JP2008082658A - Internal heat exchanger - Google Patents

Internal heat exchanger Download PDF

Info

Publication number
JP2008082658A
JP2008082658A JP2006265404A JP2006265404A JP2008082658A JP 2008082658 A JP2008082658 A JP 2008082658A JP 2006265404 A JP2006265404 A JP 2006265404A JP 2006265404 A JP2006265404 A JP 2006265404A JP 2008082658 A JP2008082658 A JP 2008082658A
Authority
JP
Japan
Prior art keywords
pressure side
side pipe
heat exchanger
internal heat
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006265404A
Other languages
Japanese (ja)
Inventor
Torahide Takahashi
寅秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2006265404A priority Critical patent/JP2008082658A/en
Publication of JP2008082658A publication Critical patent/JP2008082658A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal heat exchanger considerably reducing manufacturing cost while maintaining heat exchanging performance. <P>SOLUTION: The internal heat exchanger comprises a high pressure side pipe 21 through which a high-pressure medium-temperature refrigerant flows, and a low pressure side pipe 22 through which a low-pressure low-temperature refrigerant lower in pressure and temperature than the high pressure side pipe flows, and exchanges heat between these refrigerants. The high pressure side pipe 21 is formed as a circular pipe smaller in both inner and outer diameters than the low pressure side pipe 22, and the high pressure side pipe 21 and the low pressure side pipe 22 are formed in spirally twisted structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内部熱交換器に関し、詳細には、熱交換性能の維持と低コストでの製造を可能とする技術に関する。   The present invention relates to an internal heat exchanger, and in particular, to a technique that enables maintenance of heat exchange performance and low-cost production.

例えば、自動車用空調装置には、二酸化炭素を冷媒とした冷凍サイクルが開発されている。その冷凍サイクルを構成する装置のうち内部熱交換器は、高圧中温の冷媒が流れる高圧側流路と、それよりも圧力及び温度の低い低圧低温の冷媒が流れる低圧側流路とを備え、それら両流路を流れる冷媒同士で熱交換させるようにしている。   For example, refrigeration cycles using carbon dioxide as a refrigerant have been developed for automotive air conditioners. Among the devices constituting the refrigeration cycle, the internal heat exchanger includes a high-pressure side passage through which a high-pressure and intermediate-temperature refrigerant flows, and a low-pressure side passage through which a low-pressure and low-temperature refrigerant having a lower pressure and temperature flows. Heat is exchanged between the refrigerants flowing through both flow paths.

このような内部熱交換器の一つとして、例えば低圧で低温の冷媒が流れる管路の周囲に、高圧で高温の冷媒が流れる管路を何重にも巻き付けて熱交換を行うようにした構造のものが提案されている(例えば、特許文献1参照)。   As one of such internal heat exchangers, for example, a structure in which a high-pressure and high-temperature refrigerant flow is wrapped around a pipe line through which low-pressure and low-temperature refrigerant flows to perform heat exchange. Have been proposed (see, for example, Patent Document 1).

この他、高圧冷媒配管と低圧冷媒配管をろう付けし、そのろう付けした両配管を内部に収容するように断熱材で覆った構造の内部熱交換器が提案されている(例えば、特許文献2参照)。   In addition, an internal heat exchanger having a structure in which a high-pressure refrigerant pipe and a low-pressure refrigerant pipe are brazed, and both the brazed pipes are covered with a heat insulating material so as to be accommodated therein is proposed (for example, Patent Document 2). reference).

またこの他、円柱管の中心に断面円形状の第1冷媒通路を形成し、その外側にこの第1冷媒通路を取り囲むようにして複数の第2冷媒通路を形成した内部熱交換器が提案されている(例えば、特許文献3参照)。   In addition, an internal heat exchanger has been proposed in which a first refrigerant passage having a circular cross section is formed at the center of a cylindrical tube, and a plurality of second refrigerant passages are formed outside the first refrigerant passage so as to surround the first refrigerant passage. (For example, refer to Patent Document 3).

