JP6361779B2 - エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 - Google Patents
エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 Download PDFInfo
- Publication number
- JP6361779B2 JP6361779B2 JP2017091475A JP2017091475A JP6361779B2 JP 6361779 B2 JP6361779 B2 JP 6361779B2 JP 2017091475 A JP2017091475 A JP 2017091475A JP 2017091475 A JP2017091475 A JP 2017091475A JP 6361779 B2 JP6361779 B2 JP 6361779B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- epitaxial
- layer
- oxygen
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明の一実施形態によるエピタキシャルシリコンウェーハ100の製造方法を図1に示す。まず、シリコンウェーハ10に酸素外方拡散熱処理を施して、シリコンウェーハ10の表層部に酸素外方拡散層11を形成する第1工程(図1(A),(B))を行う。次に、このシリコンウェーハ10にクラスターイオン16を照射して、シリコンウェーハ10の酸素外方拡散層11側の表面10Aに、このクラスターイオン16の構成元素が固溶してなる改質層18を形成する第2工程(図1(C),(D))を行う。その後、シリコンウェーハ10の改質層18上に、エピタキシャルシリコン層20を形成する第3工程(図1(F))を行う。図1(F)は、この製造方法の結果得られたエピタキシャルシリコンウェーハ100の模式断面図である。
次に、上記製造方法により得られるエピタキシャルシリコンウェーハ100について説明する。一実施形態によるエピタキシャルシリコンウェーハ100は、図1(F)に示すように、表層部に酸素外方拡散層11を備えたシリコンウェーハ10と、このシリコンウェーハ10の酸素外方拡散層側の表面10Aに形成された、シリコンウェーハ10中に所定元素が固溶してなる改質層18と、改質層18上のエピタキシャルシリコン層20と、を有する。そして、改質層18における所定元素の深さ方向の濃度プロファイルの半値幅Wが100nm以下であることを特徴とする。
本発明の実施形態による固体撮像素子の製造方法は、上記の製造方法で製造されたエピタキシャルシリコンウェーハまたは上記のエピタキシャルシリコンウェーハ、すなわちエピタキシャルシリコンウェーハ100の酸素外方拡散層側の表面10Aに位置するエピタキシャルシリコン層20に、固体撮像素子を形成することを特徴とする。この製造方法により得られる固体撮像素子は、従来に比べ製造工程の各処理中で発生する重金属汚染の影響を低減でき、従来に比べ白傷欠陥の発生の抑制が期待できる。また、この固体撮像素子は、エピタキシャルシリコン層20の酸素拡散が抑制されているため、Vthの変化を抑制することができる。
まず、クラスターイオン照射とモノマーイオン注入の相違を明らかにするため、以下の実験を行った。
CZ単結晶シリコンインゴットから得た、酸素濃度が15×1017atoms/cm3(ASTM F121−1979)であるn型シリコンウェーハ(直径:300mm、厚さ:725μm、結晶方位:<100>、ドーパント:リン、ドーパント濃度:4×1014atoms/cm3)を用意した。次に、縦型熱処理装置(日立国際電気製)を使用して、アルゴンガス雰囲気下で、1200℃,1時間の条件で酸素外方拡散熱処理をシリコンウェーハに施して酸素外方拡散層(厚さ:10μm)を形成した。その後、クラスターイオン発生装置(日新イオン機器社製、型番:CLARIS)を用いて、ジベンジル(C14H14)より生成、イオン化させたC5H5クラスターイオンを、ドーズ量9.0×1013Clusters/cm2(炭素のドーズ量4.5×1014atoms/cm2)、炭素1原子あたりの加速電圧14.8keV/atomの条件で、シリコンウェーハに照射した。
参考例1と同じシリコンウェーハに対して、クラスターイオン照射に替えて、CO2を材料ガスとして、炭素のモノマーイオンを生成し、ドーズ量9.0×1013atoms/cm2、加速電圧300keV/atomの条件とした以外は、参考例1と同じ条件で、シリコンウェーハに照射した。
CZ単結晶シリコンインゴットから得た、酸素濃度が15×1017atoms/cm3(ASTM F121−1979)であるn型シリコンウェーハ(直径:300mm、厚さ:725μm、結晶方位:<100>、ドーパント:リン、ドーパント濃度:4×1014atoms/cm3)を用意した。次に、縦型熱処理装置(日立国際電気社製)を使用して、アルゴンガス雰囲気下で、1200℃,1時間の条件で酸素外方拡散熱処理をシリコンウェーハに施して酸素外方拡散層(厚さ:10μm)を形成した。さらに、クラスターイオン発生装置(日新イオン機器社製、型番:CLARIS)を用いて、表1に記載の条件で、シリコンウェーハに照射した。その後、シリコンウェーハをHF洗浄処理した後、枚葉式エピタキシャル成長装置(アプライドマテリアルズ社製)内に搬送し、装置内で1120℃の温度で30秒の水素ベーク処理を施した後、水素をキャリアガス、トリクロロシランをソースガス、ホスフィン(PH3)をドーパントガスとして1150℃でCVD法により、シリコンウェーハ上にシリコンのエピタキシャル層(厚さ:6μm、ドーパント種類:リン、ドーパント濃度:1×1015atoms/cm3)をエピタキシャル成長させ、本発明に従うエピタキシャルシリコンウェーハを作製した。
シリコンウェーハへの酸素外方拡散熱処理を、縦型熱処理装置の使用に替えて、RTA装置(マトソンサーマルプロダクト社製)を使用し、表1の熱処理条件に変更した以外は、実施例1と同じ条件で、本発明に従うエピタキシャルシリコンウェーハを作製した。
シリコンウェーハへの酸素外方拡散熱処理条件を表1に記載のとおりとし、さらに、クラスターイオン照射に替えて、表1に記載の条件で、炭素のモノマーイオン注入とした以外は、実施例1と同じ条件で、比較例にかかるシリコンエピタキシャルシリコンウェーハを作製した。
酸素外方拡散熱処理を行わず、かつ、クラスターイオンの照射を行わなかった以外は、実施例1と同じ条件で、比較例にかかるエピタキシャルシリコンウェーハを作製した。
(1)SIMS測定
代表例として、実施例1および比較例1で作製した各サンプルについてSIMS測定を行い、図4(A),(B)に示す炭素の濃度プロファイルを得た。なお、横軸の深さはエピタキシャル層の表面をゼロとしている。さらに、実施例1,2および比較例1,2で作製した各サンプルについて、エピタキシャル層を1μmまで薄膜化した後にSIMS測定を行った。このとき得られた炭素の濃度プロファイルの半値幅、ピーク濃度、およびピーク位置(エピタキシャル層を除いたイオン照射/注入した側の表面からのピーク深さ)を表1に示す。
実施例1,2および比較例1,2で作製した各サンプルのエピタキシャルシリコンウェーハ表面を、Cu汚染液(1.0×1012/cm2)で、スピンコート汚染法を用いて故意に汚染し、引き続き900℃、30分の熱処理を施した。その後、SIMS測定を行った。代表例として、実施例1および比較例1についてのCu濃度プロファイルを、それぞれ炭素濃度プロファイルとともに示す(図4(A),(B))。他の実施例および比較例については、ゲッタリング能力評価の結果を表1に示す。Cuの濃度プロファイルのピーク濃度を以下のようにそれぞれ分類して、評価基準とした。
◎:1×1017atoms/cm3以上
○:7.5×1016atoms/cm3以上〜1×1017atoms/cm3未満
△:7.5×1016atoms/cm3未満
作製した実施例1,2および比較例3で作製した各サンプルについてSIMS測定を行い、図5に示すエピタキシャル層における酸素濃度を得た。なお、横軸の深さはエピタキシャル層の表面をゼロとしている。
実施例1,2で作製した各サンプルのエピタキシャルウェーハついて、イントリンシックゲッタリング能力をそれぞれ評価した。具体的には、顕微鏡観察を行うためにBMDを顕在化させ、かつ、BMDの検出性を高めるために、まず、実施例1,2のエピタキシャルシリコンウェーハを800℃,4時間の熱処理を行った後、引き続き1000℃,16時間の熱処理を行う。その後、各エピタキシャルシリコンウェーハを劈開し、劈開断面を2μmエッチングするようにWrightエッチング溶液により選択エッチングを行った。その後、光学顕微鏡を用いて、基板であるシリコンウェーハ断面の酸素析出物密度を測定した。その結果、シリコンウェーハ内部に1×106個/cm2以上のBMDが形成されていた。
図4(A),(B)から、クラスターイオン照射により、実施例1では、モノマーイオン注入を施した比較例1と比べて、炭素が局所的かつ高濃度に固溶した改質層が形成されることがわかる。そして、表1に示すように、実施例1,2は、炭素の濃度プロファイルの半値幅がいずれも100nm以下であるために、Cuに対して、比較例1,2よりも優れたゲッタリング能力を発揮していることがわかる。
10A (酸素外方拡散層側の)表面
11 酸素外方拡散層
16 クラスターイオン
18 改質層
20 エピタキシャルシリコン層
100 エピタキシャルシリコンウェーハ
Claims (9)
- シリコンウェーハに酸素外方拡散熱処理を施して、前記シリコンウェーハの表層部に厚さ1〜10μmの酸素外方拡散層を形成する第1工程と、
前記第1工程の後、前記シリコンウェーハにクラスターイオンを照射して、前記シリコンウェーハの前記酸素外方拡散層側の表面に、前記クラスターイオンの構成元素が固溶してなる改質層を形成する第2工程と、
前記シリコンウェーハの改質層上にエピタキシャルシリコン層を形成する第3工程と、
を有し、
前記クラスターイオンが、構成元素として炭素を含む2種以上の元素を含むことを特徴とするエピタキシャルシリコンウェーハの製造方法。 - 前記第1工程を行う前の前記シリコンウェーハの酸素濃度が8×1017〜18×1017atoms/cm3以下である請求項1に記載のエピタキシャルシリコンウェーハの製造方法。
- 前記第2工程の後、前記シリコンウェーハに対して結晶性回復のための熱処理を行うことなく、前記シリコンウェーハをエピタキシャル成長装置に搬送して前記第3工程を行う請求項1または2に記載のエピタキシャルシリコンウェーハの製造方法。
- 前記第2工程の後、前記第3工程の前に、前記シリコンウェーハに対して結晶性回復のための熱処理を行う請求項1または2に記載のエピタキシャルシリコンウェーハの製造方法。
- 前記クラスターイオンの照射条件は、炭素1原子あたり加速電圧が50keV/atom以下、クラスターサイズが100個以下、炭素のドーズ量が1×1016atoms/cm2以下である請求項1に記載のエピタキシャルシリコンウェーハの製造方法。
- 表層部に厚さ1〜10μmの酸素外方拡散層を備えたシリコンウェーハと、該シリコンウェーハの前記酸素外方拡散層側の表面に形成された、該シリコンウェーハ中に所定元素が固溶してなる改質層と、該改質層上のエピタキシャル層と、を有し、
前記改質層における、前記所定元素の濃度プロファイルの半値幅が100nm以下であり、
前記所定元素が炭素を含む2種以上の元素を含むことを特徴とするエピタキシャルシリコンウェーハ。 - 前記シリコンウェーハの前記酸素外方拡散層側の表面からの深さが150nm以下の範囲内に、前記改質層における前記濃度プロファイルのピークが位置する請求項6に記載のエピタキシャルシリコンウェーハ。
- 前記改質層における前記濃度プロファイルのピーク濃度が1×1015atoms/cm3以上である請求項6または7に記載のエピタキシャルシリコンウェーハ。
- 請求項1〜5のいずれか1項に記載の製造方法で製造されたエピタキシャルシリコンウェーハまたは請求項6〜8のいずれか1項に記載のエピタキシャルシリコンウェーハの、酸素外方拡散層側の表面に位置するエピタキシャル層に、固体撮像素子を形成することを特徴とする固体撮像素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017091475A JP6361779B2 (ja) | 2017-05-01 | 2017-05-01 | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017091475A JP6361779B2 (ja) | 2017-05-01 | 2017-05-01 | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012249437A Division JP6280301B2 (ja) | 2012-11-13 | 2012-11-13 | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017175144A JP2017175144A (ja) | 2017-09-28 |
JP6361779B2 true JP6361779B2 (ja) | 2018-07-25 |
Family
ID=59973239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017091475A Active JP6361779B2 (ja) | 2017-05-01 | 2017-05-01 | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6361779B2 (ja) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101455564B1 (ko) * | 2005-12-09 | 2014-10-27 | 세미이큅, 인코포레이티드 | 탄소 클러스터의 주입에 의한 반도체 디바이스의 제조를 위한 시스템 및 방법 |
JP2009038124A (ja) * | 2007-07-31 | 2009-02-19 | Shin Etsu Handotai Co Ltd | エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ |
JP2009231429A (ja) * | 2008-03-21 | 2009-10-08 | Covalent Materials Corp | シリコンウェーハの製造方法 |
JP2010062529A (ja) * | 2008-08-04 | 2010-03-18 | Toshiba Corp | 半導体装置の製造方法 |
-
2017
- 2017-05-01 JP JP2017091475A patent/JP6361779B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017175144A (ja) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240297201A1 (en) | Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device | |
JP5673811B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP5799936B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP6065848B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP5799935B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP6107068B2 (ja) | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 | |
TWI611482B (zh) | 半導體磊晶晶圓的製造方法及固體攝像元件的製造方法 | |
JP6427946B2 (ja) | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 | |
JP6280301B2 (ja) | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 | |
JP6535432B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP6289805B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP6361779B2 (ja) | エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 | |
JP6278592B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP2017175145A (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP2017123477A (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP2015220242A (ja) | 半導体エピタキシャルウェーハの製造方法および固体撮像素子の製造方法 | |
JP6318728B2 (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP2017175143A (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 | |
JP2017183736A (ja) | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180320 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6361779 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |