in the line L19. Since C6 has a description of “upstream water quality (1) too small”, one upstream facility is searched. Referring to C4 and C5 in the row of L19, it can be seen that there is one facility No. 50 on the upstream side. Therefore, in the next stage, the upstream water quality at the facility No. 50 (1) The search is carried out with a narrow focus. In addition, since there is no description in C5 of the line of L19, the process of L19 is complete
  • C7 has a description that “the quality of the supplied water (1) is too thin”, it is stored in the memory M of the primary storage location together with the information of “NaOH solution 86” of C2 and the value “11” of the distance register R.
  • the search is continued until the “upstream condition change of the corresponding equipment” in the cause column C6 disappears. Thereby, it is possible to enumerate cause candidates without omission.
  • the root cause estimation engine 38 uses the knowledge database information 40 to search for the result, the cause, and the upstream equipment that causes the cause.
  • the combination of the target equipment name, cause, and distance register R is stored in the memory M of the primary storage location.
  • combination information in the form shown in FIG. 13 is obtained.
  • the mixing unit 70 five factors of occurrence of inner surface deposit after mixing, leakage of the upstream 1 damaged liquid, upstream 1 clogging, upstream 1 freezing, upstream 1 surface deposit generation are extracted, and the distance register R is 5 with the NaOH liquid feeding pipe 60.
  • One factor of inner surface deposit generation is extracted for each of the raw water feed pipe 68, and one factor of inner face deposit generation is extracted for each of the NaOH feed pipe 56 and the raw water feed pipe 64 of which the distance register R is 7, and the distance register
  • One factor of inner surface deposit generation and supply water quality (1) is too thin for each of the NaOH feed pipe 52 and the feed raw water 84 with a R of 9 is extracted, and the supply water quality (1) with respect to the supply NaOH 86 with a distance register R of 11 is extracted. It can be understood that one cause is extracted.
  • these root cause candidate extraction cases are displayed in a list. These are the root cause candidate information 36 when the pH value measured by the mixed solution pH measuring device 82 is given as the input item information 34 having a large influence on the abnormality.
  • the root cause candidate extraction case is displayed on the screen together with the abnormality degree information 32 on the display means 18.
  • the operation supervisor can carry out recovery measures in a short time and without omission by performing predetermined confirmation and recovery work such as taking a countermeasure against burning on these candidates.
  • the processing procedure is expressed in words as described above, but in reality, since the above processing is executed in the computer, the result of FIG. 13 is displayed immediately.
  • the “source raw water 84” included in FIG. 13 also includes seawater, river water, and the like, and the pH of these generally changes due to natural phenomena. Influencing factors that change due to natural phenomena are not only pH, but also weather forecast, temperature, water temperature, precipitation, water quality, red tide information, etc., and these are also input as the occurrence of abnormalities for each facility shown in FIG. It is good to incorporate in advance into upstream and downstream influence data set information.
  • the list is displayed in ascending order of the value of the distance register R.
  • the distance register is a value indicating the number of facilities that have been traced back from the equipment given as the input item information 34 having a great influence on the abnormality as 0.
  • sensors using electrodes are more delicate than simple pipes and pumps, and may fail.
  • FIG. 14 is a flowchart showing a generalized process content of the root cause candidate estimation engine 38 that executes the above series of processes.
  • the input field 34 having a large influence on the abnormality is referred to the result column of the knowledge database 42 to search for the corresponding part.
  • the cause column in the corresponding line is referred to.
  • the distance register R is sequentially updated and stored in the memory M of the primary storage location. If not, the process immediately proceeds to processing step S5.
  • process step S5 it is confirmed whether or not there is a “change in upstream condition”. If there is no change, the process proceeds to process step S6 and the series of processes is terminated. If there is, the process moves to processing step S7 and moves to the upstream equipment column. Then, in process step S8, a “result” column corresponding to “change in upstream condition” is searched. Thereafter, the process proceeds to the processing step S2, and this repeated execution of repeatedly executing for the next condition is performed until there is no corresponding requirement.
  • the above-mentioned contents can be realized if information can be transmitted electronically, so that it can be realized if there is a server that can process information via a communication network such as the Internet or the cloud even if it is not in the on-site monitoring and control device 3.
  • a communication network such as the Internet or the cloud even if it is not in the on-site monitoring and control device 3.
  • a communication network such as the Internet or the cloud even if it is not in the on-site monitoring and control device 3.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention can be applied to general plants where products (including fluids such as water) are subjected to appropriate treatment while moving from upstream to downstream.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

プラント内の異常予知直後に根本原因と想定される箇所を推定し、短時間で対策を実施できるよう支援する。プラント(10)に適用される異常予知・回復支援システム(48)は、入力項目の値に基づいて異常の程度を予知すると同時に、予知にあたって異常への影響が大きい入力項目を求める異常予知エンジン(30)と、プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持する知識データベース(42)と、異常予知エンジン(30)が示す異常への影響が大きい入力項目に対して知識データベース(42)を参照し、異常の根本原因の候補として設備とその原因を求める根本原因候補推定エンジン(38)と、異常の程度と根本原因の候補を画面に表示する表示手段(18)を備える。

Description

異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム
 本発明は、プラントの異常予知を診断し、その結果として回復支援対象や回復支援方法を提示する異常予知・回復支援システム異常予知・回復支援方法及び水処理システムに関する。
 現在、各種の産業分野ではさまざまなプラントが稼動して各種の製品を生産している。
プラントが異常となって停止すると、製品の製造が停止するとともに修理費用が発生し、大きな損失が発生する可能性がある。異常や故障の発生は完全に0とすることは現実的に難しいため、運転データに基づいてできるだけ早い時期に異常を予知し、その根本原因をできるだけ短時間で明示できる技術が必要となっている。
 このようなニーズに関連し、特許文献1に記載の技術が知られている。特許文献1は、対象プラントから出力されるプロセスデータの挙動予測および統計処理・解析のうち少なくとも一方を行うことにより、当該予測結果および統計処理・解析の結果のうち少なくとも一方の情報を対象プラントの運転員の支援情報として提供し、熟練度の低い運転員だけであっても、対象プラントの運転を支障なく行うことを可能とするガイダンス装置およびサーバを提供することを目的としたものである。
 さらに、この発明の他の目的は、対象プラントから出力されるプロセスデータの挙動予測および統計処理・解析のうち少なくとも一方に加え、プロセスデータと所定の論理演算子とを用いて作成される論理式の真理値の変化からガイダンス情報の発生した根本原因を特定し、予測結果と根本原因の特定結果に基づいて、当該予測結果を回避する回避方策を抽出することにより、予め定められたガイダンス情報の他に、様々な支援情報を提供することを可能とするガイダンス装置およびサーバを提供することにあるとしている。
 この課題の解決のために特許文献1においては、プロセスデータ、時刻データ、論理式、論理式の真理値、および対象プラントの構成要素の識別情報が対応して記憶されている根本原因データベースを用いており、根本原因解析部により時刻データを検索キーとして検索され、論理式の真理値が変化した時刻データに対応したプロセスデータが読み出される。
 すなわち、特許文献1の手法は、根本原因は時間的に同時(あるいは直近の過去)に変化したプロセスにあるとして探索するものである。
特開2003-167621号公報
 しかしながら、例えば水処理プラントなど時定数が大きいシステムにおいては、ガイダンス情報が発生した時刻の直前の変化箇所が根本原因であるとは限らず、根本原因がずっと過去に発生していた可能性もある。そのような場合であっても、それぞれの設備ごとでは上流の処理水質の影響を下流の水質計測値が受ける、あるいは下流の詰まりの影響を上流の圧力計測値が受ける、などの物理的な因果関係については考慮されていない。
 水処理プラントの場合、ポンプ、弁、槽、膜モジュールなどそれぞれの設備は常に同じように繋がっているのではなく、設備によってその接続や個数は異なる。したがって、プラントごとにこれらを組合わせた上で因果関係のルールを設計者がその都度準備して組み込むことは多大な労力と時間を必要とし、因果関係の列挙にモレが生ずることも有り得る。
 本発明はこれらの課題に鑑みて為されたものである。本発明が解決する課題は、プラント内の異常予知直後に根本原因と想定される箇所を因果関係に基づいて推定し、短時間で対策を実施できるよう支援することができる異常予知・回復支援システム異常予知・回復支援方法及び水処理システムを提供することにある。
 以上のことから本発明においては、上流と下流の関係を有し複数の設備で構成されたプラントに適用され、プラントの入力項目からプラントの異常を予知する異常予知エンジンを備えた異常予知・回復支援システムであって、入力項目の値に基づいて異常の程度を予知すると同時に、予知にあたって異常への影響が大きい入力項目を求める異常予知エンジンと、プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持する知識データベースと、異常予知エンジンが示す異常への影響が大きい入力項目に対して、知識データベースを参照し、異常の根本原因の候補として設備とその原因を求める根本原因候補推定エンジンと、異常の程度に加えて根本原因の候補を画面表示する表示手段を備えたことを特徴とする。また、設備ごとに異常発生時の上流および下流への影響の関係を計算で求めるプラントシミュレータを備えたことを特徴とする。
 また本発明は、上流と下流の関係を有し複数の設備で構成されたプラントに適用される異常予知・回復支援方法であって、プラントからの入力項目の値に基づいて異常の程度を予知するとともに異常への影響が大きい入力項目を求め、プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持し、異常への影響が大きい入力項目に対して、知識データを参照し、異常の根本原因の候補として設備とその原因を求め、提示する。
 本発明によれば、プラントにおいて異常を予知した際にその根本原因の候補に関する情報を短時間で提供することができると同時に、異なる設備フローのプラントに対しても容易に横展開して利用することが可能となる。
本発明の一実施例に係る異常予知・回復支援システムをpH調整プラントに適用した際の全体構成例を示す図。 図1に示すpH調整プラントの機器構成例を示す図。 図2に示すpH調整プラントの機器構成図をプラント内設備フロー情報に転換する際に基となる概念を示す図。 プラント内設備フロー情報の記述例を示す図。 設備ごとの異常発生時の上流および下流への影響データセット情報46の記述例を示す図。 上流および下流への影響の関係を計算で求めるプラントシミュレータ88を示す図。 6分割されたシステム全体のマトリクスのうち1/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち2/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち3/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち4/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち5/6部分の生成例を示す図。 6分割されたシステム全体のマトリクスのうち6/6部分の生成例を示す図。 抽出された根本原因の候補情報の例を示す図。 根本原因候補推定エンジン38の処理内容を一般化して示したフローチャート。
 本発明の異常予知・回復支援システムが対象とするプラントは、運転状態が数値データとして与えられるプラントであればとくに制限はない。以下では具体的な例のひとつとして、pHを調整するプラントを対象とした場合の本発明の実施形態について図面を用いて説明する。
 図1は、本発明の一実施例に係る異常予知・回復支援システムをpH調整プラントに適用した際の全体構成例を示す図である。この全体構成には、異常予知・回復支援システム48、pH調整プラント10、及び監視制御装置12が含まれる。監視制御装置12は、pH調整プラント10を構成する各機器の運転データを収集して監視する機能を有する。異常予知・回復支援システム48と監視制御装置3は接続されているが、インターネットやクラウドなど通信ネットワークを介して接続される構成であってもよい。
 監視制御装置12は、pH調整プラント10から流量、圧力、温度、水質などの計測値24を収集し、監視信号28として異常予知・回復支援システム48の計測値データベース14に入力する。
 異常予知・回復支援システム48は、計測値データベース14、計測値データベース14に格納される異常予知エンジンへの入力項目情報16に基づいて異常の程度を求める異常予知エンジン30、プラント内の設備フロー情報を記憶しているプラント内設備フローデータベース20、設備ごとの異常発生時の上流および下流への影響データセット情報を記憶している設備ごとの異常発生時の上流および下流への影響データセットデータベース22、プラント内設備フロー情報44と設備ごとの異常発生時の上流および下流への影響データセット情報46を自動的に組み合わせて構築される知識データベース42、知識データベース情報40と異常への影響が大きい入力項目情報34に基づいて根本原因の候補情報36を求める根本原因候補推定エンジン38、異常の程度情報32と根本原因の候補情報36を画面に表示する表示手段18、を備える。
 異常予知・回復支援システム48を構成するこれらの要素のうち、異常予知エンジン30、知識データベース42および根本原因候補推定エンジン38はソフトウェアにより実現され、後述する処理内容に対応するプログラムをROM等の記憶装置から読み出し、CPU等のプロセッサが実行することにより実現される。これらの計算手段の中身については後述する。
 図2は、図1に示すpH調整プラント10の機器構成例を示す図である。図2ではpH調整プラント10として、その主要部分のみを示している。
 pH調整プラント10の原水槽62には、供給原水84が外部から与えられ、NaOH槽50には供給NaOH86が与えられている。pH調整プラント10では、NaOH槽50に入っているNaOH溶液を所定量混合してpHの値が調整される。原水槽62の中の原水は、原水pH計測装置82によってpHの値を測定される。その後原水は原水送液管64を通じて原水ポンプ66により送液され、原水送液管68の後段で二液混合部70に与えられる。
 一方、NaOH溶液はNaOH送液管52を通じてNaOH薬注ポンプ54により送液され、NaOH送液管56、NaOH弁58、NaOH送液管60を経由して二液混合部70に与えられる。二液混合部70では原水とNaOH溶液が混合されて混合液送液管72に送られ、混合液弁74を介して混合液送液管76に送られる。混合液送液管76内の混合液は、混合液pH計測装置78と混合液流量計測装置80によって水質と流量が計測される。
 ここで示した各計測器(原水pH計測装置82、混合液pH計測装置78、混合液流量計測装置80)からの計測値24を図1の監視制御装置12が受け取り、監視制御装置12内ではこれを監視信号28として使用して、異常の予知や根本原因の推定を可能とする。
 ここで、異常予知・回復支援システム48に含まれる異常予知エンジン30について説明する。各種の計測値に基づいて異常を予知する方法には様々な手法が提案されている。例えば統計的な手法であれば、局所部分空間法、マハラノビスタグチ法、インバリアント分析法、ベクトル量子化クラスタリング、類似度ベースモニタリング法、適応共鳴理論、などがある。本発明における異常予知エンジン30としては、異常の程度情報32と異常への影響が大きい入力項目情報34が出力されるのであれば、上述の手法あるいは改善手法のいずれを用いても良い。
 この実施例1では一例として何らかの異常が予知され、異常への影響が大きい入力項目情報34として混合液pH計測装置78で計測されたpH値が低かったものと仮定する。従来の異常予知エンジンで可能なのはここまでであるが、このときの原因は混合液pH計測装置78の不具合ではなく、プラントのほかの箇所の不具合である可能性もある。この不具合すなわち根本原因をできるだけ短時間に漏れなく優先順位を付けて提示するのが本発明の目的であり、そのために知識データベース42と根本原因候補推定エンジン38を用いる。
 知識データベース42には、プラント内設備フローデータベース20からプラント内設備フロー情報44が与えられる。このプラント内設備フロー情報44は、それぞれの設備がどのような順番で繋がっているかを記述した電子情報である。
 図2に示すpH調整プラントの機器構成図に対応するプラント内設備フロー情報44の基となる概念図を図3に示す。この機器構成図では、ポンプ、弁、槽、膜モジュールなどの機器に加え、配管もそれぞれの接続ごとに1つの設備として表現する。
 この事例によれば、pH調整プラント10のNaOH系統を構成する機器や配管が86-50-52-54-56-58-60の順に接続され、pH調整プラント10の原水系統を構成する機器や配管が84-62(-82)-64-66-68の順に接続され、pH調整プラント10の混合系統を構成する機器や配管が70-72-74-76(-78)-89の順に接続されていることが理解できる。
 係るプラント内設備フロー情報44のデータベース内における記憶形式は、テキスト形式やcsv形式、あるいはエクセルの記述形式のいずれであっても良い。プラント内設備フロー情報44の記載の一例を図4に示す。
 図4の記憶形式によれば、pH調整プラント10を構成する機器や配管が、設備番号101、設備呼称102、設備種類103、接続設備番号104により定義され記憶されている。なお図4の接続設備番号104の記載例では、上流側の機器や配管を104a、104bとして特定している。図示の例では例えば、設備番号101が50のものは、設備呼称102がNaOH槽であって、設備種類103は槽に分類され、接続設備番号104として上流側104aに86を配置していることを意味している。また例えば設備番号101が70のものは、設備呼称102が二液混合部であって、設備種類103は合流部に分類され、接続設備番号104として上流側104aに60を配置し、上流側に68を配置していることを意味している。この上流側機器、配管の関係を辿ることで、図2の接続関係が表現され、記憶されていることになる。
 図1の知識データベース42には、さらに設備ごとの異常発生時の上流および下流への影響データセットデータベース22から、設備ごとの異常発生時の上流および下流への影響データセット情報46が与えられる。設備ごとの異常発生時の上流および下流への影響データセット情報46は、pH調整プラント10を構成する機器(ポンプ、弁、槽、膜モジュールなど)や配管などのそれぞれに対して、標準的に作られた因果関係のマトリクスである。
 ここで因果関係の一方の原因としては、該当設備の上流条件の変化に加え、該当設備自身の不具合や運転条件変更をできる限り漏れなく記述して準備する。そして、それらの原因によって引き起こされる上流設備および下流設備への影響を記述して準備するものである。また原因と結果の標準的マトリクスであればいかなる記述形式でも良いが、一例としてポンプ、配管、槽に関する設備ごとの異常発生時の上流および下流への影響データセット情報46を図5に示す。
 図5に示す影響データセット情報46は、上から順に設備がポンプ(46P)、配管(46C)、槽(46T)の場合を示すが、保持される情報項目としては共通に、設備種類103、原因201、結果202である。さらに原因201の詳細項目として、該当設備の上流条件変化201a、該当設備自身の不具合、運転条件変更201bを挙げている。さらに該当設備の上流条件変化201aの具体事例として、上流における流量過大、流量過小、水質過大、水質過小などの状態がレベルに応じて複数種類定義されている。また該当設備自身の不具合、運転条件変更201bの具体事例は、設備毎に内容相違するが設備種類がポンプ(46P)であるときには、ポンプ詰まり、モータブラシ損傷、吐出側は損益漏れ、回転数過大、回転数過小などの事象が複数種類定義されている。
 また因果関係の他方である結果202について、流体系202aと電気系202bに分けて定義されている。また流体系202aと電気系202bの詳細定義内容は、流体系202aでは上流1側圧力、上流2側圧力、レベル別水質、流量の状態(過大、過小、影響なし、存在なしなど)で記述され、電気系202bでは、上流と、下流のレベル別水質、電流測定値、流量測定値の状態(過大、過小、影響なし、存在なしなど)で記述されている。また、これらの縦軸項目、および横軸項目はマトリクスを埋める形で状態が定義されている。