またこの他、密閉ケーシング内に設けた冷媒流入管と冷媒流出管を互いにねじった構造とした内部熱交換器が提案されている(例えば、特許文献4参照)。
特開2001−56188号公報(特に、図16に記載) 特開2004−85183号公報 特開2003−106784号公報 実開昭58−49161号公報
In addition, an internal heat exchanger having a structure in which a refrigerant inflow pipe and a refrigerant outflow pipe provided in a hermetic casing are twisted is proposed (see, for example, Patent Document 4).
Japanese Patent Laid-Open No. 2001-56188 (particularly described in FIG. 16) JP 2004-85183 A JP 2003-106784 A Japanese Utility Model Publication No. 58-49161

しかしながら、特許文献1に記載の技術では、低圧側の熱伝達のための長さが不足して熱交換性能が悪くなると共に、高圧側の管路が長くなり過ぎて通路抵抗が高くなってしまう。   However, in the technique described in Patent Document 1, the length for heat transfer on the low pressure side is insufficient and the heat exchange performance deteriorates, and the high pressure side pipe line becomes too long and the passage resistance becomes high. .

特許文献2に記載の技術では、単位長さ当たりの熱伝達効率が悪く、やはり熱交換性能の面で問題が残る。   With the technique described in Patent Document 2, the heat transfer efficiency per unit length is poor, and problems still remain in terms of heat exchange performance.

特許文献3に記載の技術では、同一の円柱管に2つの冷媒通路を形成しているため、各冷媒通路とコネクタとの結合構造が複雑となり、加工コストが高くなる。   In the technique described in Patent Document 3, since two refrigerant passages are formed in the same cylindrical tube, the coupling structure between each refrigerant passage and the connector becomes complicated, and the processing cost increases.

特許文献4に記載の技術では、2つの管を互いにねじって熱交換効率を高めるようにしているものの同一の管径とされていることから、高圧高温の冷媒が流れる管と低圧低温の冷媒が流れる管とにおいて、特に高圧側管の耐圧性と低圧側管の熱交換量とが十分に満足のいくものとはならない。   In the technique described in Patent Document 4, two pipes are twisted together to increase heat exchange efficiency. However, since they have the same pipe diameter, a pipe through which a high-pressure and high-temperature refrigerant flows and a low-pressure and low-temperature refrigerant are In particular, the pressure resistance of the high-pressure side pipe and the heat exchange amount of the low-pressure side pipe are not sufficiently satisfactory with the flowing pipe.

そこで、本発明は、上記した課題を解決するためになされたものであり、熱交換性能を維持しながらも製造コストを大幅に低減することのできる内部熱交換器を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and an object thereof is to provide an internal heat exchanger that can greatly reduce the manufacturing cost while maintaining the heat exchange performance. .

請求項1に記載の発明は、高圧中温の冷媒が流れる高圧側パイプと、それよりも圧力及び温度が低い低圧低温の冷媒が流れる低圧側パイプとを備え、これら冷媒同士で熱交換を行う内部熱交換器であって、前記高圧側パイプを、前記低圧側パイプよりも内径及び外径共に小さい円径パイプとし、且つ、高圧側パイプと低圧側パイプを螺旋状に寄り合わせた構造としたことを特徴とする。   The invention according to claim 1 includes a high-pressure side pipe through which a high-pressure and intermediate-temperature refrigerant flows, and a low-pressure side pipe through which a low-pressure and low-temperature refrigerant having a lower pressure and temperature flow, and performs heat exchange between these refrigerants. A heat exchanger, wherein the high-pressure side pipe is a circular pipe having a smaller inner diameter and outer diameter than the low-pressure side pipe, and the high-pressure side pipe and the low-pressure side pipe are spirally connected to each other. It is characterized by.

請求項2に記載の発明は、請求項1に記載の内部熱交換器であって、前記高圧側パイプの外周には、クラッド材が設けられたことを特徴とする。   A second aspect of the present invention is the internal heat exchanger according to the first aspect, wherein a clad material is provided on an outer periphery of the high-pressure side pipe.

請求項3に記載の発明は、請求項1または請求項2に記載の内部熱交換器であって、前記低圧側パイプの内径を等価直径で8〜12mmの範囲とし、前記高圧側パイプの内径を等価直径で4〜6mmの範囲としたことことを特徴とする。   Invention of Claim 3 is an internal heat exchanger of Claim 1 or Claim 2, Comprising: The internal diameter of the said low voltage | pressure side pipe is made into the range of 8-12 mm in an equivalent diameter, The internal diameter of the said high voltage | pressure side pipe In the range of 4 to 6 mm in terms of equivalent diameter.

請求項4に記載の発明は、請求項1から請求項3の何れか一つに記載の内部熱交換器であって、前記高圧側パイプを、少なくとも2つ以上としたことを特徴とする。   The invention according to claim 4 is the internal heat exchanger according to any one of claims 1 to 3, wherein the number of the high-pressure side pipes is at least two.

請求項5に記載の発明は、請求項1から請求項4の何れか一つに記載の内部熱交換器であって、前記冷媒を二酸化炭素ガスとしたことを特徴とする。   A fifth aspect of the present invention is the internal heat exchanger according to any one of the first to fourth aspects, wherein the refrigerant is carbon dioxide gas.

請求項1に記載の発明によれば、高圧側パイプと低圧側パイプを螺旋状に寄り合わせた構造としたので、熱交換長さを稼ぐことができ、内部熱交換器の長さ当たりの熱交換効率が向上する。また、本発明の内部熱交換器の端部は、円形であるので継手の構造も簡単になり、コストを大幅に低減することができる。また、本発明によれば、高圧側パイプを低圧側パイプよりも内径及び外径を小さくしているので、高圧側パイプは熱交換量が向上すると共に耐圧性も向上する。   According to the first aspect of the present invention, since the high-pressure side pipe and the low-pressure side pipe are arranged close to each other in a spiral shape, the heat exchange length can be earned, and the heat per length of the internal heat exchanger can be obtained. Exchange efficiency is improved. In addition, since the end of the internal heat exchanger of the present invention is circular, the structure of the joint is simplified, and the cost can be greatly reduced. Further, according to the present invention, since the high-pressure side pipe has a smaller inner diameter and outer diameter than the low-pressure side pipe, the high-pressure side pipe improves the heat exchange amount and also the pressure resistance.

請求項2に記載の発明によれば、高圧側パイプの外周にクラッド材を設けたので、低圧側パイプに比べて外径の小さい高圧側パイプがクラッド材を持つことにより、高価なクラッド材の量を減らすことができ、低コスト化を図れる。   According to the second aspect of the present invention, since the cladding material is provided on the outer periphery of the high-pressure side pipe, the high-pressure side pipe having a smaller outer diameter than the low-pressure side pipe has the cladding material, so that the expensive cladding material The amount can be reduced and the cost can be reduced.

請求項3に記載の発明によれば、高圧側パイプ及び低圧側パイプの最適な内径の組み合わせとすることにより、効果的に冷房性能を向上できる。   According to the third aspect of the invention, the cooling performance can be effectively improved by combining the optimum inner diameters of the high pressure side pipe and the low pressure side pipe.

請求項4に記載の発明によれば、2つ以上とした高圧側パイプが低圧側パイプを覆うことにより断熱材が不要になり、コストの低減ができる。   According to the fourth aspect of the present invention, since the two or more high-pressure side pipes cover the low-pressure side pipe, a heat insulating material becomes unnecessary, and the cost can be reduced.

請求項5に記載の発明によれば、安価に耐圧構造を構築できるため、内部熱交換器を具備することが必須の二酸化炭素ガスを冷媒とした空調装置には最適である。   According to the fifth aspect of the present invention, since the pressure-resistant structure can be constructed at low cost, it is optimal for an air conditioner using carbon dioxide gas, which is essential to have an internal heat exchanger, as a refrigerant.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

図1は、本実施の形態の内部熱交換器を適用した車両用空調装置の系統図、図2は、本実施の形態の内部熱交換器を示し、(A)は側面図、(B)は端面図、図3は、本実施の形態の内部熱交換器における圧力とエンタルピーとの関係を示すPH線図、図4は、本実施の形態の内部熱交換器における高圧側パイプの通路抵抗を示す特性図、図5は、本実施の形態の内部熱交換器における低圧側パイプの通路抵抗を示す特性図、図6は、本実施の形態の内部熱交換器における熱交換量を示す特性図、図7は、本実施の形態の内部熱交換器の他の例を示す側面図である。   FIG. 1 is a system diagram of a vehicle air conditioner to which the internal heat exchanger of the present embodiment is applied, FIG. 2 shows the internal heat exchanger of the present embodiment, (A) is a side view, and (B). Is an end view, FIG. 3 is a PH diagram showing the relationship between pressure and enthalpy in the internal heat exchanger of the present embodiment, and FIG. 4 is a passage resistance of the high-pressure side pipe in the internal heat exchanger of the present embodiment. FIG. 5 is a characteristic diagram showing the passage resistance of the low-pressure side pipe in the internal heat exchanger of the present embodiment, and FIG. 6 is a characteristic showing the amount of heat exchange in the internal heat exchanger of the present embodiment. FIG. 7 is a side view showing another example of the internal heat exchanger of the present embodiment.

車両用空調装置は、冷媒として二酸化炭酸ガスを用いており、冷媒を圧縮する圧縮機1と、この圧縮機1で圧縮、昇温された冷媒と外気との間で熱交換させる外部熱交換器2と、車両前席側に配置される第1の蒸発器(エバポレーター)3と、車両後席側に配置される第2の蒸発器4と、第1の蒸発器3に対応して設けられたこの第1の蒸発器専用の第1の内部熱交換器5と、第2の蒸発器4に対応して設けられたこの第2の蒸発器専用の第2の内部熱交換器6とを備えている。   The vehicle air conditioner uses carbon dioxide gas as a refrigerant, the compressor 1 that compresses the refrigerant, and an external heat exchanger that exchanges heat between the refrigerant compressed and heated by the compressor 1 and the outside air. 2, a first evaporator (evaporator) 3 disposed on the front seat side of the vehicle, a second evaporator 4 disposed on the rear seat side of the vehicle, and the first evaporator 3. A first internal heat exchanger 5 dedicated to the first evaporator and a second internal heat exchanger 6 dedicated to the second evaporator provided corresponding to the second evaporator 4. I have.

エンジンルーム7内には、圧縮機1と、外部熱交換器2が設けられている。車両のエンジンルームよりリア側の部位8には、第1の蒸発器3と、第2の蒸発器4とが設けられている。第2の内部熱交換器6は、エンジンルームからリアに渡って設けられている。   A compressor 1 and an external heat exchanger 2 are provided in the engine room 7. A first evaporator 3 and a second evaporator 4 are provided in a portion 8 on the rear side from the engine room of the vehicle. The second internal heat exchanger 6 is provided from the engine room to the rear.

第1の蒸発器3と第1の内部熱交換器5との間には、第1の膨張弁9が設けられている。また、第2の蒸発器4と第2の内部熱交換器6との間には、第2の膨張弁10が設けられている。なお、外部熱交換器2の出口には、この外部熱交換器2で冷却した冷媒を第1の内部熱交換器5または第2の内部熱交換器6へ供給する電磁弁11が設けられている。   A first expansion valve 9 is provided between the first evaporator 3 and the first internal heat exchanger 5. A second expansion valve 10 is provided between the second evaporator 4 and the second internal heat exchanger 6. An electromagnetic valve 11 is provided at the outlet of the external heat exchanger 2 to supply the refrigerant cooled by the external heat exchanger 2 to the first internal heat exchanger 5 or the second internal heat exchanger 6. Yes.

圧縮機1は、図示しないモータ又は車両駆動装置からの駆動力を得て気相状態の二酸化炭酸ガスを圧縮し、高温高圧の冷媒として吐出する。   The compressor 1 obtains a driving force from a motor (not shown) or a vehicle drive device, compresses the carbon dioxide gas in a gas phase, and discharges it as a high-temperature and high-pressure refrigerant.

外部熱交換器2は、圧縮機1で圧縮、昇温された冷媒を外気と熱交換させて吸熱し冷媒を冷却する。   The external heat exchanger 2 heat-exchanges the refrigerant compressed and heated by the compressor 1 with the outside air to cool the refrigerant.

第1の蒸発器3は、前席側に設けられた空調ダクト内に配置され、第1の膨張弁9で減圧(膨張)された低温低圧の冷媒を蒸発させる。   The first evaporator 3 is disposed in an air conditioning duct provided on the front seat side, and evaporates the low-temperature and low-pressure refrigerant decompressed (expanded) by the first expansion valve 9.

第1の膨張弁9は、第1の内部熱交換器5から出力された高圧の冷媒を減圧(膨張)させて霧状とし、その霧状とした冷媒を第1の蒸発器3へと出力する。   The first expansion valve 9 depressurizes (expands) the high-pressure refrigerant output from the first internal heat exchanger 5 to form a mist, and outputs the mist refrigerant to the first evaporator 3. To do.

第2の蒸発器4は、後席側に設けられた空調ダクト内に配置され、第2の膨張弁10で減圧された低温低圧の冷媒を蒸発させる。   The second evaporator 4 is disposed in an air conditioning duct provided on the rear seat side, and evaporates the low-temperature and low-pressure refrigerant decompressed by the second expansion valve 10.

第2の膨張弁10は、第2の内部熱交換器6から出力された高圧の冷媒を減圧させて霧状とし、その霧状とした冷媒を第2の蒸発器4へと出力する。   The second expansion valve 10 decompresses the high-pressure refrigerant output from the second internal heat exchanger 6 to form a mist, and outputs the mist refrigerant to the second evaporator 4.

電磁弁11は、外部熱交換器2で冷却された冷媒を第1の蒸発器3と第2の蒸発器4へと供給する冷媒の流路を切り換える機能をする。前席側のみ運転する場合は、電磁弁11を閉めて冷媒が第1の蒸発器3へと流れるようにする。   The electromagnetic valve 11 functions to switch the flow path of the refrigerant that supplies the refrigerant cooled by the external heat exchanger 2 to the first evaporator 3 and the second evaporator 4. When operating only on the front seat side, the solenoid valve 11 is closed so that the refrigerant flows to the first evaporator 3.

そして本実施の形態では、第1の内部熱交換器5と第2の内部熱交換器6は、図2に示すように、高圧中温の冷媒が流れる高圧側パイプ21と、それよりも圧力及び温度が低い低圧低温の冷媒が流れる低圧側パイプ22とからなり、これら各パイプをそれぞれ流れる冷媒同士で熱交換を行う。図2には、第1の内部熱交換器5のみを示しているが、第2の内部熱交換器も同一の構造である。   In the present embodiment, the first internal heat exchanger 5 and the second internal heat exchanger 6 are, as shown in FIG. 2, a high-pressure side pipe 21 through which a high-pressure / medium-temperature refrigerant flows, It consists of a low-pressure side pipe 22 through which low-temperature and low-temperature refrigerant flows at a low temperature, and heat exchange is performed between the refrigerants flowing through these pipes. Although only the first internal heat exchanger 5 is shown in FIG. 2, the second internal heat exchanger has the same structure.

高圧側パイプ21と低圧側パイプ22は、何れも内部に冷媒が流れる冷媒流路を形成する円径パイプとして形成され、その外周にははんだ接続するためのクラッド材(図示は省略する)が設けられている。また、高圧側パイプ21は、低圧側パイプ22よりも内径及び外径が共に小さくされている。そしてさらに、高圧側パイプ21と低圧側パイプ22は、その長手方向に沿って螺旋状に寄り合わされた構造とされている。換言すると、内径及び外径の異なる高圧側パイプ21と低圧側パイプ22を、いわゆるしめ縄を編むようにしてその長手方向に螺旋状に寄り合わされることにより構成されている。   Each of the high-pressure side pipe 21 and the low-pressure side pipe 22 is formed as a circular pipe that forms a refrigerant flow path through which refrigerant flows, and a clad material (not shown) for solder connection is provided on the outer periphery thereof. It has been. The high-pressure side pipe 21 has both an inner diameter and an outer diameter smaller than those of the low-pressure side pipe 22. Furthermore, the high-pressure side pipe 21 and the low-pressure side pipe 22 have a structure in which they are spirally opposed along the longitudinal direction thereof. In other words, the high-pressure side pipe 21 and the low-pressure side pipe 22 having different inner diameters and outer diameters are formed by spirally contacting each other in the longitudinal direction so as to knit a so-called shim rope.

内部熱交換器5、6は、2つのパイプを螺旋状に寄り合わせた構造としているが、その両端部は互いにそれぞれのコネクタと接続できる程度の隙間を有した独立した端部とされている。高圧側パイプ21と低圧側パイプ22の両端部21A、21B及び22A、22Bは、何れも断面円形状をした形とされ、従来からのコネクタで接続できるようになっている。   The internal heat exchangers 5 and 6 have a structure in which two pipes are close to each other in a spiral shape, and both end portions thereof are independent end portions having gaps that can be connected to respective connectors. Both end portions 21A, 21B and 22A, 22B of the high-pressure side pipe 21 and the low-pressure side pipe 22 have a circular cross section, and can be connected with a conventional connector.

第1及び第2の内部熱交換器5、6は、図3で示す圧力とエンタルピ(熱量)とを示すPH線図に基づいて必要最大性能となるように最適化する。特に、冷房性能改善には、高圧側パイプ21と低圧側パイプ22の内径を最適化することが重要である。   The 1st and 2nd internal heat exchangers 5 and 6 are optimized so that it may become required maximum performance based on the PH diagram which shows the pressure and enthalpy (calorie | heat amount) shown in FIG. In particular, in order to improve the cooling performance, it is important to optimize the inner diameters of the high-pressure side pipe 21 and the low-pressure side pipe 22.

図4、図5、図6は、冷媒流量を1.100kg/h、2.150kg/h、3.200kg/h 流路の長さを1.400mm、2.800mm、3.1200mmにしたときの値を示している。   4, 5, and 6 show the refrigerant flow rate of 1.100 kg / h, 2.150 kg / h, 3.200 kg / h when the flow path length is 1.400 mm, 2.800 mm, 3.1200 mm. The value of is shown.

高圧側パイプ21の内径φHiは、図4に示すように、4mmより小さくなると極端に通路抵抗(ΔPgHi)が上昇するから下限は4mm以上であることが好ましく、6mm以上でも通路抵抗の低減は少ないことから上限は耐圧の観点から最大6mmとすることが好ましい。つまり、高圧側パイプ21の内径φHiは、等価直径で4〜6mmの範囲とすることが望ましい。等価直径Dとは、パイプの流路断面積をA、流路の周囲長さ(冷媒が濡れる長さ)をLとしたときに、D=(4×A)/Lで表される値とする。   As shown in FIG. 4, when the inner diameter φHi of the high-pressure side pipe 21 is smaller than 4 mm, the passage resistance (ΔPgHi) is extremely increased. Therefore, the lower limit is preferably 4 mm or more. Therefore, the upper limit is preferably 6 mm at the maximum from the viewpoint of pressure resistance. That is, it is desirable that the inner diameter φHi of the high-pressure side pipe 21 is in the range of 4 to 6 mm in terms of equivalent diameter. The equivalent diameter D is a value represented by D = (4 × A) / L, where A is the cross-sectional area of the flow path of the pipe, and L is the peripheral length of the flow path (the length that the refrigerant gets wet). To do.

低圧側パイプ22の内径φLowは、図5に示すように、8mmよりも小さくなると極端に通路抵抗(ΔPgLow)が上昇するから下限は8mm以上であることが好ましく、12mm以上でも通路抵抗の低減は少ないことから上限は耐圧の観点から最大12mmとすることが好ましい。つまり、低圧側パイプ22の内径φLowは、等価直径で8〜12mmとすることが望ましい。   As shown in FIG. 5, when the inner diameter φLow of the low-pressure side pipe 22 is smaller than 8 mm, the passage resistance (ΔPgLow) is extremely increased. Therefore, the lower limit is preferably 8 mm or more. Since the amount is small, the upper limit is preferably set to a maximum of 12 mm from the viewpoint of pressure resistance. That is, the inner diameter φLow of the low-pressure side pipe 22 is desirably 8 to 12 mm in terms of equivalent diameter.

低圧側パイプ22の内径φLowを8mm、高圧側パイプ21の内径φHiを4mmとした場合の通路抵抗は、低圧側パイプ22の内径φLowを6mm、高圧側パイプ21の内径φHiを3mmとしたときの通路抵抗に対して、200kPa低減できる効果がある。これは、エバポレータの蒸発圧力を200kPa低減することにあたり、冷房性能は10%の改善に相当する。内部熱交換器の熱交換量は、図6に示すように、前記した範囲内の内径とすることで、高圧側及び低圧側で共に1200W〜2400Wを発揮できていることから問題はない。   When the inner diameter φLow of the low-pressure side pipe 22 is 8 mm and the inner diameter φHi of the high-pressure side pipe 21 is 4 mm, the passage resistance is when the inner diameter φLow of the low-pressure side pipe 22 is 6 mm and the inner diameter φHi of the high-pressure side pipe 21 is 3 mm. There is an effect that the passage resistance can be reduced by 200 kPa. This is equivalent to a 10% improvement in cooling performance when the evaporation pressure of the evaporator is reduced by 200 kPa. As shown in FIG. 6, there is no problem because the heat exchange amount of the internal heat exchanger is 1200 W to 2400 W on the high pressure side and the low pressure side by setting the inner diameter within the above-described range.

なお、図7では、直径及び内径が共に低圧側パイプ22よりも小さい高圧側パイプ21を2本使用し、その2本の高圧側パイプ21と1本の低圧側パイプ22を螺旋状に寄り合わせた構造としても同様の作用効果が得られる。特に、2本の高圧側パイプ21を使用した場合は、高圧側パイプ21が低圧側パイプ22を覆うことにより断熱材が不要になり、コストを低減することが可能となる。高圧側パイプ21の数は、熱交換性能が維持できれば、3本以上であっても構わない。   In FIG. 7, two high-pressure pipes 21 having a diameter and an inner diameter that are smaller than those of the low-pressure pipe 22 are used, and the two high-pressure pipes 21 and one low-pressure pipe 22 are close to each other in a spiral shape. Similar effects can be obtained even with the same structure. In particular, when two high-pressure side pipes 21 are used, the high-pressure side pipe 21 covers the low-pressure side pipe 22, thereby eliminating the need for a heat insulating material and reducing the cost. The number of the high-pressure side pipes 21 may be three or more as long as the heat exchange performance can be maintained.

本実施の形態の内部熱交換器を適用した車両用空調装置の系統図である。It is a systematic diagram of the vehicle air conditioner to which the internal heat exchanger of this Embodiment is applied. 本実施の形態の内部熱交換器を示し、(A)は側面図、(B)は端面図である。The internal heat exchanger of this Embodiment is shown, (A) is a side view, (B) is an end view. 本実施の形態の内部熱交換器における圧力とエンタルピとの関係を示すPH線図である。It is a PH diagram which shows the relationship between the pressure and enthalpy in the internal heat exchanger of this Embodiment. 本実施の形態の内部熱交換器における高圧側パイプの通路抵抗を示す特性図である。It is a characteristic view which shows the passage resistance of the high pressure side pipe in the internal heat exchanger of this Embodiment. 本実施の形態の内部熱交換器における低圧側パイプの通路抵抗を示す特性図である。It is a characteristic view which shows the passage resistance of the low voltage | pressure side pipe in the internal heat exchanger of this Embodiment. 本実施の形態の内部熱交換器における熱交換量を示す特性図である。It is a characteristic view which shows the heat exchange amount in the internal heat exchanger of this Embodiment. 本実施の形態の内部熱交換器の他の例を示す側面図である。It is a side view which shows the other example of the internal heat exchanger of this Embodiment.

符号の説明Explanation of symbols

1…圧縮機
2…外部熱交換器
3…第1の蒸発器
4…第2の蒸発器
5…第1の内部熱交換器(内部熱交換器)
6…第2の内部熱交換器(内部熱交換器)
9…第1の膨張弁
10…第2の膨張弁
11…電磁弁
21…高圧側パイプ
22…低圧側パイプ
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... External heat exchanger 3 ... 1st evaporator 4 ... 2nd evaporator 5 ... 1st internal heat exchanger (internal heat exchanger)
6 ... Second internal heat exchanger (internal heat exchanger)
DESCRIPTION OF SYMBOLS 9 ... 1st expansion valve 10 ... 2nd expansion valve 11 ... Solenoid valve 21 ... High pressure side pipe 22 ... Low pressure side pipe

Claims (5)

高圧中温の冷媒が流れる高圧側パイプ(21)と、それよりも圧力及び温度が低い低圧低温の冷媒が流れる低圧側パイプ(22)と、を備え、これら冷媒同士で熱交換を行う内部熱交換器であって、
前記高圧側パイプ(21)を、前記低圧側パイプ(22)よりも内径及び外径共に小さい円径パイプとし、且つ、高圧側パイプ(21)と低圧側パイプ(22)を螺旋状に寄り合わせた構造とした
ことを特徴とする内部熱交換器。
An internal heat exchange that includes a high-pressure side pipe (21) through which a high-pressure and intermediate-temperature refrigerant flows and a low-pressure side pipe (22) through which a low-pressure and low-temperature refrigerant having lower pressure and temperature flow, and performs heat exchange between these refrigerants. A vessel,
The high-pressure side pipe (21) is a circular pipe having a smaller inner diameter and outer diameter than the low-pressure side pipe (22), and the high-pressure side pipe (21) and the low-pressure side pipe (22) are close to each other in a spiral shape. An internal heat exchanger characterized by having an open structure.
請求項1に記載の内部熱交換器であって、
前記高圧側パイプ(21)の外周には、クラッド材が設けられた
ことを特徴とする内部熱交換器。
The internal heat exchanger according to claim 1,
An internal heat exchanger characterized in that a clad material is provided on the outer periphery of the high-pressure side pipe (21).
請求項1または請求項2に記載の内部熱交換器であって、
前記低圧側パイプ(22)の内径(φLow)を等価直径で8〜12mmの範囲とし、前記高圧側パイプ(21)の内径(φHi)を等価直径で4〜6mmの範囲としたこと
ことを特徴とする内部熱交換器。
An internal heat exchanger according to claim 1 or claim 2,
The inner diameter (φLow) of the low-pressure side pipe (22) is in the range of 8 to 12 mm in equivalent diameter, and the inner diameter (φHi) of the high-pressure side pipe (21) is in the range of 4 to 6 mm in equivalent diameter. And internal heat exchanger.
請求項1から請求項3の何れか一つに記載の内部熱交換器であって、
前記高圧側パイプ(21)を、少なくとも2つ以上とした
ことを特徴とする内部熱交換器。
An internal heat exchanger according to any one of claims 1 to 3,
An internal heat exchanger characterized in that at least two high-pressure side pipes (21) are provided.
請求項1から請求項4の何れか一つに記載の内部熱交換器であって、
前記冷媒を二酸化炭素ガスとした
ことを特徴とする内部熱交換器。
An internal heat exchanger according to any one of claims 1 to 4,
An internal heat exchanger characterized in that the refrigerant is carbon dioxide gas.
JP2006265404A 2006-09-28 2006-09-28 Internal heat exchanger Pending JP2008082658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265404A JP2008082658A (en) 2006-09-28 2006-09-28 Internal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265404A JP2008082658A (en) 2006-09-28 2006-09-28 Internal heat exchanger

Publications (1)

Publication Number Publication Date
JP2008082658A true JP2008082658A (en) 2008-04-10

Family

ID=39353706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265404A Pending JP2008082658A (en) 2006-09-28 2006-09-28 Internal heat exchanger

Country Status (1)

Country Link
JP (1) JP2008082658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096372A (en) * 2008-10-15 2010-04-30 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
KR101170131B1 (en) * 2009-09-29 2012-07-31 한라공조주식회사 Air-Conditioning System for Vehicle using R1234yf

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096372A (en) * 2008-10-15 2010-04-30 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
KR101170131B1 (en) * 2009-09-29 2012-07-31 한라공조주식회사 Air-Conditioning System for Vehicle using R1234yf

Similar Documents

Publication Publication Date Title
KR100905995B1 (en) Air conditioner
ES2447776T3 (en) Heat exchanger and cooling air conditioner
JP5370400B2 (en) Heat exchanger
WO2007013439A1 (en) Heat exchanger
JP5081521B2 (en) Air conditioner for vehicles
JPWO2003040640A1 (en) Heat exchanger and heat exchanger tube
JP2007333304A (en) Heat exchanger
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
WO2002025189A1 (en) Heat exchanger and method of manufacturing the heat exchanger
JP5969270B2 (en) Heat pump equipment
JP2010014351A (en) Refrigerating air conditioner
JP2006308156A (en) Air conditioner
JP2011117710A (en) Liquid supercooling system
JP2005049049A (en) Heat exchanger
JP2009041798A (en) Heat exchanger
JP2006097911A (en) Heat exchanger
JP2008082658A (en) Internal heat exchanger
JP2006189249A (en) Double pipe heat exchanger
GB2508842A (en) Double wall tube heat exchanger
JP2007333319A (en) Heat exchanger
CN212378292U (en) Air conditioner heat exchange system and heat regenerator
KR20110117778A (en) Heat exchanger and air conditioner with the same
JP2006153437A (en) Heat exchanger
KR100819014B1 (en) Cooling apparatus for vehicle
KR20060098910A (en) Heat exchanger of air conditioner