JP6358867B2 - Light diffusing polycarbonate resin composition and light diffusing member using the same - Google Patents

Light diffusing polycarbonate resin composition and light diffusing member using the same Download PDF

Info

Publication number
JP6358867B2
JP6358867B2 JP2014124341A JP2014124341A JP6358867B2 JP 6358867 B2 JP6358867 B2 JP 6358867B2 JP 2014124341 A JP2014124341 A JP 2014124341A JP 2014124341 A JP2014124341 A JP 2014124341A JP 6358867 B2 JP6358867 B2 JP 6358867B2
Authority
JP
Japan
Prior art keywords
light
light diffusing
diffusing member
polycarbonate resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014124341A
Other languages
Japanese (ja)
Other versions
JP2016003281A (en
Inventor
龍 西村
龍 西村
Original Assignee
日本ポリエステル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリエステル株式会社 filed Critical 日本ポリエステル株式会社
Priority to JP2014124341A priority Critical patent/JP6358867B2/en
Publication of JP2016003281A publication Critical patent/JP2016003281A/en
Application granted granted Critical
Publication of JP6358867B2 publication Critical patent/JP6358867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、照明装置の出光面に設置した場合に光量の低下が抑制され、かつ該照明装置を直視した時の眩しさ(以下、単に眩しさということもある)が低減された光拡散部材となり得る光拡散性ポリカーボネート樹脂組成物及びそれを用いた光拡散部材に関する。   The present invention provides a light diffusing member in which a decrease in light amount is suppressed when installed on a light exit surface of a lighting device, and glare (hereinafter sometimes simply referred to as glare) when the lighting device is directly viewed is reduced. The present invention relates to a light diffusing polycarbonate resin composition that can be used and a light diffusing member using the same.

近年エコロジーの観点から、照明用の光源として、消費電力が低く、振動に強く、超高輝度で長時間安定して発光可能な発光ダイオード(以下、LEDという)を用いたLED電球や蛍光管形状のLED管などのLED照明装置が使用されるようになってきている。LEDは上記の長所を有する一方、点光源であってかつ高輝度であるため、光源からの出射光によるぎらつきや眩しさを感じやすい。そのため、LEDを用いる場合には、出射光によるぎらつきや眩しさを低減する必要があり、また、出射光を効率良く拡散させて、照明装置としての機能を向上させる必要がある。そこで、LED照明装置においては、照明カバーに光拡散部材を用いて出射光を拡散させるなどの手段によって、出射光によるぎらつきや眩しさを低減しようとしている。   In recent years, from the viewpoint of ecology, LED light bulbs and fluorescent tube shapes that use light-emitting diodes (hereinafter referred to as LEDs) that have low power consumption, vibration resistance, ultra-brightness, and stable light emission for a long period of time as light sources for lighting LED lighting devices such as LED tubes have come to be used. While the LED has the above-mentioned advantages, it is a point light source and has high brightness, and thus it is easy to feel glare and glare due to light emitted from the light source. Therefore, when using an LED, it is necessary to reduce glare and glare caused by the emitted light, and it is necessary to efficiently diffuse the emitted light to improve the function as a lighting device. Therefore, in the LED lighting device, it is attempted to reduce glare and glare by the emitted light by means such as diffusing the emitted light using a light diffusing member for the illumination cover.

上記光拡散部材としては、成形加工性や製品の形状の自由度が得られやすいことから熱可塑性樹脂が従来より広く用いられており、なかでも機械物性、熱特性、光学特性などのバランスに優れるポリカーボネート樹脂が好適に用いられている。   As the light diffusing member, a thermoplastic resin has been used more widely than before because molding processability and freedom of product shape are easily obtained, and in particular, it has an excellent balance of mechanical properties, thermal properties, optical properties, and the like. A polycarbonate resin is preferably used.

例えば、特許文献1には、ポリカーボネート樹脂100重量部に、屈折率が1.505〜1.575で重量平均粒子径が0.5〜30μmのアクリル−スチレン系共重合体微粒子0.1〜5.0重量部を含有してなる光拡散性樹脂組成物が開示されている。また、特許文献2には、ポリカーボネート樹脂と、ポリカーボネート樹脂との屈折率差が0.01〜0.08で平均粒子径が5〜20μmの重合体微粒子を含有してなり、重合体微粒子をポリカーボネート樹脂に、重合体微粒子の平均粒子径(μm)と含有量(質量%)の積で表される配合係数が6.2〜11.8となるように含有させてなる光拡散性樹脂組成物が開示されている。これらの光拡散性樹脂組成物からなる光拡散部材をLED照明装置に用いた場合、不快感や物の見えづらさを生じさせるような過剰な明るさを抑えたLED照明装置となる。   For example, Patent Document 1 discloses that acryl-styrene copolymer fine particles 0.1 to 5 having a refractive index of 1.505 to 1.575 and a weight average particle diameter of 0.5 to 30 μm are added to 100 parts by weight of a polycarbonate resin. A light diffusing resin composition containing 0.0 part by weight is disclosed. Further, Patent Document 2 contains polymer fine particles having a refractive index difference of 0.01 to 0.08 and an average particle size of 5 to 20 μm between the polycarbonate resin and the polycarbonate resin. A light diffusing resin composition comprising a resin so that a blending coefficient represented by a product of an average particle diameter (μm) and a content (mass%) of polymer fine particles is 6.2 to 11.8. Is disclosed. When a light diffusing member made of these light diffusing resin compositions is used in an LED lighting device, the LED lighting device is suppressed with excessive brightness that causes discomfort and difficulty in seeing an object.

一方、これらの光拡散部材をLED照明装置に用いた場合、光量の低下が生じてしまう。特許文献1や特許文献2に記載の光拡散部材をLED照明装置に用いた場合、全光線透過率は89.5〜91%程度に低下し、一般的なポリカーボネート樹脂組成物を用いた場合と比べると全光線透過率は高くなってはいるものの、光量の低下が十分に抑制されているとは言い難い。   On the other hand, when these light diffusing members are used in an LED lighting device, the amount of light is reduced. When the light diffusing member described in Patent Document 1 or Patent Document 2 is used in an LED lighting device, the total light transmittance is reduced to about 89.5 to 91%, and when a general polycarbonate resin composition is used. In comparison, the total light transmittance is high, but it is difficult to say that the decrease in the amount of light is sufficiently suppressed.

また、点光源近傍にレンズ部材を設置して点光源から出光する光を集光させて、照明装置を出た光を遠くに飛ばしたい場合がある。このような場合は、光拡散部材に入光する光の配光角が狭まっているので、上記の特許文献に記載の拡散板を含めて従来の光拡散部材を使用しても、レンズ部材により集光した集光効果が大幅に低下して、遠くに光を飛ばすことが出来ないという問題があった。   In some cases, a lens member is installed in the vicinity of the point light source, and the light emitted from the point light source is collected, so that the light emitted from the illumination device can be scattered far away. In such a case, since the light distribution angle of the light entering the light diffusing member is narrowed, even if a conventional light diffusing member including the diffusing plate described in the above patent document is used, There has been a problem that the condensed light collecting effect is greatly reduced, and light cannot be emitted far away.

一方、特許文献3で開示されている光源ユニットでは、特許文献1や特許文献2の光拡散部材とは異なり、ヘイズが低い光拡散部材が用いられているので、光量の低下は改善される反面、眩しさの抑制効果が劣っている。   On the other hand, in the light source unit disclosed in Patent Document 3, unlike the light diffusing member of Patent Document 1 and Patent Document 2, a light diffusing member having a low haze is used. The dazzling suppression effect is inferior.

以上のことから、眩しさの低減と光量の低下とは二律背反事象である。   From the above, the reduction in glare and the decrease in the amount of light are trade-offs.

特開2005−247999号公報JP 2005-247999 A 特開2010−229193号公報JP 2010-229193 A 特開2012−186022号公報JP 2012-186022 A

本発明は、光量の低下が抑制され、かつ眩しさを低減させた光拡散部材となり得る光拡散性ポリカーボネート樹脂組成物及びそれを用いた光拡散部材の提供を課題として掲げた。   An object of the present invention is to provide a light diffusing polycarbonate resin composition that can be a light diffusing member in which a decrease in the amount of light is suppressed and the glare is reduced, and a light diffusing member using the same.

本発明者は、光拡散性ポリカーボネート樹脂組成物に含まれる重合体微粒子の屈折率、質量平均粒子径、及び含有量を所定の範囲内に調整することによって、光量の低下が十分に抑制され、かつ、眩しさを大幅に低下させた光拡散部材を作製することができることを見出して、本発明を完成するに至った。   The inventor adjusts the refractive index, the mass average particle diameter, and the content of the polymer fine particles contained in the light diffusing polycarbonate resin composition within a predetermined range, thereby sufficiently suppressing the decrease in the amount of light, And it discovered that the light-diffusion member which reduced the glare greatly can be produced, and came to complete this invention.

本発明の光拡散性ポリカーボネート樹脂組成物は、ポリカーボネート樹脂と、ポリカーボネート樹脂との屈折率差が0.01以上0.08以下で、質量平均粒子径が6μm以上12μm以下である重合体微粒子とを含んでおり、上記ポリカーボネート樹脂100質量部に対する上記重合体微粒子の含有量が2質量部以上8質量部以下であることを特徴とする。上記重合体微粒子はアクリル−スチレン系共重合体微粒子であることが好ましい。   The light diffusing polycarbonate resin composition of the present invention comprises a polycarbonate resin and polymer fine particles having a refractive index difference of 0.01 to 0.08 and a mass average particle diameter of 6 μm to 12 μm. And the content of the polymer fine particles with respect to 100 parts by mass of the polycarbonate resin is 2 parts by mass or more and 8 parts by mass or less. The polymer fine particles are preferably acrylic-styrene copolymer fine particles.

また、光拡散性ポリカーボネート樹脂組成物を用いて形成された厚さ3mmの光拡散部材において、ヘイズの百分率P%と全光線透過率Q%のP×Qの値が8000以上となる光拡散性ポリカーボネート樹脂組成物であることが好ましく、全光線透過率が92%以上かつヘイズが90%以上となる光拡散性ポリカーボネート樹脂組成物であることがより好ましい。   Further, in a light diffusing member having a thickness of 3 mm formed using the light diffusing polycarbonate resin composition, the light diffusibility in which the value of P × Q of the haze percentage P% and the total light transmittance Q% is 8000 or more. A polycarbonate resin composition is preferable, and a light diffusing polycarbonate resin composition having a total light transmittance of 92% or more and a haze of 90% or more is more preferable.

また、本発明には、上記光拡散性ポリカーボネート樹脂組成物を用いて形成された光拡散部材も包含されており、光拡散部材の明細書中に記載した方法で測定される相対透過度が2以上20以下であり、かつ配光角が15°以上70°以下であることを特徴とする。   The present invention also includes a light diffusing member formed using the light diffusing polycarbonate resin composition, and the relative transmittance measured by the method described in the specification of the light diffusing member is 2. It is 20 or less and the light distribution angle is 15 ° or more and 70 ° or less.

上記光拡散部材は、ヘイズが90%以上であることが好ましい。   The light diffusing member preferably has a haze of 90% or more.

上記光拡散部材は、全光線透過率が90%以上であることが好ましい。   The light diffusing member preferably has a total light transmittance of 90% or more.

上記光拡散部材は、厚みが0.4〜5mmであることが好ましい。   The light diffusing member preferably has a thickness of 0.4 to 5 mm.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材を照明装置に用いた場合、光量の低下が抑制されるにもかかわらず、眩しさを大幅に低減させることができる。また、点光源近傍や出光面にレンズ部材を設けて点光源から出光する光を集光させている装置に対して本発明の光拡散部材を用いた場合にも、レンズ部材により集光された光の配光角を大きく変化させることなく、かつ上記の効果が発現される。よって、光量低下を抑制した形で眩しさを低減することが必要な用途に幅広く使用でき、LEDを用いた信号灯器のレンズもしくはレンズカバー、照明カバー、照明看板、透過型のスクリーン、各種ディスプレイ、液晶表示装置の光拡散シート、導光板などの各種照明関連装置に使用可能である。特に光源としてLEDを用いた表示器材において、視認性が非常に優れたものとなる。なお、以下では上記各種照明装置のことを単に照明装置ということがある。   When a light diffusing member formed using the light diffusing resin composition of the present invention is used in an illuminating device, it is possible to greatly reduce glare despite a reduction in the amount of light. In addition, when the light diffusing member of the present invention is used for a device in which a lens member is provided in the vicinity of the point light source or on the light exit surface to collect the light emitted from the point light source, the light is condensed by the lens member. The above effects are exhibited without greatly changing the light distribution angle. Therefore, it can be used in a wide range of applications where it is necessary to reduce glare in a form that suppresses the decrease in the amount of light, such as a lens or lens cover of a signal lamp using LED, a lighting cover, a lighting signboard, a transmissive screen, various displays, It can be used for various illumination-related devices such as light diffusion sheets and light guide plates of liquid crystal display devices. In particular, in a display device using an LED as a light source, the visibility is very excellent. In the following description, the various illumination devices may be simply referred to as illumination devices.

図1は、実施例1−1、1−2、比較例1−1〜1−4の光拡散部材を用いたときの、相対透過度と最大輝度率との関係を示した図である。FIG. 1 is a diagram showing the relationship between relative transmittance and maximum luminance rate when the light diffusing members of Examples 1-1 and 1-2 and Comparative Examples 1-1 to 1-4 are used. 図2は、実施例1−1、1−2、比較例1−1〜1−4の光拡散部材を用いたときの、配光角と最大輝度率との関係を示した図である。FIG. 2 is a diagram showing the relationship between the light distribution angle and the maximum luminance rate when the light diffusing members of Examples 1-1 and 1-2 and Comparative Examples 1-1 to 1-4 are used. 図3は、実施例1−1、1−2、比較例1−1〜1−4の光拡散部材を用いたときの、相対透過度と直下照度との関係を示した図である。FIG. 3 is a diagram showing the relationship between relative transmittance and illuminance directly below when the light diffusing members of Examples 1-1 and 1-2 and Comparative Examples 1-1 to 1-4 are used. 図4は、実施例1−1、1−2、比較例1−1〜1−4の光拡散部材を用いたときの、配光角と直下照度との関係を示した図である。FIG. 4 is a diagram illustrating the relationship between the light distribution angle and the illuminance directly below when the light diffusing members of Examples 1-1 and 1-2 and Comparative Examples 1-1 to 1-4 are used. 図5は、実施例2−1、2−2、比較例2−1、2−2、及び参考例の照明装置での受光角度と相対透過度との関係を示した図である。FIG. 5 is a diagram illustrating the relationship between the light receiving angle and the relative transmittance in the illumination devices of Examples 2-1 and 2-2, Comparative Examples 2-1 and 2-2, and the reference example. 図6は、光の進み方が容易に目視できる装置である。FIG. 6 is an apparatus in which the way light travels can be easily observed. 図7(a)は図6の装置において、光拡散部材Bを用いた場合の光の進み方を示す写真であり、図7(b)は図6の装置において、光拡散部材Dを用いた場合の光の進み方を示す写真である。図7(c)は、図6の装置から後方投影板を取り外した状態で、光拡散部材Bを用いた場合の光の進み方を示す写真であり、図7(d)は、図6の装置から後方投影板を取り外した状態で、光拡散部材Dを用いた場合の光の進み方を示す写真である。7A is a photograph showing how light travels when the light diffusing member B is used in the apparatus of FIG. 6, and FIG. 7B is a photograph using the light diffusing member D in the apparatus of FIG. It is a photograph showing how the light travels in the case. FIG. 7C is a photograph showing how the light travels when the light diffusing member B is used with the rear projection plate removed from the apparatus of FIG. 6, and FIG. 7D is a photograph of FIG. It is a photograph which shows how to advance the light at the time of using the light-diffusion member D in the state which removed the back projection board from the apparatus.

本発明の光拡散性ポリカーボネート樹脂組成物(以下、光拡散性樹脂組成物という)は、ポリカーボネート樹脂と重合体微粒子とを含有する。   The light diffusing polycarbonate resin composition of the present invention (hereinafter referred to as a light diffusing resin composition) contains a polycarbonate resin and polymer fine particles.

<ポリカーボネート樹脂>
本発明で用いられるポリカーボネート樹脂は、芳香族ジヒドロキシ化合物とホスゲンとの界面重合法により得られる重合体、または芳香族ジヒドロキシ化合物と炭酸ジエステルとのエステル交換反応により得られる重合体であり、ポリヒドロキシ化合物を上記芳香族ジヒドロキシ化合物の一部として使用してもよい。本発明で用いられるポリカーボネート樹脂は、直鎖状であっても、分岐鎖状であってもよい。また、本発明で用いられるポリカーボネート樹脂は、単独でも2種以上の混合物でもよい。
<Polycarbonate resin>
The polycarbonate resin used in the present invention is a polymer obtained by an interfacial polymerization method of an aromatic dihydroxy compound and phosgene, or a polymer obtained by a transesterification reaction of an aromatic dihydroxy compound and a carbonic acid diester. May be used as part of the aromatic dihydroxy compound. The polycarbonate resin used in the present invention may be linear or branched. Moreover, the polycarbonate resin used by this invention may be individual, or 2 or more types of mixtures may be sufficient as it.

上記芳香族ジヒドロキシ化合物としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン(テトラメチルビスフェノールA)等のビス(4−ヒドロキシフェニル)アルカン系ジヒドロキシ化合物;2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン(テトラブロモビスフェノールA)、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン(テトラクロロビスフェノールA)等のハロゲンを含むビス(4−ヒドロキシフェニル)アルカン系ジヒドロキシ化合物;1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン;ハイドロキノン;レゾルシノール;4,4−ジヒドロキシジフェニルなどが挙げられ、好ましくはビス(4−ヒドロキシフェニル)アルカン系ジヒドロキシ化合物又はハロゲンを含むビス(4−ヒドロキシフェニル)アルカン系ジヒドロキシ化合物であり、より好ましくは、ビスフェノールAである。これらの芳香族ジヒドロキシ化合物は1種でも良いが、複数用いてもよい。   Examples of the aromatic dihydroxy compound include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane (tetramethylbisphenol A), and the like. Bis (4-hydroxyphenyl) alkane-based dihydroxy compounds; 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane (tetrabromobisphenol A), 2,2-bis (4-hydroxy-3, Bis (4-hydroxyphenyl) alkane-based dihydroxy compounds containing halogen such as 5-dichlorophenyl) propane (tetrachlorobisphenol A); 1,1-bis (4-hydroxyphenyl) cyclohexane; hydroquinone; resorcinol; 4,4-dihydroxy Diphenyl and so on , Preferably bis (4-hydroxyphenyl) alkane-based dihydroxy compound or bis containing halogen (4-hydroxyphenyl) alkane-based dihydroxy compound, more preferably bisphenol A. These aromatic dihydroxy compounds may be used alone or in combination.

分岐鎖状のポリカーボネート樹脂を得るには、フロログルシン、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−2、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、2,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニルヘプテン−3、1,3,5−トリ(4−ヒドロキシフェニル)ベンゼン、 1,1,1−トリ(4−ヒドロキシフェニル)エタンなどで示されるポリヒドロキシ化合物、及び3,3−ビス(4−ヒドロキシアリール)オキシインドール(=イサチンビスフェノール)、5−クロロイサチンビスフェノール、5,7−ジクロロイサチンビスフェノール、5−ブロモイサチンビスフェノールなどの3価以上のポリヒドロキシ化合物を上記芳香族ジヒドロキシ化合物の一部として使用すればよい。ポリヒドロキシ化合物を使用する場合の使用量は、例えば、上記芳香族ジヒドロキシ化合物の0.1〜2モル%程度である。   In order to obtain a branched polycarbonate resin, phloroglucin, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene-2, 4,6-dimethyl-2,4,6-tri ( 4-hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenylheptene-3, 1,3,5-tri (4-hydroxyphenyl) benzene, 1,1,1 -Polyhydroxy compounds represented by tri (4-hydroxyphenyl) ethane and the like, and 3,3-bis (4-hydroxyaryl) oxindole (= isatin bisphenol), 5-chloroisatin bisphenol, 5,7-dichloro Triaromatic polyhydroxy compounds such as isatin bisphenol and 5-bromoisatin bisphenol are aromatic dihydroxylated. What is necessary is just to use it as a part of compound.The usage-amount in the case of using a polyhydroxy compound is about 0.1-2 mol% of the said aromatic dihydroxy compound, for example.

さらに、分子量調節剤として、一価の芳香族ヒドロキシ化合物などを使用することができる。分子量調節剤としては、例えば、m−及びp−メチルフェノール、m−及びp−プロピルフェノール、p−ブロモフェノール、p−tert−ブチルフェノール及びp−長鎖アルキル置換フェノールなどが挙げられる。   Furthermore, a monovalent aromatic hydroxy compound or the like can be used as a molecular weight regulator. Examples of the molecular weight regulator include m- and p-methylphenol, m- and p-propylphenol, p-bromophenol, p-tert-butylphenol and p-long chain alkyl-substituted phenol.

本発明で用いられるポリカーボネート樹脂は、25℃におけるメチレンクロライド溶液粘度より測定した粘度平均分子量が16,000〜38,000であることが好ましく、より好ましくは18,000〜35,000である。ポリカーボネート樹脂の屈折率は1.57〜1.60であることが好ましい。   The polycarbonate resin used in the present invention preferably has a viscosity average molecular weight of 16,000 to 38,000, more preferably 18,000 to 35,000, as measured from the viscosity of the methylene chloride solution at 25 ° C. The refractive index of the polycarbonate resin is preferably 1.57 to 1.60.

<重合体微粒子>
本発明で用いられる重合体微粒子は、屈折率、質量平均粒子径が後述の範囲内の重合体微粒子であればよく、重合体微粒子としては、例えば、アクリル−スチレン系共重合体微粒子、アクリル−ブタジエン−スチレン(ABS)系共重合体微粒子などが挙げられ、好ましくはアクリル−スチレン系共重合体微粒子である。
<Polymer fine particles>
The polymer fine particles used in the present invention may be polymer fine particles having a refractive index and a mass average particle diameter within the ranges described below. Examples of the polymer fine particles include acryl-styrene copolymer fine particles, acryl- Examples thereof include butadiene-styrene (ABS) copolymer fine particles, and acrylic-styrene copolymer fine particles are preferable.

アクリル−スチレン系共重合体微粒子は、アクリル系モノマーとスチレン系モノマーとを共重合して得られる微粒子であって、例えば、アクリル系モノマーとスチレン系モノマーとを懸濁重合法等で重合した微粒子であり、架橋剤を用いて架橋しているものが好ましい。アクリル系モノマーとしては、例えば、メチルメタクリレート、エチルメタクリレート等のメタクリレート系モノマー、メチルアクリレート、エチルアクリレート等のアクリレート系モノマーやアクリルアミド等が挙げられ、スチレン系モノマーとしては、例えば、スチレン、α−メチルスチレン、ビニルトルエン等が挙げられる。また上記モノマーを主成分として、必要に応じて他のモノマーを共重合したものであっても良い。また、架橋剤としては、一般に使用されるものが挙げられるが、例えばエチレングリコールジメタクリレート、ジビニルベンゼン、1,6−ヘキサンジオールジメタクリレート、トリメチルプロパントリメタクリレート、トリメチルプロパントリメタクリレート、トリメチルプロパントリアクリレート等の多官能性モノマーを用いることが出来る。   Acrylic-styrene copolymer fine particles are fine particles obtained by copolymerizing an acrylic monomer and a styrene monomer, for example, fine particles obtained by polymerizing an acrylic monomer and a styrene monomer by a suspension polymerization method or the like. It is preferable that it is crosslinked using a crosslinking agent. Examples of acrylic monomers include methacrylate monomers such as methyl methacrylate and ethyl methacrylate, acrylate monomers such as methyl acrylate and ethyl acrylate, and acrylamide. Examples of styrene monomers include styrene and α-methylstyrene. And vinyltoluene. Moreover, what copolymerized the other monomer as needed by using the said monomer as a main component may be used. Examples of the crosslinking agent include commonly used ones such as ethylene glycol dimethacrylate, divinylbenzene, 1,6-hexanediol dimethacrylate, trimethylpropane trimethacrylate, trimethylpropane trimethacrylate, trimethylpropane triacrylate, and the like. These multifunctional monomers can be used.

本発明で用いられる重合体微粒子の質量平均粒子径は6μm以上12μm以下であり、好ましくは6μm以上、10μm以下、より好ましくは7μm以上、9μm以下である。粒子径が6μm未満では、用いられる粒子数が相対的に多くなってしまうため、光拡散部材のヘイズのばらつきが大きくなるおそれがある。また、12μmを超えると、用いられる粒子数が相対的に少なくなってしまうため、光拡散部材の強度が低下してしまうおそれがある。   The mass average particle diameter of the polymer fine particles used in the present invention is 6 μm or more and 12 μm or less, preferably 6 μm or more and 10 μm or less, more preferably 7 μm or more and 9 μm or less. When the particle diameter is less than 6 μm, the number of particles used is relatively large, and thus there is a possibility that the variation in haze of the light diffusing member becomes large. On the other hand, when the thickness exceeds 12 μm, the number of particles used is relatively reduced, which may reduce the strength of the light diffusing member.

本発明で用いられる重合体微粒子は、ポリカーボネート樹脂100質量部に対して、2質量部以上8質量部以下添加されており、好ましくは2質量部以上、6質量部以下、より好ましくは2質量部以上、4質量部以下である。重合体微粒子の添加量が2質量部未満であると、重合体微粒子の添加量が少量となるため、光拡散性樹脂組成物を用いて得られる光拡散部材のヘイズのばらつきが大きくなり、8質量部を超えると、重合体微粒子の添加量が多量となり光拡散部材の強度が低下してしまう。   The polymer fine particles used in the present invention are added in an amount of 2 parts by mass or more and 8 parts by mass or less, preferably 2 parts by mass or more and 6 parts by mass or less, more preferably 2 parts by mass with respect to 100 parts by mass of the polycarbonate resin. The amount is 4 parts by mass or less. When the addition amount of the polymer fine particles is less than 2 parts by mass, the addition amount of the polymer fine particles becomes a small amount, so that the haze variation of the light diffusing member obtained using the light diffusing resin composition becomes large. When the amount exceeds mass parts, the amount of polymer fine particles added becomes large and the strength of the light diffusing member is lowered.

重合体微粒子の屈折率とポリカーボネート樹脂の屈折率との差は0.01以上0.08以下であり、好ましくは0.02以上、0.06以下であり、より好ましくは0.03以上、0.05以下である。   The difference between the refractive index of the polymer fine particles and the refractive index of the polycarbonate resin is 0.01 or more and 0.08 or less, preferably 0.02 or more and 0.06 or less, more preferably 0.03 or more, 0 .05 or less.

重合体微粒子がアクリル−スチレン系共重合体である場合、重合体微粒子の屈折率は、アクリル系モノマーとスチレン系モノマーの質量比を99:1〜1:99の範囲で変化させることによって調整でき、アクリル系モノマーを多く使用すると屈折率は低くなり、スチレン系モノマーを多く使用すると屈折率は高くなる。アクリル系モノマーとスチレン系モノマーのモル比は7:3〜2:8であることが好ましく、より好ましくは6:4〜3:7である。スチレン系モノマーの共重合比が高くなりすぎると、耐光性が低下して黄色味を帯びてしまい、逆にアクリル系モノマーの共重合比が高くなりすぎると、重合体微粒子とポリカーボネート樹脂組成物との屈折率の差が開きすぎて、LED光源のぎらつきが目立ち、視認性が低くなる。重合体微粒子がアクリル−スチレン系共重合体微粒子である場合、アクリル−スチレン系共重合体微粒子の屈折率は1.52〜1.57であることが好ましく、より好ましくは1.53〜1.56、さらに好ましくは1.54〜1.56である。   When the polymer fine particle is an acrylic-styrene copolymer, the refractive index of the polymer fine particle can be adjusted by changing the mass ratio of the acrylic monomer to the styrene monomer in the range of 99: 1 to 1:99. When a large amount of acrylic monomer is used, the refractive index decreases, and when a large amount of styrene monomer is used, the refractive index increases. The molar ratio of the acrylic monomer to the styrene monomer is preferably 7: 3 to 2: 8, more preferably 6: 4 to 3: 7. If the copolymerization ratio of the styrenic monomer is too high, the light resistance is reduced and yellowish, and conversely if the copolymerization ratio of the acrylic monomer is too high, the polymer fine particles and the polycarbonate resin composition The difference in refractive index is too wide, and the glare of the LED light source is conspicuous and the visibility is lowered. When the polymer fine particles are acrylic-styrene copolymer fine particles, the refractive index of the acrylic-styrene copolymer fine particles is preferably 1.52-1.57, more preferably 1.53-1. 56, more preferably 1.54 to 1.56.

アクリル系モノマーとスチレン系モノマーとの共重合比の調整は、使用するモノマーの種類により異なるが、例えば、アクリル系モノマーとしてメチルメタクリレートを使用し、スチレン系モノマーとしてスチレンを使用した場合、アクリル系モノマーとスチレン系モノマーのモル比を7:3にすると重合体微粒子の屈折率は約1.52となり、アクリル系モノマーとスチレン系モノマーのモル比を3:7にすると重合体微粒子の屈折率は1.56となる。   Adjustment of the copolymerization ratio of acrylic monomer and styrene monomer varies depending on the type of monomer used. For example, when methyl methacrylate is used as the acrylic monomer and styrene is used as the styrene monomer, the acrylic monomer When the molar ratio of styrene monomer is 7: 3, the refractive index of the polymer fine particle is about 1.52, and when the molar ratio of acrylic monomer and styrene monomer is 3: 7, the refractive index of the polymer fine particle is 1 .56.

アクリル−スチレン系共重合体微粒子の構造は特に限定されないが、中実微粒子であることが好ましい。また、アクリル−スチレン系共重合体がコア部とシェル部の2層構造の微粒子である場合、シェル部がアクリルースチレン系共重合体であり、粒子径と屈折率が本発明の範囲を満足するものであれば、使用可能である。その場合、コア部は、ポリメチルメタクリレートやシリコーン系等の、シェル部より屈折率の低いものが良い。   The structure of the acrylic-styrene copolymer fine particles is not particularly limited, but solid fine particles are preferable. When the acrylic-styrene copolymer is a fine particle having a two-layer structure of a core part and a shell part, the shell part is an acrylic-styrene copolymer, and the particle diameter and refractive index satisfy the scope of the present invention. If it does, it can be used. In that case, the core part is preferably made of polymethyl methacrylate, silicone, or the like having a lower refractive index than the shell part.

アクリル−スチレン系共重合体微粒子としては、市販品を使用してもよく、上記市販品としては、例えば、アイカ工業社製ガンツパール(登録商標)シリーズ、スタフィロイド(登録商標)シリーズなどが挙げられる。   Commercially available products may be used as the acrylic-styrene copolymer fine particles, and examples of the above-mentioned commercially available products include Aika Kogyo's Gantzpearl (registered trademark) series and Staphyloid (registered trademark) series. It is done.

<その他添加剤>
本発明の光拡散性樹脂組成物には、必要に応じて例えば紫外線吸収剤、酸化防止剤、蛍光増白剤、離型剤、帯電防止剤、着色剤、熱安定剤、流動性改良剤、難燃剤、凝集防止剤等を添加してもよい。
<Other additives>
In the light diffusing resin composition of the present invention, for example, an ultraviolet absorber, an antioxidant, a fluorescent brightener, a release agent, an antistatic agent, a colorant, a heat stabilizer, a fluidity improver, if necessary. You may add a flame retardant, an aggregation inhibitor, etc.

本発明の光拡散性樹脂組成物の配合及び混練は、通常の熱可塑性樹脂に適用される方法で行うことができ、例えばリボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機等により行うことができる。混練の温度条件は通常、260〜300℃が好ましい。   The mixing and kneading of the light diffusing resin composition of the present invention can be carried out by a method applied to ordinary thermoplastic resins, such as a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, It can be carried out by a twin screw extruder, a multi-screw extruder or the like. The temperature condition for kneading is usually preferably 260 to 300 ° C.

本発明の光拡散性樹脂組成物は、一般的な熱可塑性樹脂の成形方法に供することができるが、生産性の点等から、ペレット状樹脂組成物からの射出成形、射出圧縮成形、押出成形が好適で、さらには押出成形されたシート状成形品からの真空成形、圧空成形、フリーブロー成形等を行い、光拡散部材とすることもできる。   The light diffusing resin composition of the present invention can be used for a general thermoplastic resin molding method, but from the point of productivity, injection molding, injection compression molding, extrusion molding from a pellet-shaped resin composition. It is also possible to form a light diffusing member by performing vacuum forming, pressure forming, free blow molding, or the like from an extruded sheet-like molded product.

(光拡散性樹脂組成物の光学特性)
本発明の光拡散性樹脂組成物を用いて形成された厚さ3mmの光拡散部材において、ヘイズは90%以上が好ましく、より好ましくは91%以上であり、さらに好ましくは92%以上である。ヘイズが90%未満であると、眩しさが低減されないおそれがある。ヘイズの上限は特に限定されないが99%以下が好ましい。
(Optical characteristics of light diffusing resin composition)
In the light diffusing member having a thickness of 3 mm formed using the light diffusing resin composition of the present invention, the haze is preferably 90% or more, more preferably 91% or more, and further preferably 92% or more. If the haze is less than 90%, dazzling may not be reduced. Although the upper limit of haze is not specifically limited, 99% or less is preferable.

本発明の光拡散性樹脂組成物を用いて形成された厚さ3mmの光拡散部材において、全光線透過率は92%以上が好ましく、より好ましくは93%以上であり、さらに好ましくは94%以上である。全光線透過率が92%未満であると、光量や直下照度が低下するおそれがある。全光線透過率の上限は特に限定されないが98%以下が好ましい。   In the light diffusing member having a thickness of 3 mm formed using the light diffusing resin composition of the present invention, the total light transmittance is preferably 92% or more, more preferably 93% or more, and further preferably 94% or more. It is. If the total light transmittance is less than 92%, the amount of light and the illuminance directly below may decrease. The upper limit of the total light transmittance is not particularly limited, but is preferably 98% or less.

本発明の光拡散性樹脂組成物を用いて形成された厚さ3mmの光拡散部材において、ヘイズの百分率P%と全光線透過率Q%のP×Qの値は8000以上が好ましく、より好ましくは8200以上であり、さらに好ましくは8400以上、最も好ましくは8600以上である。P×Qの値が8000未満であると、眩しさが低減されなかったり、光量や直下照度が低下したりするおそれがある。P×Qの値の上限は特に限定されないが9000以下が好ましい。   In the light diffusing member having a thickness of 3 mm formed using the light diffusing resin composition of the present invention, the value of P × Q of the haze percentage P% and the total light transmittance Q% is preferably 8000 or more, more preferably. Is 8200 or more, more preferably 8400 or more, and most preferably 8600 or more. If the value of P × Q is less than 8000, dazzling may not be reduced, or the amount of light and illuminance directly below may be reduced. The upper limit of the value of P × Q is not particularly limited, but 9000 or less is preferable.

(光拡散部材の光学特性)
本発明の光拡散性樹脂組成物を用いて形成された光拡散部材は、明細書中に記載した方法で測定される相対透過度が2〜20で、かつ配向角が15°以上70°以下であることを同時に満たすことが好ましい。
(Optical characteristics of light diffusing member)
The light diffusing member formed using the light diffusing resin composition of the present invention has a relative transmittance of 2 to 20 measured by the method described in the specification, and an orientation angle of 15 ° to 70 °. It is preferable to satisfy simultaneously.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材の相対透過度は好ましくは2以上であり、より好ましくは3以上であり、さらに好ましくは4以上である。また、相対透過度は好ましくは20以下であり、より好ましくは18以下であり、さらに好ましくは15以下である。相対透過度が2未満であると、直下照度が低下するおそれがあり、相対透過度が20を超えると眩しさが低減されないおそれがある。相対透過度の測定方法については実施例において詳述する。   The relative transmittance of the light diffusing member formed using the light diffusing resin composition of the present invention is preferably 2 or more, more preferably 3 or more, and further preferably 4 or more. Further, the relative transmittance is preferably 20 or less, more preferably 18 or less, and further preferably 15 or less. If the relative transmittance is less than 2, the illuminance directly below may decrease, and if the relative transmittance exceeds 20, the glare may not be reduced. The method for measuring the relative transmittance will be described in detail in Examples.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材の配光角は好ましくは15°以上であり、より好ましくは18°以上であり、さらに好ましくは20°以上であり、最も好ましくは22°以上である。また、配光角は好ましくは70°以下であり、より好ましくは60°以下であり、さらに好ましくは50°以下である。配光角が15°未満であると、眩しさが低減されないおそれがあり、配光角が70°を超えると直下照度が低下するおそれがある。また、レンズ部材により集光された光の配光角が大きく変化するので好ましくない。   The light distribution angle of the light diffusing member formed using the light diffusing resin composition of the present invention is preferably 15 ° or more, more preferably 18 ° or more, still more preferably 20 ° or more, most The angle is preferably 22 ° or more. The light distribution angle is preferably 70 ° or less, more preferably 60 ° or less, and further preferably 50 ° or less. If the light distribution angle is less than 15 °, glare may not be reduced, and if the light distribution angle exceeds 70 °, the illuminance directly below may decrease. Further, it is not preferable because the light distribution angle of the light collected by the lens member changes greatly.

本明細書における配光角は、実施例において記載する変角分光測色システムGCMS−4型を用いて測定される受光角度0°の状態における試料を通過する直進光の透過光強度を100%としたときに、試料を通過する透過光強度が50%になるときの直進光に対する角度を全値幅で表したものである。   The light distribution angle in the present specification is 100% of the transmitted light intensity of the straight light passing through the sample in the state of the light receiving angle of 0 ° measured using the variable angle spectrocolorimetry system GCMS-4 type described in the embodiment. , The angle with respect to straight light when the intensity of transmitted light passing through the sample is 50% is represented by the full width.

本発明においては、眩しさの評価は、光源数が1〜5個の場合は全ての光源を選択し、6個以上の場合は5個の光源を任意に選択し、それらの光源の直上部分の輝度値の内で最大輝度となる値を用いて評価する。最大輝度率とは、光拡散部材を備えていない照明装置での輝度に対する光拡散部材を備えた照明装置での最大輝度の割合を百分率で表した値のことであり、具体的な測定方法については実施例において詳述する。   In the present invention, the evaluation of glare is performed by selecting all light sources when the number of light sources is 1 to 5, and arbitrarily selecting five light sources when the number of light sources is 6 or more. It evaluates using the value which becomes the maximum brightness among the brightness values. The maximum luminance rate is a value representing the ratio of the maximum luminance in the lighting device with the light diffusing member to the luminance in the lighting device without the light diffusing member as a percentage. Are described in detail in the Examples.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材のヘイズは90%以上が好ましく、より好ましくは91%以上であり、さらに好ましくは92%以上である。ヘイズが90%未満であると、眩しさが低減されないおそれがある。ヘイズの上限は特に限定されないが99%以下が好ましい。   The haze of the light diffusing member formed using the light diffusing resin composition of the present invention is preferably 90% or more, more preferably 91% or more, and further preferably 92% or more. If the haze is less than 90%, dazzling may not be reduced. Although the upper limit of haze is not specifically limited, 99% or less is preferable.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材の全光線透過率は90%以上が好ましく、より好ましくは92%以上であり、さらに好ましくは93%以上であり、最も好ましくは94%以上である。全光線透過率が90%未満であると、光量や直下照度が低下するおそれがある。全光線透過率の上限は特に限定されないが98%以下が好ましい。   The total light transmittance of the light diffusing member formed using the light diffusing resin composition of the present invention is preferably 90% or more, more preferably 92% or more, still more preferably 93% or more, and most preferably. Is 94% or more. If the total light transmittance is less than 90%, the amount of light and the illuminance directly below may decrease. The upper limit of the total light transmittance is not particularly limited, but is preferably 98% or less.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材のヘイズの百分率P%と全光線透過率Q%のP×Qの値は8000以上が好ましく、より好ましくは8200以上であり、さらに好ましくは8400以上であり、特に好ましくは8600以上であり、最も好ましくは8800以上である。P×Qの値が8000未満であると、眩しさが低減されなかったり、光量や直下照度が低下したりするおそれがある。P×Qの値の上限は特に限定されないが9000以下が好ましい。   The value P × Q of the haze percentage P% and the total light transmittance Q% of the light diffusing member formed using the light diffusing resin composition of the present invention is preferably 8000 or more, more preferably 8200 or more. More preferably, it is 8400 or more, particularly preferably 8600 or more, and most preferably 8800 or more. If the value of P × Q is less than 8000, dazzling may not be reduced, or the amount of light and illuminance directly below may be reduced. The upper limit of the value of P × Q is not particularly limited, but 9000 or less is preferable.

(光拡散部材の厚み)
本発明の光拡散部材は、上記光拡散性樹脂組成物を用いて形成されており、光拡散部材の厚みは0.4mm以上5mm以下が好ましく、0.5mm以上、3mm以下がより好ましい。上記光拡散性樹脂組成物を用いて形成された光拡散部材は、上記範囲内の厚みであれば、相対透過度、配光角、全光線透過率などの各種物性は大きく変わらないため、用途に応じて光拡散部材の厚みを変更することが可能である。
(Thickness of light diffusion member)
The light diffusing member of the present invention is formed using the light diffusing resin composition, and the thickness of the light diffusing member is preferably from 0.4 mm to 5 mm, more preferably from 0.5 mm to 3 mm. Since the light diffusing member formed using the light diffusing resin composition has a thickness within the above range, various physical properties such as relative transmittance, light distribution angle, and total light transmittance do not greatly change. The thickness of the light diffusing member can be changed according to the above.

(光拡散部材の形状)
本発明の光拡散部材の形状は限定されず、平板であってもよいし、曲面形状等の非平面形状であってもよい。また、光拡散部材の表面形状も限定されず、平滑な表面であっても、梨地形状やマット形状等の凹凸を有する表面であってもよい。表面への凹凸の付与方法も特に限定されておらず、例えば、表面形状付与層を積層し、一定時間経過後に上記表面形状付与層を光拡散部材から剥離する方法や光拡散部材製造時に形状付与金型を用いて光拡散部材の表面に凹凸を付与する方法等が挙げられる。
(Shape of light diffusion member)
The shape of the light diffusing member of the present invention is not limited, and may be a flat plate or a non-planar shape such as a curved surface shape. Further, the surface shape of the light diffusing member is not limited, and may be a smooth surface or a surface having irregularities such as a satin shape or a mat shape. The method for imparting irregularities to the surface is not particularly limited. For example, a surface shape imparting layer is laminated, and the surface shape imparting layer is peeled off from the light diffusing member after a certain period of time, or the shape is imparted when manufacturing the light diffusing member. Examples thereof include a method of imparting irregularities to the surface of the light diffusing member using a mold.

(光拡散部材の製造方法)
本発明の光拡散部材は、上記公知の製造方法で製造することができ、例えば、溶液法、溶融法、カレンダー法などの方法を挙げることができる。
(Method for producing light diffusing member)
The light diffusing member of the present invention can be produced by the above-mentioned known production methods, and examples thereof include a solution method, a melting method, and a calendar method.

(光拡散部材の用途)
本発明の光拡散部材は、例えばLED信号灯器のレンズ又はレンズカバーのようなLEDを用いた各種表示器具用のレンズやカバー、OA機器やテレビ等のディスプレイ、液晶表示装置の光拡散シート、導光板、照明装置や照明装置のカバー、照明看板、透過型のスクリーンなどに用いられる。特に、本発明の光拡散部材は、光源として、光束が低く、指向性の高いLEDを用いたLED照明装置や表示器具のカバーやレンズとして用いると効果的である。
(Use of light diffusion member)
The light diffusing member of the present invention includes, for example, a lens or cover for various display devices using LEDs such as a lens of an LED signal lamp or a lens cover, a display such as an OA device or a television, a light diffusing sheet of a liquid crystal display device, a light guide. Used for light plates, lighting devices, lighting device covers, lighting signs, transmissive screens, and the like. In particular, the light diffusing member of the present invention is effective when used as a light source for a cover or a lens of an LED illumination device or a display device using an LED having a low luminous flux and high directivity.

(光拡散部材の設置場所及び使用方法)
本発明の光拡散部材は、点光源より光の出光する方向に設置されていればよく、例えば、点光源近傍にレンズ部材を設けて点光源から出光する光を集光させている装置においては、レンズ部材より外面(反光源側)に設置してもよいし、レンズ部材より内面(光源側)に設置してもよい。
(Installation location and usage of light diffusing member)
The light diffusing member of the present invention only needs to be installed in the direction in which light is emitted from the point light source. For example, in a device in which a lens member is provided near the point light source to collect light emitted from the point light source. The lens member may be installed on the outer surface (on the light source side), or the lens member may be installed on the inner surface (the light source side).

照明装置用部材として、本発明の光拡散部材を1枚だけ用いてもよく、複数枚用いてもよい。複数枚で用いる場合は、光拡散部材同士を重ねて用いてもよく、離して用いてもよい。また、他の光拡散部材やレンズ部材と組み合わせて用いてもよい。例えば、点光源近傍にレンズ部材を設けて点光源から出光する光を集光させている装置に対して、レンズフィルム等のレンズ部材の出光面に本発明の光拡散部材を重ね合わせて使用した場合、レンズ部材の欠点であるサイドローブの発生を抑制することができ、また、集光効果がある程度維持された状態となり、光量の低下を抑制しつつ、レンズ部材の構造に起因するぎらつきや干渉斑についても改善することができる。   As the lighting device member, only one light diffusing member of the present invention may be used, or a plurality of light diffusing members may be used. In the case of using a plurality of sheets, the light diffusing members may be used in an overlapping manner or may be used separately. Moreover, you may use in combination with another light-diffusion member or a lens member. For example, a light diffusing member of the present invention is superimposed on a light exit surface of a lens member such as a lens film for a device in which a lens member is provided in the vicinity of the point light source to collect light emitted from the point light source. In this case, it is possible to suppress the occurrence of side lobe, which is a defect of the lens member, and the condensing effect is maintained to some extent, and while suppressing the decrease in the light amount, the glare caused by the structure of the lens member Interference spots can also be improved.

(光拡散部材のその他の用途)
なお、上記ではLEDを用いた装置などについて記載したが、LED以外にも、エレクトロ・ルミネッセンス、電球、クリプトン球等からなる点光源を用いた照明装置についても、本発明の光拡散部材を、光量の低下が抑制され、かつ眩しさが低減された照明装置用部材として用いることができる。
(Other uses of light diffusion members)
In addition, although the apparatus etc. which used LED were described above, the light-diffusion member of this invention was also used for the illuminating device using the point light source which consists of electroluminescence, a light bulb, a krypton ball, etc. besides LED. Can be used as a member for a lighting device in which a decrease in brightness is suppressed and glare is reduced.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。各実施例、比較例で得られた試料についての物性測定方法は以下の通りである。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention. The physical property measurement methods for the samples obtained in each Example and Comparative Example are as follows.

(1)全光線透過率及びヘイズ
JIS K 7105に準拠して、日本電色社製ヘーズメーターNDH 2000を用いて、D65光源にて、試料の全光線透過率及びヘイズを測定した。
(1) Total light transmittance and haze Based on JISK7105, the total light transmittance and haze of the sample were measured with the D65 light source using the Nippon Denshoku haze meter NDH2000.

(2)相対透過度
変角分光測色システムGCMS−4型(株式会社村上色彩技術研究所製、変角分光光度計GPS−2型)を用いて透過光強度の測定を行った。
まず、上記GCMS−4型用の透過光拡散標準板(オパールガラス)を用いて装置の校正を行い、該透過光拡散標準板の受光角度0°における波長550nmの透過光強度Tを基準(1.000)とした。なお、上記透過拡散標準板は、積分球式分光計測で空気層を1.000とした時の波長550nmの透過率が0.3535であった。
次に、透過測定モード、光線入射角:0°(フィルム法線方向)、受光角度:−90°から90°までを5°ピッチ(フィルム法線からの極角。方位角は水平)、光源:D65、視野:2°の条件で、試料の主光拡散方向が水平方向になるように試料台に固定(試料台の軸と主光拡散方向の軸とのずれは20°程度までは許容される)し、各受光角度における波長550nmの透過光強度を測定した。あおり角は0°とし、試料の両面で表面粗度が異なる場合は、表面粗度が低い方から入光する向きで試料を固定して測定した。
そして、各受光角度における波長550nmの透過光強度の値を上記透過光強度Tの値で除することにより、相対透過度を算出した。各試料とも3回測定して相対透過度の算出を行い、その平均値とした。
(2) Relative transmittance The transmitted light intensity was measured using a variable angle spectrocolorimetric system GCMS-4 type (manufactured by Murakami Color Research Laboratory Co., Ltd., variable angle spectrophotometer GPS-2 type).
First, the GCMS-4 type transmitted light diffusion standard plate (opal glass) is calibrated, and the transmitted light intensity T at a wavelength of 550 nm at a light receiving angle of 0 ° of the transmitted light diffusion standard plate is set as a reference (1 .000). The transmission diffusion standard plate had a transmittance of 0.3535 at a wavelength of 550 nm when the air layer was set to 1.000 by integrating sphere spectroscopic measurement.
Next, transmission measurement mode, light incident angle: 0 ° (film normal direction), light receiving angle: −90 ° to 90 °, 5 ° pitch (polar angle from film normal, azimuth angle is horizontal), light source : D65, field of view: Fixed to the sample stage so that the main light diffusion direction of the sample is horizontal under the conditions of 2 ° (the deviation between the axis of the sample table and the axis of the main light diffusion direction is allowed up to about 20 ° The transmitted light intensity at a wavelength of 550 nm at each light receiving angle was measured. The tilt angle was set to 0 °, and when the surface roughness was different on both surfaces of the sample, the sample was fixed in the direction in which light entered from the surface with the lower surface roughness and measured.
Then, the relative transmittance was calculated by dividing the value of transmitted light intensity at a wavelength of 550 nm at each light receiving angle by the value of transmitted light intensity T. Each sample was measured three times to calculate the relative transmittance, and the average value was obtained.

(3)配光角
変角分光測色システムGCMS−4型を用いて、試料を通過する直進光(受光角度:0°)の波長550nmの透過光強度を100%としたとき、試料を通過する波長550nmの透過光強度が50%になるときの直進光に対する角度(全値幅)を求めて、配光角とした。
(3) Light distribution angle Using the variable angle spectrophotometric color measurement system GCMS-4, when the transmitted light intensity at a wavelength of 550 nm of the straight light passing through the sample (light receiving angle: 0 °) is 100%, it passes through the sample. The angle (total value width) with respect to straight light when the transmitted light intensity at a wavelength of 550 nm is 50% was determined as the light distribution angle.

(4)照度
変角照度計(ハイランド社製「ZERO−ONE」)を用いて、照明装置を駆動方式の試料台上に、照明装置の中心点と試料台の中心点が一致するように設置し、照明装置出光面と照度計受光面との距離:1000mm、変角範囲:−90°から90°までを5°ピッチの条件で、赤道線上及び子午線上の2方向について照度の測定を行った。赤道線と子午線との切り替えは、試料台の中心点を通り、かつ試料台に対して垂直な直線を軸として、試料台を90°回転させて行った。また、照度の測定は暗室下で行い、照明装置を点灯後30分経過後より測定を開始した。そして、角度0°の時の照度を直下照度とした。軸方向で照度が異なる場合は平均値で表示した。
(4) Illuminance Using a variable angle illuminometer (“ZERO-ONE” manufactured by Highland) so that the center point of the illumination device and the center point of the sample table coincide with each other on the drive-type sample table Install and measure the illuminance in two directions on the equator line and meridian line on the condition of 5mm pitch from the illumination device light emitting surface and the illuminometer light receiving surface: 1000mm, variable angle range: -90 ° to 90 ° went. Switching between the equator line and the meridian was performed by rotating the sample stage by 90 ° about a straight line passing through the center point of the sample stage and perpendicular to the sample stage. The illuminance was measured in a dark room, and the measurement was started 30 minutes after the lighting device was turned on. The illuminance at an angle of 0 ° was taken as the direct illuminance. When the illuminance differs in the axial direction, the average value is displayed.

(5)全光束
変角照度計(ハイランド社製「ZERO−ONE」)に付属されている計算ソフトを用いて、上記の方法で測定した照度のデータから全光束を算出した。
(5) Total luminous flux The total luminous flux was calculated from the illuminance data measured by the above method using the calculation software attached to the variable angle illuminometer ("ZERO-ONE" manufactured by Highland).

(6)最大輝度率
以下の方法で輝度を測定した。照明装置を二次元3CCD色彩輝度計測装置(ハイランド社製「RISA−COLOR/ONE−II」)の駆動方式の試料台上に、照明装置の中心点と試料台の中心点が一致するように設置した。そして、照明装置を点灯し、直上から観察し、光源部分の5個の点光源を任意に選び、該光点源の直上位置の輝度を測定した。なお、点光源の数が5個未満の場合は、全光源について輝度を測定した。輝度の測定は、二次元3CCD色彩輝度計測装置(ハイランド社製「RISA−COLOR/ONE−II」)を用いて行い、輝度が最も大きいものをL1とした。また、光拡散部材を設置しない場合の輝度を上記二次元3CCD色彩輝度計測装置を用いて測定し、その輝度をL2とした。光拡散部材設置時の最大輝度L1を光拡散部材未設置時の輝度L2で除して百分率で表したものを最大輝度率とした。
なお、光点源のスポットが見える場合は、該スポットの部分の輝度を測定した。しかし、光拡散部材の拡散度が高い場合は光源スポットの広がりが大きくなり隣の光点源のスポットと重なりスポットが見えなくなる場合がある。その場合は予め光拡散部材を設置する前の光点源スポットに位置合わせをしておき、その位置の輝度を測定することで光点源の直上位置の輝度を測定した。該輝度の測定は暗室下で行い、照明装置を点灯後30分経過後より測定を開始した。
(6) Maximum luminance rate The luminance was measured by the following method. The center point of the illumination device and the center point of the sample table coincide with each other on the sample table of the driving system of the two-dimensional 3CCD color luminance measuring device ("RISA-COLOR / ONE-II" manufactured by Highland). installed. Then, the lighting device was turned on and observed from directly above, and five point light sources in the light source portion were arbitrarily selected, and the luminance at the position directly above the light point source was measured. When the number of point light sources was less than 5, the luminance was measured for all light sources. The luminance was measured using a two-dimensional 3CCD color luminance measuring device (“RISA-COLOR / ONE-II” manufactured by Highland Corporation), and L1 was the one with the highest luminance. Moreover, the brightness | luminance when not installing a light-diffusion member was measured using the said two-dimensional 3CCD color brightness | luminance measuring apparatus, and the brightness | luminance was set to L2. The maximum luminance ratio was obtained by dividing the maximum luminance L1 when the light diffusing member was installed by the luminance L2 when the light diffusing member was not installed and expressed as a percentage.
When the spot of the light point source was visible, the brightness of the spot portion was measured. However, when the diffusivity of the light diffusing member is high, the spread of the light source spot becomes large, and the spot overlapped with the spot of the adjacent light point source may become invisible. In that case, the position of the light point source spot before the light diffusing member was set in advance, and the brightness at the position directly above the light point source was measured by measuring the brightness at that position. The luminance was measured in a dark room, and the measurement was started 30 minutes after the lighting device was turned on.

(光拡散部材A)
光拡散部材Aを以下の製造方法により作製した。屈折率1.59のポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製ユーピロン(登録商標)E−2000FN)100質量部に、リン系熱安定剤(BASF社製イルガフォス(登録商標)168)0.075質量部、オキサゾール系蛍光増白剤(日本化学工業所製ニッカフローOB)0.003質量部、質量平均粒子径8μm、屈折率1.55のアクリル−スチレン系共重合体微粒子(アイカ工業社製ガンツパール(登録商標)GSM−0855)2.3質量部を配合し、ベントとギアポンプ付きで、3本のロールを有するシート押出機で、厚さ1.0mmの拡散板の押出成形を行った。光拡散部材Aの相対透過度、配光角、全光線透過率、及びヘイズを測定し、測定結果を表1に示す。
(Light diffusion member A)
The light diffusing member A was produced by the following manufacturing method. 10075 parts by weight of a polycarbonate resin having a refractive index of 1.59 (Iupilon (registered trademark) E-2000FN manufactured by Mitsubishi Engineering Plastics) and 0.075 parts by weight of a phosphorus-based heat stabilizer (Irgaphos (registered trademark) 168 manufactured by BASF) , Oxazole-based fluorescent brightener (Nikka Flow OB manufactured by Nippon Chemical Industry Co., Ltd.) 0.003 parts by mass, acrylic-styrene copolymer fine particles having a mass average particle diameter of 8 μm and a refractive index of 1.55 (Ganzu Pearl manufactured by Aika Kogyo Co., Ltd.) (Registered trademark) GSM-0855) 2.3 parts by mass, a vent and a gear pump were attached, and a 1.0 mm thick diffusion plate was extruded using a sheet extruder having three rolls. The relative transmittance, light distribution angle, total light transmittance, and haze of the light diffusing member A were measured, and the measurement results are shown in Table 1.

(光拡散部材B)
光拡散部材Bは光拡散部材Aと同一方法で、厚さ2.0mmの拡散板の押出成形を行った。光拡散部材Bの相対透過度、配光角、全光線透過率、及びヘイズを測定し、測定結果を表1に示す。
(Light diffusion member B)
The light diffusing member B was formed by extrusion of a diffusing plate having a thickness of 2.0 mm in the same manner as the light diffusing member A. The relative transmittance, light distribution angle, total light transmittance, and haze of the light diffusing member B were measured, and the measurement results are shown in Table 1.

(光拡散部材C)
光拡散部材Cを以下の製造方法により作製した。屈折率1.59のポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製ユーピロン(登録商標)E−2000FN)100質量部に、リン系熱安定剤(BASF社製イルガフォス(登録商標)168)0.075質量部、質量平均粒子径2.0μm、屈折率1.44のシリコーン微粒子(モメンティブ・パフォーマンス・マテリアルズ社製トスパール(登録商標)120)0.5質量部を配合し、ベントとギアポンプ付きで、3本のロールを有するシート押出機で、厚さ1.0mmの拡散板の押出成形を行った。光拡散部材Cの相対透過度、配光角、全光線透過率、及びヘイズを測定し、測定結果を表1に示す。
(Light diffusion member C)
The light diffusing member C was produced by the following manufacturing method. 10075 parts by weight of a polycarbonate resin having a refractive index of 1.59 (Iupilon (registered trademark) E-2000FN manufactured by Mitsubishi Engineering Plastics) and 0.075 parts by weight of a phosphorus-based heat stabilizer (Irgaphos (registered trademark) 168 manufactured by BASF) , 0.5 parts by mass of silicone fine particles having a mass average particle diameter of 2.0 μm and a refractive index of 1.44 (Tospearl (registered trademark) 120 manufactured by Momentive Performance Materials) 3 parts with a vent and gear pump A diffusion plate having a thickness of 1.0 mm was extruded using a sheet extruder having a roll of 1 mm. The relative transmittance, light distribution angle, total light transmittance, and haze of the light diffusing member C were measured, and the measurement results are shown in Table 1.

(光拡散部材D)
光拡散部材Dは光拡散部材Cと同一方法で、厚さ2.0mmの拡散板の押出成形を行った。光拡散部材Dの相対透過度、配光角、全光線透過率、及びヘイズを測定し、測定結果を表1に示す。
(Light diffusion member D)
The light diffusing member D was formed by extrusion of a diffusing plate having a thickness of 2.0 mm in the same manner as the light diffusing member C. The relative transmittance, light distribution angle, total light transmittance, and haze of the light diffusing member D were measured, and the measurement results are shown in Table 1.

(光拡散部材E)
光拡散部材Eとして、厚さ2mmのクラレ社製メタアクリル押出板コモグラス(登録商標)DFA2を用いた。光拡散部材Eの相対透過度、配光角、全光線透過率、及びヘイズを測定した。測定結果を表1に示す。
(Light diffusion member E)
As the light diffusing member E, a 2 mm thick methacrylic extruded plate Komoglass (registered trademark) DFA2 was used. The relative transmittance, light distribution angle, total light transmittance, and haze of the light diffusing member E were measured. The measurement results are shown in Table 1.

(光拡散部材F)
光拡散部材Fとして、厚さ0.1mmのきもと社製ライトアップ(登録商標)LSE100を用いた。光拡散部材Fの相対透過度、配光角、全光線透過率、及びヘイズを測定した。測定結果を表1に示す。
(Light diffusion member F)
As the light diffusion member F, Lightup (registered trademark) LSE100 manufactured by Kimoto Co., Ltd. having a thickness of 0.1 mm was used. The relative transmittance, light distribution angle, total light transmittance, and haze of the light diffusing member F were measured. The measurement results are shown in Table 1.

(光拡散部材の厚さと光学特性との関連性)
厚さ2.0mmの光拡散部材Bにおいて、ユーピロン(登録商標)E−2000FN100質量部に対するガンツパール(登録商標)GSM−0855の含有量を0.5質量部から8質量部まで変えた以外は、光拡散部材Aと同様にしてアクリル−スチレン系共重合体微粒子の含有量のみが異なる10種類の光拡散部材を得た。そして、上記10種類の光拡散部材について、ヘイズ、全光線透過率、及び配光角を測定し、表3に示した。
(Relationship between thickness of light diffusing member and optical characteristics)
In the light diffusion member B having a thickness of 2.0 mm, except that the content of Gantzpearl (registered trademark) GSM-0855 with respect to 100 parts by mass of Iupilon (registered trademark) E-2000FN was changed from 0.5 parts by mass to 8 parts by mass. In the same manner as the light diffusing member A, 10 types of light diffusing members differing only in the content of the acrylic-styrene copolymer fine particles were obtained. And about 10 types of said light-diffusion members, haze, the total light transmittance, and the light distribution angle were measured, and it showed in Table 3.

光拡散部材Aと同一方法で、押出成形を行い、厚さ3.0mmの光拡散部材Gを作製した。厚さ3.0mmの光拡散部材Gにおいて、ユーピロン(登録商標)E−2000FN100質量部に対するガンツパール(登録商標)GSM−0855の含有量を0.5質量部から8質量部まで変えた以外は、光拡散部材Aと同様にしてアクリル−スチレン系共重合体微粒子の含有量のみが異なる10種類の光拡散部材を得た。そして、上記10種類の光拡散部材について、ヘイズ、全光線透過率、及び配光角を測定し、表3に示した。   Extrusion molding was performed by the same method as that of the light diffusing member A to produce a light diffusing member G having a thickness of 3.0 mm. In the light diffusing member G having a thickness of 3.0 mm, except that the content of Gantzpearl (registered trademark) GSM-0855 with respect to 100 parts by mass of Iupilon (registered trademark) E-2000FN was changed from 0.5 parts by mass to 8 parts by mass. In the same manner as the light diffusing member A, 10 types of light diffusing members differing only in the content of the acrylic-styrene copolymer fine particles were obtained. And about 10 types of said light-diffusion members, haze, the total light transmittance, and the light distribution angle were measured, and it showed in Table 3.

厚さ2.0mmの光拡散部材Bにおいて、ガンツパール(登録商標)GSM−0855を質量平均粒子径8.0μm、屈折率1.49のアクリル微粒子に変更し、ユーピロン(登録商標)E−2000FN100質量部に対する質量平均粒子径8.0μm、屈折率1.49の上記アクリル微粒子の含有量を0.1質量部から5質量部まで変えた以外は、光拡散部材Aと同様にしてアクリル微粒子の含有量のみが異なる11種類の光拡散部材を得た。そして、上記11種類の光拡散部材について、ヘイズ、全光線透過率、及び配光角を測定し、表4に示した。   In the light diffusion member B having a thickness of 2.0 mm, Gantzpearl (registered trademark) GSM-0855 was changed to acrylic fine particles having a mass average particle diameter of 8.0 μm and a refractive index of 1.49, and Iupilon (registered trademark) E-2000FN100. The acrylic fine particles were formed in the same manner as the light diffusing member A except that the content of the acrylic fine particles having a mass average particle diameter of 8.0 μm and a refractive index of 1.49 with respect to mass parts was changed from 0.1 parts by mass to 5 parts by mass. Eleven types of light diffusing members differing only in content were obtained. And about 11 types of said light-diffusion members, haze, a total light transmittance, and the light distribution angle were measured, and it showed in Table 4.

厚さ3.0mmの光拡散部材Gにおいて、ガンツパール(登録商標)GSM−0855を質量平均粒子径8.0μm、屈折率1.49のアクリル微粒子に変更し、ユーピロン(登録商標)E−2000FN100質量部に対する質量平均粒子径8.0μm、屈折率1.49の上記アクリル微粒子の含有量を0.1質量部から5質量部まで変えた以外は、光拡散部材Aと同様にしてアクリル微粒子の含有量のみが異なる11種類の光拡散部材を得た。そして、上記11種類の光拡散部材について、ヘイズ、全光線透過率、及び配光角を測定し、表4に示した。   In the light diffusing member G having a thickness of 3.0 mm, Gantzpearl (registered trademark) GSM-0855 was changed to acrylic fine particles having a mass average particle size of 8.0 μm and a refractive index of 1.49, and Iupilon (registered trademark) E-2000FN100. The acrylic fine particles were formed in the same manner as the light diffusing member A except that the content of the acrylic fine particles having a mass average particle diameter of 8.0 μm and a refractive index of 1.49 with respect to mass parts was changed from 0.1 parts by mass to 5 parts by mass. Eleven types of light diffusing members differing only in content were obtained. And about 11 types of said light-diffusion members, haze, a total light transmittance, and the light distribution angle were measured, and it showed in Table 4.

表4においては、表3の場合と比べて、光拡散部材が2.0mmから3.0mmへと厚くなることによって、全光線透過率の変化量が大きくなっている。   In Table 4, compared with the case of Table 3, the amount of change in the total light transmittance is increased by increasing the thickness of the light diffusing member from 2.0 mm to 3.0 mm.

このように、本発明の光拡散性樹脂組成物を用いて形成された光拡散部材は、光拡散部材の厚みが異なるものであっても、光拡散部材の光学特性は変化しにくいという特徴を有する。そのため、照明装置によって要求される光拡散部材の厚みが異なる場合であっても、本発明の光拡散性樹脂組成物を用いると、単に光拡散部材の厚みを変更するだけで、光量の低下が十分に抑制され、かつ、眩しさを大幅に低下させた光拡散部材を作製することができるため、コスト低減が可能である。   Thus, the light diffusing member formed using the light diffusing resin composition of the present invention is characterized in that the optical properties of the light diffusing member hardly change even if the thickness of the light diffusing member is different. Have. Therefore, even if the thickness of the light diffusing member required by the illumination device is different, the light diffusing resin composition of the present invention can be used to reduce the light amount simply by changing the thickness of the light diffusing member. Since a light diffusing member that is sufficiently suppressed and has greatly reduced glare can be produced, cost reduction is possible.

(実施例1−1)
東芝ライテック社製のE−CORE(登録商標)LEDユニットLDF5N−WGX53/2の出光部に嵌め込まれているフレネルレンズを取り外して、代わりに光拡散部材Aを設けた。光拡散部材Aが設けられたLEDユニットを用いて、直下照度、全光束、及び最大輝度率を測定した。測定結果を表2に示す。また、相対透過度と最大輝度率との関係を図1に、配光角と最大輝度率との関係を図2に、相対透過度と直下照度との関係を図3に、配光角と直下照度との関係を図4に示す。
(Example 1-1)
The Fresnel lens fitted in the light emission part of E-CORE (registered trademark) LED unit LDF5N-WGX53 / 2 manufactured by Toshiba Lighting & Technology was removed, and a light diffusing member A was provided instead. Using the LED unit provided with the light diffusing member A, the illuminance directly below, the total luminous flux, and the maximum luminance rate were measured. The measurement results are shown in Table 2. FIG. 1 shows the relationship between the relative transmittance and the maximum luminance rate, FIG. 2 shows the relationship between the light distribution angle and the maximum luminance rate, FIG. 3 shows the relationship between the relative transmittance and the illuminance directly below, and FIG. The relationship with the illuminance directly below is shown in FIG.

(実施例1−2)
実施例1−1において、光拡散部材Aに代えて、光拡散部材Bを設けた。実施例1−1と同様に直下照度、全光束、及び最大輝度率を測定した。測定結果を表2に示す。また、相対透過度と最大輝度率との関係を図1に、配光角と最大輝度率との関係を図2に、相対透過度と直下照度との関係を図3に、配光角と直下照度との関係を図4に示す。
(Example 1-2)
In Example 1-1, a light diffusing member B was provided instead of the light diffusing member A. Similar to Example 1-1, the illuminance directly below, the total luminous flux, and the maximum luminance ratio were measured. The measurement results are shown in Table 2. FIG. 1 shows the relationship between the relative transmittance and the maximum luminance rate, FIG. 2 shows the relationship between the light distribution angle and the maximum luminance rate, FIG. 3 shows the relationship between the relative transmittance and the illuminance directly below, and FIG. The relationship with the illuminance directly below is shown in FIG.

(比較例1−1〜1−4)
実施例1−1において、光拡散部材Aに代えて、光拡散部材C〜Fを設けた。実施例1−1と同様に直下照度、全光束、及び最大輝度率を測定した。測定結果を表2に示す。また、相対透過度と最大輝度率との関係を図1に、配光角と最大輝度率との関係を図2に、相対透過度と直下照度との関係を図3に、配光角と直下照度との関係を図4に示す。
(Comparative Examples 1-1 to 1-4)
In Example 1-1, instead of the light diffusing member A, light diffusing members C to F were provided. Similar to Example 1-1, the illuminance directly below, the total luminous flux, and the maximum luminance ratio were measured. The measurement results are shown in Table 2. FIG. 1 shows the relationship between the relative transmittance and the maximum luminance rate, FIG. 2 shows the relationship between the light distribution angle and the maximum luminance rate, FIG. 3 shows the relationship between the relative transmittance and the illuminance directly below, and FIG. The relationship with the illuminance directly below is shown in FIG.

(実施例2−1)
東芝ライテック社製のE−CORE(登録商標)LEDユニットLDF5N−WGX53/2の出光部に嵌め込まれているフレネルレンズの外面(反光源側)に光拡散部材Aを設けた。上記測定方法で透過光強度を測定し、受光角度0°の透過光強度を1とした場合の各受光角度の相対透過度を求めた。受光角度と相対透過度との関係を図5に示す。
(Example 2-1)
The light diffusing member A was provided on the outer surface (on the opposite side of the light source) of the Fresnel lens fitted in the light exit portion of the E-CORE (registered trademark) LED unit LDF5N-WGX53 / 2 manufactured by Toshiba Lighting & Technology. The transmitted light intensity was measured by the above measurement method, and the relative transmittance at each light receiving angle when the transmitted light intensity at a light receiving angle of 0 ° was set to 1 was obtained. FIG. 5 shows the relationship between the light receiving angle and the relative transmittance.

(実施例2−2)
実施例2−1において、光拡散部材Aに代えて、光拡散部材Bを設けた。実施例2−1と同様に各受光角度の相対透過度を求めた。受光角度と相対透過度との関係を図5に示す。
(Example 2-2)
In Example 2-1, a light diffusing member B was provided instead of the light diffusing member A. The relative transmittance at each light receiving angle was determined in the same manner as in Example 2-1. FIG. 5 shows the relationship between the light receiving angle and the relative transmittance.

(比較例2−1、比較例2−2)
実施例2−1において、光拡散部材Aに代えて、光拡散部材C、Dを設けた。実施例2−1と同様に各受光角度の相対透過度を求めた。受光角度と相対透過度との関係を図5に示す。
(Comparative Example 2-1 and Comparative Example 2-2)
In Example 2-1, instead of the light diffusing member A, light diffusing members C and D were provided. The relative transmittance at each light receiving angle was determined in the same manner as in Example 2-1. FIG. 5 shows the relationship between the light receiving angle and the relative transmittance.

(参考例)
東芝ライテック社製のE−CORE(登録商標)LEDユニットLDF5N−WGX53/2の出光部に嵌め込まれているフレネルレンズの光源側(内面)に光拡散部材を設けずに、実施例2−1と同様に各受光角度の相対透過度を求めた。受光角度と相対透過度との関係を図5に示す。
(Reference example)
Example 2-1 without providing a light diffusing member on the light source side (inner surface) of the Fresnel lens fitted in the light exit portion of the E-CORE (registered trademark) LED unit LDF5N-WGX53 / 2 manufactured by Toshiba Lighting & Technology Corp. Similarly, the relative transmittance at each light receiving angle was obtained. FIG. 5 shows the relationship between the light receiving angle and the relative transmittance.

図1〜図4より、本発明で用いられる光拡散部材の光学特性が好ましい範囲を満たすことにより本発明の目的である光量の低下の抑制と眩しさの低減という二律背反事象の特性を両立することができた。また、図1〜図4では、本発明で用いられる光拡散部材における光学特性の臨界性についても示された。さらに、図5より、光学特性が好ましい範囲を満たす光拡散部材を用いることにより、フレネルレンズにより集光された狭い配光角分布が維持されることが示された。   From FIG. 1 to FIG. 4, by satisfying the preferable range of the optical characteristics of the light diffusing member used in the present invention, it is possible to achieve both the characteristics of the antinomy event, which is the object of the present invention, that is to suppress the decrease in light quantity and to reduce the glare. I was able to. 1 to 4 also show the criticality of the optical characteristics of the light diffusing member used in the present invention. Furthermore, it was shown from FIG. 5 that a narrow light distribution angle distribution collected by the Fresnel lens is maintained by using a light diffusing member that satisfies a preferable range of optical characteristics.

(光拡散部材を用いた場合の光の進み方)
図6に示すような光の進み方が容易に目視できる装置を用いて、光拡散部材Bを用いた場合の光の進み方と光拡散部材Dを用いた場合の光の進み方とを測定した。図6の装置は、下方投影板1と、下方投影板1に垂直になるように設けられた後方投影板2と、下方投影板1に平行かつ後方投影板2に垂直になるように設けられた、本発明の実施例に記載の光拡散部材(光拡散板)3と、光拡散部材3に平行になるように反下方投影板1側に設けられた、板厚方向に直径5mmの穴が空いた反射板4と、反射板4に対して出射光が垂直に進むように反光拡散部材3側に設けられたGENTOS社製LED懐中電灯5とから構成されている。この装置を用いると、懐中電灯5から出た光は、反射板4の穴を通過し、その後、光拡散部材3を通過し、最後に下方投影板1に到達する。なお、下方投影板1に到達する光の進行を妨げない位置に後方投影板2は設けられており、後方投影板2は取り外し可能である。
(How light travels when a light diffusing member is used)
Using an apparatus in which the way of light as shown in FIG. 6 can be easily visually observed, the way of light when the light diffusing member B is used and the way of light when the light diffusing member D is used are measured. did. The apparatus of FIG. 6 is provided so as to be parallel to the lower projection plate 1, the rear projection plate 2 provided so as to be perpendicular to the lower projection plate 1, and perpendicular to the rear projection plate 2. Further, a light diffusion member (light diffusion plate) 3 described in the embodiment of the present invention and a hole having a diameter of 5 mm in the plate thickness direction provided on the anti-lower projection plate 1 side so as to be parallel to the light diffusion member 3 Is made up of a reflective plate 4 having a gap and an LED flashlight 5 made by GENTOS provided on the side of the anti-light diffusing member 3 so that outgoing light travels perpendicularly to the reflective plate 4. When this device is used, the light emitted from the flashlight 5 passes through the hole of the reflecting plate 4, then passes through the light diffusing member 3, and finally reaches the lower projection plate 1. In addition, the rear projection plate 2 is provided at a position that does not hinder the progress of the light reaching the lower projection plate 1, and the rear projection plate 2 is removable.

図7(a)〜(d)を見てもわかるように、実施例1−2の光拡散部材Bを用いた場合には、下方投影板1が明るく照らされており、光量の低下が抑制されている。反面、比較例1−2の光拡散部材Dを用いた場合には、下方投影板1が明るく照らされておらず、光は拡散してしまっており、光量の低下が著しい。   As can be seen from FIGS. 7A to 7D, when the light diffusing member B of Example 1-2 is used, the lower projection plate 1 is brightly illuminated, and a decrease in the amount of light is suppressed. Has been. On the other hand, when the light diffusing member D of Comparative Example 1-2 is used, the lower projection plate 1 is not brightly illuminated, the light has diffused, and the amount of light is significantly reduced.

本発明の光拡散性樹脂組成物を用いて形成された光拡散部材を照明装置に用いることにより、照明装置から出射される光量の低下が抑制され、かつ眩しさも低減できた。また、点光源近傍にレンズ部材を設置して点光源から出光する光を集光させている装置に対して本発明の光拡散部材を用いた場合においても、集光効果がある程度維持された状態となり、さらに、光量の低下が抑制され、かつ眩しさも低減できた。本発明の光拡散部材は、LEDを用いた信号灯器のレンズもしくはレンズカバー、照明カバー、照明看板、透過型のスクリーン、各種ディスプレイ、液晶表示装置の光拡散シート、導光板などの各種照明装置に適用可能である。   By using the light diffusing member formed using the light diffusing resin composition of the present invention for an illuminating device, a decrease in the amount of light emitted from the illuminating device was suppressed, and the glare could be reduced. In addition, even when the light diffusing member of the present invention is used for a device in which a lens member is installed in the vicinity of the point light source and the light emitted from the point light source is condensed, the light collecting effect is maintained to some extent Furthermore, the decrease in the amount of light was suppressed, and the glare could be reduced. The light diffusing member of the present invention is applied to various lighting devices such as a lens or lens cover of a signal lamp using LEDs, a lighting cover, a lighting signboard, a transmissive screen, various displays, a light diffusing sheet of a liquid crystal display device, and a light guide plate. Applicable.

Claims (6)

ポリカーボネート樹脂と、ポリカーボネート樹脂との屈折率差が0.01以上0.08以下で、質量平均粒子径が6μm以上10μm以下であるアクリル−スチレン系共重合体微粒子とを含んでおり、
上記ポリカーボネート樹脂100質量部に対する上記微粒子の含有量が2質量部以上2.5質量部以下である光拡散性ポリカーボネート樹脂組成物であって、
上記光拡散性ポリカーボネート樹脂組成物を用いて形成された厚さ3mmの光拡散部材の全光線透過率が92%以上かつヘイズが92%以上であり、
厚さ3mmの上記光拡散部材を通過する直進光の波長550nmの透過光強度を100%としたとき、上記光拡散部材を通過する上記透過光強度が50%になるときの上記直進光に対する角度が36°以上である
ことを特徴とする光拡散性ポリカーボネート樹脂組成物。
A refractive index difference between the polycarbonate resin and the polycarbonate resin is 0.01 to 0.08 and acrylic-styrene copolymer fine particles having a mass average particle diameter of 6 μm to 10 μm.
A top Symbol light diffusing polycarbonate resin composition content is more than 2.5 parts by mass or more 2 parts by weight of the fine particles to the polycarbonate resin 100 parts by weight,
The light diffusing member having a thickness of 3 mm formed using the light diffusing polycarbonate resin composition has a total light transmittance of 92% or more and a haze of 92% or more,
Angle with respect to the straight light when the intensity of the transmitted light passing through the light diffusing member becomes 50% when the transmitted light intensity at a wavelength of 550 nm of the straight light passing through the light diffusing member having a thickness of 3 mm is 100% Is a light diffusing polycarbonate resin composition characterized by being 36 ° or more .
請求項1に記載の光拡散性ポリカーボネート樹脂組成物を用いて形成された厚さ3mmの光拡散部材において、ヘイズの百分率P%と全光線透過率Q%のP×Qの値が8000以上となる光拡散性ポリカーボネート樹脂組成物。 In the light diffusing member having a thickness of 3 mm formed using the light diffusing polycarbonate resin composition according to claim 1, the value of P × Q of the haze percentage P% and the total light transmittance Q% is 8000 or more. A light diffusing polycarbonate resin composition. 請求項1又は2に記載の光拡散性ポリカーボネート樹脂組成物を用いて形成された光拡散部材であって、上記光拡散部材の変角分光測色システムで測定される受光角度0°における波長550nmの透過光強度の値をオパールガラスの受光角度0°における波長550nmの透過光強度の値で除した相対透過度が2以上20以下であることを特徴とする光拡散部材。 A light diffusing member which is formed by using a light diffusing polycarbonate resin composition according to claim 1 or 2, wavelength 550nm at the light receiving angle 0 ° as measured by variable angle spectroscopic colorimetry system of the light diffusing member light diffusing member, wherein the relative permeability obtained by dividing the value of the transmitted light intensity values of the transmitted light intensity of the wavelength 550nm of the light-receiving angle 0 ° of opal glass is 2 to 20. 請求項に記載の光拡散部材であって、ヘイズが90%以上である光拡散部材。 4. The light diffusing member according to claim 3 , wherein the haze is 90% or more. 請求項3又は4に記載の光拡散部材であって、全光線透過率が90%以上である光拡散部材。 The light diffusing member according to claim 3 or 4 , wherein the total light transmittance is 90% or more. 請求項3〜5のいずれか1項に記載の光拡散部材であって、厚みが0.4〜5mmである光拡散部材。 The light diffusion member according to any one of claims 3 to 5 , wherein the light diffusion member has a thickness of 0.4 to 5 mm.
JP2014124341A 2014-06-17 2014-06-17 Light diffusing polycarbonate resin composition and light diffusing member using the same Active JP6358867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124341A JP6358867B2 (en) 2014-06-17 2014-06-17 Light diffusing polycarbonate resin composition and light diffusing member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124341A JP6358867B2 (en) 2014-06-17 2014-06-17 Light diffusing polycarbonate resin composition and light diffusing member using the same

Publications (2)

Publication Number Publication Date
JP2016003281A JP2016003281A (en) 2016-01-12
JP6358867B2 true JP6358867B2 (en) 2018-07-18

Family

ID=55222819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124341A Active JP6358867B2 (en) 2014-06-17 2014-06-17 Light diffusing polycarbonate resin composition and light diffusing member using the same

Country Status (1)

Country Link
JP (1) JP6358867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110106A (en) * 2015-12-16 2017-06-22 日本ポリエステル株式会社 Light diffusive polycarbonate resin composition and light diffusing member using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247999A (en) * 2004-03-04 2005-09-15 Mitsubishi Engineering Plastics Corp Light diffusing resin composition
JP4914027B2 (en) * 2005-06-08 2012-04-11 出光興産株式会社 Light diffusing polycarbonate resin composition and light diffusing plate using the resin composition
JP5063873B2 (en) * 2005-07-05 2012-10-31 出光興産株式会社 Light diffusing polycarbonate resin composition and light diffusing plate using the resin composition
JP5417928B2 (en) * 2009-03-26 2014-02-19 三菱エンジニアリングプラスチックス株式会社 Light diffusing polycarbonate resin composition
JP5428047B2 (en) * 2009-05-29 2014-02-26 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition pellets for rotational molding
JP2012111881A (en) * 2010-11-25 2012-06-14 Fujifilm Corp Light-diffusible resin composition and light-diffusing member
JP2012014195A (en) * 2011-10-03 2012-01-19 Mitsubishi Engineering Plastics Corp Light diffusing member using light diffusing resin composition

Also Published As

Publication number Publication date
JP2016003281A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
TWI427333B (en) Point light source with light diffusion plate and straight type point light source backlight device
KR100977321B1 (en) Light transmitting resin board
JP2005247999A (en) Light diffusing resin composition
TW201131223A (en) Patterned light guide panel, manufacturing method thereof, and LCD back light unit including the same
TWI437278B (en) Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof
KR100808328B1 (en) Light Diffusing Plate
KR102472940B1 (en) Light diffusion plate and backlight unit
JP2007329016A (en) Back light unit
KR100994909B1 (en) Multi-layered light diffusion plate having improved thermal resistance and liguid crystal display containing the same
JP2016170907A (en) Luminaire
JP6358867B2 (en) Light diffusing polycarbonate resin composition and light diffusing member using the same
JP2008130488A (en) Light-diffusing plate, surface light source device, and liquid crystal display device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
JP2010197919A (en) Optical sheet and backlight unit using the same
JP2006063122A (en) Light-diffusing resin composition and light-diffusing member obtained using the same
JP2008233708A (en) Diffusion plate with double-sided configuration
JP2011133556A (en) Optical sheet, backlight unit, display device, and die
KR101068635B1 (en) High brightness diffussion film improved engraving proportion and Preparing thereof
JP2017110106A (en) Light diffusive polycarbonate resin composition and light diffusing member using the same
JP2005321451A (en) Hazy anisotropic transparent resin film
JP5644092B2 (en) Light diffusing film and laminated sheet for backlight device and backlight device using the same
JP2012042783A (en) Optical sheet, optical sheet manufacturing method, light source device with the optical sheet, and display device
KR101069934B1 (en) Diffuser sheet with multi-function
JP2009133977A (en) Optical sheet and back light unit using same
KR101102008B1 (en) Diffusion film having diffusing and shielding function and Preparing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250