JP6357598B1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP6357598B1
JP6357598B1 JP2018023558A JP2018023558A JP6357598B1 JP 6357598 B1 JP6357598 B1 JP 6357598B1 JP 2018023558 A JP2018023558 A JP 2018023558A JP 2018023558 A JP2018023558 A JP 2018023558A JP 6357598 B1 JP6357598 B1 JP 6357598B1
Authority
JP
Japan
Prior art keywords
heat
spiral
speed
heat medium
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018023558A
Other languages
Japanese (ja)
Other versions
JP2019138583A (en
Inventor
隆雄 原
隆雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARA TAKAO LABORATORY LLC
Original Assignee
HARA TAKAO LABORATORY LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARA TAKAO LABORATORY LLC filed Critical HARA TAKAO LABORATORY LLC
Priority to JP2018023558A priority Critical patent/JP6357598B1/en
Application granted granted Critical
Publication of JP6357598B1 publication Critical patent/JP6357598B1/en
Publication of JP2019138583A publication Critical patent/JP2019138583A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】従来の冷暖房システムを更に進化させ、電力使用量を大幅に削減しながら、十分な暖房効果と十分な冷房効果を発揮すること。【解決手段】熱媒体を振動回転させて液化させる螺旋状太管と、この螺旋状太管に接続され液熱媒体をスピン振動回転して減圧膨張させる螺旋状細管であって前記螺旋状太管より細径の螺旋状細管とを有する第1及び第2の速度‐熱変換器20A、20Bと、熱媒体を圧縮するコンプレッサ10と、圧縮された熱媒体の熱を放熱する放熱短配管30と、前記放熱短配管30に送り出された熱媒体を前記第2の速度‐熱変換器20Bへ送り減圧膨張させて液熱媒体とし、この液熱媒体を熱交換器50において熱交換する一方、前記圧縮された熱媒体を熱交換器50へ送り、送り出された液熱媒体を前記第1の速度‐熱変換器20Aへ送り、この第1の速度‐熱変換器20Aにおいて減圧膨張させ気化させる。【選択図】図1[PROBLEMS] To further improve a conventional air-conditioning system and exhibit a sufficient heating effect and a sufficient air-cooling effect while greatly reducing power consumption. A spiral thick tube that oscillates and rotates a heat medium to liquefy, and a spiral tubule that is connected to the spiral thick tube and spin-rotates and rotates the liquid heat medium to decompress and expand. First and second speed-heat converters 20A and 20B having a helical tube having a smaller diameter, a compressor 10 for compressing the heat medium, and a heat radiating short pipe 30 for radiating the heat of the compressed heat medium, The heat medium sent to the short heat radiating pipe 30 is sent to the second speed-heat converter 20B and decompressed and expanded to form a liquid heat medium, and the liquid heat medium is heat-exchanged in the heat exchanger 50, The compressed heat medium is sent to the heat exchanger 50, the sent liquid heat medium is sent to the first speed-heat converter 20A, and the first speed-heat converter 20A is decompressed and expanded to be vaporized. [Selection] Figure 1

Description

この発明は、螺旋状細管と、この螺旋状細管に接続される上記螺旋状細管よりの太径の螺旋状太管とを有する速度‐熱変換器を用いた冷暖房システムに関するものである。 This invention includes a spiral narrow tube, the speed and a helical JoFutoshikan of large diameter than the spiral narrow tube connected to the spiral narrow tube - relates heating and cooling system using hot converter.

速度‐熱変換器及びこれを用いた冷暖房システムに関しては、本願の発明者が既に特許文献1等において提案している。この特許文献1に記載の通り、速度‐熱変換器は、螺旋状細管螺旋状太管を直列に接続した直列管を1又は複数並列に配列して形成するものである。 The inventor of the present application has already proposed a speed-heat converter and an air conditioning system using the same in Patent Document 1 and the like. As described in Patent Document 1, the speed-heat converter is formed by arranging one or a plurality of series tubes in which a spiral thin tube and a spiral thick tube are connected in series.

