JP6367640B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP6367640B2
JP6367640B2 JP2014154923A JP2014154923A JP6367640B2 JP 6367640 B2 JP6367640 B2 JP 6367640B2 JP 2014154923 A JP2014154923 A JP 2014154923A JP 2014154923 A JP2014154923 A JP 2014154923A JP 6367640 B2 JP6367640 B2 JP 6367640B2
Authority
JP
Japan
Prior art keywords
substrate body
wiring board
heat
heat radiating
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014154923A
Other languages
Japanese (ja)
Other versions
JP2016032068A (en
Inventor
平野 聡
聡 平野
宗之 岩田
宗之 岩田
奈緒子 森
奈緒子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014154923A priority Critical patent/JP6367640B2/en
Publication of JP2016032068A publication Critical patent/JP2016032068A/en
Application granted granted Critical
Publication of JP6367640B2 publication Critical patent/JP6367640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、絶縁材からなる基板本体の表面に形成した表面パッドの上方に比較的高い発熱性を有する発光素子などの素子を実装するための配線基板に関する。   The present invention relates to a wiring board for mounting an element such as a light emitting element having a relatively high heat generation property on a surface pad formed on the surface of a substrate body made of an insulating material.

例えば、平板状のセラミックからなる絶縁基体の表面の中央部に露出する搭載部を有し、且つ該搭載部と前記絶縁基体の裏面の中央部との間を該絶縁基体の垂直方向に沿って貫通して設けた平坦な貫通金属体を備え、該貫通金属体の上記絶縁基体のセラミックに接する側面に傾斜部または段差部を設けることによって、上記搭載部の上方に搭載される発光素子から発生する熱の熱放散性および実装信頼性に優れた発光素子用配線基板が提案されている(例えば、特許文献1参照)。   For example, it has a mounting portion exposed at the center portion of the surface of the insulating base made of flat ceramic, and a space between the mounting portion and the center portion of the back surface of the insulating base along the vertical direction of the insulating base. Generated from a light emitting element mounted above the mounting portion by providing a flat penetrating metal body penetrating and providing an inclined portion or a stepped portion on the side surface of the penetrating metal body in contact with the ceramic of the insulating base There has been proposed a light-emitting element wiring board excellent in heat dissipation and mounting reliability (see, for example, Patent Document 1).

しかし、前記発光素子用配線基板では、前記絶縁基体の表面に露出する貫通金属体の搭載部(上面)の面積が比較的大きいので、該貫通金属体の搭載部付近とこれに隣接する上記絶縁基体を構成しているセラミックあるいは樹脂との熱膨張係数の差に起因して作用する応力が大きくなる。その結果、上記貫通金属体の搭載部の上方に、比較的発熱量が多い発光素子などの素子を搭載した場合、上記熱膨張係数の差に起因する応力によって、貫通金属体の搭載部を囲む上記絶縁基体のセラミックあるいは樹脂の表面側にクラックが生じ易くなる、という問題点があった。
更に、前記発光素子用配線基板がプリント基板などのマザーボードの表面上に垂直断面において傾斜して実装されると、前記貫通金属体も傾斜姿勢となるため、該貫通金属体を介した発光素子などの素子から発せられる熱の放熱方向がずれることに起因して、該熱の放熱性が低下する場合がある、という問題点もあった。
しかも、前記貫通金属体を前記絶縁基体の中央部に貫通させる発光素子用配線基板では、上記のように傾斜姿勢でマザーボードの表面上に実装された場合、前記貫通金属体の底面と該実装面との間における距離が場所ごとにバラ付くので、上記絶縁基体の静電容量が場所ごとに変化し易くなる、という問題点もあった。
However, since the area of the through metal body mounting portion (upper surface) exposed on the surface of the insulating base is relatively large in the light emitting element wiring substrate, the vicinity of the through metal body mounting portion and the insulating material adjacent thereto are adjacent to each other. The stress acting due to the difference in thermal expansion coefficient from the ceramic or resin constituting the substrate becomes large. As a result, when an element such as a light emitting element having a relatively large calorific value is mounted above the through metal body mounting portion, the through metal body mounting portion is surrounded by the stress caused by the difference in thermal expansion coefficient. There is a problem that cracks are likely to occur on the ceramic or resin surface side of the insulating substrate.
Furthermore, when the wiring board for light emitting elements is mounted on a surface of a mother board such as a printed board with an inclination in a vertical cross section, the penetrating metal body is also inclined, so that the light emitting element via the penetrating metal body, etc. There is also a problem that the heat dissipating property of the heat may be reduced due to the shift of the heat dissipating direction of the heat generated from the element.
Moreover, in the light emitting element wiring board that penetrates the through metal body through the central portion of the insulating base, when mounted on the surface of the mother board in an inclined posture as described above, the bottom surface of the through metal body and the mounting surface Since the distance between them varies from place to place, there is also a problem that the capacitance of the insulating base easily changes from place to place.

特開2006−93565号公報(第1〜21頁、図1〜4)JP 2006-93565 A (pages 1-21 and FIGS. 1-4)

本発明は、背景技術で説明した問題点を解決し、絶縁材からなる基板本体の表面上に形成した表面パッドに比較的高い発熱性を有する発光素子などの素子を実装した際にも、上記表面パッドに接する絶縁材にクラックが生じにくく、マザーボードの表面上に傾斜して搭載されても、熱の放熱方向がずれにくく且つ基板本体の静電容量を均一に保ち易い配線基板を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and even when an element such as a light emitting element having a relatively high exothermic property is mounted on a surface pad formed on the surface of a substrate body made of an insulating material, Providing a wiring board that is less likely to crack in the insulating material in contact with the surface pad, is less likely to deviate the direction of heat dissipation even when mounted on the surface of the mother board and is easy to keep the capacitance of the board body uniform, This is the issue.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、基板本体の表面上に形成する表面パッドの面積に対し、該表面パッドに一端が接続され且つ他端が前記基板本体の内部に埋設される放熱部に接続される第1接続部の断面積を小さくし、且つ前記放熱部における基板本体の裏面側を球面にする、ことに着想して成されたものである。
即ち、本発明の配線基板(請求項1)は、絶縁材からなり、互いに平行な表面および裏面と、該表面と裏面との間に位置する側面とを有する基板本体と、該基板本体の表面上に形成された表面パッドと、上記基板本体の内部に埋設された放熱部と、上記表面パッドと上記放熱部とを接続する第1接続部とを備えた配線基板であって、上記放熱部は、少なくとも上記基板本体の裏面に対向する面が球面であり、且つ前記基板本体の表面側から裏面側に向かう方向に沿った複数組の凹溝および凸条が形成されていると共に、平面視において、上記基板本体の表面に露出する上記第1接続部の面積は、上記表面パッドの面積よりも小さい、ことを特徴とする。
In order to solve the above-described problem, the present invention provides a heat radiating portion in which one end is connected to the surface pad and the other end is embedded in the substrate body with respect to the area of the surface pad formed on the surface of the substrate body. The idea is to reduce the cross-sectional area of the first connecting portion to be connected and to make the back side of the substrate body in the heat radiating portion spherical.
That is, the wiring board of the present invention (Claim 1) is made of an insulating material, and has a substrate body having a front surface and a back surface parallel to each other, and a side surface located between the front surface and the back surface, and a surface of the substrate body. A wiring board comprising a surface pad formed thereon, a heat radiating part embedded in the substrate body, and a first connecting part for connecting the surface pad and the heat radiating part, wherein the heat radiating part Has a spherical surface at least facing the back surface of the substrate body , and a plurality of sets of grooves and ridges along the direction from the front surface side to the back surface side of the substrate body are formed. The area of the first connection part exposed on the surface of the substrate body is smaller than the area of the surface pad.

これによれば、前記放熱部は、基板本体の表面上に形成された表面パッドに対し、平面視で該表面パッドの面積よりも小さい面積の第1接続部を介して、接続されている。即ち、平面視において、基板本体の表面に露出する第1接続部の面積は、表面パッドの面積よりも小さくされている。そのため、追って、上記表面パッドの上方に比較的発熱量の多い発光素子などの素子が実装された場合、該素子から発せられる熱は、第1接続部を介して上記放熱部に伝達され、該放熱部の表面から基板本体を構成している前記絶縁材中に順次放散された後、外部に放出される。そのため、前記表面パッドとこれに接する基板本体の絶縁材との間における熱膨張係数の差に起因して、該絶縁材の表面側にクラックが生じる事態を皆無にするか、あるいは確実に抑制することが可能となる。
更に、前記放熱部は、少なくとも前記基板本体の裏面に対向する面が球面(半球面)であるので、本配線基板がプリント基板などのマザーボードの表面上に垂直線に対して傾斜して搭載され、上記放熱部が傾斜姿勢となっても、該放熱部を介した発光素子などの素子からの熱の放熱方向がずれにくくなる。そのため、放熱経路が大きく変化しないので、水平姿勢の場合と同様の放熱性能が得られる。
しかも、上記のように傾斜姿勢で搭載した際においても、上記放熱部の球面と上記マザーボードの搭載面との間の距離が水平姿勢の場合とほぼ同様に均一であるため、かかる場所ごとにおける静電容量がほとんど変化しなくなる。
加えて、前記放熱部の球面や、前記錐体形状をなす曲面または複数の側面に、該放熱部の頂部側から底面側に向かって延びる複数組の凹溝および凸条が形成されていることにより、当該放熱部の表面積が拡大されているそのため、前記発光素子などから第1接続部を介して伝達された熱を、前記基板本体の絶縁材中に効率良く放散でき、該絶縁材と上記放熱部との密着強度も高められると共に、製造時における導電性ペーストの充填作業をスムーズに行うことができる
従って、追って、発熱量の高い素子が表面パッドの上方に実装されても、該素子の発熱によって、上記表面パッドに接する基板本体の表層側の絶縁材にクラックが生じにくいと共に、傾斜姿勢でマザーボード上に搭載されても、上記熱の放熱方向がずれにくく且つ静電容量も安定した配線基板を提供できる。
According to this, the heat radiating portion is connected to the surface pad formed on the surface of the substrate body via the first connection portion having an area smaller than the area of the surface pad in plan view. That is, in plan view, the area of the first connection portion exposed on the surface of the substrate body is smaller than the area of the surface pad. Therefore, when an element such as a light emitting element having a relatively large calorific value is mounted above the surface pad, heat generated from the element is transmitted to the heat radiating part via the first connection part, and After being sequentially diffused from the surface of the heat dissipating part into the insulating material constituting the substrate body, it is discharged to the outside. For this reason, the occurrence of cracks on the surface side of the insulating material due to the difference in thermal expansion coefficient between the surface pad and the insulating material of the substrate main body in contact therewith is eliminated or reliably suppressed. It becomes possible.
Furthermore, since at least the surface opposite to the back surface of the board body is a spherical surface (semispherical surface), the wiring board is mounted on the surface of a motherboard such as a printed board with an inclination with respect to a vertical line. Even if the heat dissipating part is inclined, the heat dissipating direction from the light emitting element or the like via the heat dissipating part is not easily shifted. Therefore, since the heat radiation path does not change greatly, the same heat radiation performance as in the horizontal posture can be obtained.
Moreover, even when mounted in an inclined position as described above, the distance between the spherical surface of the heat radiating portion and the mounting surface of the motherboard is almost the same as in the horizontal position. The electric capacity hardly changes.
In addition, a plurality of sets of concave grooves and ridges extending from the top side to the bottom side of the heat radiating part are formed on the spherical surface of the heat radiating part, the curved surface or the plurality of side surfaces forming the cone shape. Thus, the surface area of the heat dissipating part is enlarged . Therefore, the heat transmitted from the light emitting element or the like through the first connection portion can be efficiently dissipated into the insulating material of the substrate body, and the adhesion strength between the insulating material and the heat radiating portion can be increased, and the manufacturing can be performed. The filling operation of the conductive paste at the time can be performed smoothly .
Therefore, even if an element with a high calorific value is mounted above the surface pad, the insulating material on the surface layer side of the substrate body in contact with the surface pad is not easily cracked by the heat generated by the element, and the motherboard is inclined. Even if mounted on the wiring board, it is possible to provide a wiring board in which the heat radiation direction is not easily shifted and the electrostatic capacity is stable.

尚、前記基板本体を構成する絶縁材は、セラミックあるいは樹脂であり、前記セラミックには、例えば、アルミナなどの高温焼成セラミックやガラス−アルミナなどの低温焼成セラミックが含まれ、上記樹脂には、熱硬化性であり且つ耐熱性を有する合成樹脂(例えば、エポキシ、ポリエステル、シリコン、ポリイミド樹脂など)が含まれる。
また、前記基板本体の表面は、該表面に開口するキャビティの底面も含む。
更に、前記表面パッドは、基板本体の表面よりも外側にその厚み分だけ突出して形成されている。該パッド上には、追って発光ダイオード(LED)などの発光素子やパワーモジュールに用いられる半導体素子などのような発熱量が比較的大きな素子が実装される。
The insulating material constituting the substrate body is ceramic or resin. Examples of the ceramic include high-temperature fired ceramics such as alumina and low-temperature fired ceramics such as glass-alumina. A synthetic resin (for example, epoxy, polyester, silicon, polyimide resin, etc.) that is curable and heat resistant is included.
The surface of the substrate body also includes a bottom surface of a cavity that opens to the surface.
Further, the surface pad is formed to protrude by the thickness outside the surface of the substrate body. On the pad, a light emitting element such as a light emitting diode (LED) or an element having a relatively large amount of heat generation such as a semiconductor element used in a power module is mounted.

また、前記放熱部は、主に熱伝導性に優れた金属からなり、該金属には、W、Mo、Ag、Cuなどやこれらの何れかを主成分とする合金が含まれ、かかる金属を構成するための金属粉末は、製造時における流動性を確保するため、平均粒径で1μm以下が望ましい。但し、該放熱部は、一部に製造時に用いた導電性ペースト中に含まれていたバインダ樹脂などの非導電性成分を含有していても良い。
更に、前記第1接続部は、前記放熱部と同様の金属からなり、断面が円形のほか、楕円形、長円形、矩形状、または五角形以上の多角形状などを呈していても良い。
加えて、前記基板本体には、1個の前記表面パッドに対し、複数の第1接続部と、単数または複数の放熱部とが電気的に接続された形態とされていても良い。
In addition, the heat radiating portion is mainly made of a metal having excellent thermal conductivity, and the metal includes W, Mo, Ag, Cu, or an alloy mainly containing any one of these metals. The metal powder for constituting is preferably 1 μm or less in average particle size in order to ensure fluidity during production. However, the heat dissipating part may contain a non-conductive component such as a binder resin included in the conductive paste used at the time of manufacture.
Furthermore, the first connection portion is made of the same metal as the heat dissipation portion, and may have an elliptical shape, an oval shape, a rectangular shape, or a polygonal shape of pentagon or more in addition to a circular cross section.
In addition, the substrate body may be configured such that a plurality of first connection portions and a single or a plurality of heat dissipation portions are electrically connected to one surface pad.

また、本発明には、前記放熱部は、全体が球形であるか、あるいは、該放熱部における前記基板本体の表面側が該基板本体の表面側から裏面側に向かって平面視の断面積が大きくなる錐体形状である、配線基板(請求項2)も含まれる。
上記のうち、全体が球形の形態である放熱部によれば、前記放熱方向がズレ難く且つ前記静電容量の安定性も容易に確保し得る。しかも、容積に対して表面積が小さいので、比較的薄い基板本体の内部に埋設させることも容易である。
一方、前記基板本体の表面側が該表面側から裏面側に向かって平面視の断面積が大きくなる錐体形状で、且つ上記基板本体の裏面側の面が前記球面(半球面)の形態である放熱部によれば、上記放熱方向および静電容量の安定性に加えて、前記第1接続部から伝達された熱を上記球面側に向かって次第に速く伝達することも可能となる。
尚、前記放熱部における表面側の錐体形状は、円錐形状あるいは多角錐形状などである。
Further, according to the present invention, the heat radiating part has a spherical shape as a whole, or the surface side of the substrate body in the heat radiating part has a large cross-sectional area in plan view from the surface side of the substrate body to the back side. The wiring board (Claim 2) having a conical shape is also included.
Among the above, according to the heat radiating portion having a spherical shape as a whole, the heat radiating direction is difficult to shift, and the stability of the capacitance can be easily ensured. In addition, since the surface area is small with respect to the volume, it is easy to embed in a relatively thin substrate body.
On the other hand, the surface side of the substrate body has a conical shape in which a cross-sectional area in plan view increases from the surface side toward the back surface side, and the surface on the back surface side of the substrate body is in the form of the spherical surface (semispherical surface). According to the heat dissipating part, in addition to the heat dissipating direction and the stability of the electrostatic capacity, the heat transmitted from the first connecting part can be gradually and rapidly transmitted toward the spherical surface side.
In addition, the cone shape of the surface side in the said thermal radiation part is a cone shape or a polygonal pyramid shape.

更に、本発明には、前記基板本体の裏面に対向する前記放熱部の球面には、前記基板本体の裏面あるいは側面に他端が露出する第2接続部の一端が接続されている、配線基板(請求項)も含まれる Furthermore, in the present invention, one end of a second connection portion with the other end exposed at the back surface or side surface of the substrate body is connected to the spherical surface of the heat radiating portion facing the back surface of the substrate body. (Claim 3 ) is also included .

れによれば、第1接続部、放熱部、および第2接続部を介して、前記基板本体の表面と裏面との間、あるいは該表面と側面との間を電気的に導通可能となる。そのため、例えば、追って、前記表面パッドの上方に実装される発光素子などの素子における一方の電極と、上記基板本体の裏面または側面に形成される裏面パッドあるいは側面導体との間が電気的に接続可能となる。しかも、上記放熱部および裏面パッドあるいは側面導体を介して、上記素子の電極と、追って本配線基板自体が搭載されるマザーボードなどの表面パッドとを電気的に接続することもできる。更に、前記素子が発する熱を裏面パッドあるいは側面導体を介して、基板本体の外部に放出することも可能となる。
According to which this first connecting portion, the heat radiating portion, and via a second connecting portion, and electrically conductively between or between the surface and the side surface, the surface and the back surface of the substrate body . Therefore, for example, one electrode in a light emitting element or the like mounted above the front surface pad is electrically connected to a back surface pad or a side conductor formed on the back surface or side surface of the substrate body. It becomes possible. In addition, the electrode of the element and a surface pad such as a mother board on which the wiring board itself is mounted can be electrically connected through the heat radiating portion and the back surface pad or the side conductor. Furthermore, the heat generated by the element can be released to the outside of the substrate body through the back pad or the side conductor.

尚、上記第2接続部も、前記第1接続部や放熱部と同様な金属からなり、且つ第1接続部と同様の形態であると共に、基板本体の裏面あるいは側面に対し、上記第1接続部と同様にして配置されている。
また、上記第2接続部の他端が露出する基板本体の裏面または側面には、これらと個別に接続する裏面パッドあるいは側面導体が形成されている。
更に、前記第2接続部は、錐体形状を呈する前記放熱部の底面側から基板本体の裏面および側面の双方に延びた形態であっても良い。
The second connecting portion is also made of the same metal as the first connecting portion and the heat radiating portion, and has the same form as the first connecting portion, and the first connection with respect to the back surface or side surface of the substrate body. It is arranged in the same way as the section.
Further, on the back surface or side surface of the substrate body where the other end of the second connection portion is exposed, a back surface pad or a side conductor connected individually to these is formed.
Further, the second connection portion may extend from the bottom surface side of the heat radiating portion having a cone shape to both the back surface and the side surface of the substrate body.

本発明による一形態の配線基板を示す垂直断面図。1 is a vertical sectional view showing a wiring board according to an embodiment of the present invention. (A)は上記配線基板に用いる放熱部付近を示す斜視図、(B)は異なる形態の放熱部付近を示す斜視図。(A) is a perspective view which shows the thermal radiation part vicinity used for the said wiring board, (B) is a perspective view which shows the thermal radiation part vicinity of a different form. (A),(B)はそれぞれ上記配線基板の製造工程を示す概略図。(A), (B) is the schematic which shows the manufacturing process of the said wiring board, respectively. (A),(B)は図3(B)に続く製造工程を示す概略図。(A), (B) is the schematic which shows the manufacturing process following FIG. 3 (B). (A),(B)は図4(B)に続く製造工程を示す概略図。(A), (B) is the schematic which shows the manufacturing process following FIG. 4 (B). 上記配線基板の使用状態を示す垂直断面図。FIG. 3 is a vertical sectional view showing a usage state of the wiring board. (A),(B)はそれぞれ更に異なる形態の放熱部付近を示す斜視図。(A), (B) is a perspective view which shows the thermal radiation part vicinity of a further different form, respectively. (A),(B)はそれぞれ異なる形態の配線基板を示す垂直断面図。(A), (B) is a vertical sectional view which shows the wiring board of a different form, respectively. (A),(B)はそれぞれ応用形態の放熱部付近を示す斜視図。(A), (B) is a perspective view which shows the thermal radiation part vicinity of an application form, respectively.

以下において、本発明を実施するための形態について説明する。
図1は、本発明による一形態の配線基板1aを示す垂直断面図、図2(A)は、該配線基板1aの内部に埋設される放熱部8a付近を示す斜視図である。
かかる配線基板1aは、図1に示すように、例えば、ガラス−セラミックなどのセラミック(絶縁材)からなり、互いに平行な表面3および裏面4と、該表面3と裏面4との周辺間に位置する四辺の側面5とを有する基板本体2と、該基板本体2の表面3上に形成された表面パッド6と、該基板本体2の内部に埋設された放熱部8aと、を含んでいる。
上記放熱部8aは、図1,図2(A)に示すように、全体が球形9を呈し、その基板本体の裏面4側に対向する面も球面(半球面)9aとなっている。該放熱部8aの上下には、断面が円形状の第1接続部11と第2接続部12とが、当該放熱部8aの中心部を貫通する垂直線(仮想)と同軸状に接続されている。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a vertical sectional view showing a wiring board 1a according to an embodiment of the present invention, and FIG. 2A is a perspective view showing the vicinity of a heat radiation part 8a embedded in the wiring board 1a.
As shown in FIG. 1, the wiring board 1 a is made of, for example, ceramic (insulating material) such as glass-ceramic, and is positioned between the front surface 3 and the back surface 4 parallel to each other and the periphery of the front surface 3 and the back surface 4. A substrate body 2 having four side surfaces 5, a surface pad 6 formed on the surface 3 of the substrate body 2, and a heat radiating portion 8 a embedded in the substrate body 2.
As shown in FIGS. 1 and 2 (A), the entire heat radiating portion 8a has a spherical shape 9, and the surface facing the back surface 4 side of the substrate body is also a spherical surface (semispherical surface) 9a. Above and below the heat radiating portion 8a, a first connecting portion 11 and a second connecting portion 12 having a circular cross section are coaxially connected to a vertical line (virtual) penetrating the central portion of the heat radiating portion 8a. Yes.

図1に示すように、前記第1接続部11は、前記基板本体2の表面3における中心部付近に上端部が露出し且つ前記表面パッド6の底面に接続されている。また、前記第2接続部12は、前記基板本体2の裏面4における中心部付近に下端部が露出し且つ該裏面4に形成された裏面パッド7の上面に接続されている。
尚、図1においては、第1接続部11および第2接続部12の中心軸は、それぞれ基板本体2の表面3および裏面4と直交しているが、必ずしも当該形態に限定されるものではない。
更に、前記基板本体2の表面3と裏面4との周辺部の何れかには、該表面3と裏面4との間を貫通する細長い円柱形状のビア導体20が配設され、その上端部には、上記表面3上に形成された表面電極21が接続され、上記ビア導体20の下端部には、上記裏面4上に形成された裏面電極22が接続されている。
上記表面電極21は、図1に示すように、追って表面パッド6の上方に実装される発光素子24における片方の電極とボンディングワイヤ23を介して、電気的に接続される。一方、前記裏面パッド7および裏面電極22は、追って本配線基板1aが搭載される図示しないマザーボード側の外部端子と導通可能とされる。
As shown in FIG. 1, the first connection portion 11 has an upper end exposed in the vicinity of the center portion of the surface 3 of the substrate body 2 and is connected to the bottom surface of the surface pad 6. The second connection portion 12 has a lower end exposed near the center of the back surface 4 of the substrate body 2 and is connected to the top surface of the back pad 7 formed on the back surface 4.
In FIG. 1, the central axes of the first connection portion 11 and the second connection portion 12 are orthogonal to the front surface 3 and the back surface 4 of the substrate body 2, respectively, but are not necessarily limited to this form. .
Further, an elongated columnar via conductor 20 penetrating between the front surface 3 and the back surface 4 is disposed at any one of the peripheral portions of the front surface 3 and the back surface 4 of the substrate body 2, and the upper end portion of the via conductor 20 is disposed. The surface electrode 21 formed on the front surface 3 is connected, and the lower surface of the via conductor 20 is connected to the back electrode 22 formed on the back surface 4.
As shown in FIG. 1, the surface electrode 21 is electrically connected to one electrode of a light emitting element 24 mounted on the surface pad 6 later via a bonding wire 23. On the other hand, the back pad 7 and the back electrode 22 can be electrically connected to an external terminal on the mother board (not shown) on which the wiring board 1a is mounted.

加えて、図2(B)に示すように、前記放熱部8aに替えて、第1接続部11と第2接続部12との間に、前記基板本体2の裏面4側に対向する面が球面(半球面)9aであり且つ基板本体2の表面3側に対向する面が側面視で楕円形を呈する半楕円球形状部10であって、全体が卵形状を呈する放熱部8bを、上記第1接続部11と第2接続部12との中心軸と同軸心状に配設しても良い。かかる形態では、第1接続部11は、放熱部8bの頂部13から立設している。
尚、前記表面・裏面パッド6,7、放熱部8a,8b、第1・第2接続部11,12、ビア導体20、および表面・裏面電極21,22は、基板本体2を構成するセラミックがガラス−セラミックのような低温焼成セラミックの場合には、主にAgまたはCuからなり、上記セラミックがアルミナなどの高温焼成セラミックの場合には、主にWまたはMoからなる。
In addition, as shown in FIG. 2 (B), a surface facing the back surface 4 side of the substrate body 2 is provided between the first connecting portion 11 and the second connecting portion 12 instead of the heat radiating portion 8a. A surface that is a spherical surface (hemispherical surface) 9a and faces the surface 3 side of the substrate body 2 is a semi-elliptical sphere-shaped portion 10 that has an oval shape in a side view, and the heat radiating portion 8b that has an oval shape overall is You may arrange | position coaxially with the central axis of the 1st connection part 11 and the 2nd connection part 12. FIG. In this form, the 1st connection part 11 is standingly arranged from the top part 13 of the thermal radiation part 8b.
The front and back pads 6 and 7, the heat radiating portions 8 a and 8 b, the first and second connecting portions 11 and 12, the via conductor 20, and the front and back electrodes 21 and 22 are made of ceramic constituting the substrate body 2. In the case of a low-temperature fired ceramic such as glass-ceramic, it is mainly composed of Ag or Cu, and in the case where the ceramic is a high-temperature fired ceramic such as alumina, it is mainly composed of W or Mo.

以下において、前記配線基板1aの製造方法について説明する。
予め、図3(A)の垂直断面図で示すように、前記第1接続部11および第2接続部12を上下に有する前記放熱部8aを形成するため、これらと相似形状である模型部9p,11p,12pからなる立体模型8mと、前記ビア導体20と相似形の立体模型20mとを製作した。
即ち、平均粒径が1〜50μmであるアクリル樹脂の粉末および接着剤などからなる液状の原料を、図示しない3次元プリンタに用いることによって、図3(A)に示すように、上下の模型部11p,12pと、これらに挟まれ且つ全体が球形状である放熱部8a用の模型部8pとからなる立体模型8mを成形した。
また、上記原料および3次元プリンタを用いることで、図3(A)の右側に示すように、前記ビア導体20と相似形の立体模型20mを成形した。
Below, the manufacturing method of the said wiring board 1a is demonstrated.
As shown in the vertical cross-sectional view of FIG. 3A in advance, in order to form the heat radiating part 8a having the first connecting part 11 and the second connecting part 12 in the upper and lower sides, a model part 9p having a similar shape to these parts. , 11p, 12p, and a solid model 20m similar to the via conductor 20 were manufactured.
That is, by using a liquid raw material made of an acrylic resin powder and an adhesive having an average particle diameter of 1 to 50 μm in a three-dimensional printer (not shown), as shown in FIG. A three-dimensional model 8m including 11p and 12p and a model part 8p for the heat radiation part 8a sandwiched between them and having a spherical shape as a whole was formed.
Further, by using the raw material and the three-dimensional printer, a three-dimensional model 20m similar to the via conductor 20 was formed as shown on the right side of FIG.

次に、図示しない型内に配設された直方体状のキャビティ内に、前記立体模型8m,20mをそれぞれの上・下端面のみを該キャビティの天井面および床面に接触させ且つ拘束した状態として、上記キャビティ内にガラス−セラミック(絶縁材)のスラリをゲルキャスト法によって充填した。
その結果、図3(B)に示すように、前記スラリが乾燥した生(未焼成)のセラミック体からなり、表面3、裏面4、およびこれらの四辺間に位置する側面5を有し、立体模型8mの模型部11p,12p,20mの両端面が表面3と裏面4とに個別に露出している未焼成の素基板本体30が得られた。
次いで、上記素基板本体30を所定の温度帯に加熱して、該素基板本体30を構成している前記ガラス−セラミックを焼成した。かかる加熱過程において、前記立体模型8m,20mを構成していた前記アクリル樹脂の粉末や接着剤などは、当該立体模型8m,20mごとの上端部側から順次外部に蒸発して行った。
Next, the three-dimensional models 8m and 20m are placed in a rectangular parallelepiped cavity disposed in a mold (not shown), with only the upper and lower end surfaces in contact with and constrained to the ceiling surface and floor surface of the cavity. The above-mentioned cavity was filled with a glass-ceramic (insulating material) slurry by a gel casting method.
As a result, as shown in FIG. 3B, the slurry is made of a dried (unfired) ceramic body, has a front surface 3, a back surface 4, and a side surface 5 located between these four sides, An unfired base substrate body 30 was obtained in which both end faces of the model portions 11p, 12p, and 20m of the model 8m were individually exposed on the front surface 3 and the back surface 4.
Next, the base substrate body 30 was heated to a predetermined temperature range, and the glass-ceramic constituting the base substrate body 30 was fired. In this heating process, the acrylic resin powder, adhesive, and the like constituting the three-dimensional models 8m and 20m were sequentially evaporated to the outside from the upper end side of each of the three-dimensional models 8m and 20m.

その結果、図4(A)に示すように、前記ガラス−セラミックからなり、表面3、裏面4、およびこれらの四辺間に位置する側面5を有し、前記立体模型8m,20mが蒸発して除去された跡には、該立体模型8m,20mとそれぞれ相似形の空洞部9s,11s,12sからなる立体空洞部8sと空洞部20sとが内部に形成されている焼成済みのセラミックからなる基板本体31が得られた。
更に、前記空洞部8s,20s内ごとにAg粉末あるいはCu粉末(金属粉末)を含む導電性ペーストを前記表面3側の上端部(開口部)から充填した。
その結果、図4(B)に示すように、前記空洞部8s内に上記導電性ペーストからなる未硬化の第1・第2接続部11u,12uと、未硬化の放熱部9uとからなる立体導体部8uが形成され、且つ前記空洞部20s内に上記導電性ペーストからなる未硬化のビア導体20uが形成された基板本体2が得られた。
尚、上記放熱部9uの内部や周囲には、球形状の前記模型部9pと相似形の空洞部9sに上記導電性ペーストが充填されたので、空隙が全く生じていなかった。
As a result, as shown in FIG. 4 (A), it is made of the glass-ceramic, has a front surface 3, a back surface 4, and a side surface 5 located between these four sides, and the three-dimensional models 8m and 20m are evaporated. The removed trace shows a substrate made of fired ceramic in which a three-dimensional cavity portion 8s and a cavity portion 20s each having a hollow portion 9s, 11s, and 12s similar to the three-dimensional model 8m and 20m are formed inside. A main body 31 was obtained.
Further, a conductive paste containing Ag powder or Cu powder (metal powder) was filled from the upper end portion (opening portion) on the surface 3 side in each of the hollow portions 8s and 20s.
As a result, as shown in FIG. 4B, a three-dimensional structure comprising uncured first and second connection portions 11u, 12u made of the conductive paste and uncured heat dissipation portion 9u in the cavity 8s. The substrate body 2 was obtained in which the conductor portion 8u was formed and the uncured via conductor 20u made of the conductive paste was formed in the hollow portion 20s.
In addition, since the conductive paste was filled into the hollow portion 9s similar to the spherical model portion 9p inside and around the heat radiating portion 9u, no gap was generated.

次に、未硬化の第1・第2接続部11u,12uと、放熱部9uと、ビア導体20uとを内設する前記基板本体2を、所定の温度帯に加熱することで、上記放熱部8uとビア導体20pとを硬化(キュア)させた。その結果、図5(A)に示すように、硬化した第1・第2接続部11,12を上下に有する球形9の放熱部8aと、ビア導体20とを内部に埋設している基板本体2が得られた。
そして、上記基板本体2の表面3と裏面4とを研磨した後、該表面3および裏面4に露出する第1・第2接続部11,12の端面付近ごと、およびビア導体20の両端面付近に対し、Ti合金をスパッタリングして、それぞれ平面視が矩形状あるいは円形状を呈する下地金属層を形成し、該下地金属層ごとの表面にCuをスパッタリングして表層金属層を積層してパッド本体を形成した後、それらの表面に対して電解Niメッキおよび電解Auメッキを順次施して、Niメッキ膜およびAuメッキ膜(図示せず)を内外2層にして被覆した。
Next, by heating the substrate body 2 in which the uncured first and second connection portions 11u and 12u, the heat radiating portion 9u, and the via conductor 20u are provided to a predetermined temperature zone, the heat radiating portion 8u and the via conductor 20p were cured (cured). As a result, as shown in FIG. 5A, the substrate body in which the spherical heat dissipation portion 8a having the hardened first and second connection portions 11 and 12 on the upper and lower sides and the via conductor 20 are embedded therein. 2 was obtained.
After the front surface 3 and the back surface 4 of the substrate body 2 are polished, the vicinity of the end surfaces of the first and second connecting portions 11 and 12 exposed on the front surface 3 and the back surface 4 and the vicinity of both end surfaces of the via conductor 20 On the other hand, a Ti alloy is sputtered to form a base metal layer having a rectangular or circular shape in plan view, Cu is sputtered on the surface of each base metal layer, and a surface metal layer is laminated to form a pad body. Then, electrolytic Ni plating and electrolytic Au plating were sequentially applied to the surfaces, and a Ni plating film and an Au plating film (not shown) were coated in two layers.

その結果、図5(B)に示すように、第1・第2接続部11,12、放熱部8a、およびビア導体20を基板本体2の内部に埋設していると共に、前記第1・第2接続部11,12の端面ごとに個別に接続した表面・裏面パッド6,7と、ビア導体20の両端面に個別に接続した表面・裏面電極21,22とを、前記表面3あるいは裏面4に形成した前記配線基板1aを得ることができた。
尚、前記模型部9pの形状を変更することで、前記放熱部8bを基板本体2の内部に前記同様に埋設した配線基板1aを製造することもできる。
以上のような製造方法によれば、前記配線基板1aを、一個でも多数個取り方式でも、比較的少ない工程によって、精緻で且つ確実に製造することができる。
As a result, as shown in FIG. 5B, the first and second connecting portions 11 and 12, the heat radiating portion 8a, and the via conductor 20 are embedded in the substrate body 2, and the first and second connecting portions are embedded. 2 The front and back pads 6 and 7 connected individually for each end face of the connecting portions 11 and 12 and the front and back electrodes 21 and 22 connected individually to both end faces of the via conductor 20 are connected to the front face 3 or the back face 4. The wiring board 1a formed in (1) was obtained.
In addition, the wiring board 1a which embed | buries the said heat radiating part 8b in the inside of the board | substrate body 2 similarly to the above can also be manufactured by changing the shape of the said model part 9p.
According to the manufacturing method as described above, it is possible to manufacture the wiring substrate 1a precisely and reliably with relatively few steps, whether it is a single piece or a multi-piece method.

前記のような配線基板1aによれば、全体が球形状あるいは卵形状を呈する放熱部8a,8bは、基板本体2の表面3上に形成された表面パッド6に対し、平面視で該表面パッド6の面積よりも小さい面積の第1接続部8を介して接続されている。即ち、平面視において、基板本体2の表面3に露出する第1接続部8の面積は、表面パッド6の面積よりも小さくされている。そのため、追って、表面パッド6の上方に比較的発熱量の多い発光素子24が実装された場合、該素子24から発せられる熱は、第1接続部11を介して放熱部8a,8bに伝達され、該放熱部8a,8bの表面から基板本体2を構成しているガラス−セラミック中に順次放散された後、外部に放出される。そのため、上記表面パッド6とこれに接する基板本体2の表面3を構成するガラス−セラミックとの間における熱膨張係数の差に起因して、該基板本体2の表面3側にクラックが生じる事態を皆無にできるか、少なくとも確実に抑制することが可能となる。   According to the wiring substrate 1a as described above, the heat radiating portions 8a and 8b, which have a spherical shape or an egg shape as a whole, are provided on the surface pad 6 formed on the surface 3 of the substrate body 2 in a plan view. The first connection part 8 having an area smaller than the area 6 is connected. That is, in plan view, the area of the first connection portion 8 exposed on the surface 3 of the substrate body 2 is smaller than the area of the surface pad 6. Therefore, when the light emitting element 24 having a relatively large calorific value is mounted above the surface pad 6 later, the heat generated from the element 24 is transmitted to the heat radiating parts 8a and 8b via the first connection part 11. Then, after being sequentially dissipated from the surface of the heat radiating portions 8a and 8b into the glass-ceramic constituting the substrate body 2, it is discharged to the outside. Therefore, there is a situation in which cracks are generated on the surface 3 side of the substrate body 2 due to the difference in thermal expansion coefficient between the surface pad 6 and the glass-ceramic constituting the surface 3 of the substrate body 2 in contact therewith. It can be eliminated or at least reliably suppressed.

更に、前記放熱部8a,8bは、少なくとも前記基板本体2の裏面4に対向する面が球面(半球面)9aであるので、例えば、図6に示すように、本配線基板1aの裏面パッド7や裏面電極22をプリント基板26の表面に形成された外部端子27上にハンダ28を介して接続した際に、該配線基板1aが傾斜して搭載され、且つ上記放熱部8a,8bが傾斜姿勢になっても、該放熱部8a,8bを介した発光素子24からの熱の放熱方向がずれにくくなる。その結果、放熱経路が大きく変化しないので、水平姿勢の場合と同様の放熱性能が得られる。尚、図6中で左側の裏面電極22は、内部導体とは接続されないダミー電極である。   Furthermore, since at least the surface facing the back surface 4 of the substrate main body 2 is a spherical surface (semispherical surface) 9a, the heat radiation portions 8a and 8b are, for example, as shown in FIG. When the back electrode 22 is connected to the external terminal 27 formed on the surface of the printed board 26 via the solder 28, the wiring board 1a is mounted in an inclined state, and the heat radiating portions 8a and 8b are inclined. Even if it becomes, it becomes difficult to shift | deviate the heat radiation direction of the heat from the light emitting element 24 via this heat radiating part 8a, 8b. As a result, since the heat radiation path does not change greatly, the same heat radiation performance as in the horizontal posture can be obtained. In FIG. 6, the back electrode 22 on the left side is a dummy electrode that is not connected to the internal conductor.

しかも、上記のように傾斜姿勢で搭載した際においても、上記放熱部8a,8bの球面9aと上記プリント基板26の搭載面との間の距離が水平姿勢の場合とほぼ同様となるので、かかる部位における静電容量もほとんど変化しなくなる。
従って、追って、発熱量の多い発光素子24などを表面パッド6の上方に実装しても、該素子24の発熱によって、上記表面パッド6に接する基板本体2の表面3側のセラミックにクラックが生じにくいと共に、マザーボードの表面上に傾斜姿勢で搭載されても、上記熱の放熱方向がずれにくく且つ静電容量も安定した配線基板1aを提供することができる。
Moreover, even when mounted in an inclined posture as described above, the distance between the spherical surface 9a of the heat radiating portions 8a and 8b and the mounting surface of the printed circuit board 26 is substantially the same as that in the horizontal posture. The capacitance at the site is hardly changed.
Therefore, even if a light emitting element 24 or the like that generates a large amount of heat is mounted on the surface pad 6 later, the ceramic on the surface 3 side of the substrate body 2 in contact with the surface pad 6 is cracked by the heat generated by the element 24. In addition, it is possible to provide the wiring board 1a in which the heat dissipation direction is not easily shifted and the capacitance is stable even when mounted on the surface of the motherboard in an inclined posture.

図7(A)は、前記とは異なる形態の放熱部8cの付近を示す斜視図である。
上記放熱部8cは、図7(A)に示すように、前記基板本体2の裏面4に対向する面が前記放熱部8aと同じ球面(半球面)9aであり、且つ基板本体2の表面3に対向する面が、該表面3側から裏面4側に向かって平面視の面積が大きくなる円錐面(錐体形状)14であると共に、該円錐面14の頂部15に第1接続部11の下端部が同軸状にして接続されている。
また、図7(B)は、更に異なる形態の放熱部8dの付近を示す斜視図である。
上記放熱部8dは、図7(B)に示すように、前記基板本体2の裏面4に対向する面が前記放熱部8aと同じ球面(半球面)9aであり、且つ基板本体2の表面3に対向する面が、該表面3側から裏面4側に向かって平面視の面積が大きくなる四角錐面(錐体形状)16であると共に、該四角錐面16の頂部16aに上記第1接続部11の下端部が同軸状にして接続されている。上記四角錐面16は、4つの側面17から構成されている。尚、該四角錐面16は、五角錐面、六角錐面、あるいは、八角錐面などとしても良い。
以上のような放熱部8c,8dは、前記放熱部8aに替えて、前記配線基板1aの基板本体2の内部に前記同様にして埋設することができる。
FIG. 7A is a perspective view showing the vicinity of the heat radiation part 8c having a different form from the above.
As shown in FIG. 7A, the heat dissipating part 8c has a spherical surface (semispherical surface) 9a that is the same as the heat dissipating part 8a, and the surface 3 of the substrate main body 2 is opposite to the back surface 4 of the substrate main body 2. The confronting surface is a conical surface (conical shape) 14 whose area in plan view increases from the front surface 3 side to the back surface 4 side, and the top 15 of the conical surface 14 has the first connecting portion 11. The lower end is connected in a coaxial shape.
FIG. 7B is a perspective view showing the vicinity of the heat radiating portion 8d of a further different form.
As shown in FIG. 7B, the heat dissipating part 8d has a spherical surface (semispherical surface) 9a which is the same as the heat dissipating part 8a, and the surface 3 of the substrate main body 2 is opposite to the back surface 4 of the substrate main body 2. Is a quadrangular pyramid surface (cone shape) 16 whose area in plan view increases from the front surface 3 side toward the back surface 4 side, and the first connection to the top portion 16a of the quadrangular pyramid surface 16 The lower end of the part 11 is connected in a coaxial shape. The quadrangular pyramid surface 16 is composed of four side surfaces 17. The quadrangular pyramid surface 16 may be a pentagonal pyramid surface, a hexagonal pyramid surface, or an octagonal pyramid surface.
The heat dissipating parts 8c and 8d as described above can be embedded in the substrate body 2 of the wiring board 1a in the same manner as described above, instead of the heat dissipating part 8a.

図8(A)は、異なる形態の配線基板1bの概略を示す垂直断面図である。
かかる配線基板1bは、図8(A)に示すように、前記同様の基板本体2、表面パッド6、第1接続部11、および放熱部8aを備えている。該配線基板1bは、放熱部8aの球面9aの最低部と基板本体2の裏面4との間に前記第2接続部12を有していない反面、基板本体2における周辺部に一対のビア導体20を左右対称にして貫通させ、且つこれらの両端ごとに表面電極21および裏面電極22を個別に接続している。
上記表面パッド6の上方には、図8(A)に示すように、追って、発熱量が比較的多い半導体素子25が実装され、該素子25における一対の外部電極(図示せず)と、左右一対の表面電極21との間は、ボンディングワイヤ23を介して電気的に個別に接続される。
FIG. 8A is a vertical cross-sectional view showing an outline of a wiring board 1b having a different form.
As shown in FIG. 8A, the wiring substrate 1b includes the same substrate body 2, surface pad 6, first connection portion 11, and heat dissipation portion 8a as described above. The wiring board 1b does not have the second connection part 12 between the lowest part of the spherical surface 9a of the heat radiating part 8a and the back surface 4 of the board body 2, but a pair of via conductors in the peripheral part of the board body 2 20 is symmetrically penetrated, and the front surface electrode 21 and the back surface electrode 22 are individually connected to both ends thereof.
As shown in FIG. 8A, a semiconductor element 25 that generates a relatively large amount of heat is mounted on the surface pad 6, and a pair of external electrodes (not shown) in the element 25 and left and right The pair of surface electrodes 21 are electrically connected individually via bonding wires 23.

以上のような配線基板1bによれば、前記配線基板1aと同様の表面3側のセラミックにクラックが生じにくいと共に、前記半導体素子25から発生する熱は、表面パッド6および第1接続部11を介して放熱部8aに放散され、基板本体2を構成する前記セラミックに拡散された後に、外部に放出される。しかも、上記半導体素子25は、前記ボンディングワイヤ23、基板本体2を貫通する一対のビア導体20、および前記裏面電極22を介して、本配線基板1bを搭載するプリント基板などのマザーボード(図示せず)と導通可能とされるので、所要の動作を確実に奏することができる。更に、基板本体2の裏面4には、一対の裏面電極22だけを形成するので、それらの配置すべき位置を比較的自由に設計することもできる。
尚、上記配線基板1bの基板本体2内に埋設する放熱部8aは、前記放熱部8b〜8dの何れかに替えても良い。
According to the wiring board 1b as described above, cracks are unlikely to occur in the ceramic on the surface 3 side similar to the wiring board 1a, and the heat generated from the semiconductor element 25 causes the surface pad 6 and the first connection portion 11 to be generated. Then, it is diffused to the heat radiating portion 8a, diffused to the ceramic constituting the substrate body 2, and then released to the outside. Moreover, the semiconductor element 25 includes a motherboard (not shown) such as a printed board on which the wiring board 1b is mounted via the bonding wires 23, a pair of via conductors 20 penetrating the board body 2, and the back electrode 22. ) Can be conducted, so that the required operation can be reliably performed. Furthermore, since only the pair of back surface electrodes 22 are formed on the back surface 4 of the substrate body 2, the positions where they should be arranged can be designed relatively freely.
The heat radiating portion 8a embedded in the substrate body 2 of the wiring board 1b may be replaced with any of the heat radiating portions 8b to 8d.

図8(B)は、更に異なる形態の配線基板1cを示す垂直断面図である。
かかる配線基板1cは、図8(B)に示すように、前記同様の基板本体2、表面パッド6、第1接続部11、放熱部8a、ビア導体20、および表面・裏面電極21,22を備えている。該配線基板1cは、前記第2接続部12および裏面パッド7を有していないが、上記放熱部8aの球面9aには、他端が基板本体2の側面5に露出し且つ基板本体2の表面3と平行な第2接続部12aの一端が接続されている。該第2接続部12aの他端が露出する上記基板本体2の側面5には、側面導体18が形成され、該側面導体18の下端部は、基板本体2の裏面4の周辺部側に形成された裏面パッド19に接続されている。
上記配線基板1cも、前記配線基板1aと同様な効果を奏することができる。
尚、上記配線基板1cの基板本体2内に埋設する放熱部8aは、前記放熱部8b〜8dの何れかに替えても良い。
また、前記第2接続部12aは、前記球面9a側から側面5側に向かって斜め下向きに傾斜する形態としても良い。
更に、前記第2接続部12aや側面導体18などに加えて、前記第2接続部12および裏面パッド7を更に有する形態の配線基板1cとしても良い。
FIG. 8B is a vertical cross-sectional view showing a further different form of the wiring board 1c.
As shown in FIG. 8B, the wiring substrate 1c includes the same substrate body 2, surface pad 6, first connection portion 11, heat radiating portion 8a, via conductor 20, and front and back electrodes 21, 22 as described above. I have. The wiring board 1 c does not have the second connection part 12 and the back surface pad 7, but the other end of the spherical surface 9 a of the heat radiating part 8 a is exposed to the side surface 5 of the board body 2 and One end of the second connection portion 12a parallel to the surface 3 is connected. A side conductor 18 is formed on the side surface 5 of the substrate body 2 where the other end of the second connection portion 12a is exposed, and a lower end portion of the side conductor 18 is formed on the peripheral side of the back surface 4 of the substrate body 2. The back surface pad 19 is connected.
The wiring board 1c can also achieve the same effects as the wiring board 1a.
The heat dissipating part 8a embedded in the substrate body 2 of the wiring board 1c may be replaced with any of the heat dissipating parts 8b to 8d.
The second connection portion 12a may be inclined obliquely downward from the spherical surface 9a side to the side surface 5 side.
Further, in addition to the second connection portion 12a and the side conductor 18, the wiring board 1c may further include the second connection portion 12 and the back surface pad 7.

図9(A)は、応用形態の放熱部8aの付近を示す斜視図である。
かかる放熱部8aは、図9(A)に示すように、その球面9aを含む球形9の表面に、前記基板本体2の表面3側から裏面4側に向かう方向(垂直方向)に沿った複数組の凹溝32および凸条33を、上記方向と直交する円周方向に沿って連続して形成している。上記凹溝32および凸条33は、第1接続部11および第2接続部12側では皆無となり、且つ第1接続部11と第2接続部12との中間位置では、該凹溝32が最深となり、且つ該凸条33が最高となっている。
上記複数組の凹溝32,33を更に球形9の全体に形成することで、前記放熱部8aの表面積が一層大きくなるので、前記基板本体2を構成するセラミックとの密着面積が増大すると共に、前記発光素子24あるいは半導体素子25からの熱を基板本体2のセラミック中に一層効率良く放散することが可能となる。しかも、製造時における前記空洞部内への導電性ペーストの充填も支障を生じない。
尚、上記複数組の凹溝32,33を、前記放熱部8bの球面9aおよび半楕円球形状部10に対しても、前記同様に形成しても形成しても良い。
FIG. 9A is a perspective view showing the vicinity of the heat radiating portion 8a of the applied form.
As shown in FIG. 9A, the heat radiating portion 8a has a plurality of surfaces along the direction (vertical direction) from the surface 3 side to the back surface 4 side of the substrate body 2 on the surface of the sphere 9 including the spherical surface 9a. The set of concave grooves 32 and ridges 33 are continuously formed along a circumferential direction orthogonal to the above direction. The groove 32 and the ridge 33 are completely absent on the first connection portion 11 and the second connection portion 12 side, and the groove 32 is deepest at an intermediate position between the first connection portion 11 and the second connection portion 12. And the ridge 33 is the highest.
By further forming the plurality of sets of concave grooves 32, 33 on the entire spherical shape 9, the surface area of the heat radiating portion 8a is further increased, so that the contact area with the ceramic constituting the substrate body 2 is increased. It becomes possible to dissipate heat from the light emitting element 24 or the semiconductor element 25 more efficiently into the ceramic of the substrate body 2. In addition, the filling of the conductive paste into the hollow portion during production does not cause any trouble.
The plurality of sets of concave grooves 32 and 33 may be formed in the same manner as described above with respect to the spherical surface 9a and the semi-elliptical spherical shape portion 10 of the heat radiating portion 8b.

また、図9(B)は、応用形態の放熱部8cの付近を示す斜視図である。
かかる放熱部8cは、図9(B)に示すように、その円錐面14における前記基板本体2の表面3側から裏面4側に向かう方向に沿った複数組の凹溝34および凸条35を連続して形成している。かかる複数組の凹溝34および凸条35は、前記基板本体2の裏面4に対向する球面9a側にも上記と同じ方向に沿って連続して形成しても良い。
上記複数組の凹溝34,35を円錐面14に形成し、更に球面9aにも形成することで、前記放熱部8cの表面積が一層大きくなり、前記基板本体2を構成するセラミックとの密着面積が増大すると共に、前記発光素子24などからの熱を基板本体2のセラミック中に一層効率良く放散することが可能となる。しかも、製造時における前記空洞部内への導電性ペーストの充填も支障を生じない。
尚、上記複数組の凹溝34,35を、前記放熱部8cの円錐面14や、前記放熱部8dの四角錐面16に対しても、前記同様に形成しても形成しても良い。
FIG. 9B is a perspective view showing the vicinity of the heat radiating portion 8c of the applied form.
As shown in FIG. 9B, the heat radiating portion 8 c includes a plurality of sets of concave grooves 34 and ridges 35 along the direction from the front surface 3 side to the rear surface 4 side of the substrate body 2 in the conical surface 14. It is formed continuously. The plurality of sets of concave grooves 34 and ridges 35 may be continuously formed on the side of the spherical surface 9 a facing the back surface 4 of the substrate body 2 along the same direction as described above.
By forming the plurality of sets of concave grooves 34 and 35 on the conical surface 14 and also on the spherical surface 9a, the surface area of the heat radiating portion 8c is further increased, and the contact area with the ceramic constituting the substrate body 2 is increased. And the heat from the light emitting element 24 and the like can be dissipated more efficiently into the ceramic of the substrate body 2. In addition, the filling of the conductive paste into the hollow portion during production does not cause any trouble.
The plurality of sets of concave grooves 34 and 35 may be formed in the same manner as described above with respect to the conical surface 14 of the heat radiating portion 8c and the quadrangular pyramid surface 16 of the heat radiating portion 8d.

本発明は、以上において説明した各形態に限定されるものではない。
例えば、前記基板本体2を構成する絶縁材は、ガラス−セラミック以外の低温焼成セラミックや、アルミナなどの高温焼成セラミックとしても良い。後者の場合、前記放熱部8a〜8dやビア導体20などには、WまたはMoなどが適用される。更に、上記絶縁材には、熱硬化性で且つ耐熱性の合成樹脂(例えば、エポキシ樹脂など)を適用しても良い。
また、前記基板本体は、その表面の中央部に開口するキャビティを有する形態とし、該キャビティの底面(表面)に前記第1接続部11の一端部を露出させ、その真上に表面パッド6を接続させて形成しても良い。
The present invention is not limited to the embodiments described above.
For example, the insulating material constituting the substrate body 2 may be a low-temperature fired ceramic other than glass-ceramic or a high-temperature fired ceramic such as alumina. In the latter case, W or Mo is applied to the heat radiating portions 8a to 8d, the via conductor 20, and the like. Further, a thermosetting and heat resistant synthetic resin (for example, an epoxy resin) may be applied to the insulating material.
The substrate body has a cavity having an opening at the center of the surface thereof, one end portion of the first connection portion 11 is exposed on the bottom surface (surface) of the cavity, and the surface pad 6 is provided directly above the bottom surface. You may connect and form.

また、前記放熱部は、単一の基板本体の内部に複数個を埋設し、該複数個の放熱部ごとに前記第1接続部を接続し、更に、第2接続部を接続しても良い。
更に、前記放熱部において、前記球面を除いた部位の錐体形状は、例えば、第1接続部側に水平で平坦な円形面や四角面の頂面(頂部)を有し、垂直断面が台形状で、且つ全体が円錐形状あるいは四角錘形状を呈する形態としても良い。
また、上記水平で平坦な円形面や四角面の頂面を有する錐体形状を含む放熱部の場合、該頂面に対し複数の第1接続部を接続した形態としても良い。
加えて、前記発熱部8a〜8dの球面9aと前記基板本体2の裏面4との間には、互いに対称状に傾斜した複数の第2接続部を配設しても良い。
In addition, a plurality of the heat radiating portions may be embedded in a single substrate body, the first connecting portions may be connected to the plurality of heat radiating portions, and the second connecting portions may be further connected. .
Further, in the heat radiating portion, the conical shape of the portion excluding the spherical surface has, for example, a horizontal flat circular surface or a square top surface (top portion) on the first connection portion side, and a vertical cross section is a trapezoid. It is good also as a form which is a shape and the whole exhibits a cone shape or a square pyramid shape.
Moreover, in the case of the heat radiating part including a pyramid shape having a horizontal and flat circular surface or a square top surface, a plurality of first connection portions may be connected to the top surface.
In addition, a plurality of second connection portions inclined symmetrically to each other may be disposed between the spherical surface 9 a of the heat generating portions 8 a to 8 d and the back surface 4 of the substrate body 2.

本発明によれば、セラミックなどの絶縁材からなる基板本体の表面上に形成した表面パッドに比較的高い発熱性を有する発光素子などの素子を実装しても、該表面パッドの周囲に隣接する絶縁材にクラックが生じにくく、マザーボードの表面上に傾斜して搭載された場合でも、熱の放熱方向がずれにくく且つ基板本体の静電容量を均一に保ち易い配線基板を提供することができる。   According to the present invention, even when an element such as a light emitting element having relatively high heat generation is mounted on a surface pad formed on the surface of a substrate body made of an insulating material such as ceramic, the element is adjacent to the periphery of the surface pad. Even when the insulating material is hardly cracked and mounted on the surface of the mother board at an inclination, it is possible to provide a wiring board in which the heat radiation direction is difficult to shift and the electrostatic capacity of the board main body is easily maintained.

1a〜1c…………………………配線基板
2……………………………………基板本体
3……………………………………表面
4……………………………………裏面
5……………………………………側面
6……………………………………表面パッド
11…………………………………第1接続部
12,12a………………………第2接続部
8a〜8d…………………………放熱部
9……………………………………球形
9a…………………………………球面
10,14,16…………………錐体形状
32,33…………………………凸条
34,35…………………………凹溝
1a to 1c ………………………… Wiring board 2 …………………………………… Board body 3 …………………………………… Surface 4… ………………………………… Back 5 …………………………………… Side 6 …………………………………… Front Pad 11 …… …………………………… 1st connection part 12,12a ……………………… 2nd connection part 8a ~ 8d ………………………… Heat dissipation part 9 ……… …………………………… Spherical shape 9a ………………………………… Spherical surface 10, 14, 16 ………………… Cone shape 32, 33 …………… …………… Projections 34, 35 …………………………

Claims (3)

絶縁材からなり、互いに平行な表面および裏面と、該表面と裏面との間に位置する側面とを有する基板本体と、
上記基板本体の表面上に形成された表面パッドと、
上記基板本体の内部に埋設された放熱部と、
上記表面パッドと上記放熱部とを接続する第1接続部とを備えた配線基板であって、
上記放熱部は、少なくとも上記基板本体の裏面に対向する面が球面であり、且つ前記基板本体の表面側から裏面側に向かう方向に沿った複数組の凹溝および凸条が形成されていると共に、
平面視において、上記基板本体の表面に露出する上記第1接続部の面積は、上記表面パッドの面積よりも小さい、
ことを特徴とする配線基板。
A substrate body made of an insulating material, having a front surface and a back surface parallel to each other, and a side surface located between the front surface and the back surface;
A surface pad formed on the surface of the substrate body;
A heat dissipating part embedded in the substrate body;
A wiring board comprising a first connection part for connecting the surface pad and the heat dissipation part,
The heat dissipating part has a spherical surface at least facing the back surface of the substrate body , and a plurality of sets of concave grooves and ridges along the direction from the front surface side to the back surface side of the substrate body. ,
In plan view, the area of the first connection portion exposed on the surface of the substrate body is smaller than the area of the surface pad.
A wiring board characterized by that.
前記放熱部は、全体が球形であるか、あるいは、該放熱部における前記基板本体の表面側が該基板本体の表面側から裏面側に向かって平面視の断面積が大きくなる錐体形状である、
ことを特徴とする請求項1に記載の配線基板。
The heat dissipating part has a spherical shape as a whole, or the surface side of the substrate main body in the heat dissipating part has a conical shape in which a cross-sectional area in plan view increases from the front surface side to the back surface side of the substrate main body.
The wiring board according to claim 1.
前記基板本体の裏面に対向する前記放熱部の球面には、前記基板本体の裏面あるいは側面に他端が露出する第2接続部の一端が接続されている、
ことを特徴とする請求項1または2に記載の配線基板。
One end of a second connection portion with the other end exposed at the back surface or side surface of the substrate body is connected to the spherical surface of the heat radiating portion facing the back surface of the substrate body.
The wiring board according to claim 1 or 2, wherein
JP2014154923A 2014-07-30 2014-07-30 Wiring board Expired - Fee Related JP6367640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154923A JP6367640B2 (en) 2014-07-30 2014-07-30 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154923A JP6367640B2 (en) 2014-07-30 2014-07-30 Wiring board

Publications (2)

Publication Number Publication Date
JP2016032068A JP2016032068A (en) 2016-03-07
JP6367640B2 true JP6367640B2 (en) 2018-08-01

Family

ID=55442271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154923A Expired - Fee Related JP6367640B2 (en) 2014-07-30 2014-07-30 Wiring board

Country Status (1)

Country Link
JP (1) JP6367640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166186A1 (en) * 2019-02-14 2020-08-20 Agc株式会社 Substrate for light-emitting element and method for manufacturing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310547A (en) * 1993-02-25 1994-11-04 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2950290B2 (en) * 1997-06-27 1999-09-20 日本電気株式会社 High frequency integrated circuit device and method of manufacturing the same
JP2006294725A (en) * 2005-04-07 2006-10-26 Fujikura Ltd Wiring board, multilayered wiring board, and manufacturing method of these
JP2006332449A (en) * 2005-05-27 2006-12-07 Cmk Corp Multilayer printed wiring board and method for manufacturing the same
US20070080360A1 (en) * 2005-10-06 2007-04-12 Url Mirsky Microelectronic interconnect substrate and packaging techniques
JP4960194B2 (en) * 2007-10-22 2012-06-27 電気化学工業株式会社 Method for manufacturing substrate for light emitting device package and light emitting device package
GB0721957D0 (en) * 2007-11-08 2007-12-19 Photonstar Led Ltd Ultra high thermal performance packaging for optoelectronics devices
JP2010238941A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Light emitting device
US8410371B2 (en) * 2009-09-08 2013-04-02 Cree, Inc. Electronic device submounts with thermally conductive vias and light emitting devices including the same
JP5518624B2 (en) * 2010-08-10 2014-06-11 日本メクトロン株式会社 Printed wiring board and manufacturing method thereof
JP2013219090A (en) * 2012-04-04 2013-10-24 Sankyo Kasei Co Ltd Led package
JP6038482B2 (en) * 2012-04-27 2016-12-07 日本特殊陶業株式会社 Light-emitting element mounting wiring board

Also Published As

Publication number Publication date
JP2016032068A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP6221864B2 (en) Light emitting device
TW201803076A (en) Semiconductor device having conductive wire with increased attachment angle and method
JP2006074007A (en) Light emitting source, manufacturing method of light emitting source, lighting apparatus, and display apparatus
JP2013541857A5 (en) LED-based light source using anisotropic conductor
JP2011119732A5 (en) Light emitting diode package and light emitting diode package module
JP6400928B2 (en) Wiring board and electronic device
JP2008294253A (en) Wiring board for packaging light emitting element
JP2008172113A (en) Wiring substrate
JP2014127678A (en) Wiring board and electronic device
JP6348792B2 (en) Wiring board
US20130313606A1 (en) Illuminating device
KR20130009188A (en) Substrate for light emitting device
JP2011044612A (en) Light emitting device
WO2015016289A1 (en) Wiring base plate and electronic device
JP6367640B2 (en) Wiring board
JP6713890B2 (en) Wiring board and manufacturing method thereof
JP6613089B2 (en) Wiring board and manufacturing method thereof
JP2016072408A (en) Light source, method of manufacturing the same, and mounting method
JP4250171B2 (en) Ceramic package for light emitting device
JP6038482B2 (en) Light-emitting element mounting wiring board
JP5855822B2 (en) Multiple wiring board
JP6389388B2 (en) Wiring board
JP2006324398A (en) Wiring board
JP2013045485A5 (en)
JP5388826B2 (en) High heat dissipation connector, circuit module, and circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6367640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees