JP6364373B2 - 傾き検出方法、および、傾き検出装置 - Google Patents

傾き検出方法、および、傾き検出装置 Download PDF

Info

Publication number
JP6364373B2
JP6364373B2 JP2015064575A JP2015064575A JP6364373B2 JP 6364373 B2 JP6364373 B2 JP 6364373B2 JP 2015064575 A JP2015064575 A JP 2015064575A JP 2015064575 A JP2015064575 A JP 2015064575A JP 6364373 B2 JP6364373 B2 JP 6364373B2
Authority
JP
Japan
Prior art keywords
marker
tilt
inclination
plane
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015064575A
Other languages
English (en)
Other versions
JP2016183919A (ja
Inventor
石川 忠明
忠明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015064575A priority Critical patent/JP6364373B2/ja
Priority to US14/992,377 priority patent/US9950587B2/en
Priority to CN201610089931.2A priority patent/CN106020180A/zh
Publication of JP2016183919A publication Critical patent/JP2016183919A/ja
Application granted granted Critical
Publication of JP6364373B2 publication Critical patent/JP6364373B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01908Acceleration or inclination sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/066Electric or photoelectric indication or reading means optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)

Description

本発明は、傾き検出方法、および、傾き検出装置に関する。
大規模な工場内や物流の中継地となる倉庫、給食や洗濯物の集配が必要な病院などでは、物品移送の省力化のために、無人搬送車や搬送機能を持った移動ロボットが普及している。これら無人搬送車は物品を自身の上に直接、あるいは、物品のはいった棚やトレイ、コンテナを乗せて運ぶものである。
無人搬送車を自動運転するためには、無人搬送車の自己位置を認識させる必要がある。無人搬送車の自己位置認識は、床面に貼られた白線やバーコードや磁気式のマーカ、RFIDタグなどを位置認識用マーカとして利用し、自己位置を特定するものが多かったが、マーカを所定の位置に精度よく設置する手間や、床面に設けられたマーカが破損や汚れで使用できなくなることが多いなどの点から、無人搬送車に固定搭載したレーザ測距器(LRF:Laser Range Finder)と地図情報による誘導システムを用いるものが多い。
一般的な2次元LRFは、平面をなすようにレーザビームを周囲に飛ばし、測距対象物に当たって反射光が戻るまでの時間から距離を測定するもので、検出面は2次元平面をなす。そして、無人搬送車は、LRFによって得られた周囲物体の2次元位置情報を予め作成しておいた地図と比較し、無人搬送車自身の位置を求め、あらかじめ設定された経路プログラムに従い、移動する。
なお、周囲物体として測距される対象は、対象物上でのレーザビーム光点をLRFの受光器が検知できるものであればよく、壁や柱、設置されている装置筺体などがそのまま利用できる。2次元LRFには発光器と受光器の位置から三角測量の原理を用いて測距するタイプもあるが、検出面が2次元平面であるのは同様である。
さらに、無人搬送車を円滑に自動運転するためには、無人搬送車の傾きを認識させる必要がある。近年、無人搬送車の能力が向上と、新たな物流システムの方式により、無人搬送車は、重量物や棚などの背の高いものの搬送を要求されるようになり、物品を安全に、或いは正確に搬送する為には、搬送すべき物品を積載した際の無人搬送車自身の傾きを知ることが必要である。
無人搬送車の傾きを知る手段としては、重力を利用する一般的な傾斜計やジャイロなどがあるが、測定機器の追加は、コスト及びメンテナンスの問題がある。そこで、特許文献1には、LRFを利用して車体の傾きを測る方法が提案されている。
特開2001-075645号公報
無人搬送車の運転経路である倉庫などでは、倉庫の在庫状況の変化などにより、そのレイアウトが変更されることも多い。レイアウトの変更に追従するため、無人搬送車の傾きを計算するための予備情報を準備する手間は少ない方がよい。
しかし、特許文献1の手法では、LRFからのレーザを反射する再帰反射体の位置情報を、再帰反射体ごとにあらかじめ入力する必要があり、レイアウトの変更に伴う再帰反射体の移動によって、その位置情報を再入力する手間がかかっていた。
そこで、本発明は、移動体の経路変更にも柔軟に対応できるように、移動体の傾きを検知することを、主な課題とする。
前記課題を解決するために、本発明の傾き検出装置は、記憶手段と、演算手段とを有しており、
前記記憶手段には、互いに傾きが異なる3本のマーカ棒上の相対的な位置情報が格納されており、
前記演算手段が、
各マーカ棒に対してレーザ測距器から照射されるレーザビームの反射点の位置情報の入力を受け付け、
前記受け付けた各反射点間の位置関係を、前記各マーカ棒上の相対的な位置に適合させることで、前記各反射点のマーカ棒上の相対的な位置を求め、
前記求めた各反射点の相対的な位置を含む傾き平面を、前記レーザ測距器を備える移動体の傾きとして検出することを特徴とする。
その他の手段は、後記する。
本発明によれば、移動体の経路変更にも柔軟に対応できるように、移動体の傾きを検知することができる。
本発明の一実施形態に関する図1(a)は、搬送物を搭載した搬送車が、マーカに対してレーザビームを照射する旨の斜視図である。図1(b)は、搬送車を真上から見たときの平面図である。図1(c)は、搬送車を真横から見たときの平面図である。 本発明の一実施形態に関する傾き検出装置による傾き検出処理を含めた搬送車の移動処理を示すフローチャートである。 本発明の一実施形態に関する図3(a)は、LRFからみた各反射点の検出処理を示す斜視図である。図3(b)は、図3(a)で検出された各反射点の位置から三角形を生成し、その各辺の長さを求める処理を示す説明図である。図3(c)は、図3(b)で求めた各辺の長さを、マーカのマーカ棒に当てはめて傾き平面を求める旨の説明図である。 本発明の一実施形態に関する図4(a)は、搬送車が後方に傾斜した(のけぞった)場合の傾き平面を示す。図4(b)は、搬送車が前方に傾斜した(前のめりになった)場合の傾き平面を示す。図4(c)は、搬送車が坂を上る場合の傾き平面を示す。 本発明の一実施形態に関する図5(a)は、荷台を調整することで、搬送物を水平に戻す場合の平面図である。図5(b)は、搬送車を調整することで、搬送物を水平に戻す場合の平面図である。 本発明の一実施形態に関する図6(a)は、図1(a)とは別の形態を示す斜視図である。図6(b)は、図1(a)とは別のマーカの形態を示す斜視図である。
以下、本発明の一実施形態を、図面を参照して詳細に説明する。
図1(a)は、搬送物3を搭載した搬送車2が、マーカ1(傾き検出用機材)に対してレーザビーム22を照射する旨の斜視図である。
搬送車2は、例えば、工場や倉庫、病院などで物の搬送に用いられる無人搬送車や移動ロボットなどの移動体である。搬送車2は、前後の車輪23で走行し、搬送物3を搭載して搬送する。搬送車2は、自動運転(無人運転)するために、レーザ測距器(LRF:Laser Range Finder)21が固定搭載されている。固定搭載とは、搬送車2に対するLRF21の搭載位置が固定であることを指す。
LRF21は、搬送車2の前方(進行方向)などに設置され、レーザビーム22を照射し、そのレーザビーム22が物体に反射したときの反射光を検知する。これにより、進行先の障害物を検知することができ、衝突を回避できる。なお、搬送車2に対して、衝突防止機構や、接触を検知したら緊急停止し事故の被害を最小限に抑える機構を備えることとしてもよい。
また、レーザビーム22は、進行先に設置されたマーカ1に対して照射され、その反射光はLRF21に検知される。
搬送車2は、一般に平たんな床面を走行するので、搭載する搬送物3は落下しないことが期待される。しかし、床面に凹凸がある場合や、車輪23のゴムが摩耗している場合などでは、搭載する搬送物3が傾いてしまうこともある。たとえ1mm程度の微小な傾きであっても、搬送物3が背の高いラックであるときは倒れる恐れがあり、また、搬送物3が搬送車2から倒れなくてもはみ出してしまうと、狭い搬送路に引っかかってしまう恐れもある。
そこで、本実施形態では、搬送物3を安定して搬送するために、搬送車2の傾きを検知する手段として、前記したLRF21に加えて、マーカ1と傾き検出装置とを備える。
マーカ1は、LRF21からのレーザビーム22を3点で反射するために、3本のマーカ棒Sa,Sb,Scを有する。つまり、1本のマーカ棒上のどこか1点が、レーザビーム22の反射点となる。マーカ1は、3本のマーカ棒Sa,Sb,Scの位置を固定するために、下端が平板になっている。
なお、レーザビーム22を反射しやすくするために、LRF21の方向に対して周囲の他の物体より高い反射率を持つ再帰性反射材などを、各マーカ棒の表面にカバーするとよい。その他、3本のマーカ棒Sa,Sb,Scの傾きなどの詳細については、図3以降で後記する。また、マーカ棒の本数は3本に限定されず、反射点から空間上の傾き平面を形成できればよいので、4本以上(4点以上の反射点)としてもよい。
マーカ1は、可搬であり、搬送車2の搬送経路付近の測定場所に設置される。なお、マーカ1の位置や向きなどの設置情報は、あらかじめ管理者がデータとして手入力したり、GPS(Global Positioning System)などを用いた計測手段により自動的に入力したりする必要はない。これにより、搬送物3を保管する倉庫などのレイアウト計画を、柔軟に変更することができるので、レイアウトの自由度を高くすることができる。
なお、LRF21から複数本が重なって見えると反射点が3点より少なくなってしまうため、3本のマーカ棒Sa,Sb,Scは、LRF21からは3本に見える場所に設置される必要がある。また、マーカ1は、搬送車2が傾きそうな場所として、床面に凹凸がある場所、床面が傾斜している場所などの近傍に設置されることが望ましい。
傾き検出装置(図示省略)は、LRF21が3本のマーカ棒Sa,Sb,Scそれぞれから計測した3点の反射位置をもとに、搬送車2の傾きを計算する装置である。なお、傾き検出装置は、CPU(Central Processing Unit)と、メモリとを備えるPC(Personal Computer)などの計算機であり、CPUが記憶手段からメモリに読み込んだプログラムを実行することで、各処理部を構築する。
傾き検出装置は、例えば、特定の範囲内に3つの測距対象物が見つかったときに、それらの3本のマーカ棒Sa,Sb,Scとみなす。
傾き検出装置は、例えば、マーカ1に付属してもよいし、LRF21の筐体内に搭載してもよいし、搬送車2の筐体内に搭載してもよいし、それらとは別の筐体として配備してもよい。つまり、傾き検出装置は、LRF21から測定データを受信できる範囲で、どのように構成してもよい。
図1(b)は、搬送車2を真上から見たときの平面図である。この平面図でX軸を進行方向とし、Y軸をX軸と垂直な横方向とする。LRF21からのレーザビーム22は、搬送車2の前方正面に対して所定範囲(例えば、車両後方を除く270度の範囲)で、所定角度ずつ(例えば、5度ずつ)角度を変えて放射(走査)される。つまり、レーザビーム22は、XY平面(2次元平面)で照射されている。これにより、搬送車2の付近に位置するマーカ1を検知できる。
図1(c)は、搬送車2を真横から見たときの平面図である。この平面図でX軸を進行方向とし、Z軸を高さ方向とする。LRF21からのレーザビーム22は、図1(b)で示したXY平面の照射において、Z軸の照射角度は所定角度(図では0度の水平方向)で固定される。そして、以下の説明では、3本のマーカ棒Sa,Sb,Scそれぞれについて、レーザビーム22が反射した位置を反射点Pa,Pb,Pcとする。よって、反射点Pa,Pb,Pcを含む平面(以下、「傾き平面」)は、搬送車2そのものの傾きを示している。例えば、図1(c)では、傾き平面は床面と平行であり、搬送物3が安定している状態である。
図2は、傾き検出装置による傾き検出処理を含めた搬送車2の移動処理を示すフローチャートである。以下、図3以降を適宜参照しつつ、図2に沿って各処理を説明する。
S11において、搬送車2は、ユーザからの入力などにより移動目標地点を認識すると、LRF21を起動し、レーザビーム22の照射を開始させる。
S12において、搬送車2は、ナビゲーションシステムによる経路検索などにより、現在地点から移動目標地点までの移動経路を設定する。
なお、以下で説明する移動経路までの搬送車2の走行工程において、搬送物3は搭載してもよいし、しなくてもよい。つまり、搬送車2の傾きを検知したり、その傾きを修正したりする処理は、搬送物3の搭載時だけに限定されない。
S21において、LRF21は、搬送車2の現在地点からのレーザビーム22がマーカ1に反射することで、付近のマーカ1を発見できたか否かを判定する。S21でYesならS31に進み、NoならS22に進む。
S22において、搬送車2は、S12の移動経路に沿って、S11の目標地点に向かって移動する。なお、搬送車2は、S21でマーカ1を検知したら、車体の傾きから搬送物3を含めた車体の幅を考慮して、S12で設定した経路を変更して進めてもよい。移動中の経路修正は、LRF21によって得られる環境測距データと、搬送車2に内蔵された地図データとの比較によって行われる。
S23において、搬送車2は、所定の距離移動後または所定の時間経過後、目標地点に到着したかどうかを判断する。そして、移動目標地点に到着すると処理を終了し(S23,Yes)、到着するまでは(S23,No)、S21に戻る。
傾き検出装置は、S21でYesなら、マーカ1を検知したことを特定動作開始の信号として用い、そのマーカ1が検知されているときには、車体の傾きを計測し(後記S31〜S33)、積載物の水平を保つように調整を続けながら走る(後記S34,S35)。以下、傾き検出装置の各処理(S31〜S35)の詳細を説明する。
S31において、傾き検出装置は、以下に示すように、マーカ1の3つの反射点と、その反射点の三角形の辺を求める。
図3(a)は、LRF21からみた各反射点Pa,Pb,Pcの検出処理を示す斜視図である。以下、反射点Paに着目して説明するが、他の反射点Pb,Pcも同様の処理で検出できる。
LRF21から放射されたレーザビーム22は、マーカ棒Sa上の反射点Paにて反射し、その反射光はLRF21へと戻る。
よって、LRF21の位置から見たときの反射点Paまでの反射点距離Laは、レーザビーム22の到達時間(反射到達時刻−入射時刻)から計算できる。そして、レーザビーム22の放射角θaは、あらかじめ放射時に規定されている。つまり、反射点Paの位置=(反射点距離La,放射角θa)の組み合わせとして求めることができる。
図3(b)は、図3(a)で検出された各反射点の位置(反射点距離L,放射角θ)から三角形を生成し、その各辺Lab,Lac,Lbcの長さを求める処理を示す説明図である。
各反射点の位置(反射点距離L,放射角θ)を極座標系に配置すると、3反射点=3頂点の三角形が生成される。この三角形の各辺を辺Lab,Lbc,Lacとする。例えば、辺Labは、反射点Paと反射点Pbとを結ぶので、その「aとb」を示す辺Labとする。
S32において、傾き検出装置は、図3(b)で求めた三角形の辺の長さをもとに、マーカ内の反射点位置を求める。
図3(c)は、図3(b)で求めた各辺Lab,Lac,Lbcの長さを、マーカ1のマーカ棒Sa,Sb,Scに当てはめて傾き平面を求める旨の説明図である。
マーカ1の3本のマーカ棒Sa,Sb,Scは、それぞれの傾きが互いに異なるように配置されている。そのため、例えば、3本のマーカ棒Sa,Sb,Scは、互いにねじれの位置にある(同一平面にない)状態で固定され、それぞれの傾き方向と少なくとも一点においてお互いの位置関係が分かっている。
このような3本のマーカ棒Sa,Sb,Scの制約により、各マーカ棒上の任意の点のうち、1本のマーカ棒から1点を選択すると(例えば、マーカ棒Saから点Paを選択する)、それらの選択された3点のマーカ棒上の位置を結ぶ三角形の辺の長さは、一義的に求まる。
つまり、3本のマーカ棒Sa,Sb,Scは互いに傾きが互いに異なる位置にあり、その傾きと互いの位置関係とが分かっていることから、その3点を含む平面(三角形)について、マーカ棒上での位置(3点)を一意に特定することが可能であり、結果として3点の3次元位置を求めることが可能である。
平板とマーカ棒との接点をOa,Ob,Ocとし、それぞれ原点Ocからの相対座標で表現する。
マーカ棒Scは、接点Oc(0,0,0)を原点とし、法線ベクトル(0,0,1)に沿って伸びている。つまり、マーカ棒Scは平板に対して垂直に伸びている。
マーカ棒Sbは、接点Ob(xb0,yb0,0)から、ベクトル(αb,βb,γb)に沿って伸びている。
マーカ棒Saは、接点Ob(xa0,ya0,0)から、ベクトル(αa,βa,γa)に沿って伸びている。
マーカ棒Sa上の点Pa(xa,ya,za)、マーカ棒Sb上の点Pb(xb,yb,zb)、マーカ棒Sc上の点Pc(0,0,zc)とすると、
(xb-xb0)/αb=(yb-yb0)/βb=zb/γb
(xa-xa0)/αa=(ya-ya0)/βa=za/γa
が成り立つ。よって、
点Pb=(αb・zb/γb+xb0,βb・zb/γb+yb0,zb)
点Pa=(αa・za/γa+xa0,βa・za/γa+ya0,za)
となる。
傾き検出装置は、図3(b)で求めた三角形の辺の長さの組み合わせが、上記の点Pa,点Pb,点Pcから構成される三角形の辺の長さの組み合わせと同じになるように、各反射点Pa,Pb,Pcの位置を原点Ocからの相対座標系に当てはめる(つまり、三角形の辺の長さが示す各反射点間の位置関係を、各マーカ棒上の相対的な位置に適合させる)。これにより、S32において、マーカ1内の反射点位置を求めることができる。
例えば、S32において、傾き検出装置は、三角形の辺の長さの組み合わせを<30cm,50cm,60cm>として求めた場合、その組み合わせを満たす各反射点Pa,Pb,Pcの位置を、マーカ棒Sa,Sb,Sc上で一意に求めることができる。
なお、相対座標系に当てはめるとは、換言すると、極座標系での各反射点の位置(反射点距離L,放射角θ)から求まる三角形の辺の長さの制約と、あらかじめ固定されているマーカ1の3本のマーカ棒Sa,Sb,Sc上の相対座標系の点(接点Oから延びる所定の傾きベクトルの延長上の点)の制約とを同時に満たす3点(Pa,Pb,Pc)をみつけることである。
よって、傾き検出装置には、マーカ1の3本のマーカ棒Sa,Sb,Sc上の相対座標系の点を求めるための計算用パラメータ(接点、ベクトル)が、あらかじめ倉庫の管理者などにより入力されている。
S33において、傾き検出装置は、S32で求めたマーカ内の反射点Pa,Pb,Pcの位置からマーカ傾き平面を求める。つまり、傾き検出装置は、空間座標として3点の反射点を含む平面を、傾き平面とする。
S34において、傾き検出装置は、S33で求めた傾き平面が水平か否かを判定する。
例えば、図4(a)では、搬送車2が後方に傾斜した(のけぞった)場合であり、車両の進行方向に進むに従って高くなる(見上げる)ように、傾き平面が形成される。LRF21は搬送車2に固定搭載されていることから、傾き平面の傾き度合いをもとに、搬送車2の傾きを求めることができる。つまり、傾き平面とマーカ1の平板(水平面)との角度が、床面に対する搬送車2の傾き(車両傾き)となる。
一方、図4(b)では、搬送車2が前方に傾斜した(前のめりになった)場合であり、車両の進行方向に進むに従って低くなる(見下ろす)ように、傾き平面が形成される。
さらに、図4(c)では、搬送車2が坂を上るときに後方に傾斜した場合であり、図4(a)と同様に見上げるように、傾き平面が形成される。
これらの図4(a),図4(b),図4(c)でそれぞれ示した各場合は、いずれも傾き平面が水平ではない場合であり、S34のNoに該当する。
なお、図1(c)ではマーカ1の平版が水平に設置されているが、図4(c)ではマーカ1の平版がななめに(坂の傾斜に沿って)設置されている。よって、図1(c)のマーカ1と図4(c)のマーカ1とが同じ構造物であっても、マーカ棒上の反射点Pを求めるためのパラメータ(接点Oと、マーカ棒の向きを示すベクトル)は、別々のものを使えばよい。例えば、マーカ棒Scは、平版が水平に設置されているときは、法線ベクトル(0,0,1)に沿って垂直に伸びているが、平版がななめに設置されているときは、水平方向に対して垂直ではない方向に伸びている。
なお、図4では、傾き平面が水平ではない一例として、X軸だけが水平ではない例を示した。しかし、図4の説明は、あくまで視覚的にわかりやすくするため、X軸だけの傾きにしただけであり、傾き検出装置は、Y軸の傾きも検知することができる。
つまり、図1(b)で示したように、レーザビーム22がXY平面を走査しているので、Y軸方向に傾いている傾き平面や(例えば、右側前後の車輪23が左側に対して下がっている場合)、X軸方向とY軸方向とで同時に傾いている傾き平面も(例えば、右側前の車輪23だけ他の車輪23よりも下がっている場合)、検出することができる。
さらに、傾き検出装置は、搬送車2の傾きだけでなく、搬送車2の沈み込み量を求めることができる。沈み込みとは、搬送物3が重すぎるなどの理由により、搬送車2の傾きを水平に保ったまま、搬送車2全体が所定の高さ分(沈み込み量)だけ低くなってしまった事象である。
S32で示したように、傾き検出装置は、マーカ1内の各反射点Pa,Pb,Pcの位置を空間座標として求めることができるので、傾き平面の床面(マーカ1の平板)からの高さと、レーザビーム22の照射高さ(Z軸高さ)とを比較することで、沈み込み量がわかる。なお、傾き検出装置は、求めた沈み込み量の情報をもとに、例えば、所定閾値以上であるときには、搬送物3の過剰搭載として警告するなどの処理に活用できる。
S35において、傾き検出装置は、S34で傾き平面が水平ではない場合に異常有りと判定し、搬送物3の傾きを、水平に修正する。以下、図5(a)に記載の修正方法と、図5(b)に記載の修正方法とをそれぞれ説明する。
図5(a)は、S35において、荷台24を調整することで、搬送物3を水平に戻す場合の平面図である。S33で求めた傾き平面(荷台24)が進行方向の後ろに傾いていたとする。このままだと、荷台24の上に搭載されている搬送物3が後ろに倒れる恐れがある。
よって、傾き検出装置は、荷台24の荷台用昇降機構24aに対して、傾き平面(荷台24)を水平に戻す旨の制御信号を送信する。これにより、搬送車2は傾いたままだが、荷台24上の搬送物3は水平になって安定する。
図5(b)は、S35において、搬送車2を調整することで、搬送物3を水平に戻す場合の平面図である。車輪23には、前輪用アクチュエータ23aと、後輪用アクチュエータ23bとが備えられている。これらのアクチュエータは、車体と車軸との間に備えられ、車軸を押すことで車体の傾きを変化させることができる。また、これらのアクチュエータは、動力を切っても姿勢を維持できるように、ねじまたはウォームギアの機構を備える。
S33で求めた傾き平面(荷台24)が進行方向の後ろに傾いていたとする。そこで、傾き検出装置は、前輪の高さと後輪の高さとを同じ高さになるように、アクチュエータを駆動することで、車体の傾きを修正する。これにより、これにより、搬送車2が水平になることで、搭載される搬送物3も水平になって安定する。
図6(a)は、図1(a)とは別の形態を示す斜視図である。
搬送物3を搭載する搬送車2の荷台24は、上面に傾き角度変更可能な回転ステージとして構成される。車体幅よりも広い搬送物3は、狭い通路スペースに衝突する恐れがある。また、高さが高い搬送物3は、重心位置が高くなり、少しの傾きでも転倒する恐れがある。そこで、傾き検出装置は、回転ステージを制御して(回転させて)傾きを水平に戻すことで、衝突や転倒を防止する。
また、マーカ1は、搬送車2が走行する床面と同じ高さに限定されず、上面が床面と平行である台の上にのせてもよい。
図6(b)は、図1(a)とは別のマーカ1の形態を示す斜視図である。
マーカ1のマーカ棒Sa,Sb,Scの傾きは、ねじれ関係だけでなく、3本のマーカ棒Sa,Sb,Scの傾きがそれぞれ別であれば、空間上の1点で交わるように構成してもよい。例えば、マーカ1bは底面の平板でマーカ棒が交差する例を示す。これにより、マーカ1bの占有体積を減らすことができ、可搬性が向上する。
また、マーカ1cは上部でマーカ棒が交差する例を示す。これにより、カメラの三脚と同じ原理で、空間上に3本のマーカ棒Sa,Sb,Scを安定したまま、底部の平板をなくし、占有面積を減らすことができる。さらに、マーカ1cは、上部でマーカ棒が交差する代わりに、交差する点付近のマーカ棒を省略してもよい。
以上説明した本実施形態では、傾き検出装置が搬送物3を搭載した搬送車2の傾きを検出するときに、搬送車2のLRF21からマーカ1に対して照射されるレーザビーム22の情報を用いる。ここで、マーカ1は、互いに傾きの異なる3本のマーカ棒Sa,Sb,Scにより構成され、レーザビーム22の3点の反射点から、搬送車2の傾きを示す空間内の傾き平面を一義的に求めることができる。
このように、傾き検出装置は、マーカ1とLRF21とを組み合わせることで、搭載された搬送物3の傾きを水平に戻ることができる。よって、搬送車2から搬送物3が落下したり、搬送車2からはみ出した搬送物3が通路にぶつかったりすることを防止できる。さらに、搬送車2から搬送物3がはみ出さないことが期待できるので、搬送車2の搬送路を搬送できる範囲で狭くすることができ、倉庫内の収納効率を向上させることができる。
また、LRF21は自身の周囲に存在するマーカ1を照射するレーザビーム22で自律的に発見できるので、マーカ1の倉庫内位置をあらかじめ管理者が入力する手間を省略できる。よって、レイアウトの変更には、マーカ1をそのまま持ち運んで位置を変更するだけでよい。
なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。
また、前記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリや、ハードディスク、SSD(Solid State Drive)などの記録装置、または、IC(Integrated Circuit)カード、SDカード、DVD(Digital Versatile Disc)などの記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
1 マーカ(傾き検出用機材)
2 搬送車(移動体)
3 搬送物
21 LRF
22 レーザビーム
23 車輪
24 荷台
24a 荷台用昇降機構
23a 前輪用アクチュエータ
23b 後輪用アクチュエータ
Pa〜Pc 反射点
Sa〜Sc マーカ棒

Claims (8)

  1. 傾き検出装置を用いた傾き検出方法であって、前記傾き検出装置は、記憶手段と、演算手段とを有しており、
    前記記憶手段には、互いに傾きが異なる3本のマーカ棒上の相対的な位置情報が格納されており、
    前記演算手段は、
    各マーカ棒に対してレーザ測距器から照射されるレーザビームの反射点の位置情報の入力を受け付け、
    前記受け付けた各反射点間の位置関係を、前記各マーカ棒上の相対的な位置に適合させることで、前記各反射点のマーカ棒上の相対的な位置を求め、
    前記求めた各反射点の相対的な位置を含む傾き平面を、前記レーザ測距器を備える移動体の傾きとして検出することを特徴とする
    傾き検出方法。
  2. 前記演算手段は、前記互いに傾きが異なる3本のマーカ棒として、互いにねじれの位置関係にある3本のマーカ棒を用いること特徴とする
    請求項1に記載の傾き検出方法。
  3. 前記演算手段は、さらに、前記傾き平面を水平に戻す旨の制御信号を、前記移動体全体の傾きを変化させる制御部に指示することを特徴とする
    請求項1または請求項2に記載の傾き検出方法。
  4. 前記演算手段は、さらに、前記傾き平面を水平に戻す旨の制御信号を、前記移動体の搬送物を搭載する荷台の傾きを変化させる制御部に指示することを特徴とする
    請求項1または請求項2に記載の傾き検出方法。
  5. 互いに傾きが異なる3本のマーカ棒上の相対的な位置情報が格納されている記憶手段と、
    各マーカ棒に対してレーザ測距器から照射されるレーザビームの反射点の位置情報の入力を受け付け、
    前記受け付けた各反射点間の位置関係を、前記各マーカ棒上の相対的な位置に適合させることで、前記各反射点のマーカ棒上の相対的な位置を求め、
    前記求めた各反射点の相対的な位置を含む傾き平面を、前記レーザ測距器を備える移動体の傾きとして検出する演算手段とを有することを特徴とする
    傾き検出装置。
  6. 前記演算手段は、前記互いに傾きが異なる3本のマーカ棒として、互いにねじれの位置関係にある3本のマーカ棒を用いること特徴とする
    請求項5に記載の傾き検出装置。
  7. 前記演算手段は、さらに、前記傾き平面を水平に戻す旨の制御信号を、前記移動体全体の傾きを変化させる制御部に指示することを特徴とする
    請求項5または請求項6に記載の傾き検出装置。
  8. 前記演算手段は、さらに、前記傾き平面を水平に戻す旨の制御信号を、前記移動体の搬送物を搭載する荷台の傾きを変化させる制御部に指示することを特徴とする
    請求項5または請求項6に記載の傾き検出装置。
JP2015064575A 2015-03-26 2015-03-26 傾き検出方法、および、傾き検出装置 Active JP6364373B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015064575A JP6364373B2 (ja) 2015-03-26 2015-03-26 傾き検出方法、および、傾き検出装置
US14/992,377 US9950587B2 (en) 2015-03-26 2016-01-11 Inclination detection method, inclination detection apparatus, and equipment for detecting inclination
CN201610089931.2A CN106020180A (zh) 2015-03-26 2016-02-18 倾斜度检测方法、倾斜度检测装置和倾斜度检测用器材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064575A JP6364373B2 (ja) 2015-03-26 2015-03-26 傾き検出方法、および、傾き検出装置

Publications (2)

Publication Number Publication Date
JP2016183919A JP2016183919A (ja) 2016-10-20
JP6364373B2 true JP6364373B2 (ja) 2018-07-25

Family

ID=56973920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064575A Active JP6364373B2 (ja) 2015-03-26 2015-03-26 傾き検出方法、および、傾き検出装置

Country Status (3)

Country Link
US (1) US9950587B2 (ja)
JP (1) JP6364373B2 (ja)
CN (1) CN106020180A (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093312B2 (en) * 2015-07-27 2018-10-09 Sharp Kabushiki Kaisha Obstacle determining apparatus, moving body, and obstacle determining method
US10162058B2 (en) * 2016-12-23 2018-12-25 X Development Llc Detecting sensor orientation characteristics using marker-based localization
SE540436C2 (en) * 2017-01-11 2018-09-18 Husqvarna Ab Improved collision detection for a robotic work tool
US10416679B2 (en) * 2017-06-27 2019-09-17 GM Global Technology Operations LLC Method and apparatus for object surface estimation using reflections delay spread
CN109015336B (zh) * 2018-10-26 2023-09-29 飞磁电子材料(东莞)有限公司 一种t型铁氧体磁芯的研磨面平行度检测系统及方法
CN109668543A (zh) * 2019-01-22 2019-04-23 南京理工大学 基于激光雷达的倾斜度测量方法
CN110340158B (zh) * 2019-07-17 2021-01-26 首钢京唐钢铁联合有限责任公司 一种轧机衬板倾斜检测方法及检测工装
CN110806201B (zh) * 2019-11-13 2020-11-20 中山大学 一种基于高精度水平基准的校正方法及装置
DE102021109213A1 (de) * 2020-04-16 2021-10-21 Volkswagen Aktiengesellschaft Verfahren zur Sichtbarmachung einer Neigung eines Kraftfahrzeugs im Kraftfahrzeug
EP3929613A1 (en) * 2020-06-22 2021-12-29 Carnegie Robotics, LLC A method for navigating a movable device along an inclined surface
EP3929690A1 (en) 2020-06-22 2021-12-29 Carnegie Robotics, LLC A method and a system for analyzing a scene, room or venueby determining angles from imaging elements to visible navigation elements
JP7045421B2 (ja) * 2020-07-21 2022-03-31 株式会社Wave Technology 移動体位置検出システムおよび移動体位置検出方法
CN115406391B (zh) * 2022-11-01 2023-02-28 四川中科川信科技有限公司 一种阵列式深部位移计

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0047243B1 (en) * 1979-10-16 1985-01-23 National Research Development Corporation Method and apparatus for determining position
JPS6067812A (ja) * 1983-09-22 1985-04-18 Toshihiro Tsumura 移動体の傾斜角検出システム
JP3135364B2 (ja) * 1992-06-15 2001-02-13 積水化学工業株式会社 移動体の姿勢及び位置測定装置
JP3316841B2 (ja) * 1998-08-06 2002-08-19 村田機械株式会社 無人搬送車システム
JP3316842B2 (ja) * 1998-08-06 2002-08-19 村田機械株式会社 無人搬送車システムと無人搬送車の誘導方法
JP4172882B2 (ja) 1999-09-08 2008-10-29 日立造船株式会社 移動体の位置検出方法およびその設備
JP4051883B2 (ja) * 2000-12-20 2008-02-27 株式会社明電舎 無人車位置計測方式
JP2003138531A (ja) * 2001-11-01 2003-05-14 Toyo Tire & Rubber Co Ltd 標識テープと視線誘導標識柱
JP4398314B2 (ja) * 2004-07-09 2010-01-13 株式会社 ソキア・トプコン 測量機及び墨出し点移設処理プログラム
CN105027141B (zh) * 2013-01-31 2018-09-07 富士机械制造株式会社 图像处理系统及辅助系统

Also Published As

Publication number Publication date
CN106020180A (zh) 2016-10-12
US20160280036A1 (en) 2016-09-29
JP2016183919A (ja) 2016-10-20
US9950587B2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
JP6364373B2 (ja) 傾き検出方法、および、傾き検出装置
US11312030B2 (en) Self-driving vehicle system with steerable camera and indicator
US10007266B2 (en) Using planar sensors for pallet detection
US10265856B2 (en) Reorienting a distance sensor using an adjustable leveler
KR101437952B1 (ko) 산업 차량 네비게이션에 대한 맵 데이터 프로세싱을 용이하게 하는 방법 및 장치
US10656646B2 (en) Ground plane detection to verify depth sensor status for robot navigation
JP2021042080A (ja) 在庫管理
US10583982B2 (en) Shelf transport system, shelf transport vehicle, and shelf transport method
US7864302B2 (en) Method for detecting objects with a pivotable sensor device
CN109843752B (zh) 机器人驱动单元及其系统
JP2020070121A (ja) 搬送方法、搬送システム、プログラム及びパレット
US20220128998A1 (en) Navigation method, moving carrier and navigation system
JP2020154592A (ja) 自律移動装置、プログラムおよび自律移動装置による搬送対象物の選択方法
JP7489013B2 (ja) 無人搬送車システム
JP2022146514A (ja) 無人搬送車、無人搬送システム及び搬送プログラム
JP7395280B2 (ja) 位置演算システム、位置演算方法および無人搬送車
KR101707058B1 (ko) 반송차
JP7300413B2 (ja) 制御装置、移動体、移動制御システム、制御方法及びプログラム
JP6539958B2 (ja) 搬送車
JP7419784B2 (ja) 自律移動装置、プログラム、自律移動装置の操舵方法及び自律移動装置の調整方法
JP2023165189A (ja) 搬送システム、制御装置、移動体、制御方法、プログラム、及び記憶媒体
JP2020160646A (ja) 搬送システム
JP2022124817A (ja) 移動体の制御方法、移動体及びプログラム
JP2022124816A (ja) 移動体の制御方法、移動体及びプログラム
Charde et al. Design and Modelling of an Autonomous Automated Guided Vehicle with Intelligent Navigation Control System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350