JP2009270492A - Failure diagnosis device of cylinder deactivation system - Google Patents

Failure diagnosis device of cylinder deactivation system Download PDF

Info

Publication number
JP2009270492A
JP2009270492A JP2008121846A JP2008121846A JP2009270492A JP 2009270492 A JP2009270492 A JP 2009270492A JP 2008121846 A JP2008121846 A JP 2008121846A JP 2008121846 A JP2008121846 A JP 2008121846A JP 2009270492 A JP2009270492 A JP 2009270492A
Authority
JP
Japan
Prior art keywords
cylinder
intake
deactivation
cylinder deactivation
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008121846A
Other languages
Japanese (ja)
Inventor
Toshibumi Hayamizu
俊文 早水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008121846A priority Critical patent/JP2009270492A/en
Publication of JP2009270492A publication Critical patent/JP2009270492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To precisely determine the existence of failure of a cylinder deactivation system that keeps intake valves and exhaust valves of a part of cylinders of an engine in a closed state so as to stop the operation of the cylinders concerned. <P>SOLUTION: During operation of the engine, cylinder deactivation control is executed when predetermined cylinder deactivation control execution conditions are established. In the cylinder deactivation control, the cylinder deactivation system keeps the intake valves and discharge valves of the part of cylinders in a closed state so as to stop the suction and discharge of air, thereby stopping the operation of the cylinders concerned, and cylinder-reduction operation in which the engine is operated by the remaining cylinders is performed. During the cylinder-reduction operation, it is determined based on an output of a highly responsive airflow meter whether intake air pulsation corresponding to an intake stroke of each cylinder exists or not. When it is determined that the intake air pulsation, corresponding to the intake stroke of each of the deactivation-instructed cylinders which are instructed to be deactivated by the cylinder deactivation system, exists, or when it is judged that there is no intake air pulsation corresponding to an intake stroke of each operation-instructed cylinder, it is determined that failure exists in the cylinder deactivation system as for the cylinder concerned. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の一部の気筒の運転を休止させる気筒休止装置を備えた気筒休止システムの故障診断装置に関する発明である。   The present invention relates to a failure diagnosis device for a cylinder deactivation system including a cylinder deactivation device that deactivates some cylinders of an internal combustion engine.

近年、内燃機関を搭載した車両においては、燃費向上を目的として、内燃機関の一部の気筒の吸気バルブ及び排気バルブを閉じ状態(リフト量が0の状態)に維持して吸排気を停止することで該気筒の運転を休止させる気筒休止装置を備え、内燃機関の負荷が比較的小さい運転領域で、気筒休止装置により一部の気筒の運転を休止させて残りの気筒で内燃機関を運転する減筒運転を行うようにしたものがある。   In recent years, a vehicle equipped with an internal combustion engine stops intake and exhaust by maintaining the intake valves and exhaust valves of some cylinders of the internal combustion engine in a closed state (a lift amount is zero) for the purpose of improving fuel efficiency. A cylinder deactivation device for deactivating the operation of the cylinder, and in the operation region where the load of the internal combustion engine is relatively small, the operation of some cylinders is deactivated by the cylinder deactivation device and the internal combustion engine is operated with the remaining cylinders There are some which are designed to perform reduced-cylinder operation.

また、特許文献1(特開平4−183942号公報)に記載されているように、内燃機関の吸気バルブや排気バルブのバルブタイミング(開閉時期)を変化させる可変バルブタイミング装置を備えたシステムにおいて、エンジン運転状態(スロットル開度、エンジン回転速度等)に基づいて算出した1回転当りの判定用吸入空気量とエアフローメータの出力に基づいて算出した1回転当りの実吸入空気量とを比較して実バルブタイミング(可変バルブタイミング装置の作動状態)を判定し、この実バルブタイミングと目標バルブタイミングとを比較して可変バルブタイミング装置の故障の有無を判定するようにしたものがある。
特開平4−183942号公報(第6頁〜第7頁等参照)
Further, as described in Patent Document 1 (Japanese Patent Laid-Open No. 4-183942), in a system including a variable valve timing device that changes the valve timing (opening / closing timing) of an intake valve and an exhaust valve of an internal combustion engine, Compare the intake air amount for judgment per rotation calculated based on the engine operating state (throttle opening, engine speed, etc.) and the actual intake air amount per rotation calculated based on the output of the air flow meter. An actual valve timing (operating state of the variable valve timing device) is determined, and the actual valve timing is compared with a target valve timing to determine whether or not the variable valve timing device has failed.
Japanese Patent Laid-Open No. 4-183942 (see page 6 to page 7)

ところで、前述した気筒休止装置により一部の気筒の吸気バルブ及び排気バルブを閉じ状態に維持して吸排気を停止することで該気筒の運転を休止させて残りの気筒で内燃機関を運転する減筒運転を行う気筒休止システムを備えた車両では、気筒休止装置が故障した場合に、減筒運転中に運転を休止させる気筒(休止気筒)で吸気バルブや排気バルブが開閉されると、ポンピングロスが増加して燃費が悪化したり、予定外の気筒が吸気/排気動作を行うことにより、燃料調量に誤差を生じたり、排気系に未燃焼の酸素が排出されて排気温度を上昇させてしまうなどの不都合を生じる可能性がある。   By the way, the above-described cylinder deactivation device maintains the intake valves and exhaust valves of some cylinders in a closed state to stop intake and exhaust, thereby reducing the operation of the cylinders and operating the internal combustion engine with the remaining cylinders. In a vehicle equipped with a cylinder deactivation system that performs cylinder operation, if the cylinder deactivation device fails, pumping loss occurs when the intake valve or exhaust valve is opened or closed in the cylinder (deactivation cylinder) that is deactivated during reduced cylinder operation. As fuel consumption deteriorates and unintended cylinders perform intake / exhaust operations, an error occurs in fuel metering, or unburned oxygen is exhausted into the exhaust system, causing the exhaust temperature to rise. May cause inconveniences such as

しかし、上記特許文献1の技術は、内燃機関の全ての気筒のバルブタイミングを一律に変化させる可変バルブタイミング装置の故障の有無を判定する技術であり、内燃機関の一部の気筒の吸気バルブや排気バルブを閉じ状態に維持して該気筒の運転を休止させる気筒休止装置の故障の有無を判定する技術ではない。   However, the technique of Patent Document 1 is a technique for determining whether or not there is a failure in a variable valve timing device that uniformly changes the valve timing of all cylinders of an internal combustion engine. This is not a technique for determining whether or not there is a failure in the cylinder deactivation device that maintains the exhaust valve in a closed state and deactivates the cylinder.

また、仮に、気筒休止システムに上記特許文献1の技術を利用して、減筒運転中にエンジン運転状態(スロットル開度、エンジン回転速度等)に基づいて算出した1回転当りの判定用吸入空気量とエアフローメータの出力に基づいて算出した1回転当りの実吸入空気量とを比較して気筒休止装置の作動状態を判定しようとしても、休止気筒のうちの1気筒のみで吸気バルブや排気バルブが開閉するような故障が発生した場合には、1回転当りの実吸入空気量の変化が少ないため、気筒休止装置の作動状態を判定することが難しく、気筒休止装置の故障の有無を精度良く判定することが困難であり、また、故障気筒を特定することもできないという不都合もある。   Further, if the cylinder deactivation system is used in the cylinder deactivation system, the determination intake air per rotation calculated based on the engine operating state (throttle opening, engine speed, etc.) during the reduced-cylinder operation. Even if an attempt is made to determine the operating state of the cylinder deactivation device by comparing the amount and the actual intake air amount per rotation calculated based on the output of the air flow meter, the intake valve or the exhaust valve is determined by only one of the deactivated cylinders. When there is a failure that opens and closes, since the change in the actual intake air amount per revolution is small, it is difficult to determine the operating state of the cylinder deactivation device, and the presence or absence of the failure of the cylinder deactivation device is accurately determined. It is difficult to determine, and there is an inconvenience that a failed cylinder cannot be specified.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、内燃機関の一部の気筒の運転を休止させる気筒休止装置の故障の有無を精度良く判定することができる気筒休止システムの故障診断装置を提供することにある。   The present invention has been made in view of these circumstances. Therefore, the object of the present invention is to accurately determine whether or not a cylinder deactivation device has malfunctioned that deactivates some cylinders of an internal combustion engine. An object of the present invention is to provide a failure diagnosis device for a cylinder deactivation system.

上記目的を達成するために、請求項1に係る発明は、内燃機関の一部の気筒の少なくとも吸気バルブを閉じ状態に維持して該気筒の運転を休止させる気筒休止装置と、気筒休止装置により一部の気筒の運転を休止させて残りの気筒で内燃機関を運転する減筒運転を行うように制御する気筒休止制御手段とを備えた気筒休止システムにおいて、内燃機関の吸入空気量を検出する吸入空気量検出手段を設け、この吸入空気量検出手段の出力に基づいて各気筒の吸気行程に対応する吸気脈動を吸気脈動判定手段により判定し、減筒運転中に気筒休止制御手段により気筒休止装置で運転を休止させるように指示した気筒(以下「休止指示気筒」という)か否かの情報と吸気脈動判定手段により判定した各気筒の吸気行程に対応する吸気脈動の情報とに基づいて気筒休止装置の故障の有無を故障診断手段により判定するようにしたものである。   In order to achieve the above object, an invention according to claim 1 includes a cylinder deactivation device and a cylinder deactivation device that deactivate the operation of the cylinder by maintaining at least the intake valves of some cylinders of the internal combustion engine. An intake air amount of an internal combustion engine is detected in a cylinder deactivation system including a cylinder deactivation control unit that performs control to perform a reduced cylinder operation in which some cylinders are deactivated and the remaining cylinders are operated. An intake air amount detection means is provided, and an intake pulsation corresponding to the intake stroke of each cylinder is determined by the intake pulsation determination means based on the output of the intake air amount detection means, and the cylinder deactivation control means determines the cylinder deactivation during the reduced cylinder operation. Information indicating whether or not the cylinder is instructed to stop the operation (hereinafter referred to as “stop instruction cylinder”) and information on the intake pulsation corresponding to the intake stroke of each cylinder determined by the intake pulsation determining means. It is obtained so as to determine the failure diagnosis means the presence or absence of a failure of the cylinder deactivation device Zui.

気筒休止装置が正常であれば、減筒運転中に、休止指示気筒以外の運転指示気筒では、吸気行程毎に吸気バルブが開弁されて筒内に空気が吸入されるため、運転指示気筒の吸気行程に対応して吸気脈動が発生するが、休止指示気筒では、吸気バルブが閉じ状態に維持されて筒内に空気が吸入されないため、休止指示気筒の吸気行程に対応する吸気脈動が発生しない。このような特性に着目して、減筒運転中に休止指示気筒か否かの情報と各気筒の吸気行程に対応する吸気脈動の情報とを用いれば、気筒休止装置の故障の有無を精度良く判定することができる。しかも、各気筒毎に気筒休止装置の故障の有無を判定することができるため、気筒休止装置の故障が発生した気筒を特定することができるという利点もある。   If the cylinder deactivation device is normal, during the reduced cylinder operation, the operation instruction cylinder other than the deactivation instruction cylinder opens the intake valve for each intake stroke and sucks air into the cylinder. Intake pulsation occurs corresponding to the intake stroke, but in the stop instruction cylinder, the intake valve is maintained in the closed state and air is not sucked into the cylinder, and therefore no intake pulsation corresponding to the intake stroke of the stop instruction cylinder occurs. . Paying attention to such characteristics, if the information on whether or not the cylinder is a deactivation instruction cylinder and the information on the intake pulsation corresponding to the intake stroke of each cylinder during the reduced-cylinder operation are used, it is possible to accurately determine whether or not the cylinder deactivation device has failed. Can be determined. In addition, since it is possible to determine whether or not there is a failure of the cylinder deactivation device for each cylinder, there is also an advantage that the cylinder in which the failure of the cylinder deactivation device has occurred can be specified.

この場合、請求項2のように、減筒運転中に休止指示気筒の吸気行程に対応する吸気脈動が有ると判定された場合に気筒休止装置の故障有りと判定するようにすると良い。気筒休止装置が正常であれば、休止指示気筒の吸気行程に対応する吸気脈動が発生しないため、休止指示気筒の吸気行程に対応する吸気脈動が有ると判定された場合には、気筒休止装置の故障有りと判定することができる。   In this case, as described in claim 2, when it is determined that there is an intake pulsation corresponding to the intake stroke of the deactivation instruction cylinder during the reduced cylinder operation, it is preferable to determine that there is a failure in the cylinder deactivation device. If the cylinder deactivation device is normal, intake pulsation corresponding to the intake stroke of the deactivation instruction cylinder does not occur. Therefore, if it is determined that there is intake pulsation corresponding to the intake stroke of the deactivation instruction cylinder, It can be determined that there is a failure.

更に、請求項3のように、減筒運転中に休止指示気筒以外の運転指示気筒の吸気行程に対応する吸気脈動が無いと判定された場合に気筒休止装置の故障有りと判定するようにしても良い。気筒休止装置が正常であれば、運転指示気筒の吸気行程に対応して吸気脈動が発生するため、運転指示気筒の吸気行程に対応する吸気脈動が無いと判定された場合には、気筒休止装置の故障有りと判定することができる。   Further, as in claim 3, when it is determined that there is no intake pulsation corresponding to the intake stroke of the operation command cylinder other than the stop command cylinder during the reduced cylinder operation, it is determined that the cylinder deactivation device is faulty. Also good. If the cylinder deactivation device is normal, intake pulsation occurs corresponding to the intake stroke of the operation instruction cylinder. Therefore, if it is determined that there is no intake pulsation corresponding to the intake stroke of the operation instruction cylinder, the cylinder deactivation device It can be determined that there is a failure.

ところで、気筒休止装置が故障した場合に、減筒運転中に休止指示気筒の吸気バルブが開閉されると、前述のようにポンピングロスが増加して燃費が悪化したり、空燃比に誤差を生じたり、排気温度上昇を招く可能性がある。   By the way, if the cylinder deactivation device fails, and the intake valve of the deactivation instruction cylinder is opened and closed during the reduced cylinder operation, the pumping loss increases as described above, resulting in a deterioration in fuel consumption or an error in the air-fuel ratio. Or the exhaust temperature may increase.

そこで、請求項4のように、気筒休止装置の故障有りと判定された場合に減筒運転を禁止するフェールセーフ制御手段を設けるようにしても良い。このようにすれば、気筒休止装置の故障によって減筒運転中に休止指示気筒の吸気バルブが開閉されて上述のような不都合が生じることを防止することができる。   Therefore, as in claim 4, fail safe control means for prohibiting the reduced cylinder operation when it is determined that there is a failure of the cylinder deactivation device may be provided. In this way, it is possible to prevent the inconvenience as described above from occurring due to the malfunction of the cylinder deactivation device due to the intake valve of the deactivation instruction cylinder being opened and closed during the reduced cylinder operation.

或は、請求項5のように、気筒休止装置の故障有りと判定された場合に休止指示気筒を変更するフェールセーフ制御手段を設けるようにしても良い。このようにすれば、気筒休止装置が故障した場合でも、減筒運転中に休止指示気筒の吸気バルブが開閉されることによる弊害の発生を防止しながら、減筒運転を行うことができる。   Alternatively, as in claim 5, fail safe control means may be provided for changing the deactivation instruction cylinder when it is determined that there is a failure in the cylinder deactivation device. In this way, even when the cylinder deactivation device is out of order, the cylinder deactivation operation can be performed while preventing the occurrence of adverse effects caused by opening and closing of the intake valve of the deactivation instruction cylinder during the cylinder deactivation operation.

また、請求項6のように、減筒運転中にスロットル開度を開き側に補正するようにしても良い。このようにすれば、減筒運転中に運転指示気筒の吸入空気量を増加させて運転指示気筒の発生トルクを増加させることができるため、減筒運転によるトルク減少を防止して内燃機関の出力トルクを一定に保つことができる。しかも、減筒運転中にスロットル開度を開き側に補正することで、運転指示気筒の吸気行程に対応する吸気脈動が吸入空気量検出手段の検出位置まで伝わり易くなるため、吸入空気量検出手段の出力に基づく吸気脈動の判定精度を高めることができ、吸気脈動を用いる気筒休止装置の故障診断の診断精度を向上させることができる。   Further, as in claim 6, the throttle opening may be corrected to the open side during the reduced-cylinder operation. In this way, since the intake air amount of the operation command cylinder can be increased during the reduced cylinder operation to increase the torque generated in the operation instruction cylinder, the torque reduction due to the reduced cylinder operation can be prevented and the output of the internal combustion engine can be prevented. Torque can be kept constant. In addition, by correcting the throttle opening to the open side during the reduced-cylinder operation, the intake air pulsation corresponding to the intake stroke of the operation instruction cylinder can be easily transmitted to the detection position of the intake air amount detection means. This makes it possible to improve the accuracy of determining the intake pulsation based on the output of the engine, and to improve the accuracy of the failure diagnosis of the cylinder deactivation device using the intake pulsation.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えばV型6気筒のエンジン11の吸気管12の上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14(吸入空気量検出手段)が設けられている。このエアフローメータ14は、各気筒の吸気行程毎に脈動する吸入空気量に対してセンサ出力が応答良く変化する高応答型のエアフローメータである。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided upstream of the intake pipe 12 of an internal combustion engine, for example, a V-6 engine 11. An air flow meter 14 (intake air amount detection) detects the intake air amount downstream of the air cleaner 13. Means). This air flow meter 14 is a high response type air flow meter in which the sensor output changes with good response to the intake air amount pulsating for each intake stroke of each cylinder.

このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。   A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、エンジン11の各気筒に空気を導入する吸気マニホールド18が設けられ、各気筒の吸気マニホールド18の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁19が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ20が取り付けられ、各点火プラグ20の火花放電によって筒内の混合気に着火される。   Further, an intake manifold 18 that introduces air into each cylinder of the engine 11 is provided on the downstream side of the throttle valve 16, and a fuel injection valve 19 that injects fuel near each intake port of the intake manifold 18 of each cylinder. It is attached. Further, a spark plug 20 is attached to each cylinder of the cylinder head of the engine 11, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 20.

また、エンジン11のクランク軸21に取り付けられたシグナルロータ22の外周側には、クランク軸21が所定クランク角回転する毎にパルス信号を出力するクランク角センサ23が取り付けられ、このクランク角センサ23の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A crank angle sensor 23 that outputs a pulse signal every time the crankshaft 21 rotates a predetermined crank angle is attached to the outer peripheral side of the signal rotor 22 attached to the crankshaft 21 of the engine 11. The crank angle and engine speed are detected based on the output signal.

また、エンジン11には、予め設定された複数の気筒群毎(例えば、V型エンジンの一方のバンクの気筒群と他方のバンクの気筒群)に、それぞれ吸気バルブ25及び排気バルブ26を閉じ状態に維持して吸排気を停止することで該気筒群の運転を休止させる気筒休止装置27が設けられている。尚、一部の気筒群(例えば、V型エンジンの一方のバンクの気筒群)のみに気筒休止装置27を設けるようにしても良い。   Further, in the engine 11, the intake valve 25 and the exhaust valve 26 are closed for each of a plurality of preset cylinder groups (for example, the cylinder group of one bank and the cylinder group of the other bank of the V-type engine). A cylinder deactivation device 27 for deactivating the operation of the cylinder group by stopping intake and exhaust while maintaining the above is provided. Note that the cylinder deactivation device 27 may be provided only in some cylinder groups (for example, the cylinder group in one bank of the V-type engine).

この気筒休止装置27は、例えば、吸気バルブ25と排気バルブ26を開閉駆動するカムを、それぞれバルブリフト量を0に維持するようなカムプロフィールを有するカムに切り換えることで、吸気バルブ25及び排気バルブ26を閉じ状態に維持できるように構成されている。尚、吸気バルブ25と排気バルブ26を、それぞれ電磁駆動式バルブで構成して、吸気バルブ25及び排気バルブ26を閉じ状態に維持できるようにしても良い。   The cylinder deactivation device 27 switches, for example, the cams that open and close the intake valve 25 and the exhaust valve 26 to cams that have a cam profile that maintains the valve lift amount at 0, respectively. It is comprised so that 26 can be maintained in a closed state. The intake valve 25 and the exhaust valve 26 may be configured by electromagnetically driven valves so that the intake valve 25 and the exhaust valve 26 can be kept closed.

上述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)24に入力される。このECU24は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ20の点火時期を制御する。   Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 24. The ECU 24 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 19 according to the engine operating state. The ignition timing of the spark plug 20 is controlled.

また、ECU24は、エンジン11の燃費を向上させるために、エンジン運転中に図2の気筒休止制御ルーチンを実行することで、所定の気筒休止制御実行条件が成立したときに気筒休止制御を実行する。この気筒休止制御では、気筒休止装置27により一部の気筒群(例えば、V型エンジンの一方のバンクの気筒群)の吸気バルブ25及び排気バルブ26を閉じ状態に維持して吸排気を停止すると共に燃料噴射を停止することで該気筒群の運転を休止させて残りの気筒群(例えば、V型エンジンの他方のバンクの気筒群)でエンジン11を運転する減筒運転を行う。   Further, the ECU 24 executes the cylinder deactivation control routine when a predetermined cylinder deactivation control execution condition is satisfied by executing the cylinder deactivation control routine of FIG. 2 during engine operation in order to improve the fuel consumption of the engine 11. . In this cylinder deactivation control, the cylinder deactivation device 27 maintains intake valves 25 and exhaust valves 26 of some cylinder groups (for example, cylinder groups in one bank of a V-type engine) in a closed state to stop intake and exhaust. At the same time, the fuel injection is stopped to stop the operation of the cylinder group, and the reduced cylinder operation is performed in which the engine 11 is operated in the remaining cylinder group (for example, the cylinder group in the other bank of the V-type engine).

更に、ECU24は、減筒運転中に、エアフローメータ14の出力に基づいて各気筒の吸気行程に対応する吸気脈動の有無を判定し、気筒休止装置27で運転を休止させるように指示した気筒(以下「休止指示気筒」という)か否かの情報と、各気筒の吸気行程に対応する吸気脈動の情報とに基づいて気筒休止装置27の故障の有無を判定する。   Further, the ECU 24 determines whether or not there is an intake pulsation corresponding to the intake stroke of each cylinder based on the output of the air flow meter 14 during the reduced-cylinder operation, and instructs the cylinder deactivation device 27 to deactivate the operation ( Whether or not there is a failure in the cylinder deactivation device 27 is determined on the basis of information on whether or not the cylinder deactivation apparatus 27 is inactive) and information on the intake pulsation corresponding to the intake stroke of each cylinder.

図3に実線で示すように、気筒休止装置27が正常であれば、減筒運転中に、休止指示気筒以外の運転指示気筒(例えば、第1気筒#1と第3気筒#3と第5気筒#5)では、吸気行程毎に吸気バルブ25が開弁されて筒内に空気が吸入されるため、運転指示気筒の吸気行程に対応して吸気脈動が発生するが、休止指示気筒(例えば、第2気筒#2と第4気筒#4と第6気筒#6)では、吸気バルブ25が閉じ状態に維持されて筒内に空気が吸入されないため、休止指示気筒の吸気行程に対応する吸気脈動が発生しない。   As shown by the solid line in FIG. 3, if the cylinder deactivation device 27 is normal, operation instruction cylinders other than the deactivation instruction cylinder (for example, the first cylinder # 1, the third cylinder # 3, and the fifth cylinder) during the reduced cylinder operation. In the cylinder # 5), the intake valve 25 is opened for each intake stroke, and air is sucked into the cylinder. Therefore, intake pulsation occurs in response to the intake stroke of the operation instruction cylinder. In the second cylinder # 2, the fourth cylinder # 4, and the sixth cylinder # 6), since the intake valve 25 is maintained in the closed state and no air is sucked into the cylinder, the intake corresponding to the intake stroke of the deactivation instruction cylinder is performed. No pulsation occurs.

従って、図3に破線で示すように、休止指示気筒の吸気行程に対応する吸気脈動が有ると判定された場合には、気筒休止装置27の故障(例えば、休止指示気筒の吸気バルブ25が開閉動作する故障)有りと判定する。また、運転指示気筒の吸気行程に対応する吸気脈動が無いと判定された場合にも、気筒休止装置27の故障(例えば、運転指示気筒の吸気バルブ25が閉じ状態に維持される故障)有りと判定する。   Therefore, as shown by a broken line in FIG. 3, when it is determined that there is an intake pulsation corresponding to the intake stroke of the deactivation instruction cylinder, a failure of the cylinder deactivation device 27 (for example, the intake valve 25 of the deactivation instruction cylinder opens and closes). It is determined that there is an operation failure). Even when it is determined that there is no intake pulsation corresponding to the intake stroke of the operation instruction cylinder, there is a failure of the cylinder deactivation device 27 (for example, a failure in which the intake valve 25 of the operation instruction cylinder is kept closed). judge.

以下、ECU24が実行する図2の気筒休止制御ルーチンの処理内容を説明する。
図2に示す気筒休止制御ルーチンは、エンジン運転中に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、クランク角センサ23の出力、エアフローメータ14の出力等を読み込む。
Hereinafter, the processing content of the cylinder deactivation control routine of FIG. 2 executed by the ECU 24 will be described.
The cylinder deactivation control routine shown in FIG. 2 is executed at a predetermined cycle during engine operation. When this routine is started, first, in step 101, the output of the crank angle sensor 23, the output of the air flow meter 14, and the like are read.

この後、ステップ102に進み、気筒休止制御実行条件が成立しているか否かを、例えば、エンジン回転速度、エンジン負荷(筒内充填空気量、スロットル開度等)、車速、アクセル開度等が所定の減筒運転領域で且つ定常運転中であるか否かによって判定する。   Thereafter, the process proceeds to step 102 to determine whether or not the cylinder deactivation control execution condition is satisfied. For example, the engine speed, the engine load (cylinder charged air amount, throttle opening, etc.), vehicle speed, accelerator opening, etc. Judgment is made based on whether or not in a predetermined reduced-cylinder operation region and steady operation.

このステップ102で、気筒休止制御実行条件が不成立であると判定された場合には、ステップ103以降の処理を行うことなく、本ルーチンを終了する。この場合、全気筒で吸気バルブ25及び排気バルブ26を開閉して吸排気を実施すると共に燃料噴射を実施してエンジン11を運転する全気筒運転を行う。   If it is determined in this step 102 that the cylinder deactivation control execution condition is not satisfied, this routine is terminated without performing the processes in and after step 103. In this case, the intake valve 25 and the exhaust valve 26 are opened and closed in all cylinders to perform intake and exhaust, and fuel injection is performed to perform the all cylinder operation for operating the engine 11.

一方、上記ステップ102で、気筒休止制御実行条件が成立していると判定された場合には、ステップ103に進み、気筒休止制御を実行する。この気筒休止制御では、気筒休止装置27により一部の気筒群(例えば、V型エンジンの一方のバンクの気筒群)の吸気バルブ25及び排気バルブ26を閉じ状態に維持して吸排気を停止すると共に燃料噴射を停止することで該気筒群の運転を休止させて残りの気筒群(例えば、V型エンジンの他方のバンクの気筒群)でエンジン11を運転する減筒運転を行う。この減筒運転中は、スロットル開度を開き側に補正して運転指示気筒の吸入空気量を増加させて運転指示気筒の発生トルクを増加させる。これにより、減筒運転によるトルク減少を補償してエンジン11の出力トルクを一定に保つ。更に、減筒運転中にスロットル開度を開き側に補正することで、運転指示気筒の吸気行程に対応する吸気脈動がエアフローメータ14の検出位置まで伝わり易くなる。このステップ103の処理が特許請求の範囲でいう気筒休止制御手段としての役割を果たす。   On the other hand, if it is determined in step 102 that the cylinder deactivation control execution condition is satisfied, the process proceeds to step 103, where cylinder deactivation control is performed. In this cylinder deactivation control, the cylinder deactivation device 27 maintains intake valves 25 and exhaust valves 26 of some cylinder groups (for example, cylinder groups in one bank of a V-type engine) in a closed state to stop intake and exhaust. At the same time, the fuel injection is stopped to stop the operation of the cylinder group, and the reduced cylinder operation is performed in which the engine 11 is operated in the remaining cylinder group (for example, the cylinder group in the other bank of the V-type engine). During this reduced-cylinder operation, the throttle opening is corrected to the open side to increase the intake air amount of the operation instruction cylinder and increase the generated torque of the operation instruction cylinder. Thereby, the torque reduction due to the reduced cylinder operation is compensated to keep the output torque of the engine 11 constant. Further, by correcting the throttle opening to the open side during the reduced-cylinder operation, the intake pulsation corresponding to the intake stroke of the operation instruction cylinder is easily transmitted to the detection position of the air flow meter 14. The processing in step 103 serves as cylinder deactivation control means in the claims.

この後、ステップ104に進み、減筒運転中にエアフローメータ14の出力に基づいて各気筒毎に吸気行程に対応する吸気脈動の有無を判定する。この場合、例えば、各気筒毎に吸気行程に対応する上死点間におけるエアフローメータ14の出力の変動量(極大値と極小値との差)を求め、エアフローメータ14の出力の変動量が脈動判定値よりも大きいか否かによって、吸気行程に対応する吸気脈動が有るか否かを判定する。一般に、エンジン運転状態(例えば、エンジン回転速度、エンジン負荷等)に応じて吸気脈動の大きさが変化するため、脈動判定値は、エンジン運転状態(例えば、エンジン回転速度、エンジン負荷等)に応じて設定する。このステップ104の処理が特許請求の範囲でいう吸気脈動判定手段としての役割を果たす。   Thereafter, the routine proceeds to step 104, where it is determined whether or not there is an intake pulsation corresponding to the intake stroke for each cylinder based on the output of the air flow meter 14 during the reduced cylinder operation. In this case, for example, the fluctuation amount of the output of the air flow meter 14 (the difference between the maximum value and the minimum value) between the top dead centers corresponding to the intake stroke is obtained for each cylinder, and the fluctuation amount of the output of the air flow meter 14 pulsates. It is determined whether or not there is an intake pulsation corresponding to the intake stroke depending on whether or not it is larger than the determination value. Generally, since the magnitude of intake pulsation changes depending on the engine operating state (for example, engine speed, engine load, etc.), the pulsation judgment value depends on the engine operating state (for example, engine speed, engine load, etc.). To set. The processing in step 104 serves as intake pulsation determining means in the claims.

この後、ステップ105に進み、各気筒毎に休止指示気筒か否か(休止指示の有無)の情報と吸気行程に対応する吸気脈動の有無の情報との組み合わせが正しいか否かを判定する。このステップ105で、休止指示気筒か否かの情報と吸気行程に対応する吸気脈動の有無の情報との組み合わせが正しいと判定された場合、具体的には、休止指示気筒の吸気行程に対応する吸気脈動が無いと判定された場合、又は、運転指示気筒の吸気行程に対応する吸気脈動が有ると判定された場合には、ステップ106に進み、気筒休止装置27の故障無し(正常)と判定する。   Thereafter, the routine proceeds to step 105, where it is determined whether or not the combination of the information indicating whether or not each cylinder is a deactivation instruction cylinder (whether or not deactivation instruction is present) and the information regarding the presence or absence of intake pulsation corresponding to the intake stroke is correct. If it is determined in step 105 that the combination of the information indicating whether or not the cylinder is the deactivation instruction cylinder and the information regarding the presence or absence of the intake pulsation corresponding to the intake stroke is specifically determined, specifically, this corresponds to the intake stroke of the deactivation instruction cylinder. When it is determined that there is no intake pulsation, or when it is determined that there is intake pulsation corresponding to the intake stroke of the operation instruction cylinder, the routine proceeds to step 106 and it is determined that there is no failure (normal) of the cylinder deactivation device 27. To do.

これに対して、上記ステップ105で、休止指示気筒か否かの情報と吸気行程に対応する吸気脈動の有無の情報との組み合わせが正しくないと判定された場合、具体的には、休止指示気筒の吸気行程に対応する吸気脈動が有ると判定された場合、又は、運転指示気筒の吸気行程に対応する吸気脈動が無いと判定された場合には、ステップ107に進み、該当する気筒において気筒休止装置27の故障(例えば、休止指示気筒の吸気バルブ25が開閉動作する故障又は運転指示気筒の吸気バルブ25が閉じ状態に維持される故障)有りと判定して、該当する気筒の異常フラグをONにセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU24のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU24の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶する。これらのステップ105〜107の処理が特許請求の範囲でいう故障診断手段としての役割を果たす。   On the other hand, if it is determined in step 105 that the combination of the information indicating whether or not the cylinder is the deactivation instruction cylinder and the information regarding the presence or absence of the intake pulsation corresponding to the intake stroke is not correct, specifically, the deactivation instruction cylinder When it is determined that there is an intake pulsation corresponding to the intake stroke of the engine, or when it is determined that there is no intake pulsation corresponding to the intake stroke of the operation instruction cylinder, the routine proceeds to step 107, and the cylinder is deactivated in the corresponding cylinder. It is determined that there is a failure in the device 27 (for example, a failure in which the intake valve 25 of the deactivation instruction cylinder opens or closes or a failure in which the intake valve 25 of the operation instruction cylinder is kept closed), and the abnormality flag of the corresponding cylinder is turned ON. The warning lamp (not shown) provided on the instrument panel of the driver's seat is turned on, or the warning display part (not shown) of the instrument panel of the driver's seat is turned on. ) Is displayed to warn the driver, and the abnormality data (abnormality code or the like) is stored in a rewritable nonvolatile memory (such as a backup RAM (not shown)) of the ECU 24 or the like even when the ECU 24 is powered off. Stored in a rewritable memory. The processing of these steps 105 to 107 plays a role as failure diagnosis means in the claims.

この後、ステップ108に進み、気筒休止装置27の故障有りと判定された場合に、減筒運転を禁止する。このステップ108の処理が特許請求の範囲でいうフェールセーフ制御手段としての役割を果たす。   Thereafter, the process proceeds to step 108, and when it is determined that there is a failure in the cylinder deactivation device 27, the reduced-cylinder operation is prohibited. The processing of step 108 serves as fail-safe control means in the claims.

以上説明した本実施例では、気筒休止装置27が正常である場合に、減筒運転中に、運転指示気筒では吸気行程に対応して吸気脈動が発生するが、休止指示気筒では吸気行程に対応する吸気脈動が発生しないことに着目して、減筒運転中に休止指示気筒か否かの情報と吸気行程に対応する吸気脈動の有無の情報との組み合わせによって気筒休止装置27の故障の有無を判定するようにしたので、気筒休止装置27の故障の有無を精度良く判定することができる。しかも、各気筒毎に気筒休止装置27の故障の有無を判定することができるため、気筒休止装置27の故障が発生した気筒を特定することができる。   In the present embodiment described above, when the cylinder deactivation device 27 is normal, intake pulsation occurs in the operation instructing cylinder corresponding to the intake stroke during the reduced cylinder operation, but in the deactivation instruction cylinder, the intake pulsation corresponds to the intake stroke. Focusing on the fact that no intake pulsation occurs, the presence or absence of failure of the cylinder deactivation device 27 is determined by a combination of information on whether or not the cylinder is a deactivation instruction cylinder and information on the presence or absence of intake pulsation corresponding to the intake stroke during reduced cylinder operation. Since the determination is made, it is possible to accurately determine whether or not the cylinder deactivation device 27 has failed. In addition, since it is possible to determine whether or not the cylinder deactivation device 27 has failed for each cylinder, the cylinder in which the failure of the cylinder deactivation device 27 has occurred can be identified.

また、本実施例では、減筒運転中にスロットル開度を開き側に補正するようにしたので、運転指示気筒の吸気行程に対応する吸気脈動がエアフローメータ14の検出位置まで伝わり易くなって、エアフローメータ14の出力に基づく吸気脈動の判定精度を高めることができ、吸気脈動を用いる気筒休止装置27の故障診断の診断精度を向上させることができる。   Further, in this embodiment, the throttle opening is corrected to the open side during the reduced-cylinder operation, so that the intake pulsation corresponding to the intake stroke of the operation instruction cylinder is easily transmitted to the detection position of the air flow meter 14, The determination accuracy of the intake pulsation based on the output of the air flow meter 14 can be increased, and the diagnosis accuracy of the failure diagnosis of the cylinder deactivation device 27 using the intake pulsation can be improved.

また、本実施例では、気筒休止装置27の故障有りと判定された場合に、減筒運転を禁止するようにしたので、気筒休止装置27が故障した場合でも、減筒運転中に休止指示気筒の吸気バルブ25が開閉されてポンピングロスの増加、空燃比の誤差、排気温度上昇などの弊害を防止することができる。   Further, in this embodiment, when it is determined that there is a failure in the cylinder deactivation device 27, the reduced cylinder operation is prohibited. Therefore, even when the cylinder deactivation device 27 has failed, the deactivation instruction cylinder can be used during the reduced cylinder operation. Thus, adverse effects such as an increase in pumping loss, an air-fuel ratio error, and an increase in exhaust gas temperature can be prevented.

尚、気筒休止装置27の故障有りと判定された場合に、休止指示気筒を、V型エンジンの一方のバンクの気筒群から他方のバンクの気筒群に変更して減筒運転を行うようにしても良い。このようにすれば、気筒休止装置27が故障した場合でも、減筒運転中に休止指示気筒の吸気バルブ25が開閉されて上述のような弊害の発生を防止しながら、減筒運転を行うことができる。   When it is determined that there is a failure in the cylinder deactivation device 27, the deactivation instruction cylinder is changed from the cylinder group of one bank of the V-type engine to the cylinder group of the other bank to perform the reduced cylinder operation. Also good. In this way, even when the cylinder deactivation device 27 breaks down, the cylinder depressurization operation is performed while the intake valve 25 of the deactivation instruction cylinder is opened and closed during the decelerating operation and the above-described adverse effects are prevented. Can do.

また、本実施例では、休止指示気筒の吸気バルブ25と排気バルブ26の両方を閉じ状態に維持する気筒休止システムに本発明を適用したが、休止指示気筒の吸気バルブ25のみを閉じ状態に維持する気筒休止システムに本発明を適用しても良い。   Further, in the present embodiment, the present invention is applied to a cylinder deactivation system in which both the intake valve 25 and the exhaust valve 26 of the deactivation instruction cylinder are maintained in the closed state, but only the intake valve 25 of the deactivation instruction cylinder is maintained in the closed state. The present invention may be applied to a cylinder deactivation system.

また、本発明の適用範囲は、V型6気筒のエンジンに限定されず、他の型式のエンジン(例えば、直列エンジンや水平対向エンジン等)に適用したり、或は、5気筒以下(例えば、4気筒、5気筒等)のエンジンや7気筒以上(例えば、8気筒、10気筒、12気筒等)のエンジンに適用しても良い。   Further, the scope of application of the present invention is not limited to a V-type 6-cylinder engine, but can be applied to other types of engines (for example, an inline engine or a horizontally opposed engine), or 5 cylinders or less (for example, The present invention may be applied to engines with 4 cylinders, 5 cylinders, etc. and engines with 7 cylinders or more (for example, 8 cylinders, 10 cylinders, 12 cylinders, etc.).

その他、本発明は、図1に示すような吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。   In addition, the present invention is not limited to the intake port injection type engine as shown in FIG. 1, but includes an in-cylinder injection type engine, and both an intake port injection fuel injection valve and an in-cylinder injection fuel injection valve. It can also be applied to dual-injection engines.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 気筒休止制御ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a cylinder deactivation control routine. 気筒休止装置の故障診断を説明するタイムチャートである。It is a time chart explaining failure diagnosis of a cylinder deactivation device.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ14(吸入空気量検出手段)、16…スロットルバルブ、19…燃料噴射弁、20…点火プラグ、23…排気管、24…ECU(気筒休止制御手段,吸気脈動判定手段,故障診断手段,フェールセーフ制御手段)、25…吸気バルブ、26…排気バルブ、27…気筒休止装置   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter 14 (intake air amount detection means), 16 ... Throttle valve, 19 ... Fuel injection valve, 20 ... Spark plug, 23 ... Exhaust pipe, 24 ... ECU (Cylinder deactivation control means, intake pulsation determination means, failure diagnosis means, fail-safe control means), 25 ... intake valve, 26 ... exhaust valve, 27 ... cylinder deactivation device

Claims (6)

内燃機関の一部の気筒の少なくとも吸気バルブを閉じ状態に維持して該気筒の運転を休止させる気筒休止装置と、前記気筒休止装置により一部の気筒の運転を休止させて残りの気筒で内燃機関を運転する減筒運転を行うように制御する気筒休止制御手段とを備えた気筒休止システムにおいて、
内燃機関の吸入空気量を検出する吸入空気量検出手段と、
前記吸入空気量検出手段の出力に基づいて各気筒の吸気行程に対応する吸気脈動を判定する吸気脈動判定手段と、
前記減筒運転中に前記気筒休止制御手段により前記気筒休止装置で運転を休止させるように指示した気筒(以下「休止指示気筒」という)か否かの情報と前記吸気脈動判定手段により判定した各気筒の吸気行程に対応する吸気脈動の情報とに基づいて前記気筒休止装置の故障の有無を判定する故障診断手段と
を備えていることを特徴とする気筒休止システムの故障診断装置。
A cylinder deactivation device that stops at least the intake valves of some cylinders of the internal combustion engine and closes the operation of the cylinders, and deactivates some cylinders by the cylinder deactivation devices and performs internal combustion in the remaining cylinders In a cylinder deactivation system comprising cylinder deactivation control means for controlling to perform reduced cylinder operation for operating an engine,
Intake air amount detection means for detecting the intake air amount of the internal combustion engine;
An intake pulsation determining means for determining an intake pulsation corresponding to an intake stroke of each cylinder based on an output of the intake air amount detecting means;
Information on whether or not the cylinder is instructed to stop operation by the cylinder deactivation device by the cylinder deactivation control means during the reduced cylinder operation (hereinafter referred to as “deactivation instruction cylinder”) and each of the determinations made by the intake pulsation determination unit A failure diagnosing device for a cylinder deactivation system, comprising: failure diagnosis means for determining whether or not the cylinder deactivation device has failed based on intake pulsation information corresponding to the intake stroke of the cylinder.
前記故障診断手段は、前記減筒運転中に前記吸気脈動判定手段により前記休止指示気筒の吸気行程に対応する吸気脈動が有ると判定された場合に前記気筒休止装置の故障有りと判定することを特徴とする請求項1に記載の気筒休止システムの故障診断装置。   The failure diagnosis means determines that the cylinder deactivation device is defective when the intake pulsation determination means determines that there is an intake pulsation corresponding to the intake stroke of the deactivation instruction cylinder during the reduced cylinder operation. 2. The failure diagnosis device for a cylinder deactivation system according to claim 1, wherein 前記故障診断手段は、前記減筒運転中に前記吸気脈動判定手段により前記休止指示気筒以外の運転指示気筒の吸気行程に対応する吸気脈動が無いと判定された場合に前記気筒休止装置の故障有りと判定することを特徴とする請求項1又は2に記載の気筒休止システムの故障診断装置。   The failure diagnosis means has a malfunction of the cylinder deactivation device when the intake pulsation determination means determines that there is no intake pulsation corresponding to the intake stroke of the operation instruction cylinder other than the deactivation instruction cylinder during the reduced cylinder operation. The failure diagnosis device for a cylinder deactivation system according to claim 1 or 2, characterized in that 前記故障診断手段により前記気筒休止装置の故障有りと判定された場合に前記減筒運転を禁止するフェールセーフ制御手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の気筒休止システムの故障診断装置。   4. The cylinder according to claim 1, further comprising a fail-safe control unit that prohibits the reduced-cylinder operation when the failure diagnosis unit determines that there is a failure in the cylinder deactivation device. Fault diagnosis device for hibernation system. 前記故障診断手段により前記気筒休止装置の故障有りと判定された場合に前記休止指示気筒を変更するフェールセーフ制御手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の気筒休止システムの故障診断装置。   4. The cylinder according to claim 1, further comprising a fail-safe control unit that changes the deactivation instruction cylinder when it is determined by the failure diagnosis unit that the cylinder deactivation device is malfunctioning. 5. Fault diagnosis device for hibernation system. 前記気筒休止制御手段は、前記減筒運転中にスロットル開度を開き側に補正することを特徴とする請求項1乃至5のいずれかに記載の気筒休止システムの故障診断装置。   6. The failure diagnosis apparatus for a cylinder deactivation system according to claim 1, wherein the cylinder deactivation control means corrects the throttle opening to the open side during the reduced cylinder operation.
JP2008121846A 2008-05-08 2008-05-08 Failure diagnosis device of cylinder deactivation system Pending JP2009270492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121846A JP2009270492A (en) 2008-05-08 2008-05-08 Failure diagnosis device of cylinder deactivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121846A JP2009270492A (en) 2008-05-08 2008-05-08 Failure diagnosis device of cylinder deactivation system

Publications (1)

Publication Number Publication Date
JP2009270492A true JP2009270492A (en) 2009-11-19

Family

ID=41437272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121846A Pending JP2009270492A (en) 2008-05-08 2008-05-08 Failure diagnosis device of cylinder deactivation system

Country Status (1)

Country Link
JP (1) JP2009270492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185248A (en) * 2010-03-11 2011-09-22 Toyota Motor Corp Internal combustion engine
WO2012073366A1 (en) * 2010-12-02 2012-06-07 トヨタ自動車株式会社 Internal combustion engine control apparatus
EP2642107A1 (en) * 2010-11-18 2013-09-25 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
DE102014219002A1 (en) 2014-04-21 2015-10-22 Mitsubishi Electric Corp. Control device for a burring engine with a cylinder rudder mechanism
DE102015205014A1 (en) 2014-10-20 2016-04-21 Mitsubishi Electric Corporation Engine control device
KR101785274B1 (en) * 2015-12-23 2017-10-16 주식회사 현대케피코 Fault diagnostic apparatus and method of intake cam
US11872898B2 (en) 2020-02-18 2024-01-16 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185248A (en) * 2010-03-11 2011-09-22 Toyota Motor Corp Internal combustion engine
EP2642107A1 (en) * 2010-11-18 2013-09-25 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
EP2642107A4 (en) * 2010-11-18 2015-02-18 Toyota Motor Co Ltd Control device of internal combustion engine
WO2012073366A1 (en) * 2010-12-02 2012-06-07 トヨタ自動車株式会社 Internal combustion engine control apparatus
EP2647812A1 (en) * 2010-12-02 2013-10-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
EP2647812A4 (en) * 2010-12-02 2014-04-30 Toyota Motor Co Ltd Internal combustion engine control apparatus
US8826891B2 (en) 2010-12-02 2014-09-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2015206296A (en) * 2014-04-21 2015-11-19 三菱電機株式会社 Control device of internal combustion engine equipped with cylinder deactivation mechanism
DE102014219002A1 (en) 2014-04-21 2015-10-22 Mitsubishi Electric Corp. Control device for a burring engine with a cylinder rudder mechanism
US9382852B2 (en) 2014-04-21 2016-07-05 Mitsubishi Electric Corporation Control device for internal combustion engine having cylinder resting mechanism
DE102014219002B4 (en) 2014-04-21 2019-05-29 Mitsubishi Electric Corp. Control device for an internal combustion engine with a Zylinderruheme mechanism
DE102015205014A1 (en) 2014-10-20 2016-04-21 Mitsubishi Electric Corporation Engine control device
US10280848B2 (en) 2014-10-20 2019-05-07 Mitsubishi Electric Corporation Internal combustion engine control apparatus
DE102015205014B4 (en) * 2014-10-20 2020-09-03 Mitsubishi Electric Corporation Internal combustion engine control device
KR101785274B1 (en) * 2015-12-23 2017-10-16 주식회사 현대케피코 Fault diagnostic apparatus and method of intake cam
US11872898B2 (en) 2020-02-18 2024-01-16 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method

Similar Documents

Publication Publication Date Title
JP4070961B2 (en) Failure determination device for variable cylinder internal combustion engine
JP2011185159A (en) Abnormality diagnosing device of internal combustion engine with supercharger
JP4335167B2 (en) Internal combustion engine control device
JP2009270492A (en) Failure diagnosis device of cylinder deactivation system
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
JP2009047112A (en) Abnormality diagnosis device for internal combustion engine
JP2010106785A (en) Abnormality diagnostic device for emission gas recirculating system
JP2011190778A (en) Control device for internal combustion engine
JP5235739B2 (en) Fuel injection control device for internal combustion engine
JP2005207336A (en) Abnormality diagnosing device for variable valve device
JP2004036544A (en) Fault detecting device for internal combustion engine
JP4339572B2 (en) Control device for internal combustion engine
JP2008274836A (en) Failure diagnostic device for intake air flow rate sensor
JP2006336566A (en) Controller for variable cylinder engine
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
JP2010156295A (en) Diagnosis device and control device of multi-cylinder internal combustion engine
JP5083045B2 (en) Abnormality diagnosis device for fuel injection valve
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP6422899B2 (en) Control device for internal combustion engine
US9429089B2 (en) Control device of engine
JP2781878B2 (en) Engine control device
JP4830741B2 (en) Fault diagnosis system for internal combustion engine
JP4827758B2 (en) Fault diagnosis device for variable valve timing control device
JP4854796B2 (en) Abnormality detection device for internal combustion engine
JP5965361B2 (en) Internal combustion engine system failure detection apparatus and internal combustion engine system failure detection method