本願の発明者は、上記特許文献1において、コンプレッサから吐出した熱媒体を熱交換器に導入して環境に放熱し、上記直列管を介してコンプレッサに戻すことにより暖房システムを構成することを示した。また、コンプレッサから吐出した熱媒体を熱交換器へ導入し、液化した液熱媒体を螺旋状細管で減圧気化し、更に螺旋状太管において、上記螺旋状細管にて形成された減圧条件を維持しつつ気化作用を補助することにより、略気化された熱媒体を完全気化する。このようにして得られた熱媒体を直接もしくはコンデンサを介してコンプレッサに導入することにより暖房システムを構築する。 The inventor of the present application shows in Patent Document 1 that a heating system is configured by introducing a heat medium discharged from a compressor into a heat exchanger to dissipate heat to the environment and returning it to the compressor via the series pipe. It was. In addition, the heat medium discharged from the compressor is introduced into the heat exchanger, and the liquefied liquid heat medium is vaporized under reduced pressure with a spiral capillary, and the decompression condition formed with the spiral capillary is maintained in the spiral thick pipe . However, by assisting the vaporizing action, the substantially vaporized heat medium is completely vaporized. A heating system is constructed by introducing the heat medium thus obtained directly or via a condenser into the compressor.

更に、熱媒体を逆に流すことによって冷房とすることができることを示し、これによって全体として冷暖房システムを提供するものである。 Further, it is shown that cooling can be performed by flowing the heat medium in reverse, thereby providing a cooling / heating system as a whole.

特許第4545824号公報Japanese Patent No. 4554524

本願発明者は上記の冷暖房システムについて鋭意研究を重ねた結果、コンプレッサ、速度‐熱変換器、熱交換器を熱媒体がループするシステムにおいて、単に熱媒体の流れる向きを逆にしただけでは十分な暖房効果と十分な冷房効果を発揮し難いことを発見した。 As a result of extensive research on the above-described air conditioning system, the present inventor has found that it is sufficient to simply reverse the flow direction of the heat medium in a system in which the heat medium loops through the compressor, speed-heat converter, and heat exchanger. It was discovered that it was difficult to exhibit the heating effect and sufficient cooling effect.

本発明はこのような従来の冷暖房システムを更に進化させ、電力使用量を大幅に削減しながら、十分な暖房効果と十分な冷房効果を発揮することのできる冷暖房システムを提供することを目的とする。   The present invention aims to further improve such a conventional air conditioning system and provide an air conditioning system capable of exhibiting a sufficient heating effect and a sufficient cooling effect while greatly reducing the amount of electric power used. .

本実施形態に係る冷暖房システムは熱媒体振動回転させて液化させる螺旋状太管とこの螺旋状太管に接続され液熱媒体をスピン振動回転して減圧膨張させる螺旋状細管であって前記螺旋状太管より細径の螺旋状細管とを有する第1及び第2の速度‐熱変換器と、熱媒体を圧縮するコンプレッサと、圧縮された熱媒体の熱を放熱する放熱短配管と、前記放熱短配管に送り出された熱媒体を前記第2の速度‐熱変換器へ送り減圧膨張させて液熱媒体を熱交換器において熱交換する一方、前記圧縮された熱媒体を熱交換器へ送り、送り出された液熱媒体を前記第1の速度‐熱変換器へ送り、この第1の速度‐熱変換器において減圧膨張させ気化させる冷暖房システムである。
そして、前記第1の速度‐熱変換器の螺旋状細管の内径が前記第2の速度‐熱変換器の螺旋状細管の内径よりも大径であることを特徴とする。
The cooling / heating system according to the present embodiment includes a spiral thick tube that vibrates and rotates a heat medium to liquefy, and a spiral thin tube that is connected to the spiral thick pipe and spin-rotates and rotates the liquid heat medium to decompress and expand. first and second speed having a small-diameter helical tubules than spiral JoFutoshikan - heat converter, a compressor for compressing a heat medium, a heat radiation short pipe for radiating heat of compressed heat medium, The heat medium sent to the heat radiating short pipe is sent to the second speed-heat converter and expanded under reduced pressure to exchange heat in the liquid heat medium in the heat exchanger, while the compressed heat medium is transferred to the heat exchanger. This is a heating and cooling system in which the liquid heat medium sent and sent is sent to the first speed-heat converter, and is decompressed and expanded in the first speed-heat converter .
The inner diameter of the spiral capillary of the first speed-heat converter is larger than the inner diameter of the spiral capillary of the second speed-heat converter.

本発明に係る冷暖房システムの実施形態の構成を示すブロック図。The block diagram which shows the structure of embodiment of the air conditioning system which concerns on this invention. 本発明に係る冷暖房システムの実施形態の要部構成を示す正面図。The front view which shows the principal part structure of embodiment of the air conditioning system which concerns on this invention. 本発明に係る冷暖房システムの実施形態の要部である螺旋状管を直管とした場合の溝構造を示す断面図。Sectional drawing which shows the groove | channel structure at the time of making the spiral pipe which is the principal part of embodiment of the air-conditioning system which concerns on this invention into a straight pipe. 本発明に係る冷暖房システムの実施形態の要部である螺旋状管における外側の溝構造を示す断面図。Sectional drawing which shows the outer groove | channel structure in the helical tube which is the principal part of embodiment of the air-conditioning system which concerns on this invention. 本発明に係る冷暖房システムの実施形態の要部である螺旋状管における内側の溝構造を示す断面図。Sectional drawing which shows the inner side groove | channel structure in the helical tube which is the principal part of embodiment of the air conditioning system which concerns on this invention.