 図5の因果関係のマトリクスによれば、例えばポンプ詰まりが原因である時、結果としては流体系について上流1の圧力過大、下流の流量過小、電気系について電流測定値過大が生じ得る。同様に配管詰まりが原因である時、結果としては流体系について上流1の圧力過大、下流の流量過小が生じ得る。
 図5のマトリクス全体として、設備がポンプである場合には、流体系以外にも電気系との関連を精査すべきであるが、電気系を持たない配管や槽の場合には流体系内の関連を考慮すればよい。また、結果は下流側に表れる場合のみではなく、上流側に表れる場合や、計測レベルに反映される場合などがあるので、これらの相関をなるべく多くのケースについて事前把握しておくのがよい。
 なお、実際のプラントにおける上流条件の変化や不具合の事例については、図5の一例よりもずっと多岐に亘るが、ここでは実施例1として示すpH調整プラント10に関係が深い箇所の事例のみを一例として抽出して示した。
 図5では設備ごとの異常発生時の上流および下流への影響データセット情報46があらかじめ与えられえている場合を想定したが、図6で示すように上流および下流への影響の関係を計算で求めるプラントシミュレータ88を備え、シミュレーションで求めた上流および下流への影響データセット情報90を生成して設備ごとの異常発生時の上流および下流への影響データセット情報46として用いることでもよい。これにより、影響データセットの構築を容易に実現することが可能となる。
 図1において、知識データベース42では、以上に示したプラント内設備フロー情報44(図4)と、設備ごとの異常発生時の上流および下流への影響データセット情報46(図5)をもとに、システム全体のマトリクスを自動生成する。たとえば図3では「配管」が複数存在するが、そのそれぞれに図5で示した「配管」の標準的マトリクスをはめ込み、上流側の設備と下流側の設備との関係をたどれるようにする。これは、図4のデータと図5のデータをマージしたものを生成することである。
 pH調整プラント10に対するシステム全体のマトリクスの生成例を図7~図12に示す。マトリクスの規模が大きいため、ここでは6つに分けて図7~図12として示した。図7~図12は、いずれも同じ記載要領により記述されたものであるので、図7を代表例として説明する。これらの図の縦軸側には、図3の機器や配管の接続順序に従って、設備が記述されている。図7の場合、図3のpH調整プラント10のNaOH系統を構成する機器や配管のうち、50-52-54-56までの部分が記述されている。以下同様に以降の図においても接続順序に従って、設備が記述されている。横軸には、図4、図5で用いた項目が全て記述されている。これらは図4について101、102、103、104(104a、104b)の項目、図5について201(201a、201b)、202(202a、202b)の項目を網羅したことを意味している。
 図7~図12は、説明のために行列の番号を表示している。マトリクスの左端には行番号L1~L245、上端には列番号C1~C19を示した。行の方向に各設備を記述しており、行の方向に上記図4、図5の項目を採用して記述している。因みに図7にのみ図4、図5の項目を表示しているが、列番号C1が項目101、列番号C2が項目102、列番号C3が項目103、列番号C4、C5が項目104、列番号C6、C7が項目201、列番号C8からC13が項目202a、列番号C14からC19が項目202bにそれぞれ対応している。このように構築されたシステム全体のマトリクスを、本発明では知識データベース情報40と呼ぶこととする。
 このようにして構築された知識データベース情報40は、根本原因推定エンジン38に与えられる。根本原因推定エンジン38はもう一つの入力として異常への影響が大きい入力項目情報34を有している。根本原因推定エンジン38には、一次記憶場所のメモリMと距離レジスタRが備えられる。根本原因推定エンジン38において、知識データベース情報40と異常への影響が大きい入力項目情報34に基づいて根本原因の候補情報36を求める方法の一例を以下に述べる。
 まず異常への影響が大きい入力項目情報34として、図2の混合液pH計測装置82で計測した混合液pH値が「小さい」と与えられたとする。なお、ここではpHは水質(1)に相当すると設定したと仮定する。このとき根本原因推定エンジン38では、一次記憶場所のメモリMをクリアし、距離レジスタRの値を0とする。次に根本原因推定エンジン38は、図7~図12の知識データベース情報40を参照し、結果の列C8~C19のうち水質(1)の測定値がある列を横方向に探索する。その結果、C15が「水質(1)の測定値」に該当することが分かる。
 次に、C15の列の中で「混合液」「過小」の記載がある行を縦方向に図7から図12まで探索する。その結果、図12のL207、L209、L211、L213が該当することが分かる。
 次に、L207の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「標準液劣化」との記載があるため、C2の「混合液pH計測装置78」の情報および距離レジスタRの値「0」とともに一次記憶場所のメモリMに記憶する。
 次にL209の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「電極劣化」との記載があるため、C2の「混合液pH計測装置78」の情報および距離レジスタRの値「0」とともに一次記憶場所のメモリMに記憶する。
 同様にL211の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「電極付着物発生」との記載があるため、C2の「混合液pH計測装置78」の情報および距離レジスタRの値「0」とともに一次記憶場所のメモリMに記憶する。
 最後にL213の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。カラムC4およびC5を参照すると76番の設備が上流側に存在することが分かる。そこで、次の段階で76番の設備での上流水質(1)過小に絞った探索を実行する。なお、L213の行のC7には記載がないため、以上でL213の行の処理を終了し、距離レジスタRの値を1つプラスして1とする。
 根本原因推定エンジン38では、上流側設備探索の指示に従いC1列を縦方向に探索し、76番の設備を探す処理を実行すると、図11のL192からL204が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L192からL204のうちL196とL200のC10のカラムに「水質(1)」が「過小」の記載があり、該当することが分かる。
 まずL196の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「混合液送液管76」の情報および距離レジスタRの値「1」とともに一次記憶場所のメモリMに記憶する。
 次に、L200の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、74番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で74番の設備での上流水質(1)過小に絞って探索を実施する。なお、L200の行のC7には記載がないため、以上でL200の処理を終了し、距離レジスタRの値を1つプラスして2とする。
 C1列を縦方向に探索し、74番の設備を探す処理を実行すると、L179からL191が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L179からL191のうちL187のC10のカラムに「水質(1)」が「過小」の記載が見つかり、該当することが分かる。 L187の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、72番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で72番の設備での上流水質(1)過小に絞って探索を実施する。なお、L187の行のC7には記載がないため、以上でL187の処理を終了し、距離レジスタRの値を1つプラスして3とする。
 C1列を縦方向に探索し、72番の設備を探す処理を実行すると、L166からL178が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L166からL178のうちL170とL174のC10のカラムに「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L170の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「混合液送液管72」の情報および距離レジスタRの値「3」とともに一次記憶場所のメモリMに記憶する。
 次に、L174の行において原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、70番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で70番の設備での上流水質(1)過小に絞って探索を実施する。なお、L174の行のC7には記載がないため、以上でL174の行の処理を終了し、距離レジスタRの値を1つプラスして4とする。
 C1列を縦方向に探索し、70番の設備を探す処理を実行すると、図10のL125からL165が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L129~L133、L135、L140、L143、L152、L154~L157、L159、L161のカラムに「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 この二液混合部では、上流の条件が2種類あり、それぞれの水質の大小によりL130~L135とL148-L153をセットで、あるいはL136~L141とL154~L159をセットで用いる。いずれのセットを用いるかは、想定される上流側の濃度で決定する。ここでは、L130~L135とL148-L153のセットを用いる場合について以下記載する。
 L129~L133の行について、原因のカラムC6とC7を参照する。いずれもC6には記載がないため、上流条件までは遡らない。C7には「混合後内面付着物発生」「上流1破損液漏れ」「上流1詰まり」「上流1凍結」「上流1内面付着物発生」との記載があるため、C2の「二液混合部70」の情報および距離レジスタRの値「4」とともに一次記憶場所のメモリMに記憶する。
 L135の行において、原因のカラムC6とC7を参照する。C6には「上流1流量過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、上流1として60番の設備が存在することが分かる。そこで、次の段階で60番の設備での流量過小に絞って探索を実施する。
 L143の行において、原因のカラムC6とC7を参照する。C6には「上流1水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L135の場合と同様に、上流1として60番の設備が存在することが分かる。そこで、次の段階で60番の設備での上流水質(1)過小に絞って探索を実施する。
 L152の行において、原因のカラムC6とC7を参照する。C6には「上流2流量過大」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、上流2として68番の設備が存在することが分かる。そこで、次の段階で68番の設備での流量過大に絞って探索を実施する。
 L161の行において、原因のカラムC6とC7を参照する。C6には「上流2水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L152の場合と同様に、C4およびC5を参照すると上流2として68番の設備が存在することが分かる。そこで、次の段階で68番の設備での上流水質(1)過小に絞って探索を実施する。
 以上で70番の設備の処理を終了し、距離レジスタRの値を1つプラスして5とする。
 C1列を縦方向に探索し、60番の設備を探す処理を実行すると、図8のL63からL75が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L67とL71の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L67の行において、原因のカラムC6とC7を参照する。C6には記載がないので、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「NaOH送液管60」の情報および距離レジスタRの値「5」とともに一次記憶場所のメモリMに記憶する。つぎに、L71の行における原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると、58番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で58番の設備での上流水質(1)過小に絞って探索を実施する。
 C1列を縦方向に探索し、68番の設備を探す処理を実行すると、図9のL112からL124が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L116とL120の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L116の行において、原因のカラムC6とC7を参照する。C6には記載がないため、上流条件までは遡らない。C7には「内面付着物発生」との記載があるため、C2の「原水送液管68」の情報および距離レジスタRの値「5」とともに一次記憶場所のメモリMに記憶する。
 L120の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると66番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で66番の設備での上流水質(1)過小に絞って探索を実施する。なお、L75の行のC10には記載がないため、以上でL75の処理を終了し、距離レジスタRの値を1つプラスして6とする。
 C1列を縦方向に探索し、58番の設備を探す処理を実行すると、図8のL50からL62が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L58の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L58の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると56番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で56番の設備での上流水質(1)過小に絞って探索を実施する。
 C1列を縦方向に探索し、66番の設備を探す処理を実行すると、図9のL99からL111が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L107の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L107の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。C4およびC5を参照すると64番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で64番の設備での上流水質(1)過小に絞って探索を実施する。なお、L107の行のC7には記載がないため、以上でL107の処理を終了し、距離レジスタRの値を1つプラスして7とする。
 C1列を縦方向に探索し、56番の設備を探す処理を実行すると、図7のL37からL49が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L41とL45の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L41の行において、原因のカラムC6とC7を参照する。C7には「内面付着物発生」との記載があるため、C2の「NaOH送液管56」の情報および距離レジスタRの値「7」とともに一次記憶場所のメモリMに記憶する。次に、L45の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L45の行でC4およびC5を参照すると54番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で54番の設備での上流水質(1)過小に絞って探索を実施する。なお、L45の行のC7には記載がないため、以上でL45の処理を終了する。
 C1列を縦方向に探索し、64番の設備を探す処理を実行すると、図9のL86からL98が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L90とL94の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L90の行において、原因のカラムC6とC7を参照する。C7には「内面付着物発生」との記載があるため、C2の「原水送液管64」の情報および距離レジスタRの値「7」とともに一次記憶場所のメモリMに記憶する。次いで、L94の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L94の行でC4およびC5を参照すると62番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で62番の設備での上流水質(1)過小に絞って探索を実施する。なお、L94の行のC5には記載がないため、以上でL94の処理を終了し、距離レジスタRの値を1つプラスして8とする。
 C1列を縦方向に探索し、54番の設備を探す処理を実行すると、図7のL24からL36が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L32の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L32の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L32の行でC4およびC5を参照すると、52番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で52番の設備での上流水質(1)過小に絞って探索を実施する。なお、L32の行のC5には記載がないため、以上でL32の処理を終了する。
 C1列を縦方向に探索し、62番の設備を探す処理を実行すると、図8のL76からL85が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L81の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L81の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L81の行でC4およびC5を参照すると、84番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で84番の設備での上流水質(1)過小に絞って探索を実施する。なお、L81の行のC5には記載がないため、以上でL81の処理を終了し、距離レジスタRの値を1つプラスして9とする。
 C1列を縦方向に探索し、52番の設備を探す処理を実行すると、図7のL11からL23が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L15およびL19の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L15の行において、原因のカラムC6とC7を参照する。C7には「内面付着物発生」との記載があるため、C2の「NaOH送液管52」の情報および距離レジスタRの値「9」とともに一次記憶場所のメモリMに記憶する。次に、L19の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L19の行でC4およびC5を参照すると、50番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で50番の設備での上流水質(1)過小に絞って探索を実施する。なお、L19の行のC5には記載がないため、以上でL19の処理を終了する。
 C1列を縦方向に探索し、84番の設備を探す処理を実行すると、図12のL234からL239が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L234の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L234の行において、原因のカラムC6とC7を参照する。C7には「供給水質(1)が薄過ぎ」との記載があるため、C2の「供給原水84」の情報および距離レジスタRの値「9」とともに一次記憶場所のメモリMに記憶する。以上でL234の処理を終了し、距離レジスタRの値を1つプラスして10とする。
 C1列を縦方向に探索し、50番の設備を探す処理を実行すると、図7のL1からL10が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L6の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L6の行において、原因のカラムC6とC7を参照する。C6には「上流水質(1)過小」との記載があるため、ひとつ上流側の設備を探索する。L6の行でC4およびC5を参照すると、86番の設備がひとつ上流側に存在することが分かる。そこで、次の段階で86番の設備での上流水質(1)過小に絞って探索を実施する。以上でL6の処理を終了し、距離レジスタRの値を1つプラスして11とする。
 C1列を縦方向に探索し、86番の設備を探す処理を実行すると、図12のL240からL245が該当することが分かる。ここで、下流への結果を示すC10~C13のカラムから「水質(1)」が「過小」の箇所を探索する。その結果、L240の行に「水質(1)」が「過小」の記載が見つかり、該当することが分かる。
 L240の行において、原因のカラムC6とC7を参照する。C7には「供給水質(1)が薄過ぎ」との記載があるため、C2の「NaOH液86」の情報および距離レジスタRの値「11」とともに一次記憶場所のメモリMに記憶する。
 以上のように、原因のカラムC6の「該当設備の上流条件変化」が無くなるまで探索を続ける。これにより、漏れなく原因候補を列挙することが可能となる。
 上述のように、結果、その原因、その原因を引き起こす上流側設備、の探索を根本原因推定エンジン38は知識データベース情報40を用いて実行する。その結果、一次記憶場所のメモリMに対象設備名称、原因、距離レジスタRの組合せが格納される。上述の結果として、例えば図13に示す形態の組合わせ情報が得られる。
 図13の根本原因候補抽出事例によれば、距離レジスタRが0の混合液PH計測装置78に関して、標準液劣化、電極劣化、電極付着物発生の3要因が抽出され、距離レジスタRが1の混合液送液管76に関して内面付着物発生の1要因が抽出され、距離レジスタRが3の混合液送液管72に関して内面付着物発生の1要因が抽出され、距離レジスタRが4の二液混合部70に関して混合後内面付着物発生、上流1破損液漏れ、上流1詰まり、上流1凍結、上流1面付着物発生の5要因が抽出され、距離レジスタRが5のNaOH送液管60と原水送液管68に関してそれぞれ内面付着物発生の1要因が抽出され、距離レジスタRが7のNaOH送液管56と原水送液管64に関してそれぞれ内面付着物発生の1要因が抽出され、距離レジスタRが9のNaOH送液管52と供給原水84に関してそれぞれ内面付着物発生と供給水質(1)薄過ぎの1要因が抽出され、距離レジスタRが11の供給NaOH86に関して供給水質(1)薄過ぎの1要因が抽出されていることが理解できる。
 本発明の処理後にはこれらの根本原因候補抽出事例が一覧表示される。これらが、混合液pH計測装置82で計測したpH値が異常への影響が大きい入力項目情報34として与えられた場合の根本原因の候補情報36である。表示手段18において異常の程度情報32とともに根本原因候補抽出事例が画面表示される。運転監視員は、これらの候補について、現場に赴むき対策するなど所定の確認復旧作業を行うことで、回復対策を短時間で漏れなく実施することが可能となる。
 処理の手続きを上述のように言葉であらわすと長いが、現実的には上述の処理は計算機内で実行されるため、図13の結果は即座に表示される。図13の中に含まれる「供給原水84」は海水や河川水なども含んでおり、これらにおいてはそのpHが自然現象に起因して変化するのが一般的である。自然現象に起因して変化する影響因子はpHのみではなく、天気予報、気温、水温、降水量、水質、赤潮情報などがあるため、これらも入力として図5で示した設備ごとの異常発生時の上流および下流への影響データセット情報にあらかじめ組み込んでおくのが良い。
 図13では、距離レジスタRの値が小さい順にリストを表示している。距離レジスタは、異常への影響が大きい入力項目情報34として与えられた設備を0として、そこからいくつの設備を遡ったかを示す値である。画面表示する際の優先順位を求める際には、異常への影響が最も大きい入力項目の設備の設備フロー上の位置から近い箇所の根本原因の候補に大きい重み係数を与え、その大きい値の順に表示するのがいずれの設備も同等に異常原因となる可能性がある場合には適している。
 一方、設備によっては異常原因となる可能性に大きな違いがある場合がある。一般的に、可動部のある設備(ポンプ、ブロワ、モーター、電磁弁など)のほうが可動部のない設備(配管など)よりも異常の原因となる可能性が高いことが多い。そのような場合には可動部を有する設備に対する根本原因の候補に大きい重み係数を与え、その大きい値の順に表示するのが良い場合もある。これを実現するためには、図4で示したプラント内設備フロー情報に可動部を有するか有さないかを入力できるようにしておく、あるいは図5で示した設備ごとの異常発生時の上流および下流への影響データセット情報に可動部がある設備か否かを情報として持たせておく、のいずれでも良い。
 さらに、対象とする物質の物性にもよるが、電極を用いたセンサのほうが単なる配管やポンプよりも繊細で、故障する可能性が高いこともある。そのような場合には過去の故障履歴に基づき、より頻度が高い根本原因の候補に大きい重み係数を与え、その大きい値の順に表示するのが良い場合もある。これを実現するためには、図4で示したプラント内設備フロー情報に故障可能性の大小を入力できるようにしておく、あるいは図5で示した設備ごとの異常発生時の上流および下流への影響データセット情報に故障可能性の大小を情報として持たせておく、のいずれでも良い。
 さらに、上流および下流への影響の関係を計算で求めるプラントシミュレータ88を備える場合には、上述の手順でたどって絞り込んだ根本原因候補がどの程度確からしいか計算で求めて表示するようにしてもよい。
 図14は、上記一連の処理を実行する根本原因候補推定エンジン38の処理内容を一般化して示したフローチャートである。
 図14のフローチャートの最初の処理ステップS1では、異常への影響が大きい入力項目34に対し、知識データベース42の結果欄を参照し、該当部を探索する。次に処理ステップS2では、該当した行における原因の欄を参照する。次の処理ステップS3では、参照した該当行の原因欄に「該当設備自身の不具合」が記載されているかを確認し、記載されている場合には処理ステップS4でこれを一時記憶して処理ステップS5に移る。一時記憶の際には、距離レジスタRを逐次更新し、一次記憶場所のメモリMに記憶をしていく。記載されていない場合には直ちに処理ステップS5に移る。
 処理ステップS5では、「上流条件の変化」の有無を確認し、ない場合には処理ステップS6に移り一連の処理を終了する。ある場合には処理ステップS7に移り、上流の設備の欄に移動する。そのうえで処理ステップS8では、「上流条件の変化」に対応する「結果」欄を探索する。その後、処理ステップS2に移り、次の条件のものについて繰り返し実行するこの繰り返し実行は、該当する要件がなくなるまで行われる。
 上述の内容は、電子的に情報が伝達できれば実現できるため、現場の監視制御装置3の中になくとも、インターネットやクラウドなど通信ネットワーク経由で情報を処理できるサーバがあれば実現できる。このような形態をとる場合には、複数のプラントを対象とした異常検知が可能なため少人数での集中管理を実現することができる。さらに、それぞれのプラントにこのシステムを実現するソフトウェアを保有する必要がないため、プラント側の計算機パワーがほぼ不要となり、ソフトウェアの保守管理もきわめて容易となるメリットがある。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
 また本発明が適用されるプラントに関して、実施例では水処理プラントのpH調整プラントに適用する事例を説明したが、これは他の上下水の水処理プラントへの適用が可能である。さらには製品(水などの流体を含む)が上流から下流に移動しながら適宜の処理を施されるプラント一般に適用が可能である。
10:pH調整プラント
12:監視制御装置
14:計測値データベース
16:異常予知エンジンへの入力項目情報
18:表示手段
20:プラント内設備フローデータベース
22:設備ごとの異常発生時の上流および下流への影響データセットデータベース
24:計測値
26:制御信号
28:監視信号
30:異常予知エンジン
32:異常の程度情報
34:異常への影響が大きい入力項目情報
36:根本原因の候補情報
38:根本原因候補推定エンジン
40:知識データベース情報
42:知識データベース
44:プラント内設備フロー情報
46:設備ごとの異常発生時の上流および下流への影響データセット情報
48:異常予知・回復支援システム
50:NaOH槽
52:NaOH送液管
54:NaOH薬注ポンプ
56:NaOH送液管
58:NaOH弁
60:NaOH送液管
62:原水槽
64:原水送液管
66:原水ポンプ
68:原水送液管
70:二液混合部
72:混合液送液管
74:混合液弁
76:混合液送液管
78:混合液pH計測装置
80:混合液流量計測装置
82:原水pH計測装置
84:供給原水
86:供給NaOH
88:プラントシミュレータ
90:シミュレーションで求めた上流および下流への影響データセット情報

Claims (15)

  1.  上流と下流の関係を有し複数の設備で構成されたプラントに適用され、該プラントの入力項目からプラントの異常を予知する異常予知エンジンを備えた異常予知・回復支援システムであって、
     前記入力項目の値に基づいて異常の程度を予知すると同時に、予知にあたって異常への影響が大きい入力項目を求める異常予知エンジンと、
     前記プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持する知識データベースと、
     前記異常予知エンジンが示す前記異常への影響が大きい入力項目に対して、前記知識データベースを参照し、異常の根本原因の候補として前記設備とその原因を求める根本原因候補推定エンジンと、
     異常の程度に加えて根本原因の候補を画面表示する表示手段と、
    を備えたことを特徴とする異常予知・回復支援システム。
  2.  請求項1に記載の異常予知・回復支援システムであって、
     前記第1のデータは複数の設備を種類分けしており、前記第2のデータは種類分けされた設備毎に構成され、前記知識データは上流から下流に至る順番の全ての設備について前記原因と結果の関係を含んで構成されていることを特徴とする異常予知・回復支援システム。
  3.  請求項1または2に記載の異常予知・回復支援システムであって、
     前記第2のデータを生成するために上流および下流への影響の関係を計算で求めるプラントシミュレータを備えたことを特徴とする異常予知・回復支援システム。
  4.  請求項2または3に記載の異常予知・回復支援システムであって、
     前記知識データベースは、行列のマトリクス状に構成され、行に前記上流と下流の設備の関係を配し、列に原因と結果の関係を配して構成されていることを特徴とする異常予知・回復支援システム。
  5.  請求項4に記載の異常予知・回復支援システムであって、
     前記根本原因候補推定エンジンは、前記異常への影響が大きい入力項目について前記知識データベースを参照し、知識データベースの結果から該当部を探索して原因の欄を参照し、参照した該当行の原因欄に記載の情報を一時記憶し、上流探索の有無に応じて上流の設備の欄に移動し、該当する要件がなくなるまで繰り返し実行することで、異常の根本原因の候補を抽出することを特徴とする異常予知・回復支援システム。
  6.  請求項2から請求項5のいずれか1項に記載の異常予知・回復支援システムであって、
     前記原因と結果の関係において、結果の内容には上流の他に下流の関係を含んでいることを特徴とする異常予知・回復支援システム。
  7.  請求項2から請求項6のいずれか1項に記載の異常予知・回復支援システムであって、
     前記原因と結果の関係において、結果の内容には上流から下流に至る流体系についての関係とともに、前記設備を駆動する駆動系についての関係を含んでいることを特徴とする異常予知・回復支援システム。
  8.  請求項2から請求項7のいずれか1項に記載の異常予知・回復支援システムであって、
     前記第2のデータは種類分けされた設備毎に標準的に構成されていることを特徴とする異常予知・回復支援システム。
  9.  請求項1から請求項8のいずれか1項に記載の異常予知・回復支援システムであって、
     前記入力項目として、天気予報、気温、水温、降水量、水質、赤潮情報など自然現象に起因する項目を少なくとも1つは含むことを特徴とする異常予知・回復支援システム。
  10.  請求項1から請求項9のいずれか1項に記載の異常予知・回復支援システムであって、
     前記根本原因候補推定エンジンにおいて、予知にあたって異常への影響が最も大きい入力項目の設備の設備フロー上の位置から近い箇所の根本原因の候補に大きい重み係数を与えることを特徴とする異常予知・回復支援システム。
  11.  請求項1から請求項10のいずれか1項に記載の異常予知・回復支援システムであって、
     前記根本原因候補推定エンジンにおいて、可動部を有する設備に対する根本原因の候補に大きい重み係数を与えることを特徴とする異常予知・回復支援システム。
  12.  請求項1から請求項11のいずれか1項に記載の異常予知・回復支援システムであって、
    前記根本原因候補推定エンジンにおいて、過去の故障履歴に基づき、より頻度が高い根本原因の候補に大きい重み係数を与えることを特徴とする異常予知・回復支援システム。
  13.  請求項1から請求項12のいずれか1項に記載の異常予知・回復支援システムが適用された水処理システム。
  14.  上流と下流の関係を有し複数の設備で構成されたプラントに適用される異常予知・回復支援方法であって、
     前記プラントからの入力項目の値に基づいて異常の程度を予知するとともに異常への影響が大きい入力項目を求め、
     前記プラントを構成する複数の設備について上流と下流の関係を記憶した第1のデータと、プラント内の設備ごとに異常発生時の上流および下流への影響の関係を原因と結果の関係として記憶した第2のデータを組み合わせて構築された知識データを保持し、
     前記異常への影響が大きい入力項目に対して、前記知識データを参照し、異常の根本原因の候補として前記設備とその原因を求め、提示することを特徴とする異常予知・回復支援方法。
  15.  請求項14に記載の異常予知・回復支援方法であって、
     前記知識データは、行列のマトリクス状に構成され、行に前記上流と下流の設備の関係を配し、列に原因と結果の関係を配して構成され、
     前記異常への影響が大きい入力項目について前記知識データの結果から該当部を探索して原因の欄を参照し、参照した該当行の原因欄に記載の情報を一時記憶し、上流探索の有無に応じて上流の設備の欄に移動し、該当する要件がなくなるまで繰り返し実行することで、異常の根本原因の候補を抽出することを特徴とする異常予知・回復支援方法。
PCT/JP2016/053131 2015-03-16 2016-02-03 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム WO2016147726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506132A JP6368031B2 (ja) 2015-03-16 2016-02-03 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015052010 2015-03-16
JP2015-052010 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016147726A1 true WO2016147726A1 (ja) 2016-09-22

Family

ID=56919804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053131 WO2016147726A1 (ja) 2015-03-16 2016-02-03 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム

Country Status (2)

Country Link
JP (1) JP6368031B2 (ja)
WO (1) WO2016147726A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016147726A1 (ja) * 2015-03-16 2017-09-21 株式会社日立製作所 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム
JP2018073316A (ja) * 2016-11-04 2018-05-10 日立Geニュークリア・エナジー株式会社 プラントの診断システム及び診断方法
JP2019049391A (ja) * 2017-09-11 2019-03-28 三菱日立パワーシステムズ株式会社 プラント異常箇所推定システム
WO2019229916A1 (ja) * 2018-05-31 2019-12-05 三菱電機株式会社 状態監視装置、状態監視方法および状態監視プログラム
JP2020135498A (ja) * 2019-02-21 2020-08-31 三菱電機株式会社 計装制御システム
CN114146354A (zh) * 2021-12-03 2022-03-08 辰安天泽智联技术有限公司 一种用于建筑消防给水系统的可视化监管方法
US11755204B2 (en) 2020-06-29 2023-09-12 Yokogawa Electric Corporation Data management system, data management method, and recording medium for recording data management program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217009A (ja) * 1982-06-11 1983-12-16 Hitachi Ltd 最適検査順序指示方式
JPH08234832A (ja) * 1995-02-24 1996-09-13 Toshiba Corp プラント監視診断装置および方法
JP2000214924A (ja) * 1999-01-27 2000-08-04 Toshiba Corp プラント異常監視装置および異常発生箇所同定方法
JP2009020787A (ja) * 2007-07-13 2009-01-29 Tosoh Corp プラント保安管理システム
WO2011061793A1 (ja) * 2009-11-18 2011-05-26 株式会社日立製作所 プロセス信号の抽出システムおよび方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170908A (ja) * 1983-03-17 1984-09-27 Hitachi Ltd Crt画面自動作成装置
JP2829241B2 (ja) * 1994-07-26 1998-11-25 三菱電機株式会社 プラント支援装置
JP2003167621A (ja) * 2001-11-29 2003-06-13 Toshiba Corp ガイダンス装置およびサーバ
JP5845944B2 (ja) * 2012-02-09 2016-01-20 新日鐵住金株式会社 製造プロセスの操業支援装置、方法及びプログラム
JP2014142752A (ja) * 2013-01-23 2014-08-07 Mitsubishi Electric Corp 上水道運用支援情報表示システム
WO2016147726A1 (ja) * 2015-03-16 2016-09-22 株式会社日立製作所 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217009A (ja) * 1982-06-11 1983-12-16 Hitachi Ltd 最適検査順序指示方式
JPH08234832A (ja) * 1995-02-24 1996-09-13 Toshiba Corp プラント監視診断装置および方法
JP2000214924A (ja) * 1999-01-27 2000-08-04 Toshiba Corp プラント異常監視装置および異常発生箇所同定方法
JP2009020787A (ja) * 2007-07-13 2009-01-29 Tosoh Corp プラント保安管理システム
WO2011061793A1 (ja) * 2009-11-18 2011-05-26 株式会社日立製作所 プロセス信号の抽出システムおよび方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016147726A1 (ja) * 2015-03-16 2017-09-21 株式会社日立製作所 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム
JP2018073316A (ja) * 2016-11-04 2018-05-10 日立Geニュークリア・エナジー株式会社 プラントの診断システム及び診断方法
JP2019049391A (ja) * 2017-09-11 2019-03-28 三菱日立パワーシステムズ株式会社 プラント異常箇所推定システム
WO2019229916A1 (ja) * 2018-05-31 2019-12-05 三菱電機株式会社 状態監視装置、状態監視方法および状態監視プログラム
JP2020135498A (ja) * 2019-02-21 2020-08-31 三菱電機株式会社 計装制御システム
US11755204B2 (en) 2020-06-29 2023-09-12 Yokogawa Electric Corporation Data management system, data management method, and recording medium for recording data management program
CN114146354A (zh) * 2021-12-03 2022-03-08 辰安天泽智联技术有限公司 一种用于建筑消防给水系统的可视化监管方法
CN114146354B (zh) * 2021-12-03 2022-09-16 辰安天泽智联技术有限公司 一种用于建筑消防给水系统的可视化监管方法

Also Published As

Publication number Publication date
JPWO2016147726A1 (ja) 2017-09-21
JP6368031B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6368031B2 (ja) 異常予知・回復支援システム、異常予知・回復支援方法及び水処理システム
Amin et al. Risk-based fault detection and diagnosis for nonlinear and non-Gaussian process systems using R-vine copula
US11119451B2 (en) Apparatus, method, program, and recording medium
Wan et al. Literature review of data analytics for leak detection in water distribution networks: A focus on pressure and flow smart sensors
Natarajan et al. An ontology for distributed process supervision of large-scale chemical plants
JP2018152052A (ja) 信頼性監視のためのシステムおよび方法
US20230053175A1 (en) Process network with several plants
CN102981493A (zh) 用于对工业设备的故障诊断进行辅助的方法和装置
JP2019045905A (ja) 挙動予測システム及び挙動予測方法
Jasmani et al. Measurement selections for multicomponent gas path diagnostics using analytical approach and measurement subset concept
CN110337640B (zh) 用于问题警报聚合和识别次优行为的方法、系统和介质
Smaili et al. Design of fault monitoring framework for multi-energy systems using Signed Directed Graph
Pashami et al. Explainable predictive maintenance
US10429828B2 (en) Plant simulation device and plant simulation method with first parameter adjustable at start and second parameter adjustable during operation of the plant
JP2020004087A (ja) プラント診断システムおよび方法
Ye et al. Data‐driven soft‐sensor modelling for air cooler system pH values based on a fast search pruned‐extreme learning machine
US20220291673A1 (en) Analysis apparatus, analysis method and computer-readable medium
US11360463B2 (en) Dynamic online process flow diagraming
EP3048613B1 (en) Method for analysis of plant disturbance propagations
KR20200098471A (ko) 관리 시스템 및 그를 위한 기계 학습 장치 및 관리 방법
Diedrich et al. Diagnosing Hybrid Cyber-Physical Systems using State-Space Models and Satisfiability Modulo Theory.
Oeing et al. Graph Learning in Machine‐Readable Plant Topology Data
CN115485632A (zh) 工业工厂的上下文数据建模和动态过程干预
Ma et al. State-of-the-Art Review: The Use of Digital Twins to Support Artificial Intelligence-Guided Predictive Maintenance
Okhuijsen Combining the Process and Maintenance Digital Twin to Create an Autonomous Production Platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764557

Country of ref document: EP

Kind code of ref document: A1