JP2008294253A - Wiring board for packaging light emitting element - Google Patents

Wiring board for packaging light emitting element Download PDF

Info

Publication number
JP2008294253A
JP2008294253A JP2007138633A JP2007138633A JP2008294253A JP 2008294253 A JP2008294253 A JP 2008294253A JP 2007138633 A JP2007138633 A JP 2007138633A JP 2007138633 A JP2007138633 A JP 2007138633A JP 2008294253 A JP2008294253 A JP 2008294253A
Authority
JP
Japan
Prior art keywords
heat transfer
wiring board
cavity
light emitting
substrate body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007138633A
Other languages
Japanese (ja)
Inventor
Naoki Kaneyama
直樹 兼山
Yutaka Toyama
豊 外山
Taku Miyamoto
卓 宮本
Satoshi Hirano
聡 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007138633A priority Critical patent/JP2008294253A/en
Publication of JP2008294253A publication Critical patent/JP2008294253A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board for packaging a light emitting element, capable of packaging the light emitting element to the bottom surface of a cavity opened on the surface of a board main body including at least ceramic components and effectively and surely radiating heat generated by the light emitting element. <P>SOLUTION: The wiring board 1a for packaging the light emitting element includes: the board main body 2 provided with a surface 3 and a back surface 4 and composed by laminating a plurality of insulating layers S1-S6 including at least the ceramic components; a cavity 5 opened on the surface 3 of the board main body 2 and provided with a side face 7 and the bottom surface 6 where the light emitting element L is packaged; a light reflecting layer 12 formed on the side face 7 of the cavity 5; heat transmission conductor layers 10 and 11 connected to the inner side face of the light reflecting layer 12 at one end and formed between the plurality of insulating layers S1-S3; and a plurality of heat transmission via conductors V1 and V2 disposed between the heat transmission conductor layers 10 and 11 and the back surface 4 of the board main body 2. The heat transmission via conductors V1 and V2 are connected to a pad 19 formed on the back surface 4 of the board main body 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、発光ダイオードなどの発光素子をキャビティに実装し、かかるキャビティからの放熱特性に優れた発光素子実装用配線基板に関する。   The present invention relates to a wiring board for mounting a light emitting element, for example, in which a light emitting element such as a light emitting diode is mounted in a cavity and the heat dissipation characteristics from the cavity are excellent.

近年、発光ダイオードなどの発光素子の高輝度化に伴って、その通電量が大きくなり、且つ発熱量も増大するため、発光素子からの熱を速やかに放熱することが求められている。このため、例えば、セラミックからなる絶縁基体において、その主面に搭載する発光素子の搭載部と反対側の主面との間に、複数の貫通金属体を貫通させた発光素子実装用配線基板が提案されている(例えば、特許文献1参照)。
また、ガラス−セラミックなどからなる複数の絶縁層を積層してなる基板本体において、その表面に開口するキャビティの発光素子を実装する底面と、上記基板本体の裏面との間に、比較的太径のビア導体を貫通して配設した発光素子実装用配線基板も提案されている(例えば、特許文献2参照)。
In recent years, as the luminance of a light emitting element such as a light emitting diode is increased, the amount of energization is increased and the amount of generated heat is also increased. Therefore, it is required to quickly dissipate heat from the light emitting element. For this reason, for example, in an insulating base made of ceramic, a light emitting element mounting wiring board in which a plurality of penetrating metal bodies are penetrated between a light emitting element mounting portion mounted on the main surface and the opposite main surface is provided. It has been proposed (see, for example, Patent Document 1).
Further, in a substrate body formed by laminating a plurality of insulating layers made of glass-ceramic or the like, a relatively large diameter is provided between the bottom surface on which the light emitting element of the cavity opened on the surface is mounted and the back surface of the substrate body. A wiring board for mounting a light-emitting element in which the via conductor is disposed through is also proposed (for example, see Patent Document 2).

特開2006−100364号公報(第1〜15頁、図2(a))Japanese Unexamined Patent Publication No. 2006-100364 (pages 1 to 15, FIG. 2 (a)) 特開2006−216764号公報(第1〜10頁、図7,8)JP 2006-216664 A (pages 1 to 10, FIGS. 7 and 8)

しかし、前記特許文献2のように、発光素子をキャビティの底面に実装する形態の配線基板では、発光素子が発する熱は、実装面であるキャビティの底面に限らず、当該キャビティの側面に形成した光反射層にも伝達され、かかるキャビティ内に充填・固化される封止樹脂と相俟って、外部へ放散されにくい。このため、上記発光素子の輝度を低下させてしまう、という問題があった。
しかも、前記特許文献2のように、キャビティの底面と基板本体の裏面との間に、比較的太径のビア導体を配置すると、基板本体の内部に形成すべき配線層のためのスペースが制約を受ける、という問題もあった。
However, as in Patent Document 2, in the wiring board in which the light emitting element is mounted on the bottom surface of the cavity, the heat generated by the light emitting element is not limited to the bottom surface of the cavity that is the mounting surface, but is formed on the side surface of the cavity. Combined with the sealing resin that is transmitted to the light reflecting layer and is filled and solidified in the cavity, it is difficult to dissipate to the outside. For this reason, there existed a problem of reducing the brightness | luminance of the said light emitting element.
Moreover, when a relatively large via conductor is disposed between the bottom surface of the cavity and the back surface of the substrate body as in Patent Document 2, the space for the wiring layer to be formed inside the substrate body is limited. There was also a problem of receiving.

本発明は、背景技術において説明した問題点を解決し、少なくともセラミック成分を含む基板本体の表面に開口するキャビティの底面に発光素子を実装し、かかる発光素子が発する熱を、キャビティから効果的で且つ確実に放熱できる発光素子実装用配線基板を提供する、ことを課題とする。   The present invention solves the problems described in the background art, mounts a light emitting element on the bottom surface of a cavity that opens at least on the surface of a substrate body containing a ceramic component, and effectively generates heat from the cavity from the cavity. It is another object of the present invention to provide a wiring board for mounting a light emitting element that can reliably dissipate heat.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、キャビティの底面に実装される発光素子からの熱を、キャビティの側面に形成した光反射層から放熱させる、ことに着想して成されたものである。
即ち、本発明による第1の発光素子実装用配線基板(請求項1)は、表面および裏面を有し且つ少なくともセラミック成分を含む複数の絶縁層を積層してなる基板本体と、かかる基板本体の表面に開口し且つ側面および発光素子が実装される底面を有するキャビティと、かかるキャビティの側面に形成された光反射層と、かかる光反射層の内側面に一端が接続され、且つ上記複数の絶縁層間に形成された伝熱導体層と、少なくともかかる伝熱導体層と上記基板本体の裏面付近に位置する複数の絶縁層間との間に配置された複数の伝熱ビア導体と、を含む、ことを特徴とする。
In order to solve the above-described problems, the present invention has been conceived in that heat from a light-emitting element mounted on the bottom surface of a cavity is radiated from a light reflecting layer formed on the side surface of the cavity.
That is, a first light-emitting element mounting wiring board according to the present invention (Claim 1) includes a substrate body formed by laminating a plurality of insulating layers having a front surface and a back surface and containing at least a ceramic component, and the substrate body. A cavity having an opening on the surface and a side surface and a bottom surface on which the light emitting element is mounted; a light reflecting layer formed on the side surface of the cavity; and one end connected to the inner side surface of the light reflecting layer; A heat transfer conductor layer formed between the layers, and at least a plurality of heat transfer via conductors disposed between the heat transfer conductor layer and a plurality of insulating layers located near the back surface of the substrate body. It is characterized by.

これによれば、キャビティの底面に実装される発光ダイオードなどの発光素子の発する熱が、光と共に当該キャビティの側面に形成された光反射層に、輻射になどより伝達されても、かかる光反射層の内側面に一端が接続され且つ前記複数の絶縁層間に形成された伝熱導体層に伝熱される。かかる伝熱導体層に伝熱された熱は、前記伝熱ビア導体を介して、少なくとも基板本体を形成する複数の絶縁層に拡散して放熱される。このため、前記キャビティ内に封止用樹脂が充填・固化されても、光反射層に伝達された熱が当該キャビティ内でこもらず、少なくとも基板本体の内部へ確実に放熱される。従って、前記発光素子の輝度を低下させることなく、長期間にわたり安定した発光を保証することが可能となる。   According to this, even if heat generated by a light emitting element such as a light emitting diode mounted on the bottom surface of the cavity is transmitted to the light reflecting layer formed on the side surface of the cavity together with light by radiation or the like, such light reflection is performed. One end is connected to the inner surface of the layer, and heat is transferred to the heat transfer conductor layer formed between the plurality of insulating layers. The heat transferred to the heat transfer conductor layer is diffused and dissipated through at least the plurality of insulating layers forming the substrate body via the heat transfer via conductor. For this reason, even if the sealing resin is filled and solidified in the cavity, the heat transmitted to the light reflecting layer does not stay in the cavity and is surely radiated to at least the inside of the substrate body. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting element.

尚、前記絶縁層に含まれるセラミック成分は、1000℃以下の比較的低温で焼成可能なガラス−セラミックのほか、約1250℃で焼成可能なガラス(SiO−MnO−TiO−MgO−BaO−ZrO系ガラス)−セラミック、あるいは、アルミナなどのセラミックを主成分とする高温焼成セラミックなどである。
また、前記発光素子には、発光ダイオード(LED)や半導体レーザ(LD)などが含まれる。
更に、前記光反射層は、前記キャビティの側面に直に形成されるAg、Cu、W、またはMoの導体層、その上に順次形成されるNiメッキ層、Auメッキ層、および、Ag、Pt、Pd、またはRhの何れかである表層のメッキ層からなる。
また、前記伝熱ビア導体には、例えばAg、Cu、W、Mo、あるいはこれらの合金からなり、直径が約0.1〜0.2mmのものが用いられる。
加えて、前記キャビティは、底面の周囲から傾斜して基板本体の表面に向けて傾斜して広がる側面を有する全体がほぼ円錐形、ほぼ長円錐形、ほぼ楕円錐形、各コーナにアールが付されたほぼ四角錐形のほか、垂直な側面を有する全体が円柱形、長円柱形、楕円柱形、各コーナにアールが付されたほぼ四角柱形の形態も含まれる。
The ceramic component contained in the insulating layer includes glass-ceramic that can be fired at a relatively low temperature of 1000 ° C. or lower, and glass that can be fired at about 1250 ° C. (SiO 2 —MnO 2 —TiO 2 —MgO—BaO). -ZrO 2 based glass) - ceramic, or the like high temperature fired ceramic mainly composed of ceramics such as alumina.
The light emitting element includes a light emitting diode (LED), a semiconductor laser (LD), and the like.
Further, the light reflecting layer includes an Ag, Cu, W, or Mo conductor layer formed directly on the side surface of the cavity, a Ni plating layer, an Au plating layer, and Ag, Pt formed sequentially thereon. , Pd, or Rh.
The heat transfer via conductor is made of, for example, Ag, Cu, W, Mo, or an alloy thereof having a diameter of about 0.1 to 0.2 mm.
In addition, the cavity has a substantially conical shape, a substantially long conical shape, a substantially elliptical cone shape, and a rounded corner at each corner, having side surfaces inclined from the periphery of the bottom surface and extending toward the surface of the substrate body. In addition to the substantially quadrangular pyramid shape, the entire shape having a vertical side surface includes a cylindrical shape, a long cylindrical shape, an elliptical column shape, and a substantially quadrangular prism shape in which each corner is rounded.

また、本発明には、前記複数の伝熱ビア導体は、前記伝熱導体層に接続されている、発光素子実装用配線基板(請求項2)も含まれる。
これによれば、伝熱導体層に伝熱された前記熱は、上記伝熱ビア導体に確実に伝達され、且つこれを介して少なくとも基板本体の内部へ確実に放熱できる。
更に、本発明には、前記伝熱ビア導体は、前記基板本体の裏面に形成されたパッドに接続されている、発光素子実装用配線基板(請求項3)も含まれる。
これによれば、前記光反射層から伝熱導体層に伝熱された前記熱は、上記伝熱ビア導体を介して、基板本体の裏面に形成されたパッドから外部に放熱できる。
また、本発明には、前記伝熱ビア導体の他端は、前記基板本体の外側面に露出している、発光素子実装用配線基板(請求項4)も含まれる。
これによれば、前記光反射層から伝熱導体層に伝熱された前記熱は、かかる伝熱導体層の他端から外部に放熱されると共に、前記伝熱ビア導体を介して基板本体の内部あるいは基板本体の裏面のパッドから外部に放熱されるため、一層キャビティ内の熱を効率良く放熱することが可能となる。
Further, the present invention includes a light emitting element mounting wiring board (Claim 2) in which the plurality of heat transfer via conductors are connected to the heat transfer conductor layer.
According to this, the heat transferred to the heat transfer conductor layer is reliably transferred to the heat transfer via conductor, and can be reliably radiated to at least the inside of the substrate body via the heat transfer via conductor.
Furthermore, the present invention includes a light emitting element mounting wiring board (Claim 3) in which the heat transfer via conductor is connected to a pad formed on the back surface of the substrate body.
According to this, the heat transferred from the light reflection layer to the heat transfer conductor layer can be radiated to the outside from the pad formed on the back surface of the substrate body via the heat transfer via conductor.
Further, the present invention includes a light emitting element mounting wiring board (Claim 4) in which the other end of the heat transfer via conductor is exposed on the outer surface of the substrate body.
According to this, the heat transferred from the light reflection layer to the heat transfer conductor layer is dissipated to the outside from the other end of the heat transfer conductor layer, and the heat transfer via conductor is used for the substrate body. Since heat is radiated to the outside from the pad on the back side of the substrate body, the heat in the cavity can be radiated more efficiently.

更に、本発明には、前記複数の伝熱ビア導体は、平面視において、前記キャビティの側面に沿って配設されている、発光素子実装用配線基板(請求項5)も含まれる。
これによれば、前記発光素子から輻射によって光反射層に伝達された熱を、前記伝熱導体層およびキャビティの側面に沿って配設された複数の伝熱ビア導体を介して、前記基板本体の裏面に形成したパッドから外部に放熱したり、あるいは、かかる基板本体を形成する複数の前記絶縁層に伝熱・拡散される。しかも、キャビティの底面と基板本体の裏面との間には、伝熱ビア導体を配設しないため、基板本体の内部に形成すべき配線層を、スペース的な制約を受けずに任意のパターンで配設することも可能となる。
尚、前記「キャビティの側面に沿って」とは、キャビティの側面に沿って複数の伝熱ビア導体がほぼ等間隔に配設されている形態と、かかる形態で更にキャビティの底面の中心に対して、対称な位置に配設されている形態との双方を含む。
Furthermore, the present invention includes a light emitting element mounting wiring board (Claim 5) in which the plurality of heat transfer via conductors are disposed along the side surface of the cavity in a plan view.
According to this, the heat transferred from the light emitting element to the light reflecting layer by radiation is transmitted to the substrate body via the heat transfer conductor layer and the plurality of heat transfer via conductors disposed along the side surface of the cavity. Heat is radiated to the outside from a pad formed on the back surface of the substrate, or is transferred and diffused to the plurality of insulating layers forming the substrate body. In addition, since no heat transfer via conductor is provided between the bottom surface of the cavity and the back surface of the substrate body, the wiring layer to be formed inside the substrate body can be formed in an arbitrary pattern without being restricted by space. It can also be arranged.
The term “along the side surface of the cavity” refers to a configuration in which a plurality of heat transfer via conductors are arranged at substantially equal intervals along the side surface of the cavity, and further to the center of the bottom surface of the cavity in such a configuration. In addition, it includes both of the forms arranged at symmetrical positions.

加えて、本発明には、前記伝熱ビア導体は、前記基板本体の厚み方向に沿って直線形状である、発光素子実装用配線基板(請求項6)も含まれる。
これによれば、前記発光素子から光反射層に伝達された熱を、前記伝熱導体層および上記直線形状の伝熱ビア導体を介して、迅速に前記基板本体の裏面に形成したパッドから外部に放熱したり、あるいは、かかる基板本体を形成する複数の前記絶縁層に放熱・拡散させることができる。
尚、直線形状を呈する上記伝熱ビア導体において、隣接する複数の前記絶縁層間には、同じ材料からなる若干太径のタイパッドが介在されている。
In addition, the present invention also includes a light emitting element mounting wiring board (Claim 6) in which the heat transfer via conductor has a linear shape along the thickness direction of the substrate body.
According to this, the heat transferred from the light emitting element to the light reflecting layer is quickly transferred from the pad formed on the back surface of the substrate body to the outside via the heat transfer conductor layer and the linear heat transfer via conductor. Heat dissipation, or heat dissipation and diffusion to the plurality of insulating layers forming the substrate body.
In the heat transfer via conductor having a linear shape, a slightly thick tie pad made of the same material is interposed between a plurality of adjacent insulating layers.

一方、本発明による第2の発光素子実装用配線基板(請求項7)は、表面および裏面を有し且つ少なくともセラミック成分を含む複数の絶縁層を積層してなる基板本体と、かかる基板本体の表面に開口し且つ側面および発光素子が実装される底面を有するキャビティと、かかるキャビティの側面に形成された光反射層と、上記複数の絶縁層間に形成され、上記光反射層の内側面に一端が接続され、且つ他端が上記基板本体の外側面に露出している伝熱導体層と、を含む、ことを特徴とする。   On the other hand, a second light emitting element mounting wiring board according to the present invention (Claim 7) includes a substrate body having a front surface and a back surface and a plurality of insulating layers including at least a ceramic component, and A cavity having an opening on the surface and having a side surface and a bottom surface on which the light emitting element is mounted, a light reflecting layer formed on the side surface of the cavity, and one end on the inner surface of the light reflecting layer. And a heat transfer conductor layer having the other end exposed at the outer surface of the substrate body.

これによれば、キャビティの底面に実装された発光ダイオードなどの発光素子の発する熱が、光と共に当該キャビティの側面に形成された光反射層に、輻射などにより伝達されても、かかる光反射層の内側面に一端が接続され且つ他端が記基板本体の外側面に露出している伝熱導体層を介して、短い経路で外部に放熱される。従って、光反射層に伝達された熱がキャビティ内でこもらず、当該キャビティ外へ確実に放熱されるため、前記発光素子の輝度を低下させることなく、長期間にわたり安定した発光を保証することが可能となる。しかも、キャビティの底面よりも下層の絶縁層の間には、ほぼ全面にわたって配線層を任意のパターンで形成できるため、高性能化にも容易に対応可能となる。
尚、前記伝熱導体層の他端は、基板本体の外側面に形成したCuなどからなる放熱板に接続させても良い。
According to this, even if heat generated by a light emitting element such as a light emitting diode mounted on the bottom surface of the cavity is transmitted together with light to the light reflecting layer formed on the side surface of the cavity by radiation or the like, the light reflecting layer The heat is radiated to the outside through a short path through the heat transfer conductor layer having one end connected to the inner surface and the other end exposed at the outer surface of the substrate body. Therefore, the heat transmitted to the light reflecting layer does not stay in the cavity and is reliably radiated to the outside of the cavity, so that stable light emission can be ensured for a long time without reducing the luminance of the light emitting element. It becomes possible. In addition, between the insulating layers below the bottom surface of the cavity, the wiring layer can be formed in an arbitrary pattern over almost the entire surface, so that high performance can be easily coped with.
The other end of the heat transfer conductor layer may be connected to a heat sink made of Cu or the like formed on the outer surface of the substrate body.

また、本発明には、前記伝熱導体層は複数であって、かかる伝熱導体層間を接続する伝熱ビア導体が形成されている、発光素子実装用配線基板(請求項8)も含まれる。
これによれば、前記光反射層から複数の伝熱導体層に伝熱された前記熱は、その一部が伝熱速度の低い伝熱導体層から伝熱速度の高い伝熱導体層へ伝達されるので、かかる複数の伝熱導体層を介して、キャビティ内の熱を効率良く放熱させることが可能となる。
The present invention also includes a light emitting element mounting wiring board (Claim 8) in which a plurality of the heat transfer conductor layers are provided and heat transfer via conductors connecting the heat transfer conductor layers are formed. .
According to this, a part of the heat transferred from the light reflecting layer to the plurality of heat transfer conductor layers is transferred from the heat transfer conductor layer having a low heat transfer speed to the heat transfer conductor layer having a high heat transfer speed. Therefore, the heat in the cavity can be efficiently radiated through the plurality of heat transfer conductor layers.

付言すれば、本発明には、前記キャビティの底面に形成され、且つ前記発光素子を実装する導体層、あるいは当該発光素子とワイヤを介して通電される導体層と、前記基板本体の裏面に形成した端子用のパッドとの間に、導通および伝熱を兼ねるビア導体が更に形成されている、発光素子実装用配線基板、も含まれ得る。
これによる場合、発光素子を実装する導体層、またはかかる発光素子と通電される導体層に、発光素子から直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体を介して、基板本体の裏面に形成した端子用のパッドから外部に放熱できる。そのため、前記光反射層から伝熱導体層などを介して、放熱する前記経路と相俟って、キャビティ内の熱を一層効率良く放熱することが可能となる。
更に、本発明には、前記第1,2の発光素子実装用配線基板の何れか一種類を縦横に隣接して複数個配設した製品領域と、かかる製品領域の少なくとも一辺に沿って位置する前記同様のセラミック成分を含む耳部と、を備えた多数個取り基板も含まれ得る。これによる場合、複数個の前記発光素子実装用配線基板を、同時に提供することができる。
In other words, in the present invention, a conductor layer that is formed on the bottom surface of the cavity and mounts the light emitting element, or a conductor layer that is energized through the light emitting element and the wire, and formed on the back surface of the substrate body. A wiring board for mounting a light-emitting element, in which a via conductor serving both for conduction and heat transfer is further formed between the terminal pad and the terminal pad, may be included.
In this case, the heat transferred directly or by radiation from the light emitting element to the conductor layer on which the light emitting element is mounted, or to the conductor layer that is energized with the light emitting element, through the via conductor for both conduction and heat transfer, Heat can be radiated to the outside from the terminal pad formed on the back surface of the substrate body. Therefore, it becomes possible to radiate the heat in the cavity more efficiently in combination with the path for radiating heat from the light reflecting layer through the heat transfer conductor layer.
Furthermore, the present invention includes a product region in which any one of the first and second light emitting element mounting wiring boards is disposed adjacent to each other in the vertical and horizontal directions, and at least one side of the product region. A multi-cavity substrate with ears containing the same ceramic component may also be included. In this case, a plurality of the light emitting element mounting wiring boards can be provided simultaneously.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明における第1の発光素子実装用配線基板(以下、単に配線基板と称する)1aを示す平面図、図2は、図1中のX−X線の矢視に沿った断面図である。
配線基板1aは、図1,図2に示すように、表面3および裏面4を有する基板本体2、かかる基板本体2の表面3に開口し且つ底面6および側面7を有するキャビティ5、かかるキャビティ5の側面7に形成された光反射層12、かかる光反射層12の内側面に一端が接続される伝熱導体層10,11、および、かかる伝熱導体層10,11と基板本体2の裏面4に形成されたパッド19との間に配設された複数の伝熱ビア導体V1,V2を備えている。上記基板本体2は、例えば、ガラス−アルミナ(セラミック)からなる絶縁層S1〜S6を一体に積層したもので、平面視がほぼ正方形を呈し、約0.7〜1.0mmの厚さである。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a plan view showing a first light emitting element mounting wiring board (hereinafter simply referred to as a wiring board) 1a according to the present invention, and FIG. 2 is a cross-sectional view taken along the line XX in FIG. FIG.
As shown in FIGS. 1 and 2, the wiring board 1 a includes a substrate body 2 having a front surface 3 and a back surface 4, a cavity 5 having an opening on the surface 3 of the substrate body 2 and having a bottom surface 6 and side surfaces 7, and the cavity 5 The light reflection layer 12 formed on the side surface 7 of the heat transfer, the heat transfer conductor layers 10 and 11 having one end connected to the inner side surface of the light reflection layer 12, and the back surface of the heat transfer conductor layers 10 and 11 and the substrate body 2. 4 are provided with a plurality of heat transfer via conductors V1 and V2. The substrate body 2 is formed by integrally laminating insulating layers S1 to S6 made of, for example, glass-alumina (ceramic), and has a substantially square shape in plan view and a thickness of about 0.7 to 1.0 mm. .

また、前記キャビティ5は、平面視が円形の底面6と、かかる底面6の周辺から基板本体2の表面3に向かって傾斜して拡がる側面7とからなり、全体がほぼ円錐形を呈する。尚、側面7の仰角は、約30〜80度である。
上記キャビティ5の底面6には、Ag、Cu、またはこれらの合金からなり、互いに異なる回路を形成する大小一対の導体層8,9が隙間を挟んで形成されている。大きな導体層8には、図1,2中の一点鎖線で示すように、発光ダイオード(LED:発光素子)Lが追って実装され、小さな導体層9には、上記発光ダイオードLとの間で導通を取るためのワイヤ9aが追ってボンディングされる。
前記キャビティ5の側面7に形成された光反射層12は、図2中の部分拡大図で示すように、側面7に直に形成されたAgの導体層13、その上に順次形成されるNiメッキ層14、Auメッキ層(図示せず)、および、表層のAgメッキ層15からなる。
The cavity 5 includes a bottom surface 6 having a circular shape in plan view, and a side surface 7 that inclines from the periphery of the bottom surface 6 toward the surface 3 of the substrate body 2 and has a substantially conical shape as a whole. The elevation angle of the side surface 7 is about 30 to 80 degrees.
On the bottom surface 6 of the cavity 5, a pair of large and small conductor layers 8 and 9 made of Ag, Cu, or an alloy thereof and forming different circuits are formed with a gap therebetween. As shown by the one-dot chain line in FIGS. 1 and 2, a light emitting diode (LED: light emitting element) L is mounted on the large conductor layer 8, and the small conductor layer 9 is electrically connected to the light emitting diode L. A wire 9a for taking a wire is bonded later.
The light reflecting layer 12 formed on the side surface 7 of the cavity 5 is composed of the Ag conductor layer 13 formed directly on the side surface 7 and the Ni formed sequentially thereon as shown in the partial enlarged view in FIG. It consists of a plating layer 14, an Au plating layer (not shown), and a surface Ag plating layer 15.

図1,図2に示すように、光反射層12の内側面には、絶縁層S1〜S3間に形成された平面視がほぼ円環形の伝熱導体層10,11の一端が接続されている。かかる伝熱導体層10,11の外周縁から突出するほぼ半円形の複数の凸部には、直径が約0.1〜0.2mmの伝熱ビア導体V1,V2の上端または中間部が接続されている。かかる伝熱ビア導体V1,V2も、Ag、Cu、またはこれらの一方をベースとする合金からなる。
平面視で基板本体2の周辺部に位置する複数の伝熱ビア導体V1は、上端が伝熱導体層10と個別に接続され、絶縁層S2〜S6を基板本体2の厚み方向に沿って直線形状に貫通して、下端が基板本体2の裏面4に形成されたパッド19にそれぞれ接続されている。当該パッド19も、前記同様のAgなどからなる。
As shown in FIGS. 1 and 2, one end of a heat transfer conductor layer 10, 11 having a substantially annular shape in plan view formed between the insulating layers S <b> 1 to S <b> 3 is connected to the inner surface of the light reflecting layer 12. Yes. The upper ends or middle portions of the heat transfer via conductors V1 and V2 having a diameter of about 0.1 to 0.2 mm are connected to the plurality of substantially semicircular protrusions protruding from the outer peripheral edges of the heat transfer conductor layers 10 and 11. Has been. The heat transfer via conductors V1 and V2 are also made of Ag, Cu, or an alloy based on one of these.
The plurality of heat transfer via conductors V1 located in the peripheral portion of the substrate body 2 in plan view are individually connected at the upper ends to the heat transfer conductor layer 10 and the insulating layers S2 to S6 are straight along the thickness direction of the substrate body 2. The lower end is connected to the pad 19 formed on the back surface 4 of the substrate body 2 through the shape. The pad 19 is also made of Ag as described above.

伝熱ビア導体V1の内側に位置する複数の伝熱ビア導体V2は、それらの上端と中間部とが伝熱導体層10,11に個別に接続され、平面視の同じ位置で絶縁層S3〜S6を基板本体2の厚み方向に沿って直線形状に貫通して、それらの下端が上記同様にパッド19に接続されている。
図1に示すように、複数の伝熱ビア導体V1,V2は、キャビティ5の側面7に沿って、平面視でほぼ円形を呈するようほぼ等間隔に配設され、且つキャビティ5の底面6の中心に対して互いに対称な位置に配設されている。
尚、伝熱ビア導体V1,V2は、隣接する絶縁層S2〜S6間において、同じ材料からなる若干太径のタイパッド(図示せず)を介して接続されている。
The plurality of heat transfer via conductors V2 located inside the heat transfer via conductor V1 are individually connected to the heat transfer conductor layers 10 and 11 at their upper ends and intermediate portions, and at the same position in plan view, the insulating layers S3 to S3. S6 passes through the substrate body 2 in the thickness direction in a straight line shape, and the lower ends thereof are connected to the pads 19 in the same manner as described above.
As shown in FIG. 1, the plurality of heat transfer via conductors V <b> 1, V <b> 2 are arranged at substantially equal intervals along the side surface 7 of the cavity 5 so as to form a substantially circular shape in plan view, and on the bottom surface 6 of the cavity 5. They are arranged symmetrically with respect to the center.
The heat transfer via conductors V1 and V2 are connected between adjacent insulating layers S2 to S6 via a slightly thick tie pad (not shown) made of the same material.

図2に示すように、キャビティ5の底面6と基板本体2の裏面4との間に位置する絶縁層S4〜S6間には、Agなどからなる所定パターンの配線層16,18が形成されている。更に、基板本体2の裏面4には、Agなどからなる複数のパッド17が形成されている。かかる複数のパッド(端子)17と、上記配線層16,18と、キャビティ5の底面6に形成された前記導体層8,9との間は、直径が約0.1〜0.2mmのビア導体vを介して、互いに導通されている。かかるビア導体vも、前記同様のAgなどからなり、導通および伝熱兼用である。
尚、配線層16,18の周辺部には、中心部で伝熱ビア導体V1,V2を貫通させる平面視が円形の隙間cが形成されている。また、図2中の二点鎖線で示すように、キャビティ5の底面6における導体層8上に、発光ダイオードLが実装され、これと隣接する導体層9との間をワイヤ9aでボンディングされた際には、かかるキャビティ5内に固化前の封止用樹脂jが基板本体2の表面3付近まで充填され、且つ固化される。
As shown in FIG. 2, between the insulating layers S4 to S6 located between the bottom surface 6 of the cavity 5 and the back surface 4 of the substrate body 2, wiring layers 16 and 18 having a predetermined pattern made of Ag or the like are formed. Yes. Furthermore, a plurality of pads 17 made of Ag or the like are formed on the back surface 4 of the substrate body 2. Between the plurality of pads (terminals) 17, the wiring layers 16 and 18, and the conductor layers 8 and 9 formed on the bottom surface 6 of the cavity 5, a via having a diameter of about 0.1 to 0.2 mm. They are electrically connected to each other through the conductor v. The via conductor v is also made of Ag or the like as described above, and is used for both conduction and heat transfer.
In the peripheral part of the wiring layers 16 and 18, a gap c is formed in a circular shape in plan view that penetrates the heat transfer via conductors V1 and V2 in the central part. In addition, as indicated by a two-dot chain line in FIG. 2, the light emitting diode L is mounted on the conductor layer 8 on the bottom surface 6 of the cavity 5, and the conductor layer 9 adjacent thereto is bonded with a wire 9a. At this time, the sealing resin j before solidification is filled in the cavity 5 up to the vicinity of the surface 3 of the substrate body 2 and is solidified.

以上のような配線基板1aによれば、キャビティ5の底面6に実装される発光ダイオードLの発する熱が、光と共に該キャビティ5の側面7に形成された光反射層12に、輻射などにより伝達されると、かかる光反射層12の内側面に一端が接続され且つ前記絶縁層S1〜S3間に形成された伝熱導体層10,11に伝熱される。かかる伝熱導体層10,11に伝熱された熱は、複数の前記伝熱ビア導体V1,V2を介して、基板本体2の裏面4に形成されたパッド19から外部に放熱される。このため、前記キャビティ5内に封止用樹脂jが充填・固化されても、光反射層12に伝達された熱が当該キャビティ5内でこもらず、基板本体2の外部へ確実に放熱される。しかも、発光ダイオードLを実装する導体層8や、かかる発光ダイオードLと通電される導体層9に、発光ダイオードLから直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体vおよび配線層16,18を介して、基板本体2の裏面4に形成したパッド(端子)17から外部に放熱することもできる。従って、発光ダイオードLの輝度を低下させることなく、長期間にわたり安定した発光を保証可能となる。   According to the wiring board 1a as described above, heat generated by the light emitting diode L mounted on the bottom surface 6 of the cavity 5 is transmitted to the light reflecting layer 12 formed on the side surface 7 of the cavity 5 by radiation or the like. Then, one end is connected to the inner side surface of the light reflection layer 12 and heat is transferred to the heat transfer conductor layers 10 and 11 formed between the insulating layers S1 to S3. The heat transferred to the heat transfer conductor layers 10 and 11 is radiated to the outside from the pads 19 formed on the back surface 4 of the substrate body 2 through the plurality of heat transfer via conductors V1 and V2. For this reason, even if the sealing resin j is filled and solidified in the cavity 5, the heat transmitted to the light reflecting layer 12 does not stay in the cavity 5 and is reliably radiated to the outside of the substrate body 2. . In addition, the conductive conductor 8 on which the light emitting diode L is mounted and the conductor layer 9 that is energized with the light emitting diode L are directly or radiated from the light emitting diode L, and the via conductor v for both conduction and heat transfer. Further, heat can be radiated to the outside from the pad (terminal) 17 formed on the back surface 4 of the substrate body 2 through the wiring layers 16 and 18. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting diode L.

前記配線基板1aは、以下のような方法で製造した。
予め、図3に示すように、ガラス成分とアルミナなどのセラミック成分とをほぼ同じ重量ずつ含む低温焼成用のグリーンシートs1〜s6を用意した。上記ガラス成分は、SiO、B、およびAlを主成分とするホウケイ酸系ガラス粉末からなる。かかるガラス粉末に、平均粒径が数μmのアルミナ粉末、樹脂バインダ、および可塑剤などを配合して得られたセラミックスラリを、ドクターブレード法により、平面視が正方形の表面3および裏面4を有し且つ厚みが約250μmのシート状に成形されたグリーンシートs1〜s6が得られた。
尚、かかるグリーンシートs1〜s6に替えて、複数の配線基板を同時に製作するための多数個取り用の大版サイズのものを用いても良い。
The wiring board 1a was manufactured by the following method.
As shown in FIG. 3, green sheets s <b> 1 to s <b> 6 for low-temperature firing containing glass components and ceramic components such as alumina in substantially the same weight are prepared in advance. The glass component is made of borosilicate glass powder containing SiO 2 , B 2 O 3 , and Al 2 O 3 as main components. A ceramic slurry obtained by blending such glass powder with alumina powder having an average particle diameter of several μm, a resin binder, a plasticizer, and the like has a front surface 3 and a rear surface 4 that are square in plan view by a doctor blade method. In addition, green sheets s1 to s6 formed into a sheet having a thickness of about 250 μm were obtained.
In addition, instead of the green sheets s1 to s6, a large plate size for multi-piece production for simultaneously producing a plurality of wiring boards may be used.

次に、図3で上層側のグリーンシートs1〜s3に対し、パンチとその外径よも大きな受け入れ孔を有するダイ(何れも図示せず)とを用いる打ち抜き加工を施して、傾斜した内面を有する貫通孔k1〜k3を個別に形成した。
また、貫通孔k2,k3が形成されたグリーンシートs2,s3と、下層側のグリーンシートs4〜s6の周辺部とに対し、平面視で内外二重の円形上の位置に沿って、パンチングにより内径が0.12mmの貫通孔Hを複数個形成した。
次いで、図3で下層側のグリーンシートs4〜s6の中央部側の所定の位置に対し、パンチングを施して、内径が0.12〜0.25mmの貫通孔hを複数個形成した。
Next, in FIG. 3, the green sheets s1 to s3 on the upper layer side are punched using a punch and a die having a receiving hole larger than the outer diameter (both not shown), and the inclined inner surface is formed. The through-holes k1 to k3 having them were individually formed.
Further, punching is performed along the positions on the inner and outer double circles in plan view with respect to the green sheets s2 and s3 in which the through holes k2 and k3 are formed and the peripheral portions of the green sheets s4 to s6 on the lower layer side. A plurality of through holes H having an inner diameter of 0.12 mm were formed.
Next, in FIG. 3, punching was performed on a predetermined position on the center side of the green sheets s <b> 4 to s <b> 6 on the lower layer side to form a plurality of through holes h having an inner diameter of 0.12 to 0.25 mm.

更に、図4に示すように、グリーンシートs2〜s6の各貫通孔Hおよび各貫通孔hに対し、メタルマスクおよびスキージ(何れも図示せず)を用いて、Ag粉末を含む導電性ペーストを充填して、未焼成の伝熱ビア導体V1,V2およびビア導体vを形成した。
次に、グリーンシートs2,s3における貫通孔k2,k3側の表面に、前記同様の導電性ペーストをスクリーン印刷して、図4に示すように、未焼成の伝熱導体層10,11を形成した。
次いで、グリーンシートs4〜s6の表面およひグリーンシートs6の裏面に、前記同様の導電性ペーストをスクリーン印刷して、図4に示すように、未焼成の導体層8,9、配線層16,18、およびパッド17,19を形成した。かかる配線層16,18の周辺部には、複数の隙間cが形成されていた。
尚、グリーンシートs3〜s6の表面には、上下の伝熱ビア導体V1,V2を接続するためのタイパッド(図示せず)を形成した。
Further, as shown in FIG. 4, a conductive paste containing Ag powder is used for each through hole H and each through hole h of the green sheets s2 to s6 using a metal mask and a squeegee (none shown). Filled to form unfired heat transfer via conductors V1, V2 and via conductor v.
Next, the same conductive paste as described above is screen-printed on the surface of the green sheets s2 and s3 on the side of the through holes k2 and k3 to form unfired heat transfer conductor layers 10 and 11 as shown in FIG. did.
Next, the same conductive paste as described above is screen-printed on the front surface of the green sheets s4 to s6 and the back surface of the green sheet s6, and as shown in FIG. , 18 and pads 17, 19 were formed. A plurality of gaps c are formed around the wiring layers 16 and 18.
Note that tie pads (not shown) for connecting the upper and lower heat transfer via conductors V1 and V2 were formed on the surfaces of the green sheets s3 to s6.

更に、以上のようなグリーンシートs1〜s6を積層および圧着した結果、図5に示すように、表面3および裏面4を有する基板本体2、および底面6および側面7からなるキャビティ5を有する未焼成の積層体ssが得られた。
次いで、キャビティ5の側面7に対し、前記同様の導電性ペーストを負圧を利用するスクリーン印刷を行って、前記導体層13を全面に形成した。
そして、キャビティ5の側面7に導体層13が形成された積層体ssを焼成した後、焼成後の導体層13に対し、電解Niメッキ、電解Auメッキ、および電解Agメッキを順に施して、前記Niメッキ層14およびAgの表層メッキ層15を含む光反射層12を形成した。その結果、前記配線基板1aを得ることができた。
以上のような製造方法によれば、特殊な工程や治工具などを用いることなく、前記配線基板1aを確実に製造することができた。尚、前記グリーンシートs1〜s6に大版のものを用いた場合には、後述する多数個取り基板1Uを効率良く製造することも可能である。
Further, as a result of laminating and press-bonding the green sheets s1 to s6 as described above, as shown in FIG. 5, the substrate body 2 having the front surface 3 and the back surface 4, and the unfired having the cavity 5 composed of the bottom surface 6 and the side surface 7 A laminate ss was obtained.
Next, the conductive layer 13 was formed on the entire surface of the side surface 7 of the cavity 5 by screen printing using the same conductive paste as described above using negative pressure.
And after baking the laminated body ss in which the conductor layer 13 was formed in the side surface 7 of the cavity 5, with respect to the conductor layer 13 after baking, electrolytic Ni plating, electrolytic Au plating, and electrolytic Ag plating are performed in order, The light reflecting layer 12 including the Ni plating layer 14 and the Ag surface plating layer 15 was formed. As a result, the wiring board 1a was obtained.
According to the manufacturing method as described above, the wiring board 1a can be reliably manufactured without using a special process or jig. In addition, when the large-sized thing is used for the said green sheets s1-s6, it is also possible to manufacture efficiently the multi-piece substrate 1U mentioned later.

図6は、前記配線基板1aの応用形態である第1の配線基板1bを示す前記図2と同様な断面図である。
配線基板1bは、図6に示すように、前記同様の基板本体2、キャビティ5、光反射層12、伝熱導体層10,11、導体層8,9、配線層16,18、ビア導体v、およびパッド17を備えている。
かかる配線基板1bが前記配線基板1aと相違する点は、伝熱導体層10,11から垂下する伝熱ビア導体V1,V2の下端が、基板本体2の裏面4を形成する最下層の絶縁層S6とその直上の絶縁層S5との間に留まることである。
FIG. 6 is a cross-sectional view similar to FIG. 2 showing a first wiring board 1b which is an applied form of the wiring board 1a.
As shown in FIG. 6, the wiring board 1b includes the same substrate body 2, cavity 5, light reflection layer 12, heat transfer conductor layers 10, 11, conductor layers 8, 9, wiring layers 16, 18, and via conductors v. , And a pad 17.
The wiring board 1b is different from the wiring board 1a in that the lower end of the heat transfer via conductors V1 and V2 hanging from the heat transfer conductor layers 10 and 11 forms the lowermost insulating layer forming the back surface 4 of the board body 2. It is to stay between S6 and the insulating layer S5 immediately above it.

即ち、伝熱ビア導体V1,V2は、伝熱導体層10,11と、絶縁層S5,S6間との間に配設され、その下端は基板本体2の裏面4から厚みが約0.25mmと他の絶縁層S1〜S5よりも薄い絶縁層S6の上方に位置している。かかる伝熱ビア導体V1,V2の構造に関連して、基板本体2の裏面4における前記パッド19は、省略した。但し、伝熱ビア導体V1,V2の熱を裏面4側から放熱し易くしたり、かかる配線基板1bを図示しないプリント基板などのマザーボードに搭載する際の姿勢を水平に保つため、前記パッド19を伝熱ビア導体V1,V2の直下付近に設けても良い。
尚、配線基板1bは、前記配線基板1aと同様な方法によって製造可能であり、且つ、後述する多数個取り基板1Uと同様な形態として製造することもできる。
That is, the heat transfer via conductors V1 and V2 are disposed between the heat transfer conductor layers 10 and 11 and between the insulating layers S5 and S6, and the lower end thereof is about 0.25 mm from the back surface 4 of the substrate body 2. And the insulating layer S6 thinner than the other insulating layers S1 to S5. In relation to the structure of the heat transfer via conductors V1 and V2, the pad 19 on the back surface 4 of the substrate body 2 is omitted. However, in order to easily dissipate the heat of the heat transfer via conductors V1 and V2 from the back surface 4 side, or to keep the posture when the wiring board 1b is mounted on a mother board such as a printed board (not shown), The heat transfer via conductors V1 and V2 may be provided in the vicinity.
The wiring board 1b can be manufactured by the same method as the wiring board 1a, and can also be manufactured in the same form as the multi-piece substrate 1U described later.

以上のような配線基板1bにおいても、キャビティ5の底面6に実装される発光ダイオードLの発する熱が、光と共に当該キャビティ5の側面7に形成された光反射層12に、輻射などにより伝達されると、かかる光反射層12の内側面に一端が接続され且つ前記絶縁層S1〜S3間に形成された伝熱導体層10,11に伝熱される。かかる伝熱導体層10,11に伝熱された熱は、複数の前記伝熱ビア導体V1,V2を介して、基板本体2の絶縁層S2〜S6に放熱・拡散される。このため、キャビティ5内に前記封止用樹脂jが充填・固化されても、光反射層12に伝達された熱が当該キャビティ5内でこもらず、基板本体2内に放熱・拡散できる。しかも、発光ダイオードLを実装する導体層8、または隣接する導体層9に、発光ダイオードLから直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体vおよび配線層16,18を介して、基板本体2の裏面4に形成したパッド17から外部に放熱することもできる。従って、発光ダイオードLの輝度を低下させず、長期間にわたり安定した発光を保証可能となる。   Also in the wiring substrate 1b as described above, the heat generated by the light emitting diode L mounted on the bottom surface 6 of the cavity 5 is transmitted to the light reflecting layer 12 formed on the side surface 7 of the cavity 5 by radiation or the like. Then, one end is connected to the inner side surface of the light reflecting layer 12 and heat is transferred to the heat transfer conductor layers 10 and 11 formed between the insulating layers S1 to S3. The heat transferred to the heat transfer conductor layers 10 and 11 is radiated and diffused to the insulating layers S2 to S6 of the substrate body 2 through the plurality of heat transfer via conductors V1 and V2. For this reason, even if the sealing resin j is filled and solidified in the cavity 5, the heat transmitted to the light reflecting layer 12 does not stay in the cavity 5 and can be radiated and diffused in the substrate body 2. In addition, the conductor layer 8 on which the light emitting diode L is mounted, or the adjacent conductor layer 9, the heat transferred directly or by radiation from the light emitting diode L, is connected to the via conductor v and the wiring layers 16, 18. The heat can also be radiated to the outside from the pad 17 formed on the back surface 4 of the substrate body 2. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting diode L.

図7は、前記配線基板1a,1bの変形形態であり、且つ本発明における第2の配線基板1cを示す前記図2と同様な断面図である。
第2の配線基板1cは、図7に示すように、前記同様の基板本体2、キャビティ5、光反射層12、伝熱導体層10,11、導体層8,9、配線層16,18、ビア導体v、およびパッド17を備えている。
かかる配線基板1cが前記配線基板1a,1bと相違する点は、光反射層12の内側面に一端が接続され且つ前記絶縁層S1〜S3間に形成された伝熱導体層10,11の他端eが基板本体2の外側面2fに露出していること、および当該伝熱導体層10,11間にのみ伝熱ビア導体V2が形成されていることである。
FIG. 7 is a modification of the wiring boards 1a and 1b and is a cross-sectional view similar to FIG. 2 showing the second wiring board 1c in the present invention.
As shown in FIG. 7, the second wiring substrate 1c includes the same substrate body 2, cavity 5, light reflecting layer 12, heat transfer conductor layers 10, 11, conductor layers 8, 9, wiring layers 16, 18, A via conductor v and a pad 17 are provided.
The wiring board 1c is different from the wiring boards 1a and 1b in that one end of the wiring board 1c is connected to the inner side surface of the light reflecting layer 12 and the heat transfer conductor layers 10 and 11 are formed between the insulating layers S1 to S3. That is, the end e is exposed to the outer surface 2 f of the substrate body 2, and the heat transfer via conductor V <b> 2 is formed only between the heat transfer conductor layers 10 and 11.

かかる配線基板1cでは、前記伝熱ビア導体V1がなく、且つ伝熱ビア導体V2も伝熱導体層10,11間にのみ形成されるため、配線層16,18を絶縁層S4〜S6間のほぼ全面で、任意のパターンで形成することが可能となる。これに応じて、基板本体2の裏面4のほぼ全面にパッド17が形成されている。
尚、伝熱導体層10,11の他端eが露出する基板本体2の外側面2fには、かかる他端eと接続するCuなどからなる放熱板(図示せず)を形成しても良い。また、伝熱導体層10,11には、絶縁層S1〜S3が接触するための切り欠きや貫通孔(図示せず)が形成されている。更に、配線基板1cも、前記配線基板1aと同様な方法により製造可能であり、且つ後述する多数個取り基板1Uと同様な形態として製造することも可能である。
In such a wiring board 1c, the heat transfer via conductor V1 is not provided, and the heat transfer via conductor V2 is formed only between the heat transfer conductor layers 10 and 11, so that the wiring layers 16 and 18 are connected between the insulating layers S4 to S6. It can be formed in an arbitrary pattern on almost the entire surface. Accordingly, pads 17 are formed on almost the entire back surface 4 of the substrate body 2.
A heat radiating plate (not shown) made of Cu or the like connected to the other end e may be formed on the outer surface 2f of the substrate body 2 where the other end e of the heat transfer conductor layers 10 and 11 is exposed. . Further, the heat transfer conductor layers 10 and 11 are formed with notches and through holes (not shown) for contacting the insulating layers S1 to S3. Furthermore, the wiring board 1c can also be manufactured by the same method as the wiring board 1a, and can also be manufactured in the same form as the multi-chip substrate 1U described later.

以上のような配線基板1cにおいても、キャビティ5の底面6に実装される発光ダイオードLの発する熱が、光と共に該キャビティ5の側面7の光反射層12に伝達されると、かかる光反射層12の内側面に一端が接続され且つ前記絶縁層S1〜S3間に形成された伝熱導体層10,11に伝熱される。かかる伝熱導体層10,11に伝熱された熱は、基板本体2の外側面2fに露出する当該伝熱導体層10,11の他端eから外部に放熱される。即ち、上記熱は、伝熱導体層10,11のみを伝熱する短い経路で、外部に迅速に放熱される。更に、前記伝熱ビア導体V1がなく、且つ伝熱ビア導体V2も伝熱導体層10,11間にのみ形成されるため、配線層16,18を絶縁層S4〜S6間のほぼ全面において、任意のパターンで形成することも可能となる。しかも、発光ダイオードLを実装する導体層8,9に、発光ダイオードLから直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体vや配線層16,18を介して、基板本体2の裏面4に形成したパッド17から外部に放熱することもできる。従って、発光ダイオードLの輝度を低下させず、長期間にわたり安定した発光を保証可能となる。   Also in the wiring board 1c as described above, when the heat generated by the light emitting diode L mounted on the bottom surface 6 of the cavity 5 is transmitted together with the light to the light reflecting layer 12 on the side surface 7 of the cavity 5, the light reflecting layer One end is connected to the inner surface of 12 and heat is transferred to the heat transfer conductor layers 10 and 11 formed between the insulating layers S1 to S3. The heat transferred to the heat transfer conductor layers 10 and 11 is radiated to the outside from the other end e of the heat transfer conductor layers 10 and 11 exposed on the outer surface 2 f of the substrate body 2. That is, the heat is quickly radiated to the outside through a short path for transferring only the heat transfer conductor layers 10 and 11. Further, since the heat transfer via conductor V1 is not provided and the heat transfer via conductor V2 is formed only between the heat transfer conductor layers 10 and 11, the wiring layers 16 and 18 are formed on almost the entire surface between the insulating layers S4 to S6. It is also possible to form with an arbitrary pattern. In addition, the heat transferred directly or by radiation from the light emitting diode L to the conductor layers 8 and 9 on which the light emitting diode L is mounted is connected via the via conductor v and wiring layers 16 and 18 for both conduction and heat transfer. It is also possible to radiate heat from the pad 17 formed on the back surface 4 of the main body 2 to the outside. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting diode L.

図8は、破線で示す切断予定線(仮想線)fにより区画され且つ縦横に隣接する複数の前記配線基板1aと、これらの四辺を囲む耳部mとを有する多数個取り基板1Uを示す平面図である。かかる多数個取り基板1Uは、前記グリーンシートs1〜s6を大版のタイプとすることで、前記同様の方法により製造可能である。
尚、耳部mには、前記光反射層12のNiメッキ層14やAgメッキ層15などを形成するために平面視がほぼ半円形のメッキ電極(図示せず)が複数個形成されている。また、図8中のカッコ内に示すように、前記配線基板1b,1cを縦横に複数個併有する多数個取り基板1Uとしても良い。
FIG. 8 is a plan view showing a multi-chip substrate 1U having a plurality of wiring boards 1a which are partitioned by a planned cutting line (virtual line) f indicated by a broken line and which are vertically and horizontally adjacent to each other and ears m surrounding these four sides. FIG. Such a multi-piece substrate 1U can be manufactured by the same method as described above, by using the green sheets s1 to s6 as a large plate type.
In the ear m, a plurality of plating electrodes (not shown) having a substantially semicircular plan view are formed in order to form the Ni plating layer 14 and the Ag plating layer 15 of the light reflection layer 12. . Further, as shown in parentheses in FIG. 8, a multi-piece substrate 1U having a plurality of the wiring substrates 1b and 1c in the vertical and horizontal directions may be used.

図9は、異なる形態の第1の配線基板20aを示す平面図、図10は、図9中のY−Y線の矢視に沿った断面図である。
配線基板20aは、図9,10に示すように、表面23および裏面24を有する基板本体22、かかる基板本体22の表面23に開口し且つ底面26および側面27を有するキャビティ25、かかるキャビティ25の側面27に形成された光反射層32、かかる光反射層32の内側面に一端が接続される伝熱導体層30,31、および、かかる伝熱導体層30,31と基板本体22の裏面24に形成されたパッド19との間に配設された複数の伝熱ビア導体V1,V2を備えている。
基板本体22は、前記同様のガラス−セラミックからなる絶縁層S4〜S9を一体に積層したもので、平面視がほぼ正方形を呈し、約0.7〜1.0mmの厚さである。
FIG. 9 is a plan view showing the first wiring board 20a of a different form, and FIG. 10 is a cross-sectional view taken along the line YY in FIG.
As shown in FIGS. 9 and 10, the wiring board 20 a includes a substrate body 22 having a front surface 23 and a back surface 24, a cavity 25 having an opening on the surface 23 of the substrate body 22 and having a bottom surface 26 and side surfaces 27, The light reflection layer 32 formed on the side surface 27, the heat transfer conductor layers 30 and 31 having one end connected to the inner side surface of the light reflection layer 32, and the back surface 24 of the heat transfer conductor layers 30 and 31 and the substrate body 22. A plurality of heat transfer via conductors V1 and V2 disposed between the pad 19 and the pad 19.
The substrate body 22 is formed by integrally laminating insulating layers S4 to S9 made of the same glass-ceramic as described above, has a substantially square shape in plan view, and has a thickness of about 0.7 to 1.0 mm.

また、前記キャビティ25は、図9,10に示すように、平面視が円形の底面26と、かかる底面26の周辺から基板本体22の表面23に向かって垂直に立設する側面27とからなり、全体が円柱形を呈する。
上記キャビティ25の底面26には、前記同様の導体層8,9が隙間を介して形成され、大きな導体層8には、発光ダイオードLが追って実装され、小さな導体層9には、前記発光ダイオードLとの間で導通を取るためのワイヤ9aが追ってボンディングされる。
前記キャビティ25の側面27に形成された光反射層32は、図10中の部分拡大図で示すように、側面27に直に形成されたAgの導体層33、その上に順次形成されるNiメッキ層34、Auメッキ層(図示せず)、および、表層のAgメッキ層35からなる。
Further, as shown in FIGS. 9 and 10, the cavity 25 includes a bottom surface 26 that is circular in plan view, and a side surface 27 that stands vertically from the periphery of the bottom surface 26 toward the surface 23 of the substrate body 22. The whole has a cylindrical shape.
The same conductor layers 8 and 9 are formed on the bottom surface 26 of the cavity 25 through a gap, and a light emitting diode L is mounted on the large conductor layer 8 and the light emitting diode is mounted on the small conductor layer 9. A wire 9a for conducting with L is bonded later.
The light reflecting layer 32 formed on the side surface 27 of the cavity 25 is composed of the Ag conductor layer 33 formed directly on the side surface 27 and the Ni layer formed thereon sequentially as shown in the partial enlarged view of FIG. It consists of a plating layer 34, an Au plating layer (not shown), and a surface Ag plating layer 35.

図9,10に示すように、光反射層32の内側面には、絶縁層S7〜S9間に形成された平面視がほぼ円環形の伝熱導体層30,31の一端が接続されている。かかる伝熱導体層30,31の外周縁から突出するほぼ半円形の複数の凸部には、前記同様の伝熱ビア導体V1,V2の上端または中間部が接続されている。
平面視で基板本体22の周辺部に位置する複数の伝熱ビア導体V1は、上端が伝熱導体層30と個別に接続され、絶縁層S8,S9、S4〜S6を基板本体22の厚み方向に沿って直線形状に貫通し、下端が基板本体22の裏面24に形成された前記同様のパッド19に個別に接続されている。
伝熱ビア導体V1の内側に位置する複数の伝熱ビア導体V2は、それらの上端と中間部とが伝熱導体層30,31間に接続され、平面視の同じ位置で絶縁層S9,S4〜S6を基板本体22の厚み方向に沿って、直線形状に貫通して、それらの下端が上記同様にパッド19に個別に接続されている。
As shown in FIGS. 9 and 10, one end of the heat transfer conductor layers 30 and 31 having a substantially circular shape in plan view formed between the insulating layers S <b> 7 to S <b> 9 is connected to the inner side surface of the light reflecting layer 32. . The upper ends or intermediate portions of the heat transfer via conductors V1 and V2 similar to the above are connected to a plurality of substantially semicircular protrusions protruding from the outer peripheral edges of the heat transfer conductor layers 30 and 31.
The plurality of heat transfer via conductors V1 positioned in the peripheral portion of the substrate body 22 in plan view are individually connected at the upper ends to the heat transfer conductor layer 30, and the insulating layers S8, S9, and S4 to S6 are connected in the thickness direction of the substrate body 22. The lower end is individually connected to the same pad 19 formed on the back surface 24 of the substrate body 22.
The plurality of heat transfer via conductors V2 located inside the heat transfer via conductor V1 have their upper ends and intermediate portions connected between the heat transfer conductor layers 30 and 31, and the insulating layers S9 and S4 at the same position in plan view. ˜S6 are linearly penetrated along the thickness direction of the substrate body 22 and their lower ends are individually connected to the pads 19 in the same manner as described above.

図9に示すように、複数の伝熱ビア導体V1,V2は、キャビティ25の側面27に沿って、平面視でほぼ円形を呈するようほぼ等間隔に配設され、且つキャビティ25の底面26の中心に対して互いに対称な位置に配設されている。
図10に示すように、キャビティ25の底面26と基板本体22の裏面24との間に位置する絶縁層S4〜S6間には、前記同様の配線層16,18が形成され、基板本体22の裏面24には、前記同様のパッド17が形成されている。かかる複数のパッド17と、上記配線層16,18と、キャビティ25の底面26に形成された前記導体層8,9との間は、前記同様のビア導体vを介して、互いに導通されている。
As shown in FIG. 9, the plurality of heat transfer via conductors V <b> 1 and V <b> 2 are arranged at substantially equal intervals along the side surface 27 of the cavity 25 so as to form a substantially circular shape in plan view, and on the bottom surface 26 of the cavity 25. They are arranged symmetrically with respect to the center.
As shown in FIG. 10, the same wiring layers 16 and 18 are formed between the insulating layers S <b> 4 to S <b> 6 positioned between the bottom surface 26 of the cavity 25 and the back surface 24 of the substrate body 22. On the back surface 24, the same pad 17 is formed. The plurality of pads 17, the wiring layers 16 and 18, and the conductor layers 8 and 9 formed on the bottom surface 26 of the cavity 25 are electrically connected to each other through the same via conductor v. .

尚、図10中の二点鎖線で示すように、キャビティ25の底面26における導体層8上に、発光ダイオードLが実装され、これと隣接する導体層9との間をワイヤ9aでボンディングされた際には、かかるキャビティ25内に固化前の封止用樹脂jが基板本体22の表面23付近まで充填・固化される。
前記配線基板20aも、絶縁層S7〜S9となるグリーンシートに最小限のクリアランスによる打ち抜き加工で偏平な円柱形の貫通孔を形成するほか、前記配線基板1aと同様な方法によって製造することができる。更に、後述する多数個取り基板20Uの形態として製造することも可能である。
As indicated by a two-dot chain line in FIG. 10, the light emitting diode L is mounted on the conductor layer 8 on the bottom surface 26 of the cavity 25, and is bonded to the adjacent conductor layer 9 with a wire 9a. At this time, the sealing resin j before solidification is filled and solidified in the cavity 25 up to the vicinity of the surface 23 of the substrate body 22.
The wiring board 20a can also be manufactured by a method similar to that of the wiring board 1a, in addition to forming a flat cylindrical through hole by punching with a minimum clearance in the green sheets to be the insulating layers S7 to S9. . Further, it can be manufactured in the form of a multi-cavity substrate 20U described later.

以上のような配線基板20aによっても、実装される発光ダイオードLの発する熱が、光と共にキャビティ25の側面27に形成された光反射層32に、輻射などにより伝達されると、かかる光反射層32の内側面に一端が接続され且つ前記絶縁層S7〜S9間に形成された伝熱導体層30,31に伝熱される。かかる伝熱導体層30,31に伝熱された熱は、複数の前記伝熱ビア導体V1,V2を介して、基板本体22の裏面24に形成されたパッド19から外部に放熱される。このため、前記キャビティ25内に封止用樹脂jが充填・固化されても、光反射層32に伝達された熱が当該キャビティ25内でこもらず、基板本体22の外部へ確実に放熱される。しかも、発光ダイオードLを実装する導体層8などに、発光ダイオードLから直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体v、配線層16,18を介して、基板本体22の裏面24に設けたパッド17から外部に放熱することもできる。従って、発光ダイオードLの輝度を低下させず、長期間にわたり安定した発光を保証可能となる。   Also by the wiring board 20a as described above, when the heat generated by the light emitting diode L to be mounted is transmitted together with light to the light reflecting layer 32 formed on the side surface 27 of the cavity 25 by radiation or the like, the light reflecting layer One end is connected to the inner side surface of 32 and heat is transferred to the heat transfer conductor layers 30 and 31 formed between the insulating layers S7 to S9. The heat transferred to the heat transfer conductor layers 30 and 31 is radiated to the outside from the pad 19 formed on the back surface 24 of the substrate body 22 through the plurality of heat transfer via conductors V1 and V2. For this reason, even when the sealing resin j is filled and solidified in the cavity 25, the heat transmitted to the light reflecting layer 32 does not stay in the cavity 25 and is reliably radiated to the outside of the substrate body 22. . Moreover, the heat transferred from the light-emitting diode L directly or by radiation to the conductor layer 8 or the like on which the light-emitting diode L is mounted passes through the via conductor v for both conduction and heat transfer and the wiring layers 16 and 18, and the substrate body. It is also possible to radiate heat from the pad 17 provided on the back surface 24 of the outer 22. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting diode L.

図11は、前記配線基板20aの応用形態である第1の配線基板20bを示す前記図10と同様な断面図である。
配線基板20bは、図11に示すように、前記同様の基板本体22、キャビティ25、光反射層32、伝熱導体層30,31、導体層8,9、配線層16,18、ビア導体v、およびパッド17を備えている。更に、最下層の絶縁層S6の厚みは、他の絶縁層S4,S5,S7〜S9よりも薄くされている。
かかる配線基板20bが前記配線基板20aと相違する点は、伝熱導体層30,31から垂下する伝熱ビア導体V1,V2の下端が、基板本体22の裏面24を形成する最下層の絶縁層S6とその直上の絶縁層S5との間に留まることである。
FIG. 11 is a cross-sectional view similar to FIG. 10 showing a first wiring board 20b which is an application form of the wiring board 20a.
As shown in FIG. 11, the wiring board 20b includes the same substrate body 22, cavity 25, light reflection layer 32, heat transfer conductor layers 30, 31, conductor layers 8, 9, wiring layers 16, 18, and via conductors v. , And a pad 17. Furthermore, the thickness of the lowermost insulating layer S6 is made thinner than the other insulating layers S4, S5, S7 to S9.
The wiring board 20b is different from the wiring board 20a in that the lower end of the heat transfer via conductors V1 and V2 hanging from the heat transfer conductor layers 30 and 31 is the lowermost insulating layer forming the back surface 24 of the board body 22. It is to stay between S6 and the insulating layer S5 immediately above it.

即ち、伝熱ビア導体V1,V2は、伝熱導体層30,31と、絶縁層S5,S6間との間に配設され、その下端は基板本体22の裏面24から前記同様の厚みの絶縁層S6の上方に位置している。かかる伝熱ビア導体V1,V2の構造に関連して、基板本体22の裏面24における前記パッド19は、省略したが、伝熱ビア導体V1,V2の熱を裏面24側から放熱し易くしたり、かかる配線基板20bを図示しないプリント基板などに搭載する際の姿勢を水平に保つため、前記パッド19を伝熱ビア導体V1,V2の直下付近に設けても良い。
尚、配線基板20bは、前記配線基板20aと同様な方法によって製造可能である。また、後述する多数個取り基板20Uと同様な形態にても製造可能である。
That is, the heat transfer via conductors V1 and V2 are disposed between the heat transfer conductor layers 30 and 31 and the insulating layers S5 and S6, and the lower ends thereof are insulated from the back surface 24 of the substrate body 22 with the same thickness as described above. Located above the layer S6. In relation to the structure of the heat transfer via conductors V1 and V2, the pad 19 on the back surface 24 of the substrate body 22 is omitted. However, the heat of the heat transfer via conductors V1 and V2 can be easily radiated from the back surface 24 side. In order to keep the posture when mounting the wiring board 20b on a printed board (not shown) or the like, the pad 19 may be provided in the vicinity immediately below the heat transfer via conductors V1 and V2.
The wiring board 20b can be manufactured by the same method as the wiring board 20a. Further, it can be manufactured in the same form as a multi-piece substrate 20U described later.

以上のような配線基板20bにおいても、実装される発光ダイオードLの発する熱が、光と共にキャビティ25の側面27に形成された光反射層32に、輻射などにより伝達されると、かかる光反射層32の内側面に一端が接続され且つ前記絶縁層S7〜S9間に形成された伝熱導体層30,31に伝熱される。かかる伝熱導体層30,31に伝熱された熱は、複数の前記伝熱ビア導体V1,V2を介して、基板本体22の絶縁層S4〜S9に拡散・放熱される。このため、キャビティ25内に前記封止用樹脂jが充填・固化されても、光反射層32に伝達された熱が当該キャビティ25内でこもらず、基板本体22内に放散される。しかも、発光ダイオードLを実装する導体層8などに、発光ダイオードLから直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体vおよび配線層16,18を介して、基板本体22の裏面24に形成したパッド17から外部に放熱することもできる。従って、発光ダイオードLの輝度を低下させず、長期間にわたり安定した発光を保証可能となる。   Also in the wiring board 20b as described above, when the heat generated by the light emitting diode L to be mounted is transmitted together with light to the light reflecting layer 32 formed on the side surface 27 of the cavity 25 by radiation or the like, the light reflecting layer. One end is connected to the inner side surface of 32 and heat is transferred to the heat transfer conductor layers 30 and 31 formed between the insulating layers S7 to S9. The heat transferred to the heat transfer conductor layers 30 and 31 is diffused and radiated to the insulating layers S4 to S9 of the substrate body 22 via the plurality of heat transfer via conductors V1 and V2. For this reason, even if the sealing resin j is filled and solidified in the cavity 25, the heat transmitted to the light reflecting layer 32 does not stay in the cavity 25 and is dissipated in the substrate body 22. Moreover, the heat transferred from the light-emitting diode L directly or by radiation to the conductor layer 8 or the like on which the light-emitting diode L is mounted passes through the via conductor v and the wiring layers 16 and 18 for both conduction and heat transfer, and the board body. It is also possible to radiate heat from the pad 17 formed on the back surface 24 of the outside 22. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting diode L.

図12は、前記配線基板20a,20bの変形形態であり、且つ異なる形態の第2の配線基板20cを示す前記図10と同様な断面図である。
配線基板20cは、図12に示すように、前記同様の基板本体22、キャビティ25、光反射層32、伝熱導体層30,31、導体層8,9、配線層16,18、ビア導体v、およびパッド17を備えている。
かかる配線基板20cが前記配線基板20a,20bと相違する点は、光反射層32の内側面に一端が接続され且つ前記絶縁層S7〜S9間に形成された伝熱導体層30,31の他端eが基板本体22の外側面22fに露出していること、および当該伝熱導体層30,31間にのみ伝熱ビア導体V2が形成されていることである。
FIG. 12 is a cross-sectional view similar to FIG. 10 showing a modified form of the wiring boards 20a and 20b and showing a second wiring board 20c having a different form.
As shown in FIG. 12, the wiring board 20c includes the same substrate body 22, cavity 25, light reflection layer 32, heat transfer conductor layers 30, 31, conductor layers 8, 9, wiring layers 16, 18, and via conductors v. , And a pad 17.
The wiring board 20c is different from the wiring boards 20a and 20b in that one end of the wiring board 20c is connected to the inner surface of the light reflecting layer 32 and the heat transfer conductor layers 30 and 31 are formed between the insulating layers S7 to S9. That is, the end e is exposed to the outer surface 22 f of the substrate body 22, and the heat transfer via conductor V <b> 2 is formed only between the heat transfer conductor layers 30 and 31.

かかる配線基板20cでは、前記伝熱ビア導体V1がなく、且つ伝熱ビア導体V2も伝熱導体層30,31間にのみ形成されるため、配線層16,18を絶縁層S4〜S6間のほぼ全面で、任意に形成することが可能となる。これに応じて、基板本体22の裏面24のほぼ全面にパッド17が形成されている。
尚、伝熱導体層30,31の他端eが露出する基板本体22の外側面22fには、前記同様の放熱板を形成しても良い。また、伝熱導体層30,31には、絶縁層S7〜S9が接触するための切り欠きや貫通孔が形成されている。更に、配線基板20cも、前記配線基板20aと同様な方法により製造可能であり、且つ後述する多数個取り基板20Uと同様な形態として製造することもできる。
In such a wiring board 20c, the heat transfer via conductor V1 is not provided, and the heat transfer via conductor V2 is formed only between the heat transfer conductor layers 30 and 31, so that the wiring layers 16 and 18 are connected between the insulating layers S4 to S6. It can be formed arbitrarily on almost the entire surface. Accordingly, the pad 17 is formed on almost the entire back surface 24 of the substrate body 22.
In addition, you may form a heat sink similar to the above in the outer surface 22f of the board | substrate body 22 which the other end e of the heat-transfer conductor layers 30 and 31 exposes. Further, the heat transfer conductor layers 30 and 31 are formed with notches and through holes for the insulating layers S7 to S9 to contact. Furthermore, the wiring board 20c can also be manufactured by the same method as the wiring board 20a, and can also be manufactured in the same form as the multi-piece substrate 20U described later.

以上のような配線基板20cにおいても、実装される発光ダイオードLの発する熱が、光と共に該キャビティ25の側面27の光反射層32に伝達されると、かかる光反射層32の内側面に一端が接続された伝熱導体層30,31に伝熱される。かかる伝熱導体層30,31に伝熱された熱は、基板本体22の外側面22fに露出する当該伝熱導体層30,31の他端eから外部に放熱される。即ち、上記熱は、伝熱導体層30,31のみを伝熱する短い経路で、外部に迅速に放熱される。更に、前記伝熱ビア導体V1がなく、且つ伝熱ビア導体V2も伝熱導体層30,31間にのみ形成されるため、配線層16,18を絶縁層S4〜S6間のほぼ全面において、自在に形成することも可能となる。しかも、発光ダイオードLを実装する導体層8などに、発光ダイオードLから直にまたは輻射により伝達された熱を、導通・伝熱兼用のビア導体vや配線層16,18を介して、基板本体22の裏面24に設けたパッド17から外部に放熱することもできる。従って、発光ダイオードLの輝度を低下させず、長期間にわたり安定した発光を保証可能となる。   Also in the wiring board 20c as described above, when the heat generated by the mounted light emitting diode L is transmitted together with the light to the light reflecting layer 32 on the side surface 27 of the cavity 25, one end is formed on the inner side surface of the light reflecting layer 32. Is transferred to the heat transfer conductor layers 30 and 31 connected to each other. The heat transferred to the heat transfer conductor layers 30 and 31 is radiated to the outside from the other end e of the heat transfer conductor layers 30 and 31 exposed on the outer side surface 22f of the substrate body 22. That is, the heat is quickly radiated to the outside through a short path for transferring only the heat transfer conductor layers 30 and 31. Further, since the heat transfer via conductor V1 is not provided and the heat transfer via conductor V2 is formed only between the heat transfer conductor layers 30 and 31, the wiring layers 16 and 18 are formed on almost the entire surface between the insulating layers S4 to S6. It can also be formed freely. Moreover, the heat transferred from the light-emitting diode L directly or by radiation to the conductor layer 8 or the like on which the light-emitting diode L is mounted is connected to the substrate body via the conductive / heat-transfer via conductor v and the wiring layers 16 and 18. It is also possible to radiate heat from the pad 17 provided on the back surface 24 of the outer 22. Therefore, it is possible to guarantee stable light emission over a long period of time without reducing the luminance of the light emitting diode L.

図13は、切断予定線(仮想線)fにより区画され且つ縦横に隣接する複数の前記配線基板20aと、これらの四辺を囲む耳部mとを有する多数個取り基板20Uを示す平面図である。かかる多数個取り基板20Uは、前述したグリーンシートを大版のタイプとすることで、前記同様の方法によって製造可能である。
尚、耳部mには、前記光反射層32のAgメッキ層15などを形成するために平面視がほぼ半円形のメッキ電極(図示せず)が複数個形成されている。また、図13中のカッコ内に示すように、前記配線基板20b,20cを縦横に複数個併有する多数個取り基板20Uとしても良い。
FIG. 13 is a plan view showing a multi-chip substrate 20U having a plurality of wiring boards 20a partitioned by a planned cutting line (virtual line) f and adjacent in the vertical and horizontal directions and ears m surrounding these four sides. . Such a multi-chip substrate 20U can be manufactured by the same method as described above by using the above-described green sheet as a large plate type.
A plurality of plating electrodes (not shown) having a substantially semicircular plan view are formed on the ear m to form the Ag plating layer 15 and the like of the light reflection layer 32. Further, as shown in parentheses in FIG. 13, a multi-chip substrate 20U having a plurality of the wiring substrates 20b and 20c vertically and horizontally may be used.

図14は、本発明における前記第1および第2の配線基板を併有する応用形態の配線基板1dを示す前記図6と同様な断面図である。
配線基板1dは、図14に示すように、前記配線基板1bと同様の基板本体2、キャビティ5、光反射層12、伝熱導体層10,11、伝熱ビア導体V1,V2、導体層8,9、配線層16,18、ビア導体v、およびパッド17を備えている。
このうち、上層側の伝熱導体層10は、絶縁層S1,S2間を外側に延びており、その他端eが基板本体2の外側面2fに露出している。
かかる配線基板1dによれば、発光ダイオードLから発せられ且つ光反射層12から伝熱導体層10に伝熱された前記熱は、かかる伝熱導体層10の他端eから外部に放熱されると共に、伝熱ビア導体V1,V2を介して基板本体の内部に拡散・放熱されるため、キャビティ5内の熱を一層効率良く放熱することができる。
尚、下層側の伝熱導体層11も、基板本体2の外側面2fに露出させても良い。また、かかる配線基板1dも前記配線基板1aなどと同様な方法で製造できる。更に、複数の配線基板1dを併有する前記多数個取り基板1Uと同様の形態とすることもできる。加えて、前記配線基板1aの伝熱導体層10,11も、それらの他端を基板本体2の外側面2fに露出させても良い。
FIG. 14 is a cross-sectional view similar to FIG. 6 showing a wiring board 1d of an applied form having both the first and second wiring boards in the present invention.
As shown in FIG. 14, the wiring board 1d has the same substrate body 2, cavity 5, light reflecting layer 12, heat transfer conductor layers 10 and 11, heat transfer via conductors V1 and V2, and conductor layer 8 as the wiring board 1b. , 9, wiring layers 16, 18, via conductors v, and pads 17.
Among these, the heat transfer conductor layer 10 on the upper layer side extends outward between the insulating layers S <b> 1 and S <b> 2, and the other end e is exposed on the outer side surface 2 f of the substrate body 2.
According to the wiring substrate 1d, the heat emitted from the light emitting diode L and transferred from the light reflecting layer 12 to the heat transfer conductor layer 10 is radiated to the outside from the other end e of the heat transfer conductor layer 10. At the same time, the heat is diffused and radiated to the inside of the substrate body via the heat transfer via conductors V1 and V2, so that the heat in the cavity 5 can be radiated more efficiently.
The lower heat transfer conductor layer 11 may also be exposed on the outer surface 2 f of the substrate body 2. Also, the wiring board 1d can be manufactured by the same method as the wiring board 1a. Furthermore, it can also be set as the form similar to the said multi-piece substrate 1U which has several wiring board 1d together. In addition, the heat transfer conductor layers 10 and 11 of the wiring board 1 a may also have their other ends exposed to the outer surface 2 f of the board body 2.

図15は、前記第1および第2の配線基板を併有する異なる応用形態の配線基板20dを示す前記図11と同様な断面図である。
配線基板20dは、図15に示すように、前記配線基板20bと同様の基板本体22、キャビティ25、光反射層32、伝熱導体層30,31、伝熱ビア導体V1,V2、導体層8,9、配線層16,18、ビア導体v、およびパッド17を備えている。このうち、上層側の伝熱導体層30は、絶縁層S7,S8間を外側に延びており、その他端eが基板本体22の外側面22fに露出している。
かかる配線基板20dによっても、前記同様に光反射層32から伝熱導体層30に伝熱された前記熱は、かかる伝熱導体層30の他端eから外部に放熱されると共に、伝熱ビア導体V1,V2を介して基板本体22の内部に拡散・放熱されるため、キャビティ25内の熱を一層効率良く放熱することができる。
尚、下層側の伝熱導体層31も、基板本体22の外側面22fに露出させても良い。また、かかる配線基板20dも前記配線基板20aなどと同様な方法で製造できる。更に、複数の配線基板20dを併有する前記多数個取り基板20Uと同様の形態とすることもできる。加えて、前記配線基板20aの伝熱導体層30,31も、それらの他端を基板本体22の外側面22fに露出させても良い。
FIG. 15 is a cross-sectional view similar to FIG. 11 showing a wiring board 20d of a different application form having both the first and second wiring boards.
As shown in FIG. 15, the wiring board 20d has the same substrate body 22, cavity 25, light reflection layer 32, heat transfer conductor layers 30, 31, heat transfer via conductors V1, V2, and conductor layer 8 as the wiring board 20b. , 9, wiring layers 16, 18, via conductors v, and pads 17. Among these, the heat transfer conductor layer 30 on the upper layer side extends outward between the insulating layers S <b> 7 and S <b> 8, and the other end e is exposed on the outer surface 22 f of the substrate body 22.
Also by the wiring board 20d, the heat transferred from the light reflection layer 32 to the heat transfer conductor layer 30 is radiated to the outside from the other end e of the heat transfer conductor layer 30 and the heat transfer via is also provided. Since heat is diffused and radiated into the substrate body 22 through the conductors V1 and V2, the heat in the cavity 25 can be radiated more efficiently.
The lower heat transfer conductor layer 31 may also be exposed on the outer surface 22 f of the substrate body 22. Also, the wiring board 20d can be manufactured by the same method as the wiring board 20a. Furthermore, it can also be set as the form similar to the said multi-cavity board | substrate 20U which has several wiring board 20d together. In addition, the heat transfer conductor layers 30 and 31 of the wiring board 20 a may have their other ends exposed to the outer surface 22 f of the board body 22.

本発明は、以上において説明した各形態に限定されるものではない。
前記絶縁層に含まれるセラミック成分は、アルミナなどのセラミックを主成分とする高温焼成セラミックとしても良く、この場合、前記伝熱導体層、伝熱ビア導体、パッド、および配線層などの材料には、WまたはMoが適用される。
また、前記キャビティは、底面の周囲から傾斜して基板本体の表面に向けて傾斜して広がる側面を有する全体がほぼ長円錐形、ほぼ楕円錐形、各コーナにアールが付されたほぼ四角錐形のほか、垂直な側面を有する全体が長円柱形、楕円柱形、各コーナにアールが付されたほぼ四角柱形などの形態としても良い。
更に、前記キャビティの底面に実装する発光素子は、複数個としても良く、かかる形態では、ワイヤをボンディングすべき対となる導体層を、上記発光素子と同数で形成する。
加えて、前記基板本体の隣接する2つの外側面が交差する各コーナには、外側に開いた断面ほぼ円弧形の外部電極を形成し、かかる外部電極と基板本体内部の配線層とを導通可能とした形態としても良い。
The present invention is not limited to the embodiments described above.
The ceramic component contained in the insulating layer may be a high-temperature fired ceramic mainly composed of a ceramic such as alumina. In this case, the materials such as the heat transfer conductor layer, the heat transfer via conductor, the pad, and the wiring layer may be used. W or Mo is applied.
In addition, the cavity has a side surface that is inclined from the periphery of the bottom surface and extends toward the surface of the substrate body, and is generally a long conical shape, a substantially elliptical cone shape, and a substantially quadrangular pyramid with rounded corners. In addition to the shape, the entire shape having a vertical side surface may be a long cylindrical shape, an elliptical column shape, a substantially quadrangular prism shape with rounded corners, and the like.
Further, a plurality of light emitting elements to be mounted on the bottom surface of the cavity may be provided. In such a form, the same number of conductor layers as pairs to which wires are to be bonded are formed.
In addition, an external electrode having a substantially arc-shaped cross section that opens outward is formed at each corner where two adjacent outer surfaces of the substrate body intersect, and the external electrode and a wiring layer inside the substrate body are electrically connected. It is good also as the form which made it possible.

本発明における第1の配線基板を示す平面図。The top view which shows the 1st wiring board in this invention. 図1中のX−X線の矢視に沿った断面図。Sectional drawing along the arrow of the XX in FIG. 上記第1の配線基板の製造工程を示す概略図。Schematic which shows the manufacturing process of the said 1st wiring board. 図3に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図4に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 上記配線基板の応用形態を示す図2と同様な断面図。Sectional drawing similar to FIG. 2 which shows the application form of the said wiring board. 本発明における第2の配線基板を示す図2と同様な断面図。Sectional drawing similar to FIG. 2 which shows the 2nd wiring board in this invention. 上記第1の配線基板を複数個併有する多数個取り基板を示す平面図。FIG. 3 is a plan view showing a multi-piece substrate having a plurality of the first wiring boards. 異なる形態の第1の配線基板を示す平面図。The top view which shows the 1st wiring board of a different form. 図9中のY−Y線の矢視に沿った断面図。Sectional drawing along the arrow of the YY line in FIG. 図9,10に示す配線基板の応用形態を示す図10と同様な断面図。Sectional drawing similar to FIG. 10 which shows the applied form of the wiring board shown to FIG. 異なる形態の第2の配線基板を示す図10と同様な断面図。Sectional drawing similar to FIG. 10 which shows the 2nd wiring board of a different form. 図9,10の配線基板を複数個有する多数個取り基板を示す平面図。FIG. 11 is a plan view showing a multi-chip substrate having a plurality of wiring substrates of FIGS. 第1・第2の配線基板を併有する応用形態の配線基板を示す前記図6と同様な断面図。Sectional drawing similar to the said FIG. 6 which shows the wiring board of the application form which has both 1st and 2nd wiring boards. 第1・第2の配線基板を併有する異なる応用形態の配線基板を示す前記図11と同様な断面図。Sectional drawing similar to the said FIG. 11 which shows the wiring board of the different application form which has the 1st and 2nd wiring board together.

符号の説明Explanation of symbols

1a〜1d,20a〜20d…発光素子実装用配線基板
2,22…………………………基板本体
2f,22f……………………外側面
3,23…………………………表面
4,24…………………………裏面
5,25…………………………キャビティ
6,26…………………………底面
7,27…………………………側面
10,11,30,31………伝熱導体層
12,32………………………光反射層
19………………………………パッド
S1〜S9………………………絶縁層
L…………………………………発光ダイオード(発光素子)
V1,V2………………………伝熱ビア導体
e…………………………………他端
1a to 1d, 20a to 20d ... Light-emitting element mounting wiring board 2, 22 ........... Substrate body 2f, 22f .......... Outer surface 3, 23 ............... …………… Surface 4,24 ………………………… Back 5,25 ………………………… Cavity 6,26 ………………………… Bottom 7, 27 ………………………… Side 10, 11, 30, 31 ……… Heat-conducting conductor layer 12, 32 ……………………… Light reflecting layer 19 …………………… ………… Pads S1 to S9 ……………………… Insulating layer L ………………………………… Light-emitting diode (light-emitting element)
V1, V2 ………………………… Heat transfer via conductor e ………………………………… Other end

Claims (8)

表面および裏面を有し且つ少なくともセラミック成分を含む複数の絶縁層を積層してなる基板本体と、
上記基板本体の表面に開口し且つ側面および発光素子が実装される底面を有するキャビティと、
上記キャビティの側面に形成された光反射層と、
上記光反射層の内側面に一端が接続され、且つ上記複数の絶縁層間に形成された伝熱導体層と、
少なくとも上記伝熱導体層と基板本体の裏面付近に位置する複数の絶縁層間との間に、配置された複数の伝熱ビア導体と、を含む、
ことを特徴とする発光素子実装用配線基板。
A substrate body formed by laminating a plurality of insulating layers having a front surface and a back surface and containing at least a ceramic component;
A cavity having an opening on the surface of the substrate body and a bottom surface on which a side surface and a light emitting element are mounted;
A light reflecting layer formed on a side surface of the cavity;
One end connected to the inner surface of the light reflecting layer, and a heat transfer conductor layer formed between the plurality of insulating layers;
A plurality of heat transfer via conductors disposed between at least the heat transfer conductor layer and a plurality of insulating layers located near the back surface of the substrate body,
A wiring board for mounting a light-emitting element.
前記複数の伝熱ビア導体は、前記伝熱導体層に接続されている、
請求項1に記載の発光素子実装用配線基板。
The plurality of heat transfer via conductors are connected to the heat transfer conductor layer,
The wiring board for mounting a light emitting element according to claim 1.
前記複数の伝熱ビア導体は、前記基板本体の裏面に形成されたパッドに接続されている、
請求項1または2に記載の発光素子実装用配線基板。
The plurality of heat transfer via conductors are connected to pads formed on the back surface of the substrate body.
The wiring board for mounting a light emitting element according to claim 1.
前記伝熱導体層の他端は、前記基板本体の外側面に露出している、
請求項1乃至3の何れか一項に記載の発光素子実装用配線基板。
The other end of the heat transfer conductor layer is exposed on the outer surface of the substrate body.
The wiring board for mounting a light emitting element according to any one of claims 1 to 3.
前記複数の伝熱ビア導体は、平面視において、前記キャビティの側面に沿って配設されている、
請求項1乃至4の何れか一項に記載の発光素子実装用配線基板。
The plurality of heat transfer via conductors are disposed along a side surface of the cavity in a plan view.
The wiring board for mounting a light emitting element according to any one of claims 1 to 4.
前記伝熱ビア導体は、前記基板本体の厚み方向に沿って直線形状である、
請求項1乃至5の何れか一項に記載の発光素子実装用配線基板。
The heat transfer via conductor has a linear shape along the thickness direction of the substrate body.
The light-emitting element mounting wiring board according to claim 1.
表面および裏面を有し且つ少なくともセラミック成分を含む複数の絶縁層を積層してなる基板本体と、
上記基板本体の表面に開口し且つ側面および発光素子が実装される底面を有するキャビティと、
上記キャビティの側面に形成された光反射層と、
上記複数の絶縁層間に形成され、上記光反射層の内側面に一端が接続され、且つ他端が上記基板本体の外側面に露出している伝熱導体層と、を含む、
ことを特徴とする発光素子実装用配線基板。
A substrate body formed by laminating a plurality of insulating layers having a front surface and a back surface and containing at least a ceramic component;
A cavity having an opening on the surface of the substrate body and a bottom surface on which a side surface and a light emitting element are mounted;
A light reflecting layer formed on a side surface of the cavity;
A heat transfer conductor layer formed between the plurality of insulating layers, having one end connected to the inner side surface of the light reflecting layer and the other end exposed to the outer side surface of the substrate body,
A wiring board for mounting a light-emitting element.
前記伝熱導体層は複数であって、かかる複数の伝熱導体層間を接続する伝熱ビア導体が形成されている、
請求項1乃至7の何れか一項に記載の発光素子実装用配線基板。
There are a plurality of the heat transfer conductor layers, and heat transfer via conductors connecting the plurality of heat transfer conductor layers are formed,
The wiring board for mounting a light emitting element according to claim 1.
JP2007138633A 2007-05-25 2007-05-25 Wiring board for packaging light emitting element Withdrawn JP2008294253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138633A JP2008294253A (en) 2007-05-25 2007-05-25 Wiring board for packaging light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138633A JP2008294253A (en) 2007-05-25 2007-05-25 Wiring board for packaging light emitting element

Publications (1)

Publication Number Publication Date
JP2008294253A true JP2008294253A (en) 2008-12-04

Family

ID=40168660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138633A Withdrawn JP2008294253A (en) 2007-05-25 2007-05-25 Wiring board for packaging light emitting element

Country Status (1)

Country Link
JP (1) JP2008294253A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056460A (en) * 2008-08-29 2010-03-11 Kyocera Corp Substrate for light-emitting device, light-emitting device using substrate for light-emitting device, and lighting system using light-emitting device
JP2010283253A (en) * 2009-06-08 2010-12-16 Hitachi Kyowa Engineering Co Ltd Light-emitting device and substrate for light-emitting device
CN101997079A (en) * 2009-08-21 2011-03-30 松下电工株式会社 Light-emitting device
JP2011243733A (en) * 2010-05-18 2011-12-01 Stanley Electric Co Ltd Semiconductor light-emitting device
EP2472577A2 (en) 2011-01-04 2012-07-04 Napra Co., Ltd. Substrate for electronic device and electronic device
JP2012156484A (en) * 2011-01-04 2012-08-16 Napura:Kk Light-emitting device
JP2012164956A (en) * 2011-01-18 2012-08-30 Napura:Kk Electronic component support device and electronic device
JP2012209537A (en) * 2011-03-16 2012-10-25 Napura:Kk Lighting apparatus, display, and signal light
WO2013141322A1 (en) * 2012-03-23 2013-09-26 旭硝子株式会社 Method for manufacturing substrate for light-emitting element, substrate for light-emitting element, and light-emitting device
WO2014009311A1 (en) * 2012-07-09 2014-01-16 Ceramtec Gmbh Light-reflecting substrate for led applications
JP2014199908A (en) * 2013-03-15 2014-10-23 オムロンオートモーティブエレクトロニクス株式会社 Coil-integrated printed board and magnetic device
JP2015056546A (en) * 2013-09-12 2015-03-23 アルプス電気株式会社 Electronic circuit module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056460A (en) * 2008-08-29 2010-03-11 Kyocera Corp Substrate for light-emitting device, light-emitting device using substrate for light-emitting device, and lighting system using light-emitting device
JP2010283253A (en) * 2009-06-08 2010-12-16 Hitachi Kyowa Engineering Co Ltd Light-emitting device and substrate for light-emitting device
CN101997079B (en) * 2009-08-21 2013-05-15 松下电器产业株式会社 Light-emitting device
CN101997079A (en) * 2009-08-21 2011-03-30 松下电工株式会社 Light-emitting device
JP2011243733A (en) * 2010-05-18 2011-12-01 Stanley Electric Co Ltd Semiconductor light-emitting device
EP2472577A2 (en) 2011-01-04 2012-07-04 Napra Co., Ltd. Substrate for electronic device and electronic device
JP2012156484A (en) * 2011-01-04 2012-08-16 Napura:Kk Light-emitting device
US9704793B2 (en) 2011-01-04 2017-07-11 Napra Co., Ltd. Substrate for electronic device and electronic device
JP2012164956A (en) * 2011-01-18 2012-08-30 Napura:Kk Electronic component support device and electronic device
JP2012209537A (en) * 2011-03-16 2012-10-25 Napura:Kk Lighting apparatus, display, and signal light
WO2013141322A1 (en) * 2012-03-23 2013-09-26 旭硝子株式会社 Method for manufacturing substrate for light-emitting element, substrate for light-emitting element, and light-emitting device
WO2014009311A1 (en) * 2012-07-09 2014-01-16 Ceramtec Gmbh Light-reflecting substrate for led applications
JP2014199908A (en) * 2013-03-15 2014-10-23 オムロンオートモーティブエレクトロニクス株式会社 Coil-integrated printed board and magnetic device
JP2015056546A (en) * 2013-09-12 2015-03-23 アルプス電気株式会社 Electronic circuit module

Similar Documents

Publication Publication Date Title
JP2008294253A (en) Wiring board for packaging light emitting element
JP2006216764A (en) Wiring board for packaging light-emitting device
JP2009071013A (en) Mounting substrate for light emitting element
JP4981696B2 (en) package
JPWO2011118639A1 (en) LIGHT REFLECTIVE SUBSTRATE, LIGHT EMITTING DEVICE MOUNTING SUBSTRATE, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE MOUNTING SUBSTRATE
JP2008172113A (en) Wiring substrate
JP2013065793A (en) Wiring board
JP2008016593A (en) Wiring board for mounting light emitting element
JP5212359B2 (en) Multilayer wiring board and manufacturing method thereof
JPWO2012036219A1 (en) Light emitting element substrate and light emitting device
JP2011233775A (en) Semiconductor package and semiconductor light-emitting apparatus
JP2005136019A (en) Package for light-emitting element and its manufacturing method
JP2008270327A (en) Electrostatic discharge protecting component and light-emitting diode module using the same
JP2007258619A (en) Light-emitting element housing package
JP2011044612A (en) Light emitting device
JP2014157949A (en) Wiring board and electronic device
JP2012094679A (en) Substrate manufacturing method
JP2013229490A (en) Wiring board and electronic apparatus
JP2012084786A (en) Led package
JP2017059831A (en) Wiring board and manufacturing method of the same
JP2008130946A (en) Multiple patterning ceramic substrate, and ceramic wiring substrate and method of manufacturing the same
JP2008135526A (en) Light-emitting element coupling substrate and light-emitting device coupling substrate
JP4250171B2 (en) Ceramic package for light emitting device
JP2007251017A (en) Wiring substrate, multipartite wiring substrate, and manufacturing method thereof
JP2013008826A (en) Wiring board for light emitting element mounting and manufacturing method of the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100507