以下添付図面を参照して、本発明に係る冷暖房システムの実施形態を説明する。各図において、同一の構成要素には同一の符号を付して重複する説明を省略する。図1には、第1の実施形態に係る冷暖房システムの構成を示す。第1の実施形態に係る冷暖房システムは、熱媒体を圧縮するコンプレッサ10を備え、第1の速度‐熱変換器20Aと第2の速度‐熱変換器20Bを備える。 Embodiments of an air conditioning system according to the present invention will be described below with reference to the accompanying drawings. In each figure, the same components are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 shows a configuration of an air conditioning system according to the first embodiment. The air conditioning system according to the first embodiment includes a compressor 10 that compresses a heat medium , and includes a first speed-heat converter 20A and a second speed-heat converter 20B.

第1の速度‐熱変換器20Aと第2の速度‐熱変換器20Bは、各部の寸法が異なるものの、構成要素は同一である。これらの速度‐熱変換器20A、20Bは、図2に示すように、熱媒体を振動回転させて液化させる螺旋状太管22と、液熱媒体を振動回転して減圧膨張させる螺旋状細管21とを有する。ここにおける振動回転は、述べるようにスピン振動回転であると思料される。螺旋状細管21は、上記螺旋状太管22より細径である。螺旋状細管21と螺旋状太管22とは、中継管23により結合されている。螺旋状細管21と螺旋状太管22と中継管23による直列管は、ここでは2本並列に設けられているが、3本以上並列に設けられていてもよい。 Although the first speed-heat converter 20A and the second speed-heat converter 20B have different dimensions, the components are the same. As shown in FIG. 2, these speed-heat converters 20A and 20B include a helical thick tube 22 that oscillates and rotates a heat medium to liquefy, and a helical thin tube 21 that oscillates and rotates a liquid heat medium to decompress and expand. And have. The vibration rotation here is considered to be spin vibration rotation as described below. The spiral thin tube 21 has a smaller diameter than the spiral thick tube 22. The spiral thin tube 21 and the spiral thick tube 22 are connected by a relay tube 23. Series tube by spiral narrow tube 21 and the spiral JoFutoshikan 22 and the relay pipe 23 is here provided in the two parallel, it may be provided in parallel three or more.

各直列管における螺旋状細管21側の端部には、これら複数の螺旋状細管21を結合する集合管24が接続されている。また、各直列管における螺旋状太管22側の端部には、これら複数の螺旋状太管22を結合する集合管25が接続されている。 A collecting tube 24 that couples the plurality of spiral tubules 21 is connected to an end portion of each series tube on the spiral tubule 21 side. In addition, a collecting pipe 25 that connects the plurality of helical thick pipes 22 is connected to an end of each series pipe on the spiral thick pipe 22 side.

上記第1の速度‐熱変換器20Aの螺旋状細管21の内径と上記第2の速度‐熱変換器20Bの螺旋状細管21の内径とが異なるものである。上記第1の速度‐熱変換器20Aの螺旋状細管21の内径が上記第2の速度‐熱変換器20Bの螺旋状細管の内径よりも大径である。 The inner diameter of the spiral capillary 21 of the first speed-heat converter 20A is different from the inner diameter of the spiral capillary 21 of the second speed-heat converter 20B. The inner diameter of the spiral capillary 21 of the first speed-heat converter 20A is larger than the inner diameter of the spiral capillary of the second speed-heat converter 20B.

上記第1の速度‐熱変換器20Aの螺旋状太管22の内径と上記第2の速度‐熱変換器20Bの螺旋状太管22の内径とが異なる。上記第1の速度‐熱変換器20Aの螺旋状太管22の内径が上記第2の速度‐熱変換器20Bの螺旋状太管22の内径よりも大径である。 The inner diameter of the spiral thick tube 22 of the first speed-heat converter 20A is different from the inner diameter of the spiral thick tube 22 of the second speed-heat converter 20B. The inner diameter of the spiral thick tube 22 of the first speed-heat converter 20A is larger than the inner diameter of the spiral thick tube 22 of the second speed-heat converter 20B.

上記第1の速度‐熱変換器20Aの螺旋状細管21の内径と上記第2の速度‐熱変換器20Bの螺旋状細管21の内径、上記第1の速度‐熱変換器20Aの螺旋状太管22の内径と上記第2の速度‐熱変換器20Bの螺旋状太管22の内径などの寸法の一例を以下に示す。括弧内は、数値の範囲である。 The first speed - heat converter inside diameter of the spiral narrow tube 21 of 20A and the second speed - the inner diameter of the spiral narrow tube 21 of the heat transducer 20B, the first speed - spiral heat converters 20A JoFutoshi An example of dimensions such as the inner diameter of the tube 22 and the inner diameter of the spiral thick tube 22 of the second speed-heat converter 20B is shown below. Figures in parentheses are numerical ranges.

Figure 0006357598
Figure 0006357598

Figure 0006357598
Figure 0006357598

更に、集合管24、25の各部の寸法、中継管23の各部の寸法を以下に示す。   Furthermore, the dimension of each part of the collecting pipes 24 and 25 and the dimension of each part of the relay pipe 23 are shown below.

Figure 0006357598
Figure 0006357598

Figure 0006357598
Figure 0006357598

以上示した寸法は、冷暖房システムの冷房能力や暖房能力によって適宜変更される値であることは言うまでもない。更に、本実施形態に係る冷暖房システムでは、放熱短配管30を備えている。この放熱短配管30は、通常用いられるコンデンサの能力の20分の1程度の能力のミニ冷却器で構成することができる。また、この放熱短配管30は、冷房運転のときのみに用いるようにすることができる。この放熱短配管30は、コンプレッサ10の圧縮熱を放熱するために設けられている。従って放熱短配管30を、図1に示すように熱交換器50と同じ位置に所定長の配管30Aとして設け、この所定長の配管を熱交換器50のファンにより冷却する構造とすることができる。この場合の所定長は、熱交換器50を構成する配管の長さが1とすれば、同じ径の配管を用いる場合には20分の1の長さの配管を設けて放熱短配管30を構成することができる。 It goes without saying that the dimensions shown above are values that are appropriately changed depending on the cooling capacity and heating capacity of the cooling and heating system. Furthermore, the air conditioning system according to the present embodiment includes a heat radiation short pipe 30. The heat radiation short pipe 30 can be constituted by a mini-cooler having a capacity of about 1/20 of the capacity of a normally used capacitor. Further, the heat radiation short pipe 30 can be used only during the cooling operation. The heat dissipation short pipe 30 is provided to dissipate the compression heat of the compressor 10. Accordingly, the heat radiation short pipe 30 can be provided as a predetermined length of the pipe 30A at the same position as the heat exchanger 50 as shown in FIG. 1, and the predetermined length of the pipe can be cooled by the fan of the heat exchanger 50. . The predetermined length in this case is that if the length of the pipe constituting the heat exchanger 50 is 1, when using the same diameter pipe, a 1/20 length pipe is provided and the heat radiation short pipe 30 is Can be configured.

更に、本実施形態に係る冷暖房システムには、切換弁40が備えられている。この切換弁40は、上記放熱短配管30と熱交換器50との間における熱媒体の経路に、上記第1の速度‐熱変換器20Aと上記第2の速度‐熱変換器20Bとのいずれかを切換接続するためものである。本実施形態では、放熱短配管30を上記第1の速度‐熱変換器20Aに接続するか、放熱短配管30を上記第2の速度‐熱変換器20Bに接続するかを切り換えるように構成されている。 Further, the air conditioning system according to the present embodiment is provided with a switching valve 40. The switching valve 40 is provided on the path of the heat medium between the heat radiation short pipe 30 and the heat exchanger 50, and either the first speed-heat converter 20A or the second speed-heat converter 20B. This is for switching connection. In this embodiment, the heat dissipation short pipe 30 is connected to the first speed-heat converter 20A or the heat dissipation short pipe 30 is connected to the second speed-heat converter 20B. ing.

上記第1の速度‐熱変換器20A及び上記第2の速度‐熱変換器20Bと、コンプレッサ10との間には、熱交換器50が設けられる。熱交換器50は例えば外気等に放熱を行うもので、ファンにより冷却される。コンプレッサ10と放熱短配管30との間は配管11により接続され、放熱短配管30と切換弁40との間は配管31により接続されている。 A heat exchanger 50 is provided between the first speed-heat converter 20 </ b> A and the second speed-heat converter 20 </ b> B and the compressor 10. The heat exchanger 50 radiates heat to the outside air, for example, and is cooled by a fan. The compressor 10 and the heat radiation short pipe 30 are connected by a pipe 11, and the heat radiation short pipe 30 and the switching valve 40 are connected by a pipe 31.

また、切換弁40と第1の速度‐熱変換器20Aの間は、配管41により接続されており、切換弁40と第2の速度‐熱変換器20Bの間は、配管42により接続されている。更に、第1の速度‐熱変換器20Aの螺旋状細管21側には、配管28が接続されており、第2の速度‐熱変換器20Bの螺旋状細管21側には、配管26が接続されており、配管28と配管26とは結合点27において配管51に接続されている。この配管51は熱交換器50に接続されている。熱交換器50とコンプレッサ10との間は、配管52により接続されている。各配管の太さは、第1の速度‐熱変換器20Aの螺旋状太管22より大径であればよく、例えば、第1の速度‐熱変換器20Aの螺旋状太管22の内径の3倍程度であればよい。 The switching valve 40 and the first speed-heat converter 20A are connected by a pipe 41, and the switching valve 40 and the second speed-heat converter 20B are connected by a pipe 42. Yes. Further, a pipe 28 is connected to the spiral capillary 21 side of the first speed-heat converter 20A, and a pipe 26 is connected to the spiral capillary 21 side of the second speed-heat converter 20B. The pipe 28 and the pipe 26 are connected to the pipe 51 at the connection point 27. This pipe 51 is connected to the heat exchanger 50. The heat exchanger 50 and the compressor 10 are connected by a pipe 52. The thickness of each pipe may be larger than the diameter of the spiral thick tube 22 of the first speed-heat converter 20A, for example, the inner diameter of the spiral thick tube 22 of the first speed-heat converter 20A. It may be about 3 times.

上記の第1の速度‐熱変換器20Aと第2の速度‐熱変換器20Bの螺旋状細管21と螺旋状太管22には、例えば銅管にピアノ線を入れ込んで、銅管をピアノ線の外径(太さ)まで絞って管を形成するため、内壁に図3に示すような溝60が形成される。この溝60は螺旋状太管22側から螺旋状細管21側へ向かって左旋回しながら進むように形成することができる。 In the spiral thin tube 21 and the spiral thick tube 22 of the first speed-heat converter 20A and the second speed-heat converter 20B, for example, a piano wire is inserted into a copper tube, and the copper tube is used as a piano. In order to form a tube by narrowing to the outer diameter (thickness) of the wire, a groove 60 as shown in FIG. 3 is formed on the inner wall. The groove 60 can be formed to advance while turning counterclockwise from the spiral thick tube 22 side toward the spiral thin tube 21 side.

そして、直管状態から螺旋状管へ捩じって螺旋状細管21と螺旋状太管22を形成する。このとき、螺旋状管の外側においては全体として長さ方向へ引っ張られることから、溝60と隣接する溝60との間隔は図4に示すように直管状態のときに比べて広がる。 Then, the spiral tube 21 and the spiral tube 22 are formed by twisting from the straight tube state to the spiral tube . At this time, since the outer side of the spiral tube is pulled in the length direction as a whole, the interval between the groove 60 and the adjacent groove 60 is wider than that in the straight tube state as shown in FIG.

一方、直管状態から螺旋状管へ捩じって螺旋状細管21と螺旋状太管22を形成するときに、螺旋状管の内側においては全体として長さ方向に対して縮められるように加工されることから、溝60と隣接する溝60との間隔は図4に示すように直管状態のときに比べて狭くなる。 On the other hand, when the spiral thin tube 21 and the spiral thick tube 22 are formed by twisting from the straight tube state to the spiral tube , the inside of the spiral tube is processed so as to be contracted in the length direction as a whole. Therefore, the interval between the groove 60 and the adjacent groove 60 is narrower than that in the straight pipe state as shown in FIG.

この溝の間隔が外側と内側において異なっていること、更に、特許文献1において述べられていることであるが、銅管を軸方向へ捩じるときに生じるくびれなどによって熱媒体にスピン振動回転がかかることにより速度‐熱変換器における熱変換に特別の好適な影響を与えるものと考えられる。 The gap between the grooves is different between the outside and the inside. Further, as described in Patent Document 1, spin vibration rotation occurs in the heat medium due to the constriction that occurs when the copper tube is twisted in the axial direction. It is considered that this has a particularly favorable influence on the heat conversion in the speed-heat converter.

本実施形態は、冷暖房システムとして使用するものであるから、冷房時と暖房時ではコンプレッサ10の入力と出力を逆に切り替える機構としてコンプレッサ10の入力口と出力口に、切替器(四方弁)70を備えている。暖房時には、切換弁40を操作して熱媒体が第1の速度‐熱変換器20Aのみへ流れるようにし、第2の速度‐熱変換器20Bは使用しない。冷房時には、切換弁40を操作して熱媒体が第2の速度‐熱変換器20Bのみへ流れるようにし、第1の速度‐熱変換器20Aは使用しない。 Since the present embodiment is used as an air conditioning system, a switcher (four-way valve) 70 is provided between the input port and the output port of the compressor 10 as a mechanism for switching the input and output of the compressor 10 reversely during cooling and heating. It has. During heating, the switching valve 40 is operated so that the heat medium flows only to the first speed-heat converter 20A, and the second speed-heat converter 20B is not used. During cooling, the switching valve 40 is operated so that the heat medium flows only to the second speed-heat converter 20B, and the first speed-heat converter 20A is not used.

暖房時と冷房時の、コンプレッサ10、熱交換器50、螺旋状細管21、螺旋状太管22の条件を以下に示す。括弧内は、数値の範囲である。 The conditions of the compressor 10, the heat exchanger 50, the spiral thin tube 21, and the spiral thick tube 22 during heating and cooling are shown below. Figures in parentheses are numerical ranges.

Figure 0006357598
Figure 0006357598

Figure 0006357598
Figure 0006357598

上記の条件において、暖房時には、コンプレッサ10において熱媒体を高圧高温ガスにして、熱交換器50で放熱して常温の液体となる。次に、第1の速度‐熱変換器20Aへ進み、スピン振動回転によるエネルギー放射により減圧膨張によって、熱媒体はガス化して放熱短配管30を介してコンプレッサ10へ戻る。 Under the above conditions, at the time of heating, the heat medium is changed to a high-pressure high-temperature gas in the compressor 10 and is radiated by the heat exchanger 50 to become a room temperature liquid. Next, the process proceeds to the first speed-heat converter 20 </ b> A, and the heat medium is gasified and returned to the compressor 10 through the heat radiation short pipe 30 by decompression expansion due to energy emission by spin vibration rotation .

また、冷房時には、コンプレッサ10において熱媒体を圧縮して高温ガスとし、放熱短配管30においてコンプレッサ10の熱を放熱させ熱媒体を得る。次に、熱媒体は第2の速度‐熱変換器20Bへ送られ、スピン振動回転により減圧膨張させられ、液体のまま温度低下させて熱交換器50へ送り込み、熱交換されて全ガスとされコンプレッサ10へ戻る。 Further, at the time of cooling, the heat medium is compressed into a high-temperature gas in the compressor 10, and the heat of the compressor 10 is radiated through the heat radiation short pipe 30 to obtain a heat medium. Next, the heat medium is sent to the second speed-heat converter 20B, decompressed and expanded by spin vibration rotation, lowered in temperature while being liquid, sent to the heat exchanger 50, and heat exchanged to make all the gas. Return to the compressor 10.

上記構成に係る本実施形態に係る冷暖房システムを、フロンR134aを用いた自動車用冷暖房システムに適用した運用状況は、以下の如くである。コンプレッサの定格回転数、940rpm、高圧10Kg(約10〜12Kg)、低圧2.0Kg(約2.0〜2.5Kg)の自動車用冷房システムにおいて、本実施形態を適用した場合に満足のできる冷房温度となった。また、暖房サイクルの場合には、自動車用であるので比較すべき従来例は存在しない。コンプレッサの定格回転数940rpm(約10 Kg)前後で噴出し口から54℃の温風が得られた。即ち、定格24〜30Aのモータに対し、本実施形態では5A程度のモータで十分な冷房暖房効果を得ることができ、80%程の消費電力削減を図ることができた。即ち、電力使用量を大幅に削減しながら、十分な暖房効果と十分な冷房効果を発揮することが期待される。 The operation state in which the air conditioning system according to the present embodiment having the above configuration is applied to an automotive air conditioning system using Freon R134a is as follows. The rated cooling speed of the compressor, 940 rpm, high pressure 10 kg (about 10 to 12 kg), and low pressure 2.0 kg (about 2.0 to 2.5 kg) in the automotive cooling system, the cooling temperature was satisfactory when this embodiment was applied. . In the case of the heating cycle, since it is for automobiles, there is no conventional example to be compared. Hot air of 54 ° C was obtained from the outlet at a rated compressor speed of around 940 rpm (about 10 kg). That is, in the present embodiment, a sufficient cooling / heating effect can be obtained with a motor of about 5A in the present embodiment with respect to a motor with a rating of 24 to 30A, and power consumption can be reduced by about 80%. That is, it is expected that a sufficient heating effect and a sufficient cooling effect are exhibited while greatly reducing the power consumption.

本実施形態では、冷房及び暖房共に高効率でエネルギー消費の低減を図ることができた。コンプレッサ圧を20%〜40%低減させることができ、電力使用量は暖房時で60〜80%減、冷房時でも最高60〜80%減とすることが可能である。本実施形態は、螺旋状細管螺旋状太管の内径が1.8〜4.0mmであり、上記螺旋状細管と上記螺旋状太管の内壁に螺旋状溝が図3〜図5を用いて説明したように形成されることで、熱媒体スピン振動回転がかかり、運動エネルギー放射が連続して生じることが最大の特徴である。 In this embodiment, energy consumption can be reduced with high efficiency in both cooling and heating. The compressor pressure can be reduced by 20% to 40%, and the amount of power used can be reduced by 60 to 80% during heating and by a maximum of 60 to 80% even during cooling. In the present embodiment, the inner diameter of the spiral tubule and the spiral tubule is 1.8 to 4.0 mm, and the spiral groove on the inner wall of the spiral tubule and the spiral tubule has been described with reference to FIGS. By being formed in this way, the greatest feature is that spin vibration is applied to the heat medium and kinetic energy radiation is continuously generated.

10 コンプレッサ
11 配管
20A 第1の速度‐熱変換器
20B 第2の速度‐熱変換器
21 螺旋状細管
22 螺旋状太管
23 中継管
24、25 集合管
26、28 配管
30 放熱短配管
40 切換弁
50 熱交換器
60 溝
70 切替器(四方弁)
DESCRIPTION OF SYMBOLS 10 Compressor 11 Piping 20A 1st speed-heat converter 20B 2nd speed-heat converter 21 Helical thin tube 22 Helical thick tube 23 Relay pipe 24, 25 Collecting pipe 26, 28 Piping 30 Radiation short piping 40 Switching valve 50 heat exchanger 60 groove 70 selector (four-way valve)

Claims (5)

熱媒体振動回転させて液化させる螺旋状太管とこの螺旋状太管に接続され液熱媒体をスピン振動回転して減圧膨張させる螺旋状細管であって前記螺旋状太管より細径の螺旋状細管とを有する第1及び第2の速度‐熱変換器と、
熱媒体を圧縮するコンプレッサと、
圧縮された熱媒体の熱を放熱する放熱短配管と、
前記放熱短配管に送り出された熱媒体を前記第2の速度‐熱変換器へ送り減圧膨張させて液熱媒体を熱交換器において熱交換する一方、前記圧縮された熱媒体を熱交換器へ送り、送り出された液熱媒体を前記第1の速度‐熱変換器へ送り、この第1の速度‐熱変換器において減圧膨張させ気化させる冷暖房システムであって、
前記第1の速度‐熱変換器の螺旋状細管の内径が前記第2の速度‐熱変換器の螺旋状細管の内径よりも大径であることを特徴とする冷暖房システム。
A spiral thick tube that oscillates and rotates a heat medium to liquefy, and a spiral tubule that is connected to the spiral thick tube and spin-rotates and rotates the liquid heat medium to expand under reduced pressure, and has a diameter smaller than that of the spiral thick tube. First and second velocity-to-heat converters having spiral tubules ;
A compressor for compressing the heat medium ;
A heat dissipation short pipe that dissipates the heat of the compressed heat medium ;
The heat medium sent to the heat radiating short pipe is sent to the second speed-heat converter and expanded under reduced pressure to exchange heat in the liquid heat medium in the heat exchanger, while the compressed heat medium is transferred to the heat exchanger. A heating and cooling system for sending and feeding the liquid heat medium sent and sent to the first speed-to-heat converter, wherein the first speed-to-heat converter is decompressed and expanded and vaporized ;
The air conditioning system according to claim 1, wherein an inner diameter of the spiral capillary of the first speed-heat converter is larger than an inner diameter of the spiral capillary of the second speed-heat converter .
前記第1の速度‐熱変換器の螺旋状太管の内径が前記第2の速度‐熱変換器の螺旋状太管の内径よりも大径であることを特徴とする請求項1に記載の冷暖房システム。 The inner diameter of the spiral thick tube of the first speed-heat converter is larger than the inner diameter of the spiral thick tube of the second speed-heat converter. Air conditioning system. 前記第1の速度‐熱変換器の螺旋状細管側と前記第2の速度‐熱変換器の螺旋状太管側とが前記コンプレッサの吐出側に設けられることを特徴とする請求項1または2に記載の冷暖房システム。 The spiral thin tube side of the first speed-heat converter and the spiral thick tube side of the second speed-heat converter are provided on the discharge side of the compressor. The air conditioning system described in. 暖房動作のときには、前記第1の速度‐熱変換器における前記螺旋状細管から前記螺旋状太管へ向かって熱媒を流すように制御を行うことを特徴とする請求項1乃至3のいずれか1項に記載の冷暖房システム。 4. The control according to claim 1, wherein the heating medium is controlled to flow from the spiral thin tube toward the spiral thick tube in the first speed-heat converter during the heating operation. The air conditioning system of item 1. 冷房動作のときには、前記第2の速度‐熱変換器における前記螺旋状太管から前記螺旋状細管へ向かって熱媒を流すように制御を行うことを特徴とする請求項1乃至4のいずれか1項に記載の冷暖房システム。 5. The control according to claim 1, wherein during the cooling operation, control is performed so that a heat medium flows from the spiral thick tube toward the spiral thin tube in the second speed-heat converter. The air conditioning system of item 1.
JP2018023558A 2018-02-13 2018-02-13 Air conditioning system Expired - Fee Related JP6357598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023558A JP6357598B1 (en) 2018-02-13 2018-02-13 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023558A JP6357598B1 (en) 2018-02-13 2018-02-13 Air conditioning system

Publications (2)

Publication Number Publication Date
JP6357598B1 true JP6357598B1 (en) 2018-07-11
JP2019138583A JP2019138583A (en) 2019-08-22

Family

ID=62845253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023558A Expired - Fee Related JP6357598B1 (en) 2018-02-13 2018-02-13 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6357598B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073073U (en) * 1983-10-26 1985-05-23 三菱電機株式会社 Multi-room air conditioner
JP2005515395A (en) * 2002-01-24 2005-05-26 ▲チュ▼▲軍▼ 願 Air conditioner with air conditioning function
JP4411349B2 (en) * 2005-09-26 2010-02-10 株式会社Hara Tech Condensation heat converter and refrigeration system using the same
JP4545824B1 (en) * 2009-01-13 2010-09-15 隆雄 原 Speed-heat converter, heating system using the same, and air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073073U (en) * 1983-10-26 1985-05-23 三菱電機株式会社 Multi-room air conditioner
JP2005515395A (en) * 2002-01-24 2005-05-26 ▲チュ▼▲軍▼ 願 Air conditioner with air conditioning function
JP4411349B2 (en) * 2005-09-26 2010-02-10 株式会社Hara Tech Condensation heat converter and refrigeration system using the same
JP4545824B1 (en) * 2009-01-13 2010-09-15 隆雄 原 Speed-heat converter, heating system using the same, and air conditioning system

Also Published As

Publication number Publication date
JP2019138583A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP4545824B1 (en) Speed-heat converter, heating system using the same, and air conditioning system
EP2565561B1 (en) Heat exchanging device and connecting tube used therein
JP6299495B2 (en) Ejector refrigeration cycle
KR20080042178A (en) Air conditioner
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
CN108779945B (en) Radiator, condenser unit, refrigeration cycle
JP2006273049A (en) Vehicular air conditioner
JP2005077088A (en) Condensation machine
JP2007178072A (en) Air conditioner for vehicle
JPWO2014147919A1 (en) Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger
JP6406485B1 (en) Air conditioning system
JP6357598B1 (en) Air conditioning system
JP6675571B1 (en) Heating and cooling system using a device that rotates molecules by vibration
JP2009300027A (en) Ejector and ejector type refrigerating cycle
JP2008082658A (en) Internal heat exchanger
JP5537573B2 (en) Refrigeration system
JP7507994B1 (en) Air Conditioning Equipment
EP3177885B1 (en) Internal heat exchanger and method for making the same
JP6458918B1 (en) Air conditioning system
JP2010261680A (en) Double-pipe heat exchanger
JP2011033239A (en) Heat transfer pipe, air conditioner and method for manufacturing the heat transfer pipe
CN114902010A (en) Heat pump with optimized refrigerant circuit
JP2001056165A (en) Heat exchanger for evaporator of air conditioner
WO2017154093A1 (en) Air conditioning device for vehicle
JP2011179742A (en) Condenser and air conditioner using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180329

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6357598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees