JP2008233708A - Diffusion plate with double-sided configuration - Google Patents

Diffusion plate with double-sided configuration Download PDF

Info

Publication number
JP2008233708A
JP2008233708A JP2007075817A JP2007075817A JP2008233708A JP 2008233708 A JP2008233708 A JP 2008233708A JP 2007075817 A JP2007075817 A JP 2007075817A JP 2007075817 A JP2007075817 A JP 2007075817A JP 2008233708 A JP2008233708 A JP 2008233708A
Authority
JP
Japan
Prior art keywords
diffusion plate
linear
liquid crystal
light source
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007075817A
Other languages
Japanese (ja)
Inventor
Masahiro Miyauchi
雅弘 宮内
Nao Shirokura
奈央 白倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007075817A priority Critical patent/JP2008233708A/en
Publication of JP2008233708A publication Critical patent/JP2008233708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffusion plate for a direct backlight type liquid crystal display, which can completely remove lamp variations while preventing luminance drops. <P>SOLUTION: The diffusion plate is loaded on the direct backlight type liquid crystal display configured by successively arranging a reflector, linear light sources, the diffusion plate, an optical film, and a liquid crystal panel. In the diffusion plate, a linear prism shape with an apex angle of 50° to 150° is formed on the surface of the diffusion plate, which is the contact side with the optical film, and linear lens shapes whose height is 0.2 to 20 μm are formed on the surface of the diffusion plate, which is the side opposed to the linear light sources. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液晶ディスプレイに搭載される拡散板に関する。   The present invention relates to a diffusion plate mounted on a liquid crystal display.

近年、ブラウン管に変わり液晶テレビやプラズマテレビといった平面薄型テレビが拡大し、特に液晶テレビが急成長している。液晶というのは自発光ではないのでバックライト(背面光源装置とも呼ぶ)が必要であり、バックライトにはエッジライト型と直下型の2つが一般的に用いられている。
エッジライト型は液晶パネルのエッジに線状光源を置き導光板で面発光させる方法で、薄くて軽いパソコンモニターなどに好適とされるが、大画面化や高輝度化が困難といわれている。一方、直下型は液晶パネル直下に線状光源を多数本並べ、拡散板で面発光させる方法で、大画面化や高輝度化に対応が容易で液晶テレビ用に好まれて使われている。
In recent years, flat-panel televisions such as liquid crystal televisions and plasma televisions have been expanded instead of cathode-ray tubes, and particularly liquid crystal televisions are growing rapidly. Since the liquid crystal is not self-luminous, a backlight (also referred to as a back light source device) is necessary, and two types of backlight, an edge light type and a direct type, are generally used.
The edge light type is a method in which a linear light source is placed on the edge of a liquid crystal panel and surface light is emitted by a light guide plate. It is suitable for a thin and light personal computer monitor, but it is said that it is difficult to increase the screen size and brightness. On the other hand, the direct type is a method in which a large number of linear light sources are arranged directly under a liquid crystal panel and surface emission is performed with a diffusion plate. It is easily used for large screens and high brightness and is preferred for liquid crystal televisions.

直下型バックライト式液晶ディスプレイの構造は図1に示すような反射板、線状光源、拡散板、光学フィルム、液晶パネルが順に配設された構造をしている。その部品の中でも拡散板は、線状光源の光を散乱し、線状光源真上の明線と隣り合う線状光源間隙にできる線状の明暗(いわゆるランプムラ)をぼかし、均斉を向上させる重要な光学的役割を持っている。
近年、コストダウンのためバックライトに使われる線状光源を削減する動きがあり、隣り合う線状光源の間隔(いわゆるランプピッチ)が広がる傾向にあり、ランプピッチが広がるとランプムラが目立つため液晶テレビの品位上問題となっていた。そこで、特許文献1では、拡散材を配合した樹脂拡散板が一般に広く用いられていたが、ランプムラを解消する方法として、光拡散剤を濃くする手法が行われた。しかし、この方法では輝度が低下するという問題があった。
The structure of the direct type backlight type liquid crystal display has a structure in which a reflector, a linear light source, a diffusion plate, an optical film, and a liquid crystal panel are sequentially arranged as shown in FIG. Among the components, the diffuser diffuses the light from the linear light source and blurs the linear light and darkness (so-called lamp unevenness) that forms in the linear light source gap adjacent to the bright line directly above the linear light source. Have an optical role.
In recent years, there has been a movement to reduce the number of linear light sources used in backlights for cost reduction, and there is a tendency to increase the spacing between adjacent linear light sources (so-called lamp pitch). It was a problem in terms of quality. Therefore, in Patent Document 1, a resin diffusion plate in which a diffusion material is blended is generally widely used. However, as a method for eliminating lamp unevenness, a method of thickening a light diffusing agent has been performed. However, this method has a problem that the luminance is lowered.

特許文献2では、拡散板表面にプリズム形状をつけ、プリズムによる光の集光機能によって輝度低下を防ぎ、かつランプムラの解消を図った高機能板の開発も行われている。しかし、まだランプムラを完全に消すまでには至っていない。
特開平1−172801号公報 特開2007−18939号公報
In Patent Document 2, a high-functional plate is also developed in which a prism shape is formed on the surface of the diffusion plate, luminance reduction is prevented by a light condensing function of the prism, and lamp unevenness is eliminated. However, the lamp unevenness has not yet been completely eliminated.
Japanese Patent Laid-Open No. 1-172801 JP 2007-18939 A

本発明は、輝度低下を防ぎかつランプムラを完全に消すことのできる直下型バックライト式液晶ディスプレイ用の拡散板を提供することを目的とする。   An object of the present invention is to provide a diffusing plate for a direct-type backlight type liquid crystal display that can prevent a decrease in luminance and completely eliminate lamp unevenness.

本発明者らは、前記課題を解決するため鋭意研究の結果、拡散板表面にプリズム形状、該プリズム面と反対側の面に微細な線状レンズ形状を形成することにより、高輝度でかつランプムラを完全に消すことができることを見出し、本発明をなすに至った。
すなわち本発明は、反射板、線状光源、拡散板、光学フィルム、液晶パネルの順に配設された直下型バックライト式液晶ディスプレイに搭載される拡散板であって、該拡散板が光学フィルムと接する側の表面に頂角50〜150度の線状プリズム形状が賦型されており、さらに拡散板の線状光源と対峙する側の表面に山高さが0.2〜20μmの線状レンズ形状が賦型されていることを特徴とする拡散板、である。
As a result of diligent research to solve the above problems, the present inventors have formed a prism shape on the surface of the diffusion plate and a fine linear lens shape on the surface opposite to the prism surface, thereby achieving high brightness and lamp unevenness. Has been found to be able to be completely eliminated, and the present invention has been made.
That is, the present invention is a diffusion plate mounted on a direct-type backlight type liquid crystal display arranged in the order of a reflector, a linear light source, a diffusion plate, an optical film, and a liquid crystal panel, and the diffusion plate is an optical film. A linear prism shape with an apex angle of 50 to 150 degrees is formed on the surface in contact with the surface, and a linear lens shape with a peak height of 0.2 to 20 μm on the surface of the diffusion plate facing the linear light source Is a diffusion plate characterized by being shaped.

本発明の拡散板を用いると、直下型バックライト式液晶ディスプレイにおいて輝度の低下を防ぎ、かつランプムラを完全に消すことができる。   When the diffusion plate of the present invention is used, it is possible to prevent a decrease in luminance in a direct backlight type liquid crystal display and to completely eliminate lamp unevenness.

本発明について、以下詳細に説明する。
液晶テレビに多く用いられている直下型バックライト式液晶ディスプレイとは、直下型バックライトと呼ばれる背面光源装置に液晶パネルが組み合わされた構造をしており、図1に示す通りディスプレイ内側から反射板、線状光源、拡散板、光学フィルム、液晶パネルが順に配設されている。このうち反射板から光学フィルムまでを一般に直下型バックライトと呼び、液晶パネルを組合せ一体化されたものを液晶ディスプレイと呼ぶ。
反射板は金属板に反射材が塗布されているものや、白色や銀色のポリエチレンテレフタレート(PET)系もしくはポリカーボネート(PC)系の反射フィルムが使われる。
線状光源とは線状の形をした光源で、液晶ディスプレイに用いられる線状光源として最も一般的なのは冷陰極管(略称CCFL)と呼ばれる直径2〜4mmの蛍光管である。冷陰極管には直線状やU字管、W字管などあり線状の部分が長いほど大画面用に好まれる。
拡散板は上記線状光源の光を散乱させ、線状の光源を面状の光源に変換する重要な光学部材である。拡散板は透光性樹脂に光拡散材として光拡散微粒子が配合されているものが好ましい。
The present invention will be described in detail below.
A direct-type backlight type liquid crystal display often used in a liquid crystal television has a structure in which a liquid crystal panel is combined with a back light source device called a direct-type backlight. As shown in FIG. A linear light source, a diffusion plate, an optical film, and a liquid crystal panel are arranged in this order. Of these, the reflector to the optical film are generally called a direct backlight, and a liquid crystal display combined with a liquid crystal panel is called a liquid crystal display.
As the reflector, a metal plate coated with a reflector or a white or silver polyethylene terephthalate (PET) or polycarbonate (PC) reflector film is used.
A linear light source is a light source having a linear shape, and the most common linear light source used in a liquid crystal display is a fluorescent tube having a diameter of 2 to 4 mm called a cold cathode tube (abbreviated as CCFL). Cold cathode tubes include straight lines, U-shaped tubes, W-shaped tubes, etc., and the longer the linear portion, the more preferred for large screens.
The diffusion plate is an important optical member that scatters the light from the linear light source and converts the linear light source into a planar light source. The diffusing plate is preferably one in which light diffusing fine particles are blended as a light diffusing material in a translucent resin.

透光性樹脂としては、光学特性、特に透過率が高いアクリル系樹脂、スチレン−メチルメタクリレート共重合樹脂(MS樹脂)、スチレン系樹脂、PC系樹脂、環状オレフィン系樹脂などが好ましく、TV内部での吸水による変形を防ぐ観点から、吸水率の低いスチレン系樹脂、MS樹脂、PC系樹脂、環状オレフィン系樹脂がより好ましい。
透光性樹脂に配合することが好ましい光拡散微粒子は、有機系、無機系いずれの微粒子でもよく、例えばアクリル系架橋微粒子、MS系架橋微粒子、スチレン系架橋微粒子、シリコーン系架橋微粒子、炭酸カルシウム、酸化チタン、硫酸バリウム、タルク、マイカなどが挙げられる。
As the translucent resin, an acrylic resin, a styrene-methyl methacrylate copolymer resin (MS resin), a styrene resin, a PC resin, a cyclic olefin resin, etc. with high optical characteristics, particularly high transmittance, are preferable. From the viewpoint of preventing deformation due to water absorption, styrene resins, MS resins, PC resins, and cyclic olefin resins having a low water absorption are more preferable.
The light diffusing fine particles preferably blended in the translucent resin may be either organic or inorganic fine particles, such as acrylic crosslinked fine particles, MS crosslinked fine particles, styrene crosslinked fine particles, silicone crosslinked fine particles, calcium carbonate, Examples thereof include titanium oxide, barium sulfate, talc, and mica.

光拡散微粒子は、真球状、球状、楕円状、扁平形状、鱗片形状、多角形状、立方体、直方体が好ましく、その粒径は光散乱性能が良好な1〜30μmが好ましい。光拡散微粒子の配合量は、輝度低下を防ぐため、透光性樹脂100重量部に対し3重量部以下であることが好ましい。
拡散板は上記透光性樹脂に上記光拡散材(光拡散微粒子)を配合した単一のシートであってもよいが、耐光性改良や表面硬度改良のため積層シートであってもよい。特に耐光性改良のため紫外線吸収剤を配合した10〜100μmの表面層を積層することはより好ましい。拡散板の板厚は1.0〜3.0mmが好ましく、1.0〜2.0mmがより好ましい。
The light diffusing fine particles are preferably spherical, spherical, elliptical, flat, scaly, polygonal, cubic, and rectangular parallelepiped, and the particle diameter is preferably 1 to 30 μm with good light scattering performance. The blending amount of the light diffusing fine particles is preferably 3 parts by weight or less with respect to 100 parts by weight of the translucent resin in order to prevent a decrease in luminance.
The diffusion plate may be a single sheet in which the light diffusing material (light diffusing fine particles) is blended with the translucent resin, but may be a laminated sheet for improving light resistance and surface hardness. In particular, it is more preferable to laminate a 10 to 100 μm surface layer containing an ultraviolet absorber for improving light resistance. The thickness of the diffusion plate is preferably 1.0 to 3.0 mm, and more preferably 1.0 to 2.0 mm.

拡散板と液晶パネルの間に配設される光学フィルムは、拡散板を透過してきた光を更に散乱もしくは集光させる拡散フィルム、散乱光を集光させるプリズムフィルム、反射型偏光フィルムなどいわゆる輝度を向上させるフィルムなど高機能な複数のフィルム群である。ランプムラと呼ばれる線状光源の透けを防止するため、各種光学フィルムの組合せによる検討も行われているが、コストダウンの要求が強いテレビ向けの用途においては、光学フィルムを削減する要望が強く、光学フィルムによるランプムラ解消は厳しくなっている。
更に光学フィルムのその上に液晶パネルが乗り液晶ディスプレイとなるが、液晶パネルの透過率が低いため、液晶ディスプレイとしての明るさ、つまり輝度を上げるためには直下型バックライトの輝度を上げる必要がある。
The optical film disposed between the diffusion plate and the liquid crystal panel has a so-called brightness such as a diffusion film that further scatters or collects light transmitted through the diffusion plate, a prism film that collects scattered light, and a reflective polarizing film. A plurality of highly functional film groups such as a film to be improved. In order to prevent the transmission of a linear light source called lamp unevenness, various combinations of optical films have been studied. However, there is a strong demand for reducing optical films in TV applications where there is a strong demand for cost reduction. Eliminating lamp unevenness with film is becoming stricter.
Furthermore, a liquid crystal panel is placed on top of the optical film to become a liquid crystal display. However, since the transmittance of the liquid crystal panel is low, it is necessary to increase the brightness of the direct type backlight in order to increase the brightness as the liquid crystal display, that is, the brightness. is there.

直下型バックライトの輝度を上げる方法の一つは、線状光源の設置本数を増やすことである。現状、32インチ液晶テレビ用の液晶ディスプレイにおいては、各社の液晶パネルの透過率によって差はあるが16〜20本もの線状光源が設置されている。液晶テレビとして一般に求められる輝度は500cd以上といわれており、そのためには直下型バックライトに求められる輝度は5000〜15000cdともいわれ、特に高精細な液晶パネルを使う場合においては、より高輝度な直下型バックライトが必要である。線状光源の設置本数を増やせば当然この必要輝度は確保できるが、近年の液晶テレビの市場価格を考えると、線状光源は一本でも多く削減しコストダウンをはかることが強く求められている。   One way to increase the brightness of the direct type backlight is to increase the number of linear light sources. At present, in liquid crystal displays for 32-inch liquid crystal televisions, as many as 16 to 20 linear light sources are installed depending on the transmittance of the liquid crystal panels of each company. The luminance generally required for a liquid crystal television is said to be 500 cd or more, and for that purpose, the luminance required for a direct type backlight is also said to be 5000 to 15000 cd. A mold backlight is required. Naturally, this required brightness can be secured by increasing the number of linear light sources installed, but considering the recent market price of LCD TVs, there is a strong demand to reduce the number of linear light sources and reduce costs. .

本発明で解決すべき課題として挙げているランプムラとは、液晶ディスプレイの画面上に内に配設された線状光源、いわゆるランプがぼんやりとムラのように透けて見える現象のことをいう。
線状光源の真上は明るく、隣り合う線状光源との間隙、いわゆるランプ間が暗くなり、明暗が縞模様のように画面上に現れるのが一般的なランプムラと呼ばれる現象である。光学フィルムの組合せによっては、ランプ間が逆に明るく、線状光源真上が暗くなり、やはり縞模様のランプムラが見える場合もある。
いずれのランプムラも、その原因は主に拡散板にあるといわれている。つまり拡散板の光散乱機能が弱く、線状光源を均斉のとれた面発光にすることができないことがランプムラの大きな原因の一つといわれる。そのため、従来は拡散板に配合する光拡散材の屈折率や粒径、量を再設計しランプムラの解消に取り組んできた。
The lamp unevenness mentioned as a problem to be solved by the present invention refers to a phenomenon in which a linear light source, that is, a so-called lamp disposed on the screen of a liquid crystal display can be seen transparently like unevenness.
It is a general phenomenon called lamp unevenness that the light directly above the linear light source is bright, the gap between adjacent linear light sources, that is, the so-called lamps become dark, and light and dark appear on the screen like a stripe pattern. Depending on the combination of the optical films, the distance between the lamps may be brighter, the line light source may be darkened, and striped lamp unevenness may be seen.
It is said that the cause of any lamp unevenness is mainly the diffusion plate. That is, it is said that one of the major causes of lamp unevenness is that the light scattering function of the diffusion plate is weak and the linear light source cannot be made uniform surface emission. Therefore, conventionally, the refractive index, particle size, and amount of the light diffusing material blended in the diffusion plate have been redesigned to eliminate the lamp unevenness.

しかし、線状光源の本数が削減されると、隣り合う線状光源の間隔、いわゆるランプ間隔は2倍近く広がり、しかも少ない本数で従来どおりの輝度を達成するために、線状光源一本一本を明るくする必要がある。ランプピッチが広がると、当然ランプ間隙の暗い部分が増えるため、ランプムラは大きくなり、なおかつ光源が明るくなるため、ランプムラはよりはっきりする。そのため、これまで以上にランプムラの解決が重要である。   However, when the number of linear light sources is reduced, the interval between adjacent linear light sources, so-called lamp intervals, is nearly doubled, and in order to achieve the conventional brightness with a small number of linear light sources, one by one. The book needs to be brightened. As the lamp pitch increases, the dark part of the lamp gap naturally increases, so that the lamp unevenness increases and the light source becomes brighter, so the lamp unevenness becomes clearer. Therefore, it is more important than ever to solve the lamp unevenness.

光拡散材の増量によるランプムラの解決方法では、ランプムラは解決できても輝度が全く目標に到達できず、従来からの拡散板の設計では、このランプ削減モデルへの適用が困難であった。本発明では、ランプ削減の要望にこたえるため、従来の光拡散材による拡散板の設計だけではなく、光をコントロールすることを提案している。つまり、本発明の拡散板は、入光面にあたる線状光源側の表面に微細な線状レンズ形状を形成し、出光面にあたる光学フィルム側の表面に線状プリズム形状を形成することにより、線状光源から入射する光の光路をレンズとプリズム両方の反射屈折機能を用いて大きく変えるものである。   In the method of solving the lamp unevenness by increasing the amount of the light diffusing material, even if the lamp unevenness can be solved, the brightness cannot reach the target at all, and the conventional diffuser design has been difficult to apply to this lamp reduction model. In the present invention, in order to meet the demand for lamp reduction, it is proposed not only to design a diffusion plate using a conventional light diffusing material but also to control light. That is, the diffusion plate of the present invention forms a fine linear lens shape on the surface of the linear light source side corresponding to the light incident surface, and forms a linear prism shape on the surface of the optical film side corresponding to the light output surface. The optical path of light incident from the light source is greatly changed using the catadioptric function of both the lens and the prism.

プリズム形状は拡散板の光学フィルムと接する面、つまり線状光源とは反対側の面に形成することが必要である。また、線状プリズム形状の方向は線状光源と並行になるよう形成されることが好ましい。
均斉のとれた面発光にするためには、プリズム形状の頂角は50〜150度であることが必要であり、プリズム形状の頂角が50度以上であるとランプ間隙に光を集光でき、150度以下であるとランプの真上に光を集中させない。好ましくは55〜130度、より好ましくは60度〜120度である。
The prism shape needs to be formed on the surface of the diffusion plate that contacts the optical film, that is, the surface opposite to the linear light source. The direction of the linear prism shape is preferably formed so as to be parallel to the linear light source.
In order to achieve uniform surface emission, the apex angle of the prism shape needs to be 50 to 150 degrees. If the apex angle of the prism shape is 50 degrees or more, light can be condensed in the lamp gap. If the angle is 150 degrees or less, the light is not concentrated right above the lamp. Preferably it is 55 to 130 degrees, more preferably 60 to 120 degrees.

拡散板表面に形成する線状プリズムの形状は、全て同じ頂角の線状プリズムであってもよいし、集光機能を分散するため複数の頂角をもったプリズム形状を組み合わせたものでもよい。プリズム形状の組合せの場合、一列ずつ異なる形状のプリズム形状を並べたり、複数列ずつ組み合わせたり、順番に組み合わせた形状にしてもよい。
線状プリズム形状は拡散板全面にあってもよいが、ランプムラを極小化するためランプの真上だけやランプの間隙だけに形成されてもよい。
線状プリズム形状のピッチは成形性から50〜400μmが好ましい。
The linear prisms formed on the surface of the diffusion plate may be all linear prisms having the same apex angle, or may be a combination of prism shapes having a plurality of apex angles to disperse the light collecting function. . In the case of a combination of prism shapes, prism shapes having different shapes one by one may be arranged, a plurality of rows may be combined, or shapes may be combined in order.
The linear prism shape may be on the entire surface of the diffusion plate, but may be formed only directly above the lamp or only in the gap of the lamp in order to minimize lamp unevenness.
The pitch of the linear prism shape is preferably 50 to 400 μm in view of moldability.

拡散板表面にプリズム形状を形成する方法には、押出賦型、UV造型、熱転写、圧縮成形、削りだし、エッチングその他各種方法が挙げられる。
押出賦型や熱転写は、拡散板を作製する押出し工程の中で、切削加工やエッチングによってプリズム形状を彫り込んだ金型ロールいわゆるプリズムロールの表面形状を拡散板表面に転写し冷却固化させる連続賦型プロセスである。
UV造型は、連続押出し工程でも枚葉のバッチ工程でもよいが、冷却固化ではなく紫外線硬化によってプリズム形状を拡散板表面に形成する方法である。
圧縮成形は、プリズム形状を彫り込んだ平面金型、いわゆるプリズム金型を拡散板表面に熱圧縮して形状を形成する方法である。
拡散板表面にプリズム形状が形成されると、プリズム形状には光散乱効果もあるため光拡散材を減量することもできる。つまりはランプムラを小さくし透過率を上げるつまり輝度を上げることが同時に可能である。
プリズムロールやプリズム金型を作製する方法は、切削加工、エッチング、放電加工など所定のプリズム形状が掘り込めるのであればいずれの方法で加工しても構わない。
Examples of the method for forming the prism shape on the surface of the diffusion plate include extrusion molding, UV molding, thermal transfer, compression molding, shaving, etching and various other methods.
Extrusion molding or thermal transfer is a continuous molding in which the surface shape of a so-called prism roll, which is engraved with a prism shape by cutting or etching, is transferred to the surface of the diffusion plate and cooled and solidified in the extrusion process for producing the diffusion plate. Is a process.
UV molding may be a continuous extrusion process or a single wafer batch process, but is a method of forming a prism shape on the surface of the diffusion plate by ultraviolet curing rather than cooling and solidification.
Compression molding is a method of forming a shape by thermally compressing a flat die engraved with a prism shape, a so-called prism die, on the surface of the diffusion plate.
When the prism shape is formed on the surface of the diffusion plate, the light diffusion material can be reduced because the prism shape also has a light scattering effect. In other words, it is possible to simultaneously reduce the lamp unevenness and increase the transmittance, that is, increase the luminance.
As a method of manufacturing the prism roll and the prism mold, any method may be used as long as a predetermined prism shape can be dug, such as cutting, etching, and electric discharge machining.

本発明者らは、更に驚くべきことに線状プリズム形状の反対面、つまり線状光源側の面に、微細な線状レンズ形状を形成することにより、ランプムラを完全に消すことができることを見出した。
微細な線状レンズ形状は、線状プリズム形状面とは反対、拡散板表面の線状光源側の面に形成され、該線状レンズ形状の山高さが0.2〜20μmであるとランプムラを完全に解消することができる。好ましくは0.3〜15μm、より好ましくは0.5〜12μmである。線状レンズ形状のピッチは成形性から10〜400μmが好ましく、線の長さは100μm以上であることが好ましい。
The present inventors have surprisingly found that the lamp unevenness can be completely eliminated by forming a fine linear lens shape on the opposite surface of the linear prism shape, that is, the surface on the linear light source side. It was.
The fine linear lens shape is formed on the surface of the diffuser plate on the side of the linear light source opposite to the linear prism shape surface. If the peak height of the linear lens shape is 0.2 to 20 μm, lamp unevenness is caused. It can be completely eliminated. Preferably it is 0.3-15 micrometers, More preferably, it is 0.5-12 micrometers. The pitch of the linear lens shape is preferably 10 to 400 μm from the viewpoint of moldability, and the length of the line is preferably 100 μm or more.

線状レンズ形状は線状光源と並行に形成されることが好ましいが、モアレを防ぐため、好ましくは0.3度以下、より好ましくは0.2度以下の角度で交差させるとなおよい。
線状レンズ形状を形成する方法にはいくつかあるが、プリズム面同様に拡散板の押出し工程の中で、上述した微細線状レンズ形状を彫り込んだ金型ロール、いわゆるレンズロールの表面形状を拡散板表面に転写し、冷却固化させる連続賦型プロセスや、枚葉で上述の微細線状レンズ形状を彫り込んだレンズ金型を用い拡散板表面にプレス成形する方法が好ましい。
金型ロールの表面を微細な線状レンズ形状に掘り込む方法は、切削加工やエッチングなどの方法がある。金型に掘り込む形状はレンズ状が好ましいが、樹脂は冷却固化する際に収縮し、自由曲面を形成するため、掘り込む形状が微細な三角柱形状や四角柱、多角柱形状であっても賦型された形状は自由曲面によってなるレンズ形状になる。
The linear lens shape is preferably formed in parallel with the linear light source. However, in order to prevent moire, it is more preferable that the linear lens shape intersect at an angle of 0.3 degrees or less, more preferably 0.2 degrees or less.
There are several methods for forming the linear lens shape, but the surface shape of the so-called lens roll, which is a mold roll engraved with the fine linear lens shape described above, is diffused during the diffusion plate extrusion process as with the prism surface. A continuous molding process of transferring to the surface of the plate and cooling and solidification, or a method of press molding on the surface of the diffusion plate using a lens mold in which the above-mentioned fine linear lens shape is engraved with a single wafer is preferable.
As a method of digging the surface of the mold roll into a fine linear lens shape, there are methods such as cutting and etching. The shape of the digging into the mold is preferably a lens shape, but since the resin shrinks when cooled and solidified to form a free-form surface, even if the digging shape is a fine triangular prism shape, quadrangular prism shape or polygonal prism shape, The molded shape becomes a lens shape made of a free-form surface.

本発明は、線状光源に対峙する面の微細な線状レンズ形状で、線状光源から入射される光をまず散らし、透過する光をプリズム面でさらに散乱集光させて拡散板から出光することが、完全にランプムラを消すポイントである。   The present invention has a fine linear lens shape on the surface facing the linear light source, first scatters the light incident from the linear light source, and further scatters and condenses the transmitted light on the prism surface to be emitted from the diffusion plate. This is the point to completely eliminate the lamp unevenness.

本発明を実施例に基づいて説明する。
[測定方法]
実施例及び比較例で使用する各測定項目の測定方法は以下のとおりである。
1.プリズム頂角の測定
拡散板断面形状を反射型投影機によって映し出し、映し出された断面のプリズム形状の頂角を、分度器を用いて測定した。
2.レンズ山高さの測定
プリズム頂角同様に、拡散板断面形状を反射型投影機によって映し出し、映し出された微細レンズ形状の山と山を結ぶ線と、谷と谷を結ぶ線の線間距離をレンズの山高さとして0.01μmまで測定できるマイクロメータにて測定した。
3.輝度の測定
輝度計(トプコン社製BM−7)を用い、50cm離れた位置からテレビ中央部の輝度を測定した。
4.ランプムラの測定
目視で○(見えない)、△(見える)、×(明らかに見える)で評価するとともに、2次元面輝度計(サイバネット社製プロメトリック)を用い、画面全体の面輝度値を測定する。測定した面輝度について、うねり成分との差分を取りその標準偏差を計算した値をランプムラ値として数値化した。ランプムラ値は当然小さければ小さいほどランプムラがないことを表しており、目視で判定したランプムラとの関係を示すとランプムラ値が0.02以下であればほぼランプムラは見えず、更に0.01以下になると全くランプムラを見ることはない。逆に0.03を超えるとランプムラが徐々に見え出し、0.1を超えてしまうと誰の目にもランプムラが明らかであった。
The present invention will be described based on examples.
[Measuring method]
The measurement method of each measurement item used in Examples and Comparative Examples is as follows.
1. Measurement of prism apex angle The cross-sectional shape of the diffuser plate was projected by a reflection type projector, and the apex angle of the prism shape of the projected cross section was measured using a protractor.
2. Measurement of lens crest height Similar to the prism apex angle, the cross-sectional shape of the diffuser is projected by a reflective projector, and the distance between the line connecting the peak and peak of the projected fine lens shape and the line connecting the trough and valley is determined by the lens. It measured with the micrometer which can be measured to 0.01 micrometer as a peak height of.
3. Measurement of luminance Using a luminance meter (BM-7 manufactured by Topcon Corporation), the luminance of the central portion of the television was measured from a position 50 cm away.
4). Measurement of lamp unevenness Evaluate visually with ○ (not visible), △ (visible), and × (visiblely visible) and measure the surface luminance value of the entire screen using a two-dimensional surface luminance meter (Cybernet Prometric). . For the measured surface brightness, the difference between the waviness component and the calculated standard deviation was digitized as the lamp unevenness value. Naturally, the smaller the lamp unevenness value is, the smaller the lamp unevenness is, and the relationship with the visually determined lamp unevenness indicates that if the lamp unevenness value is 0.02 or less, almost no lamp unevenness is seen, and further 0.01 or less. Then you will not see any lamp unevenness. Conversely, when it exceeded 0.03, lamp unevenness gradually appeared, and when it exceeded 0.1, lamp unevenness was obvious to anyone's eyes.

[実施例1]
透光性樹脂としてポリスチレン樹脂(PSジャパン社製GPPS)100重量部に、拡散材としてシリコーン系架橋微粒子(信越化学社製KMP、平均粒子径2μm)1重量部を配合し押出機に投入した。
押出機で溶融混練された樹脂をシート用Tダイと呼ばれる金型で拡幅吐出し、3本の冷却ロールに巻きつけ接触させることによって板厚1.5mmのシート状の拡散板に成形した。
このとき、冷却ロールの1本には全面にあらかじめ頂角120度ピッチ100μmの線状プリズム形状を切削加工によって掘り込んでおり(プリズムロールと呼ぶ)、またプリズムロールと対向する冷却ロールの一本には同じく全面全周に切削加工によって山高さ5μm、ピッチ30μmの線状レンズ形状を彫り込み(レンズロールと呼ぶ)、このプリズムロールとレンズロールの間を通すようにシートを押出し成形することによって片面には頂角120度の線状プリズム形状、もう片面には山高さ5μmの線状レンズ形状が形成された両面形状の拡散板を作製した。
[Example 1]
1 part by weight of silicone-based crosslinked fine particles (KMP manufactured by Shin-Etsu Chemical Co., Ltd., average particle diameter: 2 μm) as a diffusing agent was blended in 100 parts by weight of a polystyrene resin (PSPS manufactured by PS Japan Co., Ltd.) as a translucent resin, and charged into an extruder.
The resin melt-kneaded by the extruder was widened and discharged by a mold called a sheet T-die, wound around three cooling rolls, and formed into a sheet-like diffusion plate having a thickness of 1.5 mm.
At this time, a linear prism shape having an apex angle of 120 degrees and a pitch of 100 μm is dug in advance on one surface of the cooling roll (referred to as a prism roll), and one cooling roll facing the prism roll is provided. In the same way, a linear lens shape having a peak height of 5 μm and a pitch of 30 μm is engraved on the entire circumference by a cutting process (called a lens roll), and a sheet is extruded and molded so as to pass between the prism roll and the lens roll. Was prepared as a double-sided diffuser plate in which a linear prism shape with an apex angle of 120 degrees and a linear lens shape with a peak height of 5 μm were formed on the other side.

このようにして作製した両面形状付き拡散板を市販の32インチ液晶テレビに搭載し輝度とランプムラを測定した。
この32インチ液晶テレビには、白色PET製反射シートに線状光源として直径3mmの冷陰極管12本がピッチ33mm間隔で平行に並べられており、その上に拡散板、光学フィルムとして拡散フィルム、プリズムフィルム、反射偏光フィルムが順次配設され、その上にVAタイプの液晶パネルが搭載された構造のものを用いた。
上記のように作製された両面形状付き拡散板を、線状プリズム形状面が光学フィルムと接するように、線状レンズ形状面が線状光源と対峙するように搭載し、画面中央部の輝度を輝度計(トプコン社製BM7)で測定したところ510cdであった。またランプムラ値は0.001でありランプムラは全く見えなかった。
評価結果を表1に示した。
The double-sided diffuser plate thus produced was mounted on a commercially available 32-inch liquid crystal television and the brightness and lamp unevenness were measured.
In this 32-inch liquid crystal television, 12 cold cathode fluorescent lamps having a diameter of 3 mm are arranged in parallel at a pitch of 33 mm as a linear light source on a reflection sheet made of white PET, and a diffusion plate, a diffusion film as an optical film, A prism film and a reflective polarizing film were sequentially disposed, and a VA type liquid crystal panel mounted thereon was used.
The diffusion plate with a double-sided shape manufactured as described above is mounted so that the linear lens-shaped surface faces the linear light source so that the linear prism-shaped surface is in contact with the optical film, and the brightness at the center of the screen is increased. It was 510 cd when measured with a luminance meter (BM7 manufactured by Topcon). The lamp unevenness value was 0.001, and no lamp unevenness was seen.
The evaluation results are shown in Table 1.

[比較例1]
押出し工程においてレンズロールではなく鏡面の平滑冷却ロールを使った以外は実施例1と同様に行い、片面に線状プリズム形状が賦型された拡散板を得た。当然逆面には線状レンズ形状はなくわずかに高さ0.08μmのうねりを持った平面であった。
この裏が平らなプリズム頂角120度の形状つきPS拡散板を、実施例1と同様に市販の32インチ液晶テレビに実装し、輝度とランプムラ値を測定したところ、輝度520cd、ランプムラ値0.1、ランプムラは目視で見える結果だった。
結果を表1に示す。
[Comparative Example 1]
Except for using a mirror surface smooth cooling roll instead of a lens roll in the extrusion process, the same procedure as in Example 1 was performed to obtain a diffusion plate having a linear prism shape on one side. Of course, the opposite surface had no linear lens shape and was a flat surface with a slight undulation of 0.08 μm in height.
The PS diffuser plate having a flat prism apex angle of 120 degrees on the back was mounted on a commercially available 32-inch liquid crystal television in the same manner as in Example 1, and the luminance and lamp unevenness value were measured. 1. The lamp unevenness was a result visually visible.
The results are shown in Table 1.

[実施例2〜7]、[比較例2]
レンズロールに掘り込む山高さを変えた以外は実施例1と同様に行った。
評価結果を表1に示す。
[Examples 2 to 7], [Comparative Example 2]
The same operation as in Example 1 was performed except that the height of the digging into the lens roll was changed.
The evaluation results are shown in Table 1.

[実施例8〜10]、[比較例3〜4]
プリズムロールのプリズム頂角を変えた以外は実施例1と同様に行った。
評価結果を表1に示す。
[Examples 8 to 10], [Comparative Examples 3 to 4]
The same operation as in Example 1 was performed except that the prism apex angle of the prism roll was changed.
The evaluation results are shown in Table 1.

[比較例5]
表面にプリズム形状はなく、両面ともRa=0.1の凹凸がついた市販のスチレン系の拡散板を用いて同様に評価を行った。該拡散板を搭載した32インチ液晶テレビの輝度は450cdであり、ランプムラ値は0.02で、少しランプムラが見えた。
[Comparative Example 5]
Evaluation was made in the same manner using a commercially available styrene-based diffuser plate having no prism shape on the surface and having irregularities of Ra = 0.1 on both surfaces. The luminance of the 32-inch liquid crystal television equipped with the diffusion plate was 450 cd, the lamp unevenness value was 0.02, and a little lamp unevenness was seen.

Figure 2008233708
Figure 2008233708

本発明の拡散板は、直下型バックライト式液晶ディスプレイの拡散板として好適に利用できる。   The diffusion plate of the present invention can be suitably used as a diffusion plate for a direct type backlight type liquid crystal display.

本発明の拡散板を搭載した直下型バックライト式液晶ディスプレイの平面模式図。FIG. 3 is a schematic plan view of a direct-type backlight type liquid crystal display equipped with the diffusion plate of the present invention.

符号の説明Explanation of symbols

1 液晶パネル
2 光学フィルム
3 本発明の拡散板
4 線状光源(冷陰極管)
5 反射板
6 筐体
7 線状プリズム形状
8 線状レンズ形状
DESCRIPTION OF SYMBOLS 1 Liquid crystal panel 2 Optical film 3 Diffusion plate of this invention 4 Linear light source (cold-cathode tube)
5 Reflector 6 Case 7 Linear prism shape 8 Linear lens shape

Claims (1)

反射板、線状光源、拡散板、光学フィルム、液晶パネルの順に配設された直下型バックライト式液晶ディスプレイに搭載される拡散板であって、該拡散板が光学フィルムと接する側の表面に頂角50〜150度の線状プリズム形状が賦型されており、さらに拡散板の線状光源と対峙する側の表面に山高さが0.2〜20μmの線状レンズ形状が賦型されていることを特徴とする拡散板。   A diffusing plate mounted on a direct-type backlight type liquid crystal display arranged in the order of a reflector, a linear light source, a diffusing plate, an optical film, and a liquid crystal panel, the diffusing plate on the surface in contact with the optical film A linear prism shape with an apex angle of 50 to 150 degrees is molded, and a linear lens shape with a peak height of 0.2 to 20 μm is molded on the surface of the diffusion plate facing the linear light source. A diffusion plate characterized by having
JP2007075817A 2007-03-23 2007-03-23 Diffusion plate with double-sided configuration Pending JP2008233708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075817A JP2008233708A (en) 2007-03-23 2007-03-23 Diffusion plate with double-sided configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075817A JP2008233708A (en) 2007-03-23 2007-03-23 Diffusion plate with double-sided configuration

Publications (1)

Publication Number Publication Date
JP2008233708A true JP2008233708A (en) 2008-10-02

Family

ID=39906533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075817A Pending JP2008233708A (en) 2007-03-23 2007-03-23 Diffusion plate with double-sided configuration

Country Status (1)

Country Link
JP (1) JP2008233708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176085A (en) * 2009-02-02 2010-08-12 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device
JP2011056842A (en) * 2009-09-11 2011-03-24 Toppan Printing Co Ltd Apparatus for manufacturing optical sheet, optical sheet, backlight unit, display device, and optical sheet manufacturing method
JP2011081036A (en) * 2009-10-02 2011-04-21 Jiroo Corporate Plan:Kk Optical unit and backlight unit using the same
JP2012038626A (en) * 2010-08-09 2012-02-23 Sony Corp Optical element, method for manufacturing the same, illumination device, window material, and fitting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176085A (en) * 2009-02-02 2010-08-12 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device
JP2011056842A (en) * 2009-09-11 2011-03-24 Toppan Printing Co Ltd Apparatus for manufacturing optical sheet, optical sheet, backlight unit, display device, and optical sheet manufacturing method
JP2011081036A (en) * 2009-10-02 2011-04-21 Jiroo Corporate Plan:Kk Optical unit and backlight unit using the same
JP2012038626A (en) * 2010-08-09 2012-02-23 Sony Corp Optical element, method for manufacturing the same, illumination device, window material, and fitting

Similar Documents

Publication Publication Date Title
TWI494615B (en) Optical prism sheet having a certain roughness thereon
KR100977321B1 (en) Light transmitting resin board
US7545460B2 (en) Liquid crystal display, optical sheet manufacturing method, and optical sheet
EP1586920B1 (en) Lighting system, image display apparatus using the same and light diffuson plate used therefor
KR100864321B1 (en) Diffuser prism sheet comprising amorphous light diffuser on the valley of prism and lcd back light unit thereby
CN102308232B (en) Optical component, lighting device, and display device
TWI388883B (en) Prism sheet having inclined ridges and liquid crystal display using the same
JP2013225058A (en) Optical plate and direct point light source backlight device
JP2010210882A (en) Optical sheet and display using the same
JP2007294295A (en) Direct-downward backlight device
JP5614128B2 (en) Optical sheet, backlight unit and display device
JPWO2008047794A1 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP2008233708A (en) Diffusion plate with double-sided configuration
JP2009265212A (en) Frictional flaw resistant prism sheet
JP2008304501A (en) Diffusion plate
JP2009123397A (en) Illumination device, and image display device using it
JP2011150077A (en) Optical sheet, backlight unit and display device
JP2008242002A (en) Diffusion plate with prism
JP2011133556A (en) Optical sheet, backlight unit, display device, and die
JP5791386B2 (en) Direct type point light source backlight device
JP2010113126A (en) Scratch-resistant prism sheet and method for producing the same
JP2008241900A (en) Diffusion plate with prism shape
JP2009069347A (en) Optical sheet and backlight unit using the same
JP2008304500A (en) Diffusion plate
JP2013073819A (en) Optical sheet, backlight unit, and liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401