JP6361357B2 - Control device for internal combustion engine with supercharger - Google Patents

Control device for internal combustion engine with supercharger Download PDF

Info

Publication number
JP6361357B2
JP6361357B2 JP2014155632A JP2014155632A JP6361357B2 JP 6361357 B2 JP6361357 B2 JP 6361357B2 JP 2014155632 A JP2014155632 A JP 2014155632A JP 2014155632 A JP2014155632 A JP 2014155632A JP 6361357 B2 JP6361357 B2 JP 6361357B2
Authority
JP
Japan
Prior art keywords
turbo
missing
teeth
abnormality
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014155632A
Other languages
Japanese (ja)
Other versions
JP2016033332A (en
Inventor
荒井 勝博
勝博 荒井
内田 正明
正明 内田
石井 仁
仁 石井
靖士 太田
靖士 太田
今井 大介
大介 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014155632A priority Critical patent/JP6361357B2/en
Publication of JP2016033332A publication Critical patent/JP2016033332A/en
Application granted granted Critical
Publication of JP6361357B2 publication Critical patent/JP6361357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、過給機を備えた内燃機関の制御装置に関する。  The present invention relates to a control device for an internal combustion engine provided with a supercharger.

内燃機関の吸気を過給する過給機には、例えば特許文献1に記載のように、タービンやコンプレッサを含むターボ回転体のターボ回転数を検出するターボセンサが設けられる。ターボ回転体には、周方向に間欠的に複数のブレード(羽根)が設けられ、ターボセンサは、複数のブレードが通過する際の信号を検出することによりターボ回転数を検出する。   A turbocharger that supercharges intake air from an internal combustion engine is provided with a turbo sensor that detects the turbo rotational speed of a turbo rotating body including a turbine and a compressor, as described in Patent Document 1, for example. The turbo rotating body is provided with a plurality of blades (blades) intermittently in the circumferential direction, and the turbo sensor detects the turbo rotation speed by detecting a signal when the plurality of blades pass.

このターボセンサの出力等に基づいて、過給機の圧力制御や、内燃機関の燃料噴射量の種々の制御が行われる。   Based on the output of the turbo sensor and the like, pressure control of the supercharger and various controls of the fuel injection amount of the internal combustion engine are performed.

特開2013−234591号公報JP 2013-234591 A

しかしながら、このようなターボ回転体では、ブレードの一部が破損するなどの理由により、ブレードの歯数が減少する形態の、いわゆる歯欠け異常を生じるおそれがある。このような歯欠け異常を生じた場合、ターボ回転体が異常振動を生じたり、ターボ回転体の更なる破損を招くおそれがあるために、過給機を停止するか、あるいはターボ回転数を速やかに低下させる必要がある。   However, in such a turbo rotating body, there is a possibility of causing a so-called tooth missing abnormality in which the number of teeth of the blade is reduced due to a part of the blade being damaged. When such a missing tooth abnormality occurs, the turbo rotating body may generate abnormal vibrations or cause further damage to the turbo rotating body. Therefore, the turbocharger is stopped or the turbo speed is quickly increased. It is necessary to lower it.

一方、過給機の異常・故障の形態としては、このような歯欠け異常の他にも、ターボセンサ側の故障等も含まれる。このようなターボセンサ側の異常等の場合にも、上述した歯欠け異常の場合と同様に、ターボ回転数を低下させたり過給機を停止すると、必要以上に動力性能を低下させることとなり、ドライバビリティの低下を招いてしまう。   On the other hand, as a form of abnormality / failure of the supercharger, in addition to such a missing tooth abnormality, a failure on the turbo sensor side and the like are also included. Even in the case of such an abnormality on the turbo sensor side, as in the case of the tooth missing abnormality described above, if the turbo rotation speed is reduced or the turbocharger is stopped, the power performance is reduced more than necessary. It will cause a drop in drivability.

本発明は、このような事情に鑑みてなされたものであり、ターボ回転体に設けられた複数のブレードの歯数が少なくなる形態の、いわゆる歯欠け異常を判定・識別し、適切なフェールセーフ処理を実施し得る新規なターボ過給機を備えた内燃機関の制御装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and determines and identifies so-called tooth missing abnormality in a form in which the number of teeth of a plurality of blades provided in a turbo rotating body is reduced. An object of the present invention is to provide a control device for an internal combustion engine equipped with a novel turbocharger capable of performing processing.

そこで、本発明に係る過給機を備えた内燃機関の制御装置は、吸気を過給するコンプレッサを備えたターボ回転体を有する過給機と、上記ターボ回転体のターボ回転数を検出するターボ回転数検出手段と、を有している。このターボ回転数検出手段は、上記ターボ回転体の周方向に等間隔毎に設けられた複数のブレードが通過する際の信号を検出することにより、上記ターボ回転数を検出するものである。そして、上記信号に基づいて、上記ターボ回転体のブレードの歯数が少なくなる形態の、いわゆる歯欠け異常を判定・識別する。具体的には、予め設定及び記憶されている歯欠け時の圧力比と上記ターボ回転数の特性と、現在の圧力比と上記ターボ回転数の特性と、を比較することにより、上記歯欠け異常を判定したり、上記複数の歯欠け時の圧力比とターボ回転数の特性と、現在の圧力比と上記ターボ回転数の特性と、を比較することにより、減少したタービンの歯数を特定する。 Therefore, an internal combustion engine control apparatus equipped with a supercharger according to the present invention includes a turbocharger having a turbo rotating body provided with a compressor for supercharging intake air, and a turbo for detecting the turbo rotational speed of the turbo rotating body. And a rotational speed detection means. The turbo rotation speed detection means detects the turbo rotation speed by detecting a signal when a plurality of blades provided at equal intervals in the circumferential direction of the turbo rotating body pass. Then, based on the signal, a so-called tooth missing abnormality in which the number of teeth of the blade of the turbo rotating body is reduced is determined and identified. Specifically, by comparing the pressure ratio at the time of missing teeth and the characteristics of the turbo rotation speed which are set and stored in advance and the current pressure ratio and the characteristics of the turbo rotation speed, the above-mentioned missing tooth abnormality is detected. The number of teeth of the reduced turbine is specified by comparing the pressure ratio and turbo speed characteristics when the plurality of teeth are missing, and the current pressure ratio and turbo speed characteristics. .

本発明によれば、ターボ回転体のブレードの歯数が少なくなる歯欠け異常を判定・識別することができるために、例えばセンサ側の故障と分離して、適切なフェールセーフ処理を実施することができる。   According to the present invention, since it is possible to determine and identify a missing tooth abnormality in which the number of teeth of the blade of the turbo rotating body is reduced, an appropriate fail-safe process is performed, for example, separated from a failure on the sensor side. Can do.

本発明の一実施例に係る過給機を備えた内燃機関の制御装置を示す構成図。The block diagram which shows the control apparatus of the internal combustion engine provided with the supercharger which concerns on one Example of this invention. コンプレッサのタービン及びターボ回転数センサを簡略的に示す構成図。The block diagram which shows simply the turbine and turbo speed sensor of a compressor. 正常時(A)と1歯欠け時(B)とのターボ回転数センサのパルス信号を示す特性図。The characteristic view which shows the pulse signal of the turbo rotation speed sensor at the time of normal (A) and one tooth missing (B). 本実施例の制御の流れを示すフローチャート。The flowchart which shows the flow of control of a present Example. 正常時L1,1歯欠け時L2,及び2歯欠け時におけるターボ回転数と圧力比の特性を示す特性図。The characteristic view which shows the characteristic of the turbo rotation speed and pressure ratio at the time of L1 at the time of normal, L2 at the time of 1 missing teeth, and 2 missing teeth.

以下、図示実施例により本発明を説明する。図1は、本発明の一実施例に係る過給機を備えた内燃機関の制御装置を示す構成図である。この内燃機関10は、V型多気筒内燃機関であり、左右バンクのシリンダ11にそれぞれピストン12が摺動可能に嵌合している。ターボ式の過給機13は、排気通路30に設けられたタービン14と、吸気通路20に設けられたコンプレッサ15と、がターボ軸16により同軸上に連結されており、排気エネルギーによりタービン14が回転すると、コンプレッサ15が回転駆動されて過給が行なわれる。これらタービン14,コンプレッサ15及びターボ軸16が、一体的に回転するターボ回転体17を構成している。排気通路30にはタービン14をバイパスするバイパス通路18にウエイストゲートバルブ19が設けられ、このウエイストゲートバルブ19を後述する制御部40により開閉制御することにより、過給圧が制御される。   Hereinafter, the present invention will be described with reference to illustrated embodiments. FIG. 1 is a configuration diagram illustrating a control device for an internal combustion engine including a supercharger according to an embodiment of the present invention. The internal combustion engine 10 is a V-type multi-cylinder internal combustion engine, and pistons 12 are slidably fitted to the cylinders 11 of the left and right banks. In the turbocharger 13, a turbine 14 provided in an exhaust passage 30 and a compressor 15 provided in an intake passage 20 are coaxially connected by a turbo shaft 16, and the turbine 14 is connected by exhaust energy. When it rotates, the compressor 15 is rotationally driven to perform supercharging. The turbine 14, the compressor 15 and the turbo shaft 16 constitute a turbo rotating body 17 that rotates integrally. The exhaust passage 30 is provided with a waste gate valve 19 in a bypass passage 18 that bypasses the turbine 14, and the boost pressure is controlled by opening and closing the waste gate valve 19 by a control unit 40 described later.

吸気通路20には、上流側より順に、吸気中の異物を捕集するエアーフィルタ21と、吸入空気量を検出するエアーフローメータ22と、上記のコンプレッサ15と、吸気を冷却するインタークーラ23と、コンプレッサ15よりも下流の過給圧(吸気圧力)を検出する過給圧センサ27と、吸気量を調整するスロットルバルブ24と、吸気ポートに燃料を噴射する燃料噴射弁25と、吸気ポートを開閉する吸気弁26と、等が設けられている。   In the intake passage 20, in order from the upstream side, an air filter 21 that collects foreign matter in the intake air, an air flow meter 22 that detects the amount of intake air, the compressor 15, and an intercooler 23 that cools the intake air. , A boost pressure sensor 27 for detecting a boost pressure (intake pressure) downstream of the compressor 15, a throttle valve 24 for adjusting the intake air amount, a fuel injection valve 25 for injecting fuel into the intake port, and an intake port. An intake valve 26 that opens and closes, and the like are provided.

排気通路30には、燃焼室寄りの上流側より順に、排気ポートを開閉する排気弁31と、上記のタービン14と、三元触媒等の2つの触媒32,33と、等が設けられ、上流側の触媒32の前後に、空燃比センサ34と酸素センサ35とが設けられている。過給機13には、ターボ回転体17のターボ回転数(回転速度)を検出するターボ回転数検出手段として、コンプレッサ15の回転数を検出するターボ回転数センサ36が設けられている。   In the exhaust passage 30, an exhaust valve 31 that opens and closes an exhaust port, the turbine 14, two catalysts 32 and 33 such as a three-way catalyst, and the like are provided in order from the upstream side near the combustion chamber. An air-fuel ratio sensor 34 and an oxygen sensor 35 are provided before and after the catalyst 32 on the side. The turbocharger 13 is provided with a turbo rotational speed sensor 36 that detects the rotational speed of the compressor 15 as turbo rotational speed detection means for detecting the turbo rotational speed (rotational speed) of the turbo rotator 17.

制御部40は、燃料噴射弁25による燃料噴射制御や点火装置41による点火時期制御等の各種の機関制御処理を記憶及び実行するものであり、例えば空燃比センサ34の検出信号に基づいて空燃比フィードバック制御を行なう。   The control unit 40 stores and executes various engine control processes such as fuel injection control by the fuel injection valve 25 and ignition timing control by the ignition device 41. For example, the control unit 40 is based on a detection signal from the air-fuel ratio sensor 34. Perform feedback control.

図2は、ターボ回転数センサ36の構造を簡略的に示している。ターボ回転体17のコンプレッサ15には、複数(この例では8枚)のブレード37が周方向に等間隔置きに設けられている。ターボ回転数センサ36は、複数のブレード37が通過する際のパルス信号を検出し、制御部40へ出力する。ここでターボ回転センサ36は、例えば磁気センサや渦電流センサを用い、ブレード37に対向させて設置することで複数のブレード37が通過する際の電流変化や磁気変化を検出することによりブレード37の通過を検出する。なお、ターボ回転センサ36が検出する信号は一般的には波型となるが、ここでは制御部40による演算を簡略にするためにパルス状の信号に変換して制御部に入力される構成を取っている。波型の波形を直接制御部40に入力する構成でも良い。制御部40は、このパルス信号を積算して、ターボ回転数を算出する回転検出手段と、後述するブレード37の歯数が少なくなる形態の、いわゆる歯欠け異常を判定・識別する異常判定手段とを備える。 FIG. 2 schematically shows the structure of the turbo rotational speed sensor 36. The compressor 15 of the turbo rotating body 17 is provided with a plurality (eight in this example) of blades 37 at regular intervals in the circumferential direction. The turbo speed sensor 36 detects a pulse signal when the plurality of blades 37 pass and outputs the pulse signal to the control unit 40. Here, the turbo rotational speed sensor 36 uses, for example, a magnetic sensor or an eddy current sensor, and is installed facing the blade 37 to detect a current change or a magnetic change when a plurality of blades 37 pass, thereby detecting the blade 37. Detect the passage of. The signal detected by the turbo rotational speed sensor 36 is generally wave-shaped, but here, in order to simplify the calculation by the control unit 40, it is converted into a pulse signal and input to the control unit. Is taking. A configuration in which a waveform of a waveform is directly input to the control unit 40 may be employed. The control unit 40 integrates the pulse signals to calculate a rotation speed of the turbo, and an abnormality determination unit that determines and identifies a so-called missing tooth abnormality in a form in which the number of teeth of the blade 37 described later is reduced. Is provided.

図3は、ブレード37の歯数(この例では8枚)が減少していない正常時(A)と、ブレード37の歯数が1歯だけ減少している1歯欠け時(B)と、におけるターボ回転数センサ36から出力されるパルス信号特性を示している。同図に示すように正常時の歯数Cn(この例では8個)分のパルス信号を検出すると、ターボ回転体17が1回転したと判断される。しかしながら、1歯欠け時の検知時間T2は、正常時の検知時間T1に比して歯欠け分だけ長くなり、結果としてターボ回転数が低く検出されることとなる。   FIG. 3 shows a normal state (A) in which the number of teeth of the blade 37 (eight in this example) has not decreased, and a case of one missing tooth (B) in which the number of teeth of the blade 37 has decreased by one tooth. The pulse signal characteristic output from the turbo rotation speed sensor 36 is shown. As shown in the figure, when a pulse signal corresponding to the number of normal teeth Cn (eight in this example) is detected, it is determined that the turbo rotator 17 has made one rotation. However, the detection time T2 at the time of missing one tooth is longer than the detection time T1 at the normal time by the amount of missing tooth, and as a result, the turbo rotation speed is detected low.

ここで、後述するように歯欠け異常の際に歯が減少したこと、さらには減少した歯数を特定することができれば、歯欠け分によるターボ回転数の低下を見越した形で、実際のターボ回転数TREVxを求めることが可能となる。   Here, as will be described later, if it is possible to specify that the number of teeth has decreased when the missing tooth is abnormal, and that the number of reduced teeth can be specified, the actual turbo is reduced in anticipation of a decrease in the turbo rotational speed due to the missing tooth. The rotational speed TREVx can be obtained.

つまり、歯欠け時に検知されるターボ回転数TREVxは、下式(1)で表される。
TREVx=(Cn−Cx)/Cn×TREVn…(1)
Cn:正常時の歯数
Cx:欠損した歯数
TREVn:正常時のターボ回転数。
That is, the turbo rotational speed TREVx detected at the time of missing teeth is expressed by the following formula (1).
TREVx = (Cn−Cx) / Cn × TREVn (1)
Cn: number of teeth at normal time Cx: number of missing teeth TREVn: turbo speed at normal time

図4は、本実施例に係る制御の流れを示すフローチャートであり、本ルーチンは上記制御部40により所定期間毎に繰り返し実行される。   FIG. 4 is a flowchart showing the flow of control according to the present embodiment, and this routine is repeatedly executed by the control unit 40 every predetermined period.

ステップS11では、ターボ回転数の検出許可条件を読み込む。ステップS12では、ターボ回転数の検出許可条件が成立しているか否かを判定する。例えば、非過給領域や加速・減速の過渡状態のときには検出許可条件が不成立となり、定常的な過給状態のときに検出許可条件が成立する。   In step S11, a turbo rotation number detection permission condition is read. In step S12, it is determined whether or not a turbo rotation number detection permission condition is satisfied. For example, the detection permission condition is not satisfied in the non-supercharging region or the acceleration / deceleration transient state, and the detection permission condition is satisfied in the steady supercharging state.

ステップS13では、過給圧センサ27の検出信号に基づいて、圧力比(コンプレッサ15の吐出圧力と吸入圧力の比)を読み込む。ステップS14では、ターボ回転数センサ36によりターボ回転数を読み込む。   In step S13, the pressure ratio (ratio between the discharge pressure and the suction pressure of the compressor 15) is read based on the detection signal of the supercharging pressure sensor 27. In step S14, the turbo rotation speed sensor 36 reads the turbo rotation speed.

ステップS15では、ターボ回転数と圧力比に基づいて、現在の圧力比に応じたターボ回転数の特性が、正常時の特性と近似しているか否かを判定する。この判定は、予め設定及び記憶され図5に示すような正常時の特性L1と比較することにより行なわれる。現在の特性が正常時の特性L1に近い場合(例えば、両者の差が所定値以下の場合)には、正常であると判定して、ステップS16へ進み、正常時の目標過給圧又は目標ターボ回転数を算出する。この際、例えば過給機を停止させる必要がある場合には、目標ターボ回転数を「0」に設定する。   In step S15, based on the turbo rotation speed and the pressure ratio, it is determined whether or not the characteristic of the turbo rotation speed according to the current pressure ratio approximates the normal characteristic. This determination is made by comparing with a normal characteristic L1 which is set and stored in advance and shown in FIG. When the current characteristic is close to the normal characteristic L1 (for example, when the difference between the two is less than or equal to a predetermined value), it is determined to be normal, and the process proceeds to step S16 where the normal target boost pressure or target Calculate the turbo speed. At this time, for example, when the turbocharger needs to be stopped, the target turbo speed is set to “0”.

一方、現在の特性が正常時の特性L1に近似していない場合(例えば、両者の差が所定値を超えている場合)、ステップS15からステップS17へ進み、現在の圧力比に対するターボ回転数の特性が、ブレード37の歯数が1歯だけ少ない1歯欠け時の特性に近似しているか否かを判定する。この判定は、予め設定及び記憶され図5に示すような1歯欠け時の特性L2と比較することにより行なわれる。上述したように、1歯欠け時の特性L2は正常時の特性L1に比して同じ圧力比で比較した場合にはターボ回転数が低くなる。   On the other hand, when the current characteristic is not close to the normal characteristic L1 (for example, when the difference between the two exceeds a predetermined value), the process proceeds from step S15 to step S17, where the turbo speed for the current pressure ratio is It is determined whether or not the characteristics are close to the characteristics when one blade is missing with the blade 37 having only one tooth. This determination is made by comparing with a characteristic L2 set and stored in advance and having one missing tooth as shown in FIG. As described above, the turbo rotation speed is low when the characteristic L2 at the time of missing one tooth is compared at the same pressure ratio as compared with the normal characteristic L1.

現在の特性が1歯欠け時の特性L2に近い場合(例えば、両者の差が所定値以下の場合)には、1歯欠け状態であると判定して、ステップS17からステップS18へ進んでフェールセーフモードへと移行し、1歯欠け時の目標過給圧もしくは目標ターボ回転数を算出する。この1歯欠け時の目標過給圧もしくは目標ターボ回転数は、歯欠けに起因する異常振動等を生じることのないように、正常時の目標過給圧もしくは目標ターボ回転数よりも低く設定される(第一のフェールセーフ制御手段)。また、必要に応じて1歯欠け状態であることを警告灯や警告音により搭乗者に報知する。なお、例えばターボ回転数をフィードバック制御する場合、実際の1歯欠け時のターボ回転数TREVxは上述した(1)式を用いて求められる。   When the current characteristic is close to the characteristic L2 when one tooth is missing (for example, when the difference between the two is less than or equal to a predetermined value), it is determined that one tooth is missing, and the process proceeds from step S17 to step S18 to fail. The mode is shifted to the safe mode, and the target supercharging pressure or the target turbo speed when one tooth is missing is calculated. The target supercharging pressure or target turbo speed at the time of missing one tooth is set lower than the target supercharging pressure or target turbo speed at the normal time so as not to cause abnormal vibration due to missing teeth. (First fail-safe control means). Further, if necessary, the passenger is informed by a warning light or warning sound that one tooth is missing. For example, when feedback control is performed on the turbo rotation speed, the actual turbo rotation speed TREVx when one tooth is missing is obtained using the above-described equation (1).

ステップS17において現在の特性が1歯欠け時の特性ではない(例えば、両者の差が所定値を超えている場合)には、ステップS19へ進み、現在の圧力比に対するターボ回転数の特性が、ブレード37の歯数が2歯だけ少ない2歯欠け時の特性に近似しているか否かを判定する。この判定は、予め設定及び記憶され図5に示すような2歯欠け時の特性L3と比較することにより行なわれる。同図に示すように、2歯欠け時の特性L3では、1歯欠け時の特性L2に比して更にターボ回転数が低くなる。   If the current characteristic is not the characteristic at the time of missing one tooth in step S17 (for example, if the difference between the two exceeds a predetermined value), the process proceeds to step S19, where the characteristic of the turbo speed with respect to the current pressure ratio is It is determined whether the number of teeth of the blade 37 is close to the characteristics when two teeth are missing, which is smaller by two. This determination is made by comparing with a characteristic L3 at the time of missing two teeth as shown in FIG. As shown in the figure, in the characteristic L3 when two teeth are missing, the turbo rotational speed is further reduced as compared with the characteristic L2 when one tooth is missing.

現在の特性が2歯欠け時の特性L3に近い場合(例えば、両者の差が所定値以下の場合)には、2歯欠け状態であると判定して、ステップS19からステップS20へ進んでフェールセーフモードへと移行し、2歯欠け時の目標過給圧もしくは目標ターボ回転数を算出する。この2歯欠け時の目標過給圧もしくは目標ターボ回転数は、異常振動等を生じることのないように、1歯欠け時の目標過給圧もしくは目標ターボ回転数よりも更に低く設定される(第一のフェールセーフ制御手段)。また、必要に応じて2歯欠け状態であることを警告灯や警告音により搭乗者に報知する。なお、例えばターボ回転数をフィードバック制御する場合、実際の2歯欠け時のターボ回転数TREVxは上述した(1)式を用いて求められる。   If the current characteristic is close to the characteristic L3 at the time when two teeth are missing (for example, if the difference between the two is less than or equal to a predetermined value), it is determined that the two teeth are missing, and the process proceeds from step S19 to step S20 to fail. Shift to safe mode and calculate the target boost pressure or target turbo speed when two teeth are missing. The target supercharging pressure or target turbo speed at the time of missing two teeth is set to be lower than the target supercharging pressure or target turbo speed at the time of missing one tooth so as not to cause abnormal vibration or the like ( First fail-safe control means). In addition, if necessary, the passenger is informed of the absence of two teeth by a warning light or a warning sound. For example, when feedback control is performed on the turbo rotation speed, the actual turbo rotation speed TREVx when two teeth are missing is obtained using the above-described equation (1).

ステップS20において現在の特性が2歯欠け時の特性に近似していないと判定された場合には、ステップS21へ進み、歯欠け異常とは異なる理由、例えばターボ回転数センサ36の異常等による過給機の異常であると判定し、これに応じたフェールセーフ処理を実施する(第二のフェールセーフ制御手段)。
この際の目標過給圧もしくは目標ターボ回転数は、例えば、正常時よりも低く抑えられるものの、1歯欠け時よりも高く設定される。つまりターボ回転体やブレードに異常がなく、過給器自体は正常と判定された場合、単に制御性の問題であり、前述の過給圧センサ27を主体とした制御(過給圧制御)に切り替えて運転を継続することが可能である。ただし、この場合はターボ回転数の検出ができないため、高精度なターボ回転体の回転数制御はできないので、ターボ回転が高回転となりうる過給圧が高い運転などは避けるもののそれ以外の運転領域では通常に近い目標過給圧とするなどの歯欠け時とは異なる制御を行うこととなる。また、必要に応じて、過給機の異常であることを警告灯や警告音により搭乗者に報知する。
If it is determined in step S20 that the current characteristic is not close to the characteristic at the time of two missing teeth, the process proceeds to step S21, and an excess due to a reason different from the missing tooth abnormality, for example, an abnormality in the turbo rotational speed sensor 36 or the like. It determines with it being abnormal of a feeder, and performs the fail safe process according to this (2nd fail safe control means).
At this time, the target boost pressure or the target turbo rotation speed is set lower than that at the time of missing one tooth, for example, although it is suppressed lower than that at the normal time. In other words, if there is no abnormality in the turbo rotating body and blades and the turbocharger itself is determined to be normal, it is merely a problem of controllability, and the control (supercharging pressure control) mainly using the above-described supercharging pressure sensor 27 is used. It is possible to continue operation by switching. However, in this case, since the turbo rotation speed cannot be detected, the rotation speed of the turbo rotating body cannot be controlled with high accuracy. Then, a control different from that at the time of missing teeth, such as a target boost pressure close to normal, is performed. Further, if necessary, the passenger is notified of the abnormality of the turbocharger by a warning light or a warning sound.

なお、この実施例では、実質的に3歯以上欠けることが極めて少ないケースであるために、簡易的に1歯欠けと2歯欠けの2つの歯欠け異常のみを判別するようにしているが、3歯以上の歯欠けがある程度の確率で生じ得るような場合には、3歯以上の歯欠け異常を判定するようにしても良い。   In this embodiment, since there are very few cases of missing three or more teeth substantially, only two missing tooth abnormalities of one missing tooth and two missing teeth are easily determined. When missing teeth of three or more teeth can occur with a certain probability, an abnormality of missing teeth of three or more teeth may be determined.

以上のように本実施例では、ターボ回転数に基づいてターボ回転体17のブレード37の歯数が少なくなる形態の歯欠け異常を判定・識別できるようにしたので、例えばターボ回転数センサ36の故障のように、ターボ過給機自体の運転に支障を生じることのない軽微な異常と、ターボ回転数や過給圧を低下もしくは過給機を停止させる必要のある歯欠け異常と、を分離・区別することができる。このために、歯欠け時には目標過給圧や目標ターボ回転数を低下させる(あるいは、過給機を停止させる)などの適切なフェールセーフ処理を実施して、ターボ回転体17の異常振動等を抑制して安全性を確保しつつ、例えばターボ回転数センサ36の一時的な不具合・故障のような軽微な異常の場合に、ターボ回転数を必要以上に低下させたり過給機を停止させることがなく、動力性能の低下を最小限に抑制することができる。   As described above, in this embodiment, it is possible to determine and identify a missing tooth abnormality in which the number of teeth of the blade 37 of the turbo rotating body 17 is reduced based on the turbo speed. Separates minor abnormalities that do not interfere with the operation of the turbocharger itself, such as malfunctions, and tooth missing abnormalities that require a reduction in turbo speed or supercharging pressure or stop the turbocharger・ Can be distinguished. For this reason, an appropriate fail-safe process such as lowering the target supercharging pressure or target turbo speed (or stopping the supercharger) is performed at the time of missing teeth, and abnormal vibration of the turbo rotator 17 is caused. For example, to reduce the turbo speed more than necessary or stop the turbocharger in the case of a minor abnormality such as a temporary malfunction or failure of the turbo speed sensor 36 while ensuring safety by suppressing it. Therefore, it is possible to minimize a decrease in power performance.

特に本実施例では、1歯欠け時の特性や2歯欠け時の特性を予め設定・記憶しておき、これらの特性と現在の特性とを比較することにより、歯欠け異常の際に、減少した歯数をも精度良く特定することができる。従って、減少した歯数に応じた形でフェールセーフ処理を適切に実施することができる。つまり、歯欠けの数が多くなるほど、ターボ回転数もしくは過給圧の低下分を大きく設定することで、異常振動等の発生を適切かつ確実に抑制し、過給機の耐久性・信頼性を向上することができる。   Particularly in this embodiment, the characteristics at the time of missing one tooth and the characteristics at the time of missing two teeth are set and stored in advance, and these characteristics are compared with the current characteristics, so that it is reduced when there is a missing tooth error. The number of teeth can be specified with high accuracy. Therefore, the fail-safe process can be appropriately performed in a form corresponding to the reduced number of teeth. In other words, as the number of missing teeth increases, the decrease in the turbo rotation speed or supercharging pressure is set larger to appropriately and reliably suppress the occurrence of abnormal vibration, etc., and improve the durability and reliability of the turbocharger. Can be improved.

更に、上述した(1)式を用いることにより、歯欠け時にも歯欠けした分のターボ回転数の低下を見越した形で、現在のターボ回転数TREVxを精度良く求めることができる。従って、歯欠け時であっても精度良くターボ回転数をフィードバック制御することが可能となる。   Furthermore, by using the above-described equation (1), the current turbo rotational speed TREVx can be obtained with high precision in anticipation of a decrease in the turbo rotational speed corresponding to the missing tooth even when the tooth is missing. Therefore, it is possible to accurately feedback control the turbo rotational speed even when there is a missing tooth.

10…内燃機関
13…ターボ過給機
14…タービン
15…コンプレッサ
16…ターボ軸
17…ターボ回転体
36…ターボ回転数センサ(ターボ回転数検出手段)
40…制御部
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 13 ... Turbocharger 14 ... Turbine 15 ... Compressor 16 ... Turbo shaft 17 ... Turbo rotating body 36 ... Turbo speed sensor (turbo speed detection means)
40. Control unit

Claims (5)

吸気を過給するコンプレッサを備えたターボ回転体を有する過給機と、
上記ターボ回転体のターボ回転数を検出するターボ回転数検出手段と、を有し、
このターボ回転数検出手段は、上記ターボ回転体の周方向に等間隔毎に設けられた複数のブレードが通過する際の信号を検出することにより、上記ターボ回転数を検出するものであって、
更に上記ターボ回転体のブレードの歯数が少なくなる形態の歯欠け異常を上記信号に基づいて判定する異常判定手段を有し、
上記異常判定手段は、予め設定及び記憶されている歯欠け時の圧力比と上記ターボ回転数の特性と、現在の圧力比と上記ターボ回転数の特性と、を比較することにより、上記歯欠け異常を判定することを特徴とする過給機を備えた内燃機関の制御装置。
A turbocharger having a turbo rotating body with a compressor for supercharging intake air;
Turbo rotational speed detection means for detecting the turbo rotational speed of the turbo rotator,
The turbo rotation speed detection means detects the turbo rotation speed by detecting a signal when a plurality of blades provided at equal intervals in the circumferential direction of the turbo rotating body pass,
Furthermore the missing tooth abnormalities form the number of teeth of the blade is reduced in the turbo rotation body have a abnormality determination means for determining based on the signal,
The abnormality determining means compares the pressure ratio at the time of missing teeth and the characteristics of the turbo rotation speed, which are set and stored in advance, with the current pressure ratio and the characteristics of the turbo rotation speed, thereby comparing the missing teeth. A control apparatus for an internal combustion engine having a supercharger, wherein abnormality is determined .
吸気を過給するコンプレッサを備えたターボ回転体を有する過給機と、
上記ターボ回転体のターボ回転数を検出するターボ回転数検出手段と、を有し、
このターボ回転数検出手段は、上記ターボ回転体の周方向に等間隔毎に設けられた複数のブレードが通過する際の信号を検出することにより、上記ターボ回転数を検出するものであって、
更に上記ターボ回転体のブレードの歯数が少なくなる形態の歯欠け異常を上記信号に基づいて判定する異常判定手段を有し、
減少した歯数に応じて複数の歯欠け時の圧力比と上記ターボ回転数の特性が予め設定及び記憶されており、
上記異常判定手段は、上記複数の歯欠け時の圧力比とターボ回転数の特性と、現在の圧力比と上記ターボ回転数の特性と、を比較することにより、減少したタービンの歯数を特定することを特徴とする過給機を備えた内燃機関の制御装置。
A turbocharger having a turbo rotating body with a compressor for supercharging intake air;
Turbo rotational speed detection means for detecting the turbo rotational speed of the turbo rotator,
The turbo rotation speed detection means detects the turbo rotation speed by detecting a signal when a plurality of blades provided at equal intervals in the circumferential direction of the turbo rotating body pass,
Furthermore the missing tooth abnormalities form the number of teeth of the blade is reduced in the turbo rotation body have a abnormality determination means for determining based on the signal,
Depending on the number of reduced teeth, the pressure ratio at the time of missing teeth and the characteristics of the turbo speed are preset and stored,
The abnormality determination means identifies the reduced number of teeth of the turbine by comparing the pressure ratio and turbo speed characteristics at the time of the plurality of missing teeth with the current pressure ratio and the turbo speed characteristics. An internal combustion engine control device comprising a supercharger.
上記異常判定手段により歯欠け異常と判定された場合、減少したタービンの歯数に応じて、上記ターボ回転数を低下させて運転を行なうフェールセーフ制御手段を有することを特徴とする請求項に記載の過給機を備えた内燃機関の制御装置。 3. The apparatus according to claim 2 , further comprising fail-safe control means for performing operation by reducing the turbo rotation speed in accordance with the reduced number of teeth of the turbine when the abnormality determination means determines that the tooth missing is abnormal. The control apparatus of the internal combustion engine provided with the supercharger of description. 上記異常判定手段により歯欠け異常と判定された場合、過給圧もしくは上記ターボ回転数を低下させて運転を行なうフェールセーフ制御手段を有することを特徴とする請求項1〜3のいずれかに記載の過給機を備えた内燃機関の制御装置。 If it is determined that the missing tooth abnormality by the abnormality determining means, according to claim 1 to 3 in which characterized in that it has a fail-safe control means for performing operation by reducing the boost pressure or the turbo rotation number The control apparatus of the internal combustion engine provided with the supercharger. 上記異常判定手段により歯欠け異常ではなく、上記ターボ回転数検出手段の異常と判定された場合には、上記フェールセーフ制御手段と異なるフェールセーフ制御を実行する第2のフェールセーフ制御手段を有することを特徴とする請求項1〜4のいずれかに記載の過給機を備えた内燃機関の制御装置。 Rather than missing tooth abnormality by the abnormality determining means, when it is determined that the abnormality of the turbo rotation number detecting means, having a second failsafe control means for performing a fail-safe control different from the fail-safe control means A control device for an internal combustion engine comprising the supercharger according to any one of claims 1 to 4 .
JP2014155632A 2014-07-31 2014-07-31 Control device for internal combustion engine with supercharger Expired - Fee Related JP6361357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155632A JP6361357B2 (en) 2014-07-31 2014-07-31 Control device for internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155632A JP6361357B2 (en) 2014-07-31 2014-07-31 Control device for internal combustion engine with supercharger

Publications (2)

Publication Number Publication Date
JP2016033332A JP2016033332A (en) 2016-03-10
JP6361357B2 true JP6361357B2 (en) 2018-07-25

Family

ID=55452336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155632A Expired - Fee Related JP6361357B2 (en) 2014-07-31 2014-07-31 Control device for internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP6361357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119904B2 (en) * 2018-10-29 2022-08-17 トヨタ自動車株式会社 Control device for oil supply mechanism

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123719A (en) * 1984-11-19 1986-06-11 Mazda Motor Corp Lubricating device for turbosupercharger
JPH04143419A (en) * 1990-10-04 1992-05-18 Toyota Motor Corp Controller for supercharged engine
JPH06249161A (en) * 1993-02-26 1994-09-06 Suzuki Motor Corp Cooling water pump failure detection device/and cooling water pump using for it
JPH11316120A (en) * 1998-05-06 1999-11-16 Unisia Jecs Corp Diagnostic device for crank angle sensor
JP2003240788A (en) * 2002-02-15 2003-08-27 Mitsubishi Heavy Ind Ltd Apparatus and method for detection of number-of- rotations per unit time of turbodevice
JP2005188479A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Device for determining unusual condition of engine system
US7455495B2 (en) * 2005-08-16 2008-11-25 United Technologies Corporation Systems and methods for monitoring thermal growth and controlling clearances, and maintaining health of turbo machinery applications
JP4502277B2 (en) * 2006-06-12 2010-07-14 ヤンマー株式会社 Engine with turbocharger
JP2011252417A (en) * 2010-06-01 2011-12-15 Toyota Motor Corp Control device of internal combustion engine with centrifugal compressor
JP6044575B2 (en) * 2014-03-28 2016-12-14 マツダ株式会社 Abnormality detection device for turbocharged engine

Also Published As

Publication number Publication date
JP2016033332A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
CN106662030B (en) Abnormality diagnostic device and abnormality diagnostic method for supercharger
JP4502277B2 (en) Engine with turbocharger
US9181857B2 (en) Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
JP5196036B2 (en) Control device for internal combustion engine
JP5773094B2 (en) Exhaust gas recirculation control device and exhaust gas recirculation control method for internal combustion engine
JP5282848B2 (en) EGR device abnormality detection device
JP2006348778A (en) Abnormality diagnosis device for pressure sensor
JP2013096372A (en) Control device of internal combustion engine with supercharger
JP2008240576A (en) Failure diagnosis device for turbocharging system
JP2006188989A (en) Supercharging system for internal combustion engine
JP5826323B2 (en) Throttle control device for internal combustion engine and throttle control method for internal combustion engine
JP2009270492A (en) Failure diagnosis device of cylinder deactivation system
JP5958118B2 (en) Control device for internal combustion engine with supercharging system
JP6295855B2 (en) Control device for an internal combustion engine with a supercharger
JP6361357B2 (en) Control device for internal combustion engine with supercharger
JP2010169008A (en) Abnormality detector for pressure sensor
US20170363025A1 (en) Control apparatus for internal combustion engine
JP6146392B2 (en) Air bypass valve failure diagnosis device for turbocharged engine
JP4827758B2 (en) Fault diagnosis device for variable valve timing control device
JP6357962B2 (en) Control device for internal combustion engine with supercharger
JP2012188994A (en) Control apparatus for internal combustion engine with supercharger
JP4390790B2 (en) Wastegate valve control device for an internal combustion engine with a supercharger
JP2015113761A (en) Abnormality detection device of intake system
JP5965361B2 (en) Internal combustion engine system failure detection apparatus and internal combustion engine system failure detection method
JP5791586B2 (en) Zero point learning device for differential pressure detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R151 Written notification of patent or utility model registration

Ref document number: 6361357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees