JP6357691B2 - リン化合物及びその遷移金属錯体 - Google Patents

リン化合物及びその遷移金属錯体 Download PDF

Info

Publication number
JP6357691B2
JP6357691B2 JP2014091768A JP2014091768A JP6357691B2 JP 6357691 B2 JP6357691 B2 JP 6357691B2 JP 2014091768 A JP2014091768 A JP 2014091768A JP 2014091768 A JP2014091768 A JP 2014091768A JP 6357691 B2 JP6357691 B2 JP 6357691B2
Authority
JP
Japan
Prior art keywords
group
reaction
substituent
solution
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014091768A
Other languages
English (en)
Other versions
JP2015209395A (ja
Inventor
裕治 中山
裕治 中山
直太 横山
直太 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp filed Critical Takasago International Corp
Priority to JP2014091768A priority Critical patent/JP6357691B2/ja
Priority to US14/638,761 priority patent/US9416148B2/en
Priority to EP15158028.9A priority patent/EP2937355B1/en
Publication of JP2015209395A publication Critical patent/JP2015209395A/ja
Application granted granted Critical
Publication of JP6357691B2 publication Critical patent/JP6357691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • C07F9/5728Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5031Arylalkane phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、新規なリン化合物及び該リン化合物を配位子として有する遷移金属錯体に関する。
今日、遷移金属種と配位子から構成される種々の遷移金属錯体が有機合成反応の触媒として使用されている。このような触媒の性能あるいは活性を発現させる因子として、金属錯体における遷移金属種のみならず配位子が重要な役割を果たすことがよく知られている。このため、これまでにもリン化合物をはじめとする数多くの配位性化合物が配位子として開発されている。更に、金属錯体触媒による有機合成反応においては、適切な遷移金属種と配位子を組み合わせることで、多種多様な基質に対して最適な触媒を構築可能であるため、現在でもその研究開発が盛んに行われている。遷移金属は有限の種類しかないため、触媒的有機合成反応の工業化においては、配位子の多様性が反応の最適化及び効率化に大きく寄与することとなる。しかしながら実際には、これまでに開発されてきた配位子を用いても、反応によっては触媒の活性や反応の選択性が十分ではない場合がある。仮に、配位子の性能が極めて効率的であったとしても、その配位子が容易かつ安価に大量製造出来ない限りは、工業的な触媒的有機合成反応に適用することは困難である。以上の観点より現在でもなお、容易かつ安価に大量製造可能であり、効率的な配位子として使用可能な新規リン化合物の開発が強く望まれている状況である。
このようなリン化合物の一例として、Fuk Yee Kwongらによって開発された、下記一般式(2)(式中、Rはアルキル基又はアリール基を表す)で表される(N−(2−ホスフィノフェニル)カルバゾール類が挙げられる(非特許文献1)。このリン化合物は、遷移金属の一種であるパラジウムを触媒として用いたハロゲン化アリールとアリールホウ酸とのクロスカップリング反応(鈴木−宮浦カップリング反応)において、極めて効率的な配位子として機能することが報告されている。しかしながらその合成は、高温長時間を要し反応選択性及び単離収率に乏しいUllmann反応や、極低温を必要とするハロゲン−リチウム交換及びホスフィノ化反応が必要となるため、このリン化合物を安価に大量製造することは極めて困難であった。
Sheung Chun and Fuk Yee Kwong, "Highly efficient carbazolyl-derived phosphine ligands: applications to sterically hindered biaryl couplings", Chemical Communications, 2011, 47, 5079
本発明は上記の課題に鑑み為されたものである。すなわち、容易かつ安価に大量製造可能であり、更に触媒的有機合成反応において有用な配位子及び、有機合成反応における有用な触媒として使用可能な、リン化合物及びその遷移金属錯体を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、下記一般式(1)で表される新規なリン化合物が容易かつ安価に合成可能であるだけでなく、優れた性能を有する配位子となることを見出した。更に、このリン化合物を配位子とする遷移金属錯体が、有機合成反応における優れた触媒、例えばクロスカップリング反応等に極めて有用な触媒となることを見出し、本発明を完成するに至った。
すなわち本発明は、以下の[1]〜[6]を含むものである。
[1]一般式(1)で表されることを特徴とするリン化合物。
(式中、R1及びR2は各々独立して水素原子、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基又はハロゲノ基を表す。R3はアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表す。R4、R5、R6、R7、R8、R9及びR10は各々独立して水素原子、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表す。Nは窒素原子を表し、Pはリン原子を表す。Yは孤立電子対、オキソ基又はチオキソ基を表す。Zはオキシ基又はチオキシ基を表す。R1とR2は互いに結合して、置換基を有してもよい、Pを含む環を形成してもよい。R4とR5、R5とR6、R7とR8、R8とR9、及びR9とR10は互いに結合して、ベンゼン環又はピロール環と縮環した、置換基を有してもよい不飽和炭化水素環を形成してもよい。)
[2]R1及びR2が各々独立してアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基を表し、Yが孤立電子対であることを特徴とする、前記[1]に記載のリン化合物。
[3]Zがオキシ基であることを特徴とする、前記[1]又は[2]に記載のリン化合物。
[4]前記[1]〜[3]のいずれか1項に記載のリン化合物を配位子として有する遷移金属錯体。
[5]遷移金属が、鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金及び金から構成される群から選ばれることを特徴とする、前記[4]に記載の遷移金属錯体。
[6]遷移金属がパラジウムであることを特徴とする、前記[5]に記載の遷移金属錯体。
上記一般式(1)で表される新規なリン化合物(以下、本発明のリン化合物(1)と称す)は、具体的にはR3Z基(R3はアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表し、Zはオキシ基又はチオキシ基を表す)の効果により、上記一般式(2)で表される既知のリン化合物(以下、従来化合物(2)と称す)と比較して容易かつ安価に製造可能であり、これまで問題となっていたUllmann反応及び極低温反応を回避することが可能となった。このR3Z基は、本発明のリン化合物の製造の効率化のみならず、その配位子としての性能向上にも寄与することが明らかとなった。例えば、本発明のリン化合物(1)のうち、R3Z基以外の部分構造が従来化合物(2)と一致するものを鈴木−宮浦カップリング反応における配位子として用いたところ、従来化合物(2)よりも触媒活性が1.9倍以上向上することが判明した。更に、パラジウムを触媒として用いたハロゲン化アリールとアミン類とのクロスカップリング反応(Buchwald−Hartwigアミノ化反応)においては、不純物の副生量を従来化合物(2)と比較して10分の1以下に抑制することが明らかとなった。
すなわち本発明のリン化合物(1)は、遷移金属種による触媒的有機合成反応における配位子として有用である上に容易に製造可能であり、また本発明のリン化合物(1)を配位子とする遷移金属錯体(以下、本発明の錯体(3)と称す)は有機合成反応における触媒として有用である。例えば、遷移金属の一種であるパラジウムと本発明のリン化合物(1)との錯体は、クロスカップリング反応等における触媒として極めて有用であり、これらの反応によって芳香族化合物等を効率的に製造可能である。
以下、本発明のリン化合物(1)について更に詳細に説明する。
一般式(1)中、R1及びR2は各々独立して水素原子、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基又はハロゲノ基を表し、好ましくはアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基を表し、より好ましくはアルキル基又は置換基を有してもよいアリール基を表す。
アルキル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数1〜30のアルキル基、好ましくは炭素数1〜20のアルキル基、より好ましくは炭素数1〜10のアルキル基が挙げられ、具体的にはメチル(Me)基、エチル基、n−プロピル基、2−プロピル(iPr)基、シクロプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル(tBu)基、シクロブチル基、n―ペンチル基、2−ペンチル基、3−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2−メチルブタン−3−イル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、tert−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基、2−メチルペンタン−4−イル基、3−メチルペンタン−2−イル基、3−メチルペンタン−3−イル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、2,2−ジメチルブタン−3−イル基、シクロヘキシル(Cy)基、1−アダマンチル(1−Ad)基及び2−アダマンチル(2−Ad)基等が挙げられ、好ましい具体例としては2−プロピル基及びシクロヘキシル基等が挙げられる。
アルケニル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数2〜20のアルケニル基、好ましくは炭素数2〜14のアルケニル基、より好ましくは炭素数2〜8のアルケニル基が挙げられ、具体的にはビニル基、1−プロペニル基、2−プロペニル基、アリル基、1−シクロヘキセニル基、1−スチリル基及び2−スチリル基等が挙げられる。
アリール基としては、例えば炭素数6〜18のアリール基、好ましくは炭素数6〜14のアリール基、より好ましくは炭素数6〜12のアリール基が挙げられ、具体的にはフェニル(Ph)基、1−ナフチル基、2−ナフチル基、2−ビフェニル基及び4−ビフェニル基等が挙げられ、好ましい具体例としてはフェニル基が挙げられる。
ヘテロアリール基としては、例えば炭素数1〜12のヘテロアリール基、好ましくは炭素数2〜10のヘテロアリール基、より好ましくは炭素数4〜8のヘテロアリール基が挙げられ、具体的には2−フリル基、3−フリル基、2−チエニル基、3−チエニル基、2−ベンゾフリル基、3−ベンゾフリル基、2−ベンゾチエニル基及び3−ベンゾチエニル基等が挙げられる。
アラルキル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数7〜24のアラルキル基、好ましくは炭素数7〜16のアラルキル基、より好ましくは炭素数7〜13のアラルキル基が挙げられ、具体的にはベンジル(Bn)基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルプロピル基、2−フェニルプロピル基、3−フェニルプロピル基、1−フェニル−2−プロピル基、2−フェニル−2−プロピル基、1−フェニルシクロプロピル基、2−フェニルシクロプロピル基、1−インダニル基、2−インダニル基、1,1−ジメチル−2−フェニルエチル基及び9−フルオレニル基等が挙げられる。
アルコキシ基としては、例えば炭素数1〜10のアルコキシ基、好ましくは炭素数1〜4のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、1−プロポキシ基、2−プロポキシ基、1−ブトキシ基、2−ブトキシ基及びtert−ブトキシ基等が挙げられる。
ハロゲノ基としてはフルオロ基、クロロ基、ブロモ基及びヨード基が挙げられる。
1及びR2は互いに結合して、置換基を有してもよい、リン原子を含む環を形成してもよい。このような環の具体例としては、ホスホラン環、ホスホール環、ホスフィナン環及びホスフィニン環等が挙げられる。
1及びR2におけるアルケニル基、アリール基、ヘテロアリール基、アラルキル基及びアルコキシ基、並びにR1及びR2が互いに結合して形成するリン原子を含む環が有していてもよい置換基としては、アルキル基、ハロゲノアルキル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基及びハロゲノ基等が挙げられる。これらの置換基の内、アルキル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基及びハロゲノ基は、R1及びR2の詳細な説明におけるものと同様である。ハロゲノアルキル基としては、前記アルキル基の少なくとも一つの水素原子がハロゲン原子によって置換された基が挙げられ、具体的にはトリフルオロメチル基等が挙げられる。
一般式(1)中、R3はアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表し、好ましくはアルキル基を表す。
アルキル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数1〜30のアルキル基、好ましくは炭素数1〜20のアルキル基、より好ましくは炭素数1〜10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n−プロピル基、2−プロピル基、シクロプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、シクロブチル基、n―ペンチル基、2−ペンチル基、3−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2−メチルブタン−3−イル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、tert−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基、2−メチルペンタン−4−イル基、3−メチルペンタン−2−イル基、3−メチルペンタン−3−イル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、2,2−ジメチルブタン−3−イル基、シクロヘキシル基、1−アダマンチル基及び2−アダマンチル基等が挙げられ、好ましい具体例としてはメチル基、2−プロピル基及びtert−ブチル基等が挙げられる。
アリール基としては、例えば炭素数6〜18のアリール基、好ましくは炭素数6〜14のアリール基、より好ましくは炭素数6〜10のアリール基が挙げられ、具体的にはフェニル基、1−ナフチル基及び2−ナフチル基等が挙げられる。
アラルキル基としては、直鎖状でも分岐状でもよい、例えば炭素数7〜24のアラルキル基、好ましくは炭素数7〜16のアラルキル基、より好ましくは炭素数7〜10のアラルキル基が挙げられ、具体的にはベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルプロピル基、2−フェニルプロピル基、3−フェニルプロピル基、1−フェニル−2−プロピル基、2−フェニル−2−プロピル基、1,1−ジメチル−2−フェニルエチル基等が挙げられる。
3におけるアリール基及びアラルキル基が有していてもよい置換基としては、アルキル基、アリール基及びアラルキル基が挙げられ、これらの置換基はR3の詳細な説明におけるものと同様である。
一般式(1)中、R4〜R10は各々独立して水素原子、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表し、好ましくは水素原子、アルキル基及び置換基を有してもよいアルケニル基を表し、より好ましくはR4〜R6は水素原子を表し、R7〜R10は水素原子、アルキル基及び置換基を有してもよいアルケニル基を表す。
アルキル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数1〜30のアルキル基、好ましくは炭素数1〜20のアルキル基、より好ましくは炭素数1〜6のアルキル基が挙げられ、具体的にはメチル基、エチル基、n−プロピル基、2−プロピル基、シクロプロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、シクロブチル基、n―ペンチル基、2−ペンチル基、3−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2−メチルブタン−3−イル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、tert−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基、2−メチルペンタン−4−イル基、3−メチルペンタン−2−イル基、3−メチルペンタン−3−イル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、2,2−ジメチルブタン−3−イル基及びシクロヘキシル基等が挙げられ、好ましい具体例としてはメチル基、エチル基及びn−プロピル基等が挙げられる。
アルケニル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数2〜20のアルケニル基、好ましくは炭素数2〜14のアルケニル基、より好ましくは炭素数2〜8のアルケニル基が挙げられ、具体的にはビニル基、1−プロペニル基、2−プロペニル基、アリル基、1−シクロヘキセニル基、1−スチリル基及び2−スチリル基等が挙げられ、好ましい具体例としてはビニル基等が挙げられる。
アリール基としては、例えば炭素数6〜18のアリール基、好ましくは炭素数6〜14のアリール基、より好ましくは炭素数6〜10のアリール基が挙げられ、具体的にはフェニル基、1−ナフチル基及び2−ナフチル基等が挙げられる。アラルキル基としては、直鎖状でも分岐状でもよい、例えば炭素数7〜24のアラルキル基、好ましくは炭素数7〜16のアラルキル基、より好ましくは炭素数7〜10のアラルキル基が挙げられ、具体的にはベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルプロピル基、2−フェニルプロピル基、3−フェニルプロピル基、1−フェニル−2−プロピル基、2−フェニル−2−プロピル基、1,1−ジメチル−2−フェニルエチル基等が挙げられる。
4とR5、R5とR6、R7とR8、R8とR9、及びR9とR10は互いに結合して、ベンゼン環又はピロール環と縮環した、置換基を有してもよい不飽和炭化水素環を形成してもよい。このような環の具体例としては、シクロペンテン環、シクロヘキセン環、シクロヘプテン環及びベンゼン環等が挙げられ、好ましい具体例としてはシクロヘキセン環及びベンゼン環が挙げられる。
4、R5、R6、R7、R8、R9及びR10におけるアルケニル基、アリール基及びアラルキル基、R4とR5、R5とR6、R7とR8、R8とR9、及びR9とR10が互いに結合して形成する、ベンゼン環又はピロール環と縮環した不飽和炭化水素環が有していてもよい置換基としては、アルキル基、アリール基及びアラルキル基が挙げられ、これらの置換基はR4〜R10の詳細な説明におけるものと同様である。
一般式(1)中、Nは窒素原子を表し、Pはリン原子を表す。Yは孤立電子対、オキソ基又はチオキソ基を表し、好ましくは孤立電子対を表す。Zはオキシ基又はチオキシ基を表し、好ましくはオキシ基を表す。
本発明は以下の例示によって何ら限定されるものではないが、好ましい本発明のリン化合物(1)の具体例としては以下に図示する化合物(1−1)〜(1−28)等が挙げられ、特に好ましい具体例としては化合物(1−1)〜(1−7)等が挙げられる。
本発明のリン化合物(1)は既知の有機合成反応を適宜組み合わせることによって容易に製造可能である。本発明は以下の例示によって何ら限定されるものではないが、例えば一般式(4)
(式中、R3〜R10、N及びZは一般式(1)と同様であり、Hは水素原子を表す。)
で表されるN−アリールアゾール類(以下、N−アリールアゾール類(4)と称す)をn−ブチルリチウムをはじめとした有機金属試薬で脱プロトン化した後、一般式(5)
(式中、R1、R2、P及びYは一般式(1)と同様であり、Xはアルコキシ基又はハロゲノ基を表す。)
で表されるリン化合物(以下、リン化合物(5)と称す)を反応させることで、容易に本発明のリン化合物(1)を合成可能である(反応式1)。
更にこの反応の基質となるN−アリールアゾール類(4)は、例えば1)アリールアミン類に1,4−ジケトン類を脱水縮合させるか(反応式2中、経路1)、2)3−クロロフェノール類又は3−クロロチオフェノール類に対してR3−X’(R3は一般式(1)と同様であり、X’はハロゲノ基又はスルホニルオキシ基を表す)を反応させた後に一般式(6)
(式中、R7〜R10は一般式(1)と同様であり、Hは水素原子を表す。)
で表されるNH−アゾール類(以下、NH−アゾール類(6)と称す)とカップリング反応させるか(反応式2中、経路2)、又は3)3−ブロモクロロベンゼン類とNH−アゾール類(6)をカップリング反応させた後にR3−ZH(R3及びZは一般式(1)と同様であり、Hは水素原子を表す)とカップリング反応させる(反応式2中、経路3)ことにより容易に合成可能である。これらの反応経路を使い分けることにより、本発明のリン化合物(1)には極めて多種多様なR1〜R10が容易に導入可能である。
次に、本発明の錯体(3)について更に詳細に説明する。本発明の錯体(3)は、遷移金属化合物に本発明のリン化合物(1)を配位させることによって得られる。遷移金属化合物としては、本発明のリン化合物(1)が配位可能であれば特に制限は無いが、有機合成反応における触媒作用の観点から、好ましい遷移金属化合物としては、例えば鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金及び金等の化合物が挙げられ、より好ましくはパラジウムの化合物が挙げられる。好ましい遷移金属化合物について更に具体的に説明する。
鉄化合物としては、例えば0価、2価及び3価の鉄化合物が挙げられ、具体的には、ペンタカルボニル鉄(0)、ノナカルボニル二鉄(0)、フッ化鉄(II)、塩化鉄(II)、塩化鉄(II)四水和物、臭化鉄(II)、ヨウ化鉄(II)、硫酸鉄(II)一水和物、硫酸鉄(II)七水和物、過塩素酸鉄(II)六水和物、テトラフルオロホウ酸鉄(II)六水和物、酢酸鉄(II)、硫酸アンモニウム鉄(II)六水和物、鉄(II)アセチルアセトナート、フッ化鉄(III)、フッ化鉄(III)三水和物、塩化鉄(III)、塩化鉄(III)六水和物、臭化鉄(III)、硫酸鉄(III)n水和物、硝酸鉄(III)九水和物、過塩素酸鉄(III)n水和物、リン酸鉄(III)n水和物、鉄(III)アセチルアセトナート及び鉄(III)トリフルオロアセチルアセトナート等が挙げられる。
コバルト化合物としては、例えば2価及び3価のコバルト化合物が挙げられ、具体的には、フッ化コバルト(II)、フッ化コバルト(II)四水和物、塩化コバルト(II)、塩化コバルト(II)二水和物、塩化コバルト(II)六水和物、臭化コバルト(II)、臭化コバルト(II)二水和物、ヨウ化コバルト(II)、硫酸コバルト(II)一水和物、硫酸コバルト(II)七水和物、硝酸コバルト(II)六水和物、過塩素酸コバルト(II)六水和物、テトラフルオロホウ酸コバルト(II)六水和物、酢酸コバルト(II)、酢酸コバルト(II)四水和物、シアン化コバルト(II)二水和物、コバルト(II)アセチルアセトナート、コバルト(II)アセチルアセトナート二水和物、コバルト(II)ヘキサフルオロアセチルアセトナート水和物、フッ化コバルト(III)及びコバルト(III)アセチルアセトナート等が挙げられる。
ニッケル化合物としては、例えば0価及び2価のニッケル化合物が挙げられ、具体的にはビス(1,5−シクロオクタジエン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケル(0)、ビス(トリフェニルホスフィン)ジクロロニッケル(II)、フッ化ニッケル(II)、塩化ニッケル(II)、塩化ニッケル(II)一水和物、塩化ニッケル(II)六水和物、臭化ニッケル(II)、臭化ニッケル(II)三水和物、ヨウ化ニッケル(II)、トリフルオロメタンスルホン酸ニッケル(II)、硫酸ニッケル(II)、硫酸ニッケル(II)六水和物、硫酸ニッケル(II)七水和物、硝酸ニッケル(II)六水和物、過塩素酸ニッケル(II)六水和物、シュウ酸ニッケル(II)二水和物、酢酸ニッケル(II)四水和物、ニッケル(II)アセチルアセトナート、ニッケル(II)ヘキサフルオロアセチルアセトナート水和物及び水酸化ニッケル(II)等が挙げられる。
銅化合物としては、例えば1価及び2価の銅化合物が挙げられ、具体的には酸化銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、トリフルオロメタンスルホン酸銅(I)ベンゼン錯体、酢酸銅(I)、シアン化銅(I)、テトラキスアセトニトリル銅(I)テトラフルオロボラート、テトラキスアセトニトリル銅(I)ヘキサフルオロホスファート、酸化銅(II)、フッ化銅(II)、フッ化銅(II)二水和物、塩化銅(II)、塩化銅(II)二水和物、臭化銅(II)、トリフルオロメタンスルホン酸銅(II)、硫酸銅(II)、硫酸銅(II)五水和物、硝酸銅(II)三水和物、過塩素酸銅(II)六水和物、テトラフルオロホウ酸銅(II)六水和物、トリフルオロ酢酸銅(II)、酢酸銅(II)、酢酸銅(II)一水和物、銅(II)アセチルアセトナート及び銅(II)ヘキサフルオロアセチルアセトナート水和物等が挙げられる。
ルテニウム化合物としては、例えば2価及び3価のルテニウム化合物が挙げられ、具体的にはジクロロ(p−シメン)ルテニウム(II)ダイマー、ジクロロ(メシチレン)ルテニウム(II)ダイマー、ジクロロ(ヘキサメチルベンゼン)ルテニウム(II)ダイマー、ジヨード(p−シメン)ルテニウム(II)ダイマー、ジクロロ(1,5−シクロオクタジエン)ルテニウム(II)ポリマー、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)、トリス(アセトニトリル)シクロペンタジエニルルテニウム(II)ヘキサフルオロホスファート、塩化ルテニウム(III)、塩化ルテニウム(III)三水和物、塩化ルテニウム(III)n水和物、ヨウ化ルテニウム(III)、ヨウ化ルテニウム(III)水和物及びルテニウム(III)アセチルアセトナート等が挙げられる。
ロジウム化合物としては、例えば1価、2価及び3価のロジウム化合物が挙げられ、具体的にはクロロ(1,5−ヘキサジエン)ロジウム(I)ダイマー、クロロ(1,5−シクロオクタジエン)ロジウム(I)ダイマー、クロロビス(シクロオクテン)ロジウム(I)ダイマー、ビス(1,5−シクロオクタジエン)ロジウム(I)トリフルオロメタンスルホナート、ビス(1,5−シクロオクタジエン)ロジウム(I)ヘキサフルオロアンチモナート、ビス(1,5−シクロオクタジエン)ロジウム(I)テトラフルオロボラート、ビス(ノルボルナジエン)ロジウム(I)トリフルオロメタンスルホナート、(アセチルアセトナト)ビス(エチレン)ロジウム(I)、(アセチルアセトナト)(1,5−シクロオクタジエン)ロジウム(I)、(アセチルアセトナト)(ノルボルナジエン)ロジウム(I)、ビス(アセトニトリル)(1,5−シクロオクタジエン)ロジウム(I)テトラフルオロボラート、ビス(1,5−シクロオクタジエン)ロジウム(I)テトラキス[ビス(3,5−トリフルオロメチル)フェニル]ボラート、テトラキス(トリフェニルホスフィン)ロジウム(I)ヒドリド、(アセチルアセトナト)ジカルボニルロジウム(I)、塩化ロジウム(III)、塩化ロジウム(III)三水和物、硝酸ロジウム(III)n水和物、テトラキス(μ−トリフルオロアセタト)ジロジウム(II)、テトラキス(μ−アセタト)ジロジウム(II)、テトラキス(μ−アセタト)ジロジウム(II)二水和物、テトラキス(μ−トリメチルアセタト)ジロジウム(II)、テトラキス(μ−オクタノアト)ジロジウム(II)、テトラキス(トリフェニルアセタト)ジロジウム(II)及びロジウム(III)アセチルアセトナート等が挙げられる。
パラジウム化合物としては、例えば0価、1価及び2価のパラジウム化合物が挙げられ、具体的にはビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス(アセトニトリル)ジクロロパラジウム(II)、ビス(アセトニトリル)ジブロモパラジウム(II)、ビス(ベンゾニトリル)ジクロロパラジウム(II)、ビス(ベンゾニトリル)ジブロモパラジウム(II)、ジクロロ(1,5−シクロオクタジエン)パラジウム(II)、ビス(トリフェニルホスフィン)ジクロロパラジウム(II)、(π−アリル)パラジウム(II)クロリドダイマー、(π−メタリル)パラジウム(II)クロリドダイマー、(π−シンナミル)パラジウム(II)クロリドダイマー、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)、硫酸パラジウム(II)、硝酸パラジウム(II)二水和物、トリフルオロ酢酸パラジウム(II)、酢酸パラジウム(II)、プロピオン酸パラジウム(II)、ピバリン酸パラジウム(II)、シアン化パラジウム(II)、パラジウム(II)アセチルアセトナート、パラジウム(II)ヘキサフルオロアセチルアセトナート、テトラキス(アセトニトリル)パラジウム(II)テトラフルオロボラート、テトラクロロパラジウム(II)酸ナトリウム及びテトラクロロパラジウム(II)酸カリウム等が挙げられ、好ましい具体例としてはトリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(アセトニトリル)パラジウム(II)ジクロリド、酢酸パラジウム(II)、(π−アリル)パラジウム(II)クロリドダイマー及び(π−シンナミル)パラジウム(II)クロリドダイマー等が挙げられ、より好ましい具体例としては(π−アリル)パラジウム(II)クロリドダイマーが挙げられる。
銀化合物としては、例えば1価及び2価の銀化合物が挙げられ、具体的には酸化銀(I)、フッ化銀(I)、塩化銀(I)、臭化銀(I)、トリフルオロメタンスルホン酸銀(I)、メタンスルホン酸銀(I)、p−トルエンスルホン酸銀(I)、硫酸銀(I)、硝酸銀(I)、過塩素酸銀(I)、過塩素酸銀(I)一水和物、テトラフルオロホウ酸銀(I)、ヘキサフルオロリン酸銀(I)、トリフルオロ酢酸銀(I)、酢酸銀(I)、安息香酸銀(I)炭酸銀(I)、亜硝酸銀(I)、シアン酸銀(I)、銀(I)アセチルアセトナート、フッ化銀(II)及びピコリン酸銀(II)等が挙げられる。
オスミウム化合物としては、例えば3価のオスミウム化合物が挙げられ、具体的には塩化オスミウム(III)及び塩化オスミウム(III)三水和物等が挙げられる。
イリジウム化合物としては、例えば1価及び3価のイリジウム化合物が挙げられ、具体的にはクロロ(1,5−シクロオクタジエン)イリジウム(I)ダイマー、(1,5−シクロオクタジエン)(メトキシ)イリジウム(I)ダイマー、ビス(シクロオクタジエン)イリジウム(I)テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボラート、ビス(1,5−シクロオクタジエン)イリジウム(I)テトラフルオロボラート、(1,5−シクロオクタジエン)(ヘキサフルオロアセチルアセトナト)イリジウム(I)、(アセチルアセトナト)(1,5−シクロオクタジエン)イリジウム(I)、(アセチルアセトナト)ジカルボニルイリジウム(I)、塩化イリジウム(III)、塩化イリジウム(III)水和物及びイリジウム(III)アセチルアセトナート等が挙げられる。
白金化合物としては、例えば2価及び4価の白金化合物が挙げられ、具体的には塩化白金(II)、臭化白金(II)、ヨウ化白金(II)、シアン化白金(II)、白金(II)アセチルアセトナート、テトラクロロ白金(II)酸カリウム、ジクロロ(1,5−シクロオクタジエン)白金(II)、cis−ビス(アセトニトリル)ジクロロ白金(II)、trans−ビス(アセトニトリル)ジクロロ白金(II)、cis−ビス(ベンゾニトリル)ジクロロ白金(II)、塩化白金(IV)及びヘキサクロロ白金(IV)酸カリウム等が挙げられる。
金化合物としては、例えば1価及び3価の金化合物が挙げられ、具体的には塩化金(I)、ヨウ化金(I)、シアン化金(I)、塩化金(III)、塩化金(III)二水和物、臭化金(III)、塩化金酸(III)四水和物及び塩化金(III)酸カリウム等が挙げられる。
本発明は以下の例示によって何ら限定されるものではないが、好ましい本発明の錯体(3)の具体例としては以下に図示する化合物(3−1)〜(3−21)等が挙げられ、特に好ましい具体例としては化合物(3−1)〜(3−7)等が挙げられる。
本発明の錯体(3)の製造においては、溶媒を共存させることが望ましい。溶媒は、遷移金属化合物に対する本発明のリン化合物(1)の配位作用を阻害しない限り特に限定されるものではなく、更に必要に応じて酸及び塩基を共存させてもよく、窒素やアルゴン等の不活性ガス雰囲気下で製造を行ってもよい。このようにして得られた本発明の錯体(3)は、必要に応じて後処理、精製及び単離を行うことができる。後処理の方法としては例えば、反応液の洗浄、生成物の抽出、沈殿物の濾過、溶媒の留去及び溶媒の添加による晶析等が挙げられ、これらの後処理を単独で或いは併用して行ってもよい。精製及び単離の方法としては例えば、活性炭及びシリカゲル等の吸着剤による脱色、カラムクロマトグラフィー、再結晶及び昇華等が挙げられ、これらを単独で或いは併用して行ってもよい。本発明の錯体(3)を有機合成反応における触媒として用いる際は、反応液をそのまま触媒溶液として用いてもよく、必要に応じて上記の後処理、精製及び単離を行った後に用いてもよく、夫々単独で用いても二種以上適宜組み合わせて用いてもよく、本発明のリン化合物(1)と組み合わせて用いてもよい。
本発明のリン化合物(1)は触媒的有機合成反応における配位子として有用であり、また本発明の錯体(3)は有機合成反応における触媒として有用である。これらの反応は特に限定されるものではないが、具体的には酸化反応、還元反応、水素添加反応、脱水素反応、水素移動反応、付加反応、共役付加反応、環化反応、官能基変換反応、異性化反応、転位反応、重合反応、結合切断反応、結合形成反応、ホモカップリング反応及びクロスカップリング反応等が挙げられ、好ましくはクロスカップリング反応が挙げられる。クロスカップリング反応もまた特に限定されるものではないが、具体的には高知−Fulstnerカップリング反応、熊田−玉尾−Corriuカップリング反応、溝呂木−Heck反応、村橋カップリング反応、薗頭−萩原カップリング反応、根岸カップリング反応、右田−小杉−Stilleカップリング反応、鈴木−宮浦カップリング反応、檜山カップリング反応、Buchwald−Hartwigカップリング反応、カルボニル化合物のα位アリール化反応、(偽)ハロゲン化(ヘテロ)アリールとカルボン酸類との脱炭酸的カップリング反応、炭素−水素結合切断を伴う(偽)ハロゲン化(ヘテロ)アリールと炭化水素類とのカップリング反応、(偽)ハロゲン化(ヘテロ)アリールのホウ素化反応、(偽)ハロゲン化(ヘテロ)アリールのシアノ化反応、(偽)ハロゲン化(ヘテロ)アリールのホスフィノ化反応、(偽)ハロゲン化(ヘテロ)アリールのフルオロ化反応及び(偽)ハロゲン化(ヘテロ)アリールのトリフルオロメチル化反応等が挙げられ、好ましい具体例としては鈴木−宮浦カップリング反応及びBuchwald−Hartwigカップリング反応等が挙げられる。
以下に、本発明のリン化合物(1)及び本発明の錯体(3)について、参考例、実施例及び比較例を挙げて詳細に説明するが、本発明はこれらの参考例、実施例及び比較例によって何ら限定されるものではない。参考例、実施例及び比較例中において、物性の測定に用いた装置は次の通りである。
1)プロトン核磁気共鳴分光法(以下1H NMRと略す):Varian Marcury plus 300(バリアン社製)
内部標準物質:テトラメチルシラン
2)炭素13核磁気共鳴分光法(以下13C NMRと略す):Varian Marcury plus 300(バリアン社製)
内部標準物質:重溶媒中残存軽溶媒
3)リン31核磁気共鳴分光法(以下31P NMRと略す):Varian Marcury plus 300(バリアン社製)
外部標準物質:リン酸
3)ガスクロマトグラフィー(以下GCと略す):GC−2010Plus型装置(島津製作所社製)
カラム:InertCap 1(ジーエルサイエンス社製)、初期温度:100℃、昇温速度:10℃/分、最終温度:250℃、測定時間:30分間。
なお、基質、試薬及び溶媒等の仕込みはいずれも窒素気流下で行い、反応はいずれも窒素雰囲気下で行った。また、特に但し書きの無い限り、後処理及び精製は空気中で行った。
(参考例1)N−(2−ジシクロヘキシルホスフィノフェニル)カルバゾール(構造式(2−1))の合成(反応式3)
第1工程:N−(2−ブロモフェニル)カルバゾール(構造式(7))の合成
(仕込み・反応)500mL四つ口反応フラスコに三方コック、メカニカルスターラー、冷却管及び温度計を取り付け、内部を窒素置換した。このフラスコに、カルバゾール(19.4g、116.3mmol、1.0当量)、1,2−ジブロモベンゼン(54.8g、232.6mmol、2.0当量)、キシレン(120mL)、酸化銅(I)(3.3g、23.3mmol、0.2当量)、N,N’−ジメチルエチレンジアミン(5.0mL、46.5mmol、0.4当量)及びリン酸カリウム(54.3g、255.9mmol、2.2当量)を順次仕込み、得られた懸濁液を170℃で24時間攪拌した。反応転化率:80.2%。なお、これ以上反応時間を延長しても転化率の向上は見られなかった。
(後処理・精製)反応混合物を室温にまで冷却した後にトルエン及び28%アンモニア水溶液を加えて分液し、有機層を28%アンモニア水溶液で5回(洗浄を繰り返す度に水層の青色が薄くなった)、水で1回及び1規定塩酸水溶液で3回(有機層及び水層のいずれにも難溶の黒色タールが生成した)洗浄した。有機層を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=10/1〜2/1)を3回(副生成物が混入したカラム分画を繰り返し精製した為)行って精製することで、表題化合物(7)が薄黄色固体として22.5g得られた。単離収率60.0%。なお、副生成物としてN−フェニルカルバゾールが白色固体として3.9g得られた。単離収率13.8%。
1H NMR(300MHz,重クロロホルム(以下CDCl3と略す)):δ=8.15(d,J=7.8Hz,2H),7.85(dd,J=1.5,8.1Hz,1H),7.56−7.35(m,5H),7.29(dt,J=0.9,6.9Hz,2H),7.06(d,J=8.1Hz,2H).
13C NMR(75MHz,CDCl3):δ=140.8,136.7,134.2,131.1,130.1,128.8,125.9,123.8,123.2,120.3,120.0,110.0.
副生成物(N−フェニルカルバゾール);
1H NMR(300MHz、CDCl3):δ=7.25−7.33(m,2H),7.38−7.50(m,5H),7.53−7.64(m,4H),8.16(dt,J=7.8,0.9Hz,2H).
13C NMR(75MHz,CDCl3):δ=109.7,119.9,120.3,123.3,125.9,127.1,127.4,129.8,137.7,140.9.
第2工程:N−(2−ジシクロヘキシルホスフィノフェニル)カルバゾール(構造式(2−1))の合成
(仕込み・反応)200mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、20mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコに、第1工程で得られたN−(2−ブロモフェニル)カルバゾール(7)(8.8g、27.3mmol、1.0当量)及び脱水のテトラヒドロフラン(以下THFと略す)(54.6mL)を順次仕込み、得られた基質溶液をドライアイス/アセトン浴にて−70℃に冷却した。次いで滴下漏斗にn−ブチルリチウム(以下n−BuLiと略す)のn−ヘキサン溶液(1.60mol/L、17.9mL、28.6mmol、1.05当量)を仕込み、基質溶液を攪拌しながら、内温が−50℃以下を保つように15分かけて滴下した後、滴下漏斗を脱水n−ヘキサン(1mL)で洗浄した。得られたクリーム色懸濁液を−70℃で1時間攪拌した後に、滴下漏斗にクロロジシクロヘキシルホスフィン(以下Cy2PClと略す)(7.0g、30.1mmol、1.1当量)の脱水THF(14mL)溶液を仕込み、懸濁液を攪拌しながら、内温が−50℃以下を保つように15分かけて滴下した(懸濁液は速やかに溶解した)。滴下終了後にドライアイス/アセトン浴を取り去り、反応液を30分かけて室温にまで昇温した後に、更に30分攪拌した。
(後処理・精製)反応液を減圧下濃縮し、トルエン及び炭酸水素ナトリウム(2.3g、約1当量)の水溶液を加えて分液した後に(分液水1:pH=9)更に有機層を水洗した(分液水2:pH=7)。有機層から溶媒を減圧下留去し、得られた薄褐色の残渣にトルエン及びシリカゲル(0.7g)を加えて室温で10分攪拌した後に、珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液を結晶が析出するまで濃縮した後、メタノールを加えて得られた白色懸濁液を濾過し、濾過物をメタノールで洗浄した後に減圧下乾燥することで、表題化合物(2−1)が白色粉末として10.6g得られた。単離収率:88.3%。
1H NMR(300MHz,CDCl3):δ=8.12(d,J=7.5Hz,2H),7.76(dt,J=1.5,4.8Hz,1H),7.57−7.47(m,2H),7.38−7.28(m,3H),7.23(dt,J=0.9,6.9Hz,2H),7.02(d,J=8.1Hz,2H),1.85−1.38(m,12H),1.22−0.90(m,10H).
31P NMR(121MHz,CDCl3):δ=−14.5.
(参考例2)N−(2−ジ−tert−ブチルホスフィノフェニル)カルバゾール(構造式(2−2))の合成(反応式4)
(仕込み・反応)100mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、10mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコに、参考例1の第1工程で得られたN−(2−ブロモフェニル)カルバゾール(7)(2.5g、7.76mmol、1.0当量)及び脱水THF(15.0mL)を順次仕込み、得られた基質溶液をドライアイス/アセトン浴にて−70℃に冷却した。次いで滴下漏斗にn−BuLiのn−ヘキサン溶液(1.60mol/L、5.1mL、8.16mmol、1.05当量)を仕込み、基質溶液を攪拌しながら、内温が−50℃以下を保つように10分かけて滴下した後、滴下漏斗を脱水n−ヘキサン(1mL)で洗浄した。得られたクリーム色の懸濁液を−70℃で1時間攪拌した後に、滴下漏斗にジ−tert−ブチルクロロホスフィン(1.63mL、8.58mmol、1.1当量)及び脱水THF(3mL)を順次仕込み、懸濁液を攪拌しながら5分かけて滴下した(発熱は見られず懸濁液も溶解しなかった)。滴下終了後にドライアイス/アセトン浴を取り去って昇温すると、内温−40℃にて懸濁液が溶解を開始した。その後、反応液を30分かけて室温にまで昇温し、更に30分攪拌した。
(後処理・精製)反応液を減圧下濃縮し、トルエン及び炭酸水素ナトリウム(0.7g、約1当量)の水溶液を加えて分液し(分液水1:pH=10)更に有機層を水洗した(分液水2:pH=7)。有機層から溶媒を減圧下留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=10/1〜トルエン)によって精製することで、表題化合物(2−2)が白色粉末として1.0g得られた。単離収率:33.3%。なお、主な副生成物はN−(2−n−ブチルフェニル)カルバゾールであった。
1H NMR(300MHz,CDCl3):δ=8.12(dd,J=0.6,7.5Hz,2H),8.09−8.03(m,1H),7.57−7.47(m,2H),7.36−7.26(m,3H),7.22(dd,J=0.9,7.2Hz,2H),7.04(d,J=8.1Hz,2H),1.10(d,J=12.0Hz,18H).
31P NMR(121MHz,CDCl3):δ=18.5.
副生成物(N−(2−n−ブチルフェニル)カルバゾール);
1H NMR(300MHz,CDCl3):δ=8.15(d,J=7.2Hz,2H),7.54−7.21(m,8H),7.04(d,J=8.1Hz,2H),2.32(t,J=7.5Hz,2H),1.29(quin,J=7.5Hz,2H),0.98(sext,J=7.5Hz,2H),0.56(t,J=7.5Hz,3H).
13C NMR(75MHz,CDCl3):δ=142.2,141.7,135.7,130.5,129.6,128.8,127.3,125.8,123.0,120.2,119.4,109.9,32.4,30.8,22.1,13.5.
参考例1及び参考例2からわかるように、従来化合物(2)の合成においては、副生する1−ブロモブタンによるn−ブチル化が副反応として起こるために極低温条件が不可欠であり、反応させるリン化合物(5)の構造によっては極低温条件でも副反応を抑制することが出来なかった。この副反応を回避しようとすれば、n−BuLiを2当量のtert−ブチルリチウムに換える必要があるが、この試薬は極めて不安定で発火性の高い試薬である上、極低温でないと溶媒であるTHFを分解してしまうことから、いずれにしても工業的使用には不適である。また、従来化合物(2)の中間体であるN−(2−ブロモフェニル)カルバゾール(7)の合成においては、高温長時間を要するUllmann反応、大量のアンモニア水を必要とする後処理、シリカゲルカラムクロマトグラフィーでも分離困難なN−フェニルカルバゾールの副生といった問題があった。このUllmann反応を回避すべく、Buchwald−Hartwigカップリング反応等の代替法による(7)の合成を種々試みたが、いずれも失敗に終わった。従って、従来化合物(2)を容易かつ安価に大量合成することは極めて困難であることがわかった。
(実施例1)N−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(構造式(1−1))の合成(反応式5)
第1工程:N−(3−メトキシフェニル)カルバゾール(構造式(4−1))の合成
(反応・仕込み)100mL二つ口反応フラスコに、(π−アリル)パラジウム(II)クロライドダイマー(以下[PdCl(π−allyl)]2と略す)(32.1mg、0.05mol%)及びジ−tert−ブチル(2,2−ジフェニル−1−メチル−1−シクロプロピル)ホスフィン(以下cBRIDPと略す)(123.6mg、0.2mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(8.0mL)を加えて室温で1分間振盪し、更に脱水キシレン(30mL)で希釈することで、(π−アリル)[ジ−tert−ブチル(2,2−ジフェニル−1−メチル−1−シクロプロピル)ホスフィン]パラジウム(II)クロライド(0.1mol%)及びcBRIDP(0.1mol%)混合物の溶液(以下、触媒溶液と略す)を薄黄色の液体(38mL)として調製した。その一方で、500mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、冷却管、100mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコにカルバゾール(29.9g、178.8mmol、1.02当量)、脱水キシレン(150mL)及び脱水THF(15mL)を順次仕込み、得られた基質懸濁液を氷水浴にて5℃に冷却した。次いで滴下漏斗に塩化メチルマグネシウム(以下MeMgClと略す)のTHF溶液(3.02mol/L、58.6mL、177.1mmol、1.01当量)を仕込み、基質懸濁液を攪拌しながら、内温が20℃以下を保つように20分かけて滴下した後(懸濁液は発泡しながら速やかに溶解した)、滴下漏斗を脱水キシレン(30mL)にて洗浄した。次いで、反応液に3−クロロアニソール(25.0g、175.3mmol、1.0当量)及び触媒溶液(38mL)を順次加えた後、還流条件(約110℃)にて攪拌を開始した。反応の進行と共に塩化マグネシウムが析出し、0.5時間反応させた時点でGC分析を行って反応の進行を確認したところ、3−クロロアニソールは完全に消費されていた。
(後処理)得られた懸濁液を室温にまで冷却した後に、水(90mL)及び塩化アンモニウム(4.7g、約0.5当量)を加え、珪藻土を用いて濾過した後に水層を分液し(分液水1:pH=9)更に有機層を水(90mL)にて洗浄した(分液水2:pH=7)。有機層を減圧下濃縮し、得られた褐色粘性液体にトルエン(180mL)及びシリカゲル(1.5g)を加えて室温で10分攪拌した後に珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液を減圧下濃縮し、トルエンを加えて全量が191.7gとなるように調製することで、表題化合物(4−1)の粗生成物トルエン溶液(約25重量%、0.914mmol/gとして計算)を得た。この溶液は、これ以上の精製を行うことなく第2工程に使用した。なお、この溶液の一部をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=2/1)にて精製し、NMR分析を行うことで表題化合物(4−1)の構造を確認した。
1H NMR(300MHz,CDCl3):δ=7.50(t,J=8.1Hz,1H),7.46−7.36(m,4H),7.28(ddd,J=1.8,6.6,8.1Hz,2H),7.16(ddd,J=0.6,1.8,7.8Hz,1H),7.10(t,J=0.9Hz,1H),7.05(ddd,J=0.9,2.7,8.4Hz,1H),3.85(s,3H).
13C NMR(75MHz,CDCl3):δ=160.8,140.8,138.8,130.5,125.9,123.3,120.3,119.9,119.3,113.2,112.6,109.9,55.5.
第2工程:N−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(構造式(1−1))の合成
(仕込み・反応)100mL四つ口反応フラスコに、第1工程で得られたN−(3−メトキシフェニル)カルバゾール(4−1)の粗生成物トルエン溶液(0.914mmol/gとして計算、21.3g)を仕込み、減圧下でトルエンを留去することでN−(3−メトキシフェニル)カルバゾール(4−1)の粗生成物(19.5mmolとして計算、1.0当量)を秤量した(N−(3−メトキシフェニル)カルバゾール(4−1)は高粘度液体であり正確な秤量が煩雑なため、トルエン溶液として調製しておき、第2工程の操作直前にトルエンを留去した。この操作は共沸脱水による基質の乾燥も兼ねている)。このフラスコに三方コック、マグネティックスターラーバー、滴下漏斗及び温度計を取り付けた後に内部を窒素置換し、脱水THF(40mL)を仕込み、得られた基質溶液を氷水浴にて5℃に冷却した。次いで滴下漏斗にn−BuLiのn−ヘキサン溶液(1.60mol/L、12.8mL、20.5mmol、1.05当量)を仕込み、基質溶液を攪拌しながら、内温が10℃以下を保つように10分かけて滴下した後、滴下漏斗を脱水n−ヘキサン(1mL)で洗浄した。得られた赤橙色の懸濁液を5℃で1時間攪拌した後に、滴下漏斗にCy2PCl(5.0g、21.5mmol、1.1当量)の脱水THF(10mL)溶液を仕込み、懸濁液を攪拌しながら、内温が10℃以下を保つように15分かけて滴下した(懸濁液は速やかに溶解した)。滴下終了後、5℃で反応液を30分攪拌した。
(後処理・精製)得られた懸濁液を減圧下濃縮し、トルエン及び炭酸水素ナトリウム(1.6g、約1当量)の水溶液を加えて分液した後に(分液水1:pH=9)更に有機層を水洗した(分液水2:pH=7)。有機層にメタノール(5mL)を加えた後に溶媒を減圧下留去し、トルエン及びシリカゲル(500mg)を加えて40℃で10分攪拌した後に、珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液を結晶が析出するまで濃縮した後、メタノールを加えて得られた白色懸濁液を濾過し、濾過物をメタノールで洗浄した後に減圧下乾燥することで、表題化合物(1−1)が白色粉末として7.5g得られた。2工程通算単離収率:81.9%。
1H NMR(300MHz,CDCl3):δ=8.12(d,J=7.8Hz,2H),7.47(t,J=8.1Hz,1H),7.36(ddd,J=1.2,7.5,8.4Hz,2H),7.27−7.17(m,2H),7.04−6.94(m,3H),6.89(ddd,J=0.9,3.6,7.8Hz,1H),3.93(s,3H),2.30−2.15(m,2H),1.70−1.50(m,8H),1.50−1.35(m,2H),1.25−0.75(m,10H).
31P NMR(121MHz,CDCl3):δ=−3.9.
(実施例2)N−(2−ジイソプロピルホスフィノ−3−メトキシフェニル)カルバゾール(構造式(1−2))の合成(反応式6)
実施例1の第2工程と同様の手順で、18.3mmol相当のN−(3−メトキシフェニル)カルバゾール(4−1)粗生成物トルエン溶液を用いて反応を実施し、Cy2PClの代わりにクロロジイソプロピルホスフィンを用い、更に晶析(トルエン/メタノール)にて単離精製することで、表題化合物(1−2)が白色粉末として5.0g得られた。2工程通算単離収率:70.2%。
1H NMR(300MHz,CDCl3):δ=8.12(d,J=7.8Hz,2H),7.49(t,J=8.4Hz,1H),7.38−7.29(m,2H),7.27−7.18(m,2H),7.05−6.98(m,3H),6.92(dd,J=3.6,7.8Hz,1H),3.19(s,3H),2.56−2.39(m,2H),0.93−0.79.
31P NMR(121MHz,CDCl3):δ=6.7.
(実施例3)N−(2−ジフェニルホスフィノ−3−メトキシフェニル)カルバゾール(構造式(1−3))の合成(反応式7)
実施例1の第2工程と同様の手順で、18.3mmol相当のN−(3−メトキシフェニル)カルバゾール(4−1)粗生成物トルエン溶液を用いて反応を実施し、Cy2PClの代わりにクロロジフェニルホスフィンを用い、更に晶析(トルエン/n−ヘキサン)にて単離精製することで、表題化合物(1−3)が白色粉末として6.1g得られた。2工程通算単離収率:72.9%。
1H NMR(300MHz,CDCl3):δ= 8.11−8.05(m,2H),7.57(t,J=8.1Hz,1H),7.29−7.04(m,15H),7.03−6.97(m,3H),3.44(s,3H).
31P NMR(121MHz,CDCl3):δ=−16.4.
(実施例4)N−(2−ジシクロヘキシルホスフィノ−3−イソプロポキシフェニル)カルバゾール(構造式(1−4))の合成(反応式8)
第1工程:N−(3−イソプロポキシフェニル)カルバゾール(構造式(4−2))の合成
(仕込み・反応)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(4.0mg、0.05mol%)及びcBRIDP(15.2mg、0.2mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(0.75mL)を加えて室温で1分間振盪し、更に脱水キシレン(5mL)を加えることで、触媒溶液(5.75mL)を調製した。その一方で、100mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、冷却管、10mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコにカルバゾール(4.71g、22.1mmol、1.03当量)、脱水キシレン(15mL)及び脱水THF(1.5mL)を順次仕込み、得られた基質懸濁液を氷水浴にて5℃に冷却した。次いで滴下漏斗にMeMgClのTHF溶液(3.02mol/L、7.3mL、22.1mmol、1.02当量)を仕込み、基質懸濁液を攪拌しながら、内温が20℃以下を保つように滴下した後、滴下漏斗を脱水キシレン(3mL)にて洗浄した。次いで、反応液に3−ブロモイソプロポキシベンゼン(4.62g、21.5mmol、1.0当量)及び触媒溶液(5.75mL)を順次加えた後、投入口を脱水キシレン(2mL)で洗浄し、還流条件(約110℃)にて3時間攪拌した。反応転化率:99.3%(GC)。
(後処理)得られた懸濁液を室温にまで冷却した後に、10重量%塩化アンモニウム水溶液(30mL)を加え、有機層を分液した後に水層をトルエン(30mL)で2回抽出した。有機層をまとめて水(10mL)にて2回洗浄し、無水硫酸ナトリウムで乾燥した後に濾過し、濾液を濃縮することで表題化合物(4−2)の粗生成物を褐色粘性液体として7.07g得た。この粗生成物は、これ以上の精製を行うことなく全量を第2工程に使用した。
第2工程:N−(2−ジシクロヘキシルホスフィノ−3−イソプロポキシフェニル)カルバゾール(構造式(1−4))の合成
(仕込み・反応)50mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコに、第1工程で得られたN−(3−イソプロポキシフェニル)カルバゾール(4−2)の粗生成物(7.07g、21.5mmolとして計算、1.0当量)の脱水THF(21.5mL)溶液を仕込み、氷水浴を用いて5℃に冷却した。滴下漏斗にn−BuLiのn−ヘキサン溶液(1.60mol/L、13.4mL、21.5mmol、1.0当量)を仕込み、基質溶液を攪拌しながら、内温が10℃以下を保つように10分かけて滴下した後、得られた褐色の反応液を5℃で15分攪拌した。次いで滴下漏斗にCy2PCl(5.0g、21.5mmol、1.0当量)の脱水THF(10mL)溶液を仕込み、反応液を攪拌しながら、内温が10℃以下を保つように15分かけて滴下した。滴下終了後、5℃で反応液を3時間攪拌した。
(後処理・精製)反応液を減圧下濃縮し、トルエン(100mL)で希釈した後に水(20mL)で3回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後に濾過し、濾液から溶媒を減圧下留去した。得られた残渣にトルエン(40mL)及びシリカゲル(0.5g)を加えて室温で10分攪拌した後に珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液から溶媒を減圧下留去し、得られた残渣を晶析(トルエン/メタノール=1/8)にて精製することで、表題化合物(1−4)が白色粉末として5.8g得られた。2工程通算単離収率:54.4%。
1H NMR(300MHz,CDCl3):δ=8.12(d,J=7.8Hz,2H),7.44(t,J=8.1Hz,1H),7.34(ddd,J=1.2,7.2,8.1Hz,2H,7.26−7.18(m,2H),7.01(d,J=8.1Hz,2H),6.97(d,J=8.1Hz,1H),6.84(dd,J=3.6,7.8Hz,1H),4.76(sep,J=6.0Hz,1H),2.38−2.22(m,2H),1.74−1.38(m,10H),1.47(d,J=6.0Hz,6H),1.28−0.76(m,10H).
31P NMR(121MHz,CDCl3):δ=−5.2.
(実施例5)N−(2−ジシクロヘキシルホスフィノ−3−tert−ブトキシフェニル)カルバゾール(構造式(1−5))の合成(反応式9)
第1工程:N−(3−クロロフェニル)カルバゾール(構造式(8))の合成
(反応・仕込み)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(10.8mg、0.05mol%)及びcBRIDP(41.8mg、0.2mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(5mL)を加えて室温で1分間振盪し、更に脱水キシレン(20mL)で希釈することで、触媒溶液(25mL)を調製した。その一方で、300mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、冷却管、50mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコにカルバゾール(20.4g、178.8mmol、1.03当量)、脱水キシレン(100mL)及び脱水THF(10mL)を順次仕込み、得られた基質懸濁液を氷水浴にて5℃に冷却した。次いで滴下漏斗にMeMgClのTHF溶液(3.02mol/L、40.0mL、120.8mmol、1.02当量)を仕込み、基質懸濁液を攪拌しながら、内温が20℃以下を保つように20分かけて滴下した後、滴下漏斗を脱水キシレン(20mL)にて洗浄した。次いで、反応液に3−ブロモクロロベンゼン(14.0mL、118.4mmol、1.0当量)及び触媒溶液(25mL)を順次加えた後、還流条件(約110℃)にて1時間攪拌した。反応転化率:>99.9%(GC)。
(後処理)得られた懸濁液を室温にまで冷却した後に、水(60mL)及び塩化アンモニウム(3.2g、約0.5当量)を加え、珪藻土を用いて濾過した後に水層を分液し(分液水1:pH=9)更に有機層を水(60mL)にて洗浄した(分液水2:pH=7)。有機層を減圧下濃縮し、得られた褐色粘性液体をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=4/1〜2/1)にて精製することで、表題化合物(8)が無色粘性液体として32.4g得られた。単離収率:98.5%。正確な秤量を行うため、精製後にトルエン溶液(25重量%、0.900mmol/g)として第2工程に用いた。
1H NMR(300MHz,CDCl3):δ=8.13(dt,J=7.5,0.9Hz,2H),7.58(t,J=2.1Hz,1H),7.56−7.38(m,8H),7.35−7.25(m,2H).
13C NMR(75MHz,CDCl3):δ=140.5,140.0,135.4,130.8,127.6,127.2,126.1,125.2,123.5,120.4,120.3,109.6.
第2工程:N−(3−tert−ブトキシフェニル)カルバゾール(構造式(4−3))の合成
(反応・仕込み)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(65.9mg、0.5mol%)及びcBRIDP(253.8mg、2.0mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(5mL)を加えて、室温で1分間振盪することで触媒溶液(5mL)を調製した。その一方で、100mL四つ口フラスコに、第1工程で得られたN−(3−クロロフェニル)カルバゾール(8)のトルエン溶液(0.900mmol/g、40.0g)を秤量し、減圧下でトルエンを留去することにより、N−(3−クロロフェニル)カルバゾール(8)(36.0mmol、1.0当量)を秤量した。このフラスコに三方コック、マグネティックスターラーバー、冷却管及び温度計を取り付け、内部を窒素置換した。次いで脱水キシレン(50mL)、ナトリウムtert−ブトキシド(以下NaOtBuと略す)(3.8g、39.6mmol、1.1当量)及び触媒溶液(5mL)を順次仕込み、反応液を還流条件(約120℃)にて2時間攪拌した。反応転化率:>99.9%(GC)。
(後処理・精製)得られた懸濁液を室温にまで冷却した後に水を加え、珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液から水層を分液し、有機層を水洗した後に減圧下で濃縮し、得られた黒色粘性液体をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=2/1〜1/1)にて精製することで、表題化合物(4−3)が薄黄色粘性液体として7.7g得られた。単離収率:67.8%。
1H NMR(300MHz,CDCl3):δ=8.13(dt,J=7.5,0.9Hz,2H),7.47(t,J=8.1Hz,1H),7.43−7.36(m,4H),7.32−7.23(m,3H),7.20(t,J=2.1Hz,1H),7.09(ddd,J=1.2,2.4,8.4Hz,1H),1.41(s,9H).
13C NMR(75MHz,CDCl3):δ=156.7,140.8,138.1,129.9,125.9,123.3,123.1,122.7,121.9,120.3,119.9,109.8,79.2,28.9.
第3工程:N−(2−ジシクロヘキシルホスフィノ−3−tert−ブトキシフェニル)カルバゾール(構造式(1−5))の合成
(仕込み・反応)100mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、20mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコに第2工程で得られたN−(3−tert−ブトキシフェニル)カルバゾール(4−3)(6.2g、19.5mmol、1.0当量)の脱水THF(40mL)溶液を仕込み、氷水浴にて5℃に冷却した。滴下漏斗にn−BuLiのn−ヘキサン溶液(1.60mol/L、12.8mL、20.5mmol、1.05当量)を仕込み、基質溶液を攪拌しながら、内温が10℃以下を保つように10分かけて滴下した後、滴下漏斗を脱水n−ヘキサン(1mL)で洗浄した。得られた黒色の反応液を5℃で1時間攪拌した後、滴下漏斗にCy2PCl(5.0g、21.5mmol、1.1当量)の脱水THF(10mL)溶液を仕込み、反応液を攪拌しながら、内温が10℃以下を保つように15分かけて滴下した。滴下終了後、5℃で反応液を1時間攪拌した。
(後処理・精製)反応液を減圧下濃縮し、トルエン及び炭酸水素ナトリウム(1.6g、約1当量)の水溶液を加えて分液した後に、更に有機層を水洗した。有機層を減圧下濃縮し、トルエン及びシリカゲル(500mg)を加えて室温で10分攪拌した後に珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液から溶媒を減圧下留去し、得られた残渣を晶析(トルエン/アセトニトリル)にて精製することで、表題化合物(1−5)が白色粉末として5.7g得られた。単離収率:57.1%。
1H NMR(300MHz,CDCl3):δ= 8.11(d,J=7.5Hz,2H),7.43−7.28(m,3H),7.26−7.12(m,3H),7.01(d,J=8.1Hz,2H),6.82(ddd,J=0.9,3.6,7.8Hz,1H),2.42−2.24(m,2H),1.78−1.38(m,10H),1.66(s,9H),1.28−0.74(m,10H).
31P NMR(121MHz,CDCl3):δ=−5.7.
(実施例6)9−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)−2,3,4,9−テトラヒドロ−1H−カルバゾール(構造式(1−6))の合成(反応式10)
第1工程:9−(3−メトキシフェニル)−2,3,4,9−テトラヒドロ−1H−カルバゾール(構造式(4−4))の合成
(反応・仕込み)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(26.2mg、0.05mol%)及びcBRIDP(100.9mg、0.2mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(6.0mL)を加えて室温で1分間振盪し、更に脱水キシレン(25mL)で希釈することで、触媒溶液(31mL)を調製した。その一方で、500mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、冷却管、100mL滴下漏斗及び温度計を取り付け、内部を窒素置換した。このフラスコにテトラヒドロカルバゾール(25.0g、146.0mmol、1.02当量)、脱水キシレン(125mL)及び脱水THF(13mL)を順次仕込み、得られた基質懸濁液を氷水浴にて5℃に冷却した。次いで滴下漏斗にMeMgClのTHF溶液(3.02mol/L、47.9mL、144.5mmol、1.01当量)を仕込み、基質懸濁液を攪拌しながら、内温が20℃以下を保つように15分かけて滴下した後、滴下漏斗を脱水キシレン(25mL)にて洗浄した。次いで、反応液に3−クロロアニソール(17.5mL、143.1mmol、1.0当量)及び触媒溶液(31mL)を順次加えた後、還流条件(約110℃)にて1時間攪拌した。反応転化率:99.6%(GC)。
(後処理)得られた懸濁液を室温にまで冷却した後に、水(75mL)及び塩化アンモニウム(3.8g、約0.5当量)を加え、珪藻土を用いて濾過した後に水層を分液し、更に有機層を水(75mL)にて洗浄した。有機層を減圧下濃縮し、得られた褐色粘性液体にトルエン(150mL)及びシリカゲル(1.3g)を加えて室温で10分攪拌した後に珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液を減圧下濃縮し、トルエンを加えて全量が191.7gとなるように調製することで、表題化合物(4−4)の粗生成物トルエン溶液(約25重量%、0.901mmol/gとして計算)を得た。この溶液は、これ以上の精製を行うことなく第2工程に使用した。なお、この溶液の一部をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=1/1)にて精製し、NMR分析を行うことで表題化合物(4−4)の構造を確認した。
1H NMR(300MHz,CDCl3):δ=7.54−7.47(m,1H),7.38(t,J=7.8Hz,1H),7.29−7.21(m,1H),7.15−7.05(m,2H),6.98−6.87(m,3H),3.81(s,3H),2.84−2.74(m,2H),2.66−2.56(m,2H),1.96−1.80(m,4H).
13C NMR(75MHz,CDCl3):δ=160.3,139.1,137.0,135.7,129.9,127.7,121.3,119.5,119.4,117.7,112.8,112.7,111.0,109.9,55.4,23.4,23.3,23.1,21.1.
第2工程:9−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)−2,3,4,9−テトラヒドロ−1H−カルバゾール(構造式(1−6))の合成
(仕込み・反応)100mL四つ口反応フラスコに、第1工程で得られた9−(3−メトキシフェニル)−2,3,4,9−テトラヒドロ−1H−カルバゾール(4−4)の粗生成物トルエン溶液(0.901mmol/gとして計算、21.6g)を仕込み、減圧下でトルエンを留去することで9−(3−メトキシフェニル)−2,3,4,9−テトラヒドロ−1H−カルバゾール(4−4)の粗生成物(19.5mmolとして計算、1.0当量)を秤量した。このフラスコに三方コック、マグネティックスターラーバー、滴下漏斗及び温度計を取り付けた後に内部を窒素置換し、脱水THF(40mL)を仕込み、得られた基質溶液を氷水浴にて5℃に冷却した。次いで滴下漏斗にn−BuLiのn−ヘキサン溶液(1.60mol/L、12.8mL、20.5mmol、1.05当量)を仕込み、基質溶液を攪拌しながら、内温が10℃以下を保つように10分かけて滴下した後、滴下漏斗を脱水n−ヘキサン(1mL)で洗浄した。得られたクリーム色の懸濁液を5℃で1時間攪拌した後に、滴下漏斗にCy2PCl(5.0g、21.5mmol、1.1当量)の脱水THF(10mL)溶液を仕込み、懸濁液を攪拌しながら、内温が10℃以下を保つように15分かけて滴下した。滴下終了後、5℃で反応液を30分攪拌した。
(後処理・精製)反応液を減圧下濃縮し、トルエン及び炭酸水素ナトリウム(1.6g、約1当量)の水溶液を加えて分液した後に、更に有機層を水洗した。有機層を減圧下濃縮して、トルエン及びシリカゲル(500mg)を加えて室温で10分攪拌した後に、珪藻土を用いて濾過し、残渣をトルエンで洗浄した。濾液を濃縮して得られた残渣を晶析(トルエン/メタノール=1/2にて結晶析出させた後に、更にメタノールを添加)にて精製することで、表題化合物(1−6)が白色粉末として7.2g得られた。2工程通算単離収率:78.0%。
1H NMR(300MHz,CDCl3):δ=7.51−7.45(m,1H),7.38(t,J=8.4Hz,1H),7.08−6.96(m,2H),6.93(d,J=8.4Hz,1H),6.84−6.74(m,2H),3.89(s,3H),2.94−2.70(m,2H),2.65−2.50(m,1H),2.46−2.24(m,2H),2.19−2.04(m,1H),2.00−0.80(m,24H).
31P NMR(121MHz,CDCl3):δ=−4.7.
(実施例7)1−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)−2,5−ジメチルピロール(構造式(1−7)の合成(反応式11)
第1工程:1−(3−メトキシフェニル)−2,5−ジメチルピロール(構造式(4−5))の合成
(仕込み・反応)200mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、ディーンスターク管、冷却管及び温度計を取り付け、内部を窒素置換した。このフラスコに、トルエン(125mL)、m−アニシジン(25.0g、203.0mmol、1.0当量)、アセトニルアセトン(24.5g、214.6mmol、1.06当量)及びp−トルエンスルホン酸一水和物(386mg、1.0mol%)を順次仕込み、副生する水を共沸脱水によって除去しながら、還流条件で1時間攪拌した。
(後処理)反応液を室温にまで冷却した後、窒素雰囲気下で炭酸水素ナトリウム水溶液を加えて攪拌した。水層を分液した後、有機層を水で2回洗浄した後に減圧下で濃縮し、トルエンで希釈して全量が163.4gとなるように調製することで、表題化合物(4−5)の粗生成物トルエン溶液(約25重量%、1.242mmol/gとして計算)を得た。このようにして得られた表題化合物(4−5)はほぼ純粋であり、そのトルエン溶液の一部を精製することなしに、乾固してNMR分析することにより構造を確認した。
1H NMR(300MHz,CDCl3):δ=7.36(t,J=8.1Hz,1H),6.95(ddd,J=0.9,2.4,8.4Hz,1H),6.81(ddd,J=0.9,1.8,7.8Hz,1H),6.76(t,J=2.1Hz,1H),5.90(s,2H),3.83(s,3H),2.06(s,6H).
13C NMR(75MHz,CDCl3):δ=160.0,140.1,129.6,128.8,120.5,113.8,113.4,105.6,55.4,13.0.
第2工程:1−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)−2,5−ジメチルピロール(構造式(1−7)の合成
(仕込み・反応)100mL四つ口反応フラスコに、第1工程で得られた1−(3−メトキシフェニル)−2,5−ジメチルピロール(4−5)の粗生成物トルエン溶液(1.242mmol/gとして計算、15.7g)を仕込み、減圧下でトルエンを留去することで1−(3−メトキシフェニル)−2,5−ジメチルピロール(4−5)の粗生成物(19.5mmolとして計算、1.0当量)を秤量した。このフラスコに三方コック、マグネティックスターラーバー、滴下漏斗及び温度計を取り付けた後に内部を窒素置換し、脱水THF(40mL)を仕込み、得られた基質溶液を氷水浴にて5℃に冷却した。次いで滴下漏斗にn−BuLiのn−ヘキサン溶液(1.60mol/L、12.8mL、20.5mmol、1.05当量)を仕込み、基質溶液を攪拌しながら、内温が10℃以下を保つように10分かけて滴下した後、滴下漏斗を脱水n−ヘキサン(1mL)で洗浄した。得られた褐色の懸濁液を5℃で1時間攪拌した後に、滴下漏斗にCy2PCl(5.0g、21.5mmol、1.1当量)の脱水THF(10mL)溶液を仕込み、懸濁液を攪拌しながら、内温が10℃以下を保つように15分かけて滴下した。滴下終了後、5℃で反応液を30分攪拌した。
(後処理・精製)得られた懸濁液を減圧下濃縮し、トルエン及び炭酸水素ナトリウム(1.6g、約1当量)の水溶液を加えると黒変したので、分液した後に更に有機層を2回水洗した。有機層から溶媒を減圧下留去し、析出した粗結晶にメタノールを加えて洗浄、濾過した。この粗結晶を再結晶(トルエン/メタノール)にて精製することで、表題化合物(1−7)が白色粉末として5.0g得られた。2工程通算単離収率:64.5%。
1H NMR(300MHz,CDCl3):δ=7.38(t,J=7.8Hz,1H),6.90(d,J=8.4Hz,1H),6.77(ddd,J=1.2,3.9,7.8Hz,1H),5.89(s,2H),3.88(s,3H),2.32−2.16(m,2H),1.98(s,6H),1.86−1.56(m,8H),1.47−0.89(m,12H).
31P NMR(121MHz,CDCl3):δ=−4.7.
実施例1〜7からわかるように、本発明のリン化合物(1)は、N−アリールアゾール類(4)をn−BuLiで脱プロトン化した後にリン化合物(5)と反応させることにより、容易に合成可能である。この反応では原理的に1−ブロモブタンが副生せず、参考例で問題となっていた副反応のn−ブチル化が起こらないため、極低温条件は不要である。また、本発明のリン化合物(1)の原料であるN−アリールアゾール類(4)は多種多様な手法(実施例7:経路1、実施例1、4及び6:経路2、実施例5:経路3)で容易、安価かつ高選択的に合成可能である上、一部の例外を除いては単離精製を行うことなく粗生成物のままで本発明のリン化合物(1)の製造に使用可能である。従って、本発明のリン化合物(1)は容易かつ安価に大量製造可能という点において、従来化合物(2)よりも明らかに優れている。
(実施例8)(π−アリル)[N−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール]パラジウム(II)クロライド(構造式(3−1))の合成(反応式12)
(仕込み・反応)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(10.0mg、1.0当量)及びN−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(1−1)(25.7mg、2.0当量)を仕込み、三方コックを取り付けて内部を窒素置換した。次いでCDCl3(2mL)を加え、室温で1分振盪することにより、表題化合物(3−1)のCDCl3溶液が薄黄色液体として得られた。反応転化率:100%(31P NMR)。
1H NMR(300MHz,CDCl3):δ=8.05(d,J=7.8Hz,2H),7.49(t,J=7.8Hz,1H),7.44−6.90(br m,7H),6.64(ddd,J=0.6,3.0,7.8Hz,1H),4.85−4.60(br m,1H),4.10(t,7.2Hz,1H),3.98(s,3H),3.30−2.80(br m,1H),2.70−2.20(br m,3H),2.10−0.80(br m,21H).
31P NMR(121MHz,CDCl3):δ=27.6.
なお本実施例では、分析の簡便化のために反応溶媒としてCDCl3を用いているが、実際に本発明の錯体(3−1)を有機合成反応における触媒として用いる場合には、高価なCDCl3の代わりにTHFなどの汎用溶媒を用いることが出来る。実施例例11を参照のこと。
(実施例9)(π−アリル)[N−(2−ジイソプロピルホスフィノ−3−メトキシフェニル)カルバゾール]パラジウム(II)クロライド(構造式(3−2))の合成(反応式13)
実施例8と同様の手順で、N−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(1−1)の代わりにN−(2−ジイソプロピルホスフィノ−3−メトキシフェニル)カルバゾール(1−2)を用いることで、表題化合物(3−2)のCDCl3溶液が薄黄色溶液として得られた。反応転化率:100%(31P NMR)。
1H NMR(300MHz,CDCl3):δ=8.05(d,J=7.5Hz,2H),7.51(t,J=8.4Hz,1H),7.47−6.84(br m,7H),6.63(ddd,J=0.9,3.3,7.8Hz,1H),4.66−4.38(br m,1H),4.04(t,J=7.2Hz,1H),4.01(s,3H),3.40−2.80(br m,3H),2.38(br dd,J=9.9,12.9 Hz,1H),1.48−0.90(br m,13H).
31P NMR(121MHz,CDCl3):δ=36.4.
(実施例10)(π−アリル)[N−(2−ジフェニルホスフィノ−3−メトキシフェニル)カルバゾール]パラジウム(II)クロライド(構造式(3−3))の合成(反応式14)
実施例8と同様の手順で、N−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(1−1)の代わりにN−(2−ジフェニルホスフィノ−3−メトキシフェニル)カルバゾール(1−3)を用いることで、表題化合物(3−3)のCDCl3溶液が薄黄色溶液として得られた。反応転化率:100%(31P NMR)。
1H NMR(300MHz,CDCl3):δ=7.67(br t,J=7.2Hz,2H),7.61(t,J=8.1Hz,1H),7.28−7.13(br m,7H),7.12−7.02(br m,4H),7.00−6.90(br m,2H),6.83−6.70(br m,5H),5.56−5.38(m,1H),4.63(t,J=6.9Hz,1H),3.78(s,3H),3.55(dd,J=10.2,13.5Hz,1H),3.27(d,J=5.7Hz,1H),2.74(d,J=11.7Hz,1H).
31P NMR(121MHz,CDCl3):δ=16.0.
(実施例11)本発明のリン化合物(1−1)を配位子として用いた、4−クロロベンゼンとフェニルホウ酸との鈴木−宮浦カップリング反応による、4−メチルビフェニル(構造式(9))の合成(反応式15)
(仕込み・反応)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(5.9mg、0.025mol%)及びN−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(1−1)(30.8mg、0.1mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(6.5mL)を加えて室温で1分間振盪することで、(π−アリル)[N−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール]パラジウム(II)クロライド(3−1)(0.05mol%)及びN−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(1−1)(0.05mol%)混合物のTHF溶液(以下、実施例11における触媒溶液と略す)を薄黄色の液体(6.5mL)として調製した。その一方で、200mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、冷却管及び温度計を取り付け、内部を窒素置換した。このフラスコに、トルエン(65mL)、4−クロロトルエン(7.7mL、65.1mmol、1.0当量)、フェニルホウ酸(純度95%、10.0g、78.0mmol、1.2当量)、炭酸カリウム(13.5g、97.5mmol、1.5当量)及び実施例11における触媒溶液(6.5mL)を順次仕込み、80℃にて3時間攪拌した。
(後処理・精製)反応液を室温にまで冷却した後に水を加え、分液した後に有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:n−ヘキサン/トルエン=4/1)にて精製することで、目的とする表題化合物(9)が白色固体として10.8g得られた。単離収率:98.8%。
(実施例12)本発明のリン化合物(1−4)を配位子として用いた、4−メチルビフェニル(9)の合成
実施例11と全く同様にして、N−(2−ジシクロヘキシルホスフィノ−3−イソプロポキシフェニル)カルバゾール(1−4)を配位子として用い、3時間反応させることで表題化合物(9)を10.9g得た。単離収率:99.7%。
(実施例13)本発明のリン化合物(1−5)を配位子として用いた、4−メチルビフェニル(9)の合成
実施例11と全く同様にして、N−(2−ジシクロヘキシルホスフィノ−3−tert−ブトキシフェニル)カルバゾール(1−5)を配位子として用い、3時間反応させることで表題化合物(9)を9.2g得た。単離収率:84.1%。
(比較例1)従来化合物(2−1)を配位子として用いた、4−メチルビフェニル(9)の合成
実施例11と全く同様にして、N−(2−ジシクロヘキシルホスフィノフェニル)カルバゾール(2−1)を配位子として用い、3時間反応させることで表題化合物(9)を4.8g得た。単離収率:43.9%。
(比較例2)従来化合物(2−2)を配位子として用いた、4−メチルビフェニル(9)の合成
実施例11と全く同様にして、N−(2−ジ−tert−ブチルホスフィノフェニル)カルバゾール(2−2)を配位子として用い、3時間反応させることで表題化合物(9)を3.5g得た。単離収率:32.0%。
(実施例14)本発明のリン化合物(1−7)を配位子として用いた、4−メチルビフェニルの合成
実施例11と全く同様にして、1−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)−2,5−ジメチルピロール(1−7)を配位子として用い、1時間反応させることで表題化合物(9)を10.8g得た。単離収率98.8%。
実施例11〜14、並びに比較例1及び2の結果を以下の図表1にまとめる。
実施例11〜14、並びに比較例1及び2において、従来化合物(2−1)及び(2−2)を配位子とした場合、4−メチルビフェニルの単離収率は32.0〜43.9%に留まった。一方、R3Z基以外はこれらの化合物と同様の構造を有する、本発明のリン化合物(1−1)、(1−4)及び(1−5)を配位子として用いた場合、4−メチルビフェニルの単離収率は84.1〜99.7%であり、活性が少なくとも1.92倍以上に向上することが判明した。更に、カルバゾリル基の代わりに2,5−ジメチルピリル基を導入した(1−7)を配位子として用いると反応速度が更に向上し、1時間以内で定量的に4−メチルビフェニルが得られることも明らかとなった。従って、本発明のリン化合物(1)は、従来化合物(2)と比較して、製造の容易さのみならず配位子としての活性の観点からも優れている。
(実施例15)本発明のリン化合物(1−4)を配位子として用いた、4−クロロアニソールとモルホリンとのBuchwald−Hartwig反応によるN−(4−メトキシフェニル)モルホリン(構造式(10)の合成(反応式16)
(仕込み・反応)50mL二つ口反応フラスコに、[PdCl(π−allyl)]2(4.6mg、0.025mol%)及びN−(2−ジシクロヘキシルホスフィノ−3−イソプロポキシフェニル)カルバゾール(1−4)(24.9mg、0.1mol%)を仕込み、三方コックを取り付けて内部を窒素置換した。次いで脱水THF(5.0mL)を加えて室温で1分間振盪することで、(π−アリル)[N−(2−ジシクロヘキシルホスフィノ−3−イソプロポキシフェニル)カルバゾール]パラジウム(II)クロライド(3−4)(0.05mol%)及びN−(2−ジシクロヘキシルホスフィノ−3−メトキシフェニル)カルバゾール(1−4)(0.05mol%)混合物のTHF溶液(以下、実施例15における触媒溶液と略す)を薄黄色の液体(5.0mL)として調製した。その一方で、100mL四つ口反応フラスコに三方コック、マグネティックスターラーバー、冷却管及び温度計を取り付け、内部を窒素置換した。このフラスコに、トルエン(50mL)、NaOtBu(5.8g、60.0mmol、1.2当量)、4−クロロアニソール(11)(6.1mL、50.0mmol、1.0当量)、モルホリン(4.6mL、52.5mmol、1.05当量)及び実施例15における触媒溶液(5.0mL)を順次仕込み、100℃にて6時間攪拌した。
(分析)反応液(約50μL)をサンプリングし、トルエン(約1mL)に希釈した後、塩化アンモニウム飽和水溶液(約0.5mL)及び水(約0.5mL)にて洗浄した後にGC分析を行った。GC保持時間は以下の通りであった;
4−クロロアニソール(11):3.80分、N−(4−メトキシフェニル)モルホリン:10.27分、不純物(12):2.59分、不純物(13):10.42分、不純物14:26.66分.
(比較例3)従来化合物(2−1)を配位子として用いた、N−(4−メトキシフェニル)モルホリン(構造式(10)の合成)
N−(2−ジシクロヘキシルホスフィノ−3−イソプロポキシフェニル)カルバゾール(1−4)の代わりに、N−(2−ジシクロヘキシルホスフィノフェニル)カルバゾール(2−1)を配位子として用いて実施例15と全く同様の実験を行い、反応液のGC分析を行った。
実施例15及び比較例3のGC分析結果を以下の表1に示す。
従来化合物(2−1)を配位子として用いた場合、モルホリンのβ−脱離に由来する不純物(12)、(13)及び(14)が合計4.87%副生したため、目的物であるN−(4−メトキシフェニル)モルホリン(10)の選択性は93.66%に留まった(比較例3)。一方で、本発明のリン化合物(1−4)を配位子として用いた場合、不純物(12)、(13)及び(14)の副生量合計は0.45%となり、目的物(10)の選択性は98.74%まで向上した(実施例15)。従って、本発明のリン化合物(1)は、従来化合物(2)と比較して、製造の容易さ、活性の高さのみならず、配位子としての反応選択性の観点からも優れている。
本発明のリン化合物(1)は、遷移金属種による触媒的有機合成反応における配位子として有用である上に容易に製造可能であり、本発明の錯体(3)は有機合成反応における触媒として有用である。例えば、遷移金属の一種であるパラジウムと本発明のリン化合物(1)との錯体は、クロスカップリング反応等における触媒として極めて有用であり、これらの反応によって芳香族化合物等を効率的に製造可能である。

Claims (6)

  1. 一般式(1)で表されることを特徴とするリン化合物。
    (式中、R1及びR2は各々独立して水素原子、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基又はハロゲノ基を表す。R3はアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表す。R4、R5、R6、R7、R8、R9及びR10は各々独立して水素原子、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基又は置換基を有してもよいアラルキル基を表す。Nは窒素原子を表し、Pはリン原子を表す。Yは孤立電子対、オキソ基又はチオキソ基を表す。Zはオキシ基又はチオキシ基を表す。R1とR2は互いに結合して、置換基を有してもよい、Pを含む環を形成してもよい。R4とR5、R5とR6、R7とR8、R8とR9、及びR9とR10は互いに結合して、ベンゼン環又はピロール環と縮環した、置換基を有してもよい不飽和炭化水素環を形成してもよい。)
  2. 1及びR2が各々独立してアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基を表し、Yが孤立電子対であることを特徴とする、請求項1に記載のリン化合物。
  3. Zがオキシ基であることを特徴とする、請求項1又は請求項2に記載のリン化合物。
  4. 請求項1〜3のいずれか1項に記載のリン化合物を配位子として有する遷移金属錯体。
  5. 遷移金属が、鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金及び金から構成される群から選ばれることを特徴とする、請求項4に記載の遷移金属錯体。
  6. 遷移金属がパラジウムであることを特徴とする、請求項5に記載の遷移金属錯体。
JP2014091768A 2014-04-25 2014-04-25 リン化合物及びその遷移金属錯体 Active JP6357691B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014091768A JP6357691B2 (ja) 2014-04-25 2014-04-25 リン化合物及びその遷移金属錯体
US14/638,761 US9416148B2 (en) 2014-04-25 2015-03-04 Phosphorus compound and transition metal complex of the same
EP15158028.9A EP2937355B1 (en) 2014-04-25 2015-03-06 Phosphorus compound and transition metal complex of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091768A JP6357691B2 (ja) 2014-04-25 2014-04-25 リン化合物及びその遷移金属錯体

Publications (2)

Publication Number Publication Date
JP2015209395A JP2015209395A (ja) 2015-11-24
JP6357691B2 true JP6357691B2 (ja) 2018-07-18

Family

ID=52779465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091768A Active JP6357691B2 (ja) 2014-04-25 2014-04-25 リン化合物及びその遷移金属錯体

Country Status (3)

Country Link
US (1) US9416148B2 (ja)
EP (1) EP2937355B1 (ja)
JP (1) JP6357691B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2818170A1 (en) * 2010-11-18 2012-05-24 Dalhousie University Novel catalysts
CN102675366B (zh) * 2012-05-10 2015-09-30 浙江大学 2-烷氧基-6-氨基苯基二烷基膦及其合成和应用

Also Published As

Publication number Publication date
EP2937355A1 (en) 2015-10-28
US9416148B2 (en) 2016-08-16
EP2937355B1 (en) 2017-06-28
US20150307531A1 (en) 2015-10-29
JP2015209395A (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5376743B2 (ja) アダマンチル基を有するホスファンリガンド、その製造および接触反応におけるその使用
Aydemir et al. trans-and cis-Ru (II) aminophosphine complexes: Syntheses, X-ray structures and catalytic activity in transfer hydrogenation of acetophenone derivatives
US20020072636A1 (en) Optically active diphosphines, preparation thereof according to a process for the resolution of the racemic mixture and use thereof
Sierra et al. Novel ferrocenylphosphino sulfonates: Synthesis, crystal structure and preliminary application as ligands in aqueous catalysis
Widaman et al. New five-coordinate Ru (II) phosphoramidite complexes and their catalytic activity in propargylic amination reactions
JP5713324B2 (ja) カーボンナノリング及びその製造原料として好適な輪状の化合物の製造方法
AU2011301115A1 (en) Biaryl diphosphine ligands, intermediates of the same and their use in asymmetric catalysis
US9707553B2 (en) P-chirogenic organophosphorus compounds
JP6940481B2 (ja) 四座配位子、その製造方法及び合成中間体並びにその遷移金属錯体
JP6357691B2 (ja) リン化合物及びその遷移金属錯体
EP3438115B1 (en) Ruthenium based complexes
WO2014077323A1 (ja) 光学活性イソプレゴールおよび光学活性メントールの製造方法
JP7287905B2 (ja) 不斉四座配位子及びその製造方法並びに該不斉四座配位子の遷移金属錯体
JP2015063511A (ja) リン化合物及びその遷移金属錯体
JP2005528354A (ja) フェロセニル配位子及び触媒反応におけるその使用
US9340519B2 (en) Paracyclophane-based ligands, their preparation and use in catalysis
JP2018523669A (ja) 芳香族化合物をアルキンにカップリングさせるための方法
JP2024502715A (ja) 有機金属化合物
WO2010013239A2 (en) SYNTHESIS OF STABLE C-(sup3)-CARBOMETALATED TRANSITION METAL COMPLEXES
van Maarseveen et al. Synthesis, Properties and Applications of BICAP: a New Family of Carbazole-Based Diphosphine Ligands
Botman Synthesis and applications of chiral ligands based on the bicarbazole skeleton
Taullaj et al. Constrained Geometry Iridium Complexes Containing N-Donor-functionalized Fluorenyl Ligands ((PREPRINT TITLE))
GB2378182A (en) Heterocycle-containing phosphines & their use as ligands in palladium catalysed coupling reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6357691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250