JP6406485B1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP6406485B1
JP6406485B1 JP2018534181A JP2018534181A JP6406485B1 JP 6406485 B1 JP6406485 B1 JP 6406485B1 JP 2018534181 A JP2018534181 A JP 2018534181A JP 2018534181 A JP2018534181 A JP 2018534181A JP 6406485 B1 JP6406485 B1 JP 6406485B1
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
heating
coil
tubule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534181A
Other languages
Japanese (ja)
Other versions
JPWO2019155644A1 (en
Inventor
隆雄 原
隆雄 原
杉山 直樹
直樹 杉山
光人 久重
光人 久重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E·T·L CORPORATION
Original Assignee
E·T·L CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E·T·L CORPORATION filed Critical E·T·L CORPORATION
Application granted granted Critical
Publication of JP6406485B1 publication Critical patent/JP6406485B1/en
Publication of JPWO2019155644A1 publication Critical patent/JPWO2019155644A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Abstract

冷房時にも暖房時にも、効率の良い運転ができる、コイル細管およびコイル太管を用いた冷暖房システムを提供する。冷房用コイル太管、および、冷房用コイル細管を有する冷房用熱変換部と、暖房用コイル細管、および、暖房用コイル太管を有する暖房用熱変換部と、を備え、暖房用熱変換部の暖房用コイル細管は、冷房用熱変換部の暖房用コイル細管よりも流路を太く形成した、ことを特徴とする。Provided is an air conditioning system using a coiled thin tube and a coiled thick tube that can be efficiently operated during both cooling and heating. A cooling heat conversion unit having a cooling coil thick tube and a cooling coil thin tube, a heating coil thin tube, and a heating heat conversion unit having a heating coil thick tube, and a heating heat conversion unit The heating coil tubule of the present invention is characterized in that the flow path is formed thicker than the heating coil tubule of the cooling heat conversion section.

Description

本発明は、コイル細管およびコイル太管を用いた冷暖房システムに関する。   The present invention relates to an air conditioning system using a coiled thin tube and a coiled thick tube.

従来、圧縮機、利用側熱交換器、熱源側熱交換器を備え、さらに、コイル細管およびコイル太管を用いた冷暖房システムが知られている(例えば、特許文献1参照。)。   Conventionally, an air conditioning system including a compressor, a use side heat exchanger, and a heat source side heat exchanger, and further using a coiled thin tube and a coiled thick tube is known (for example, see Patent Document 1).

特開2010−281558号公報JP 2010-281558 A

特許文献1に記載の冷暖房システムは、冷房時および暖房時に、共通のコイル細管およびコイル太管を用いて運転が行われている。
しかしながら、コイル細管およびコイル太管の流路の大きさを、冷房時に最適な大きさに設定したとき、暖房時に、効率の良い運転ができないことが判明した。
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、冷房時にも暖房時にも、効率の良い運転ができる、コイル細管およびコイル太管を用いた冷暖房システムを提供することにある。
The cooling and heating system described in Patent Document 1 is operated using a common coiled thin tube and a thick coiled tube during cooling and heating.
However, it has been found that when the size of the flow path of the coiled thin tube and the coiled thick tube is set to an optimum size during cooling, an efficient operation cannot be performed during heating.
Accordingly, an object of the present invention is to provide an air conditioning system using a coiled thin tube and a thick coiled tube that can solve the above-described problems of the prior art and can be operated efficiently both during cooling and during heating. is there.

本発明は、圧縮機、利用側熱交換器、熱源側熱交換器を備え、冷房時に、前記圧縮機から吐出され、前記熱源側熱交換器で一部液化した残りのガス冷媒を冷媒の加速現象によって減圧、液化する冷房用コイル太管、および、前記冷房用コイル太管を経た冷媒を冷媒の加速現象によって減圧、冷却する冷房用コイル細管を有する冷房用熱変換部と、暖房時に、前記圧縮機から吐出され、前記利用側熱交換器で液化した冷媒を、冷媒の加速現象によって減圧、一部気化する暖房用コイル細管、および、前記暖房用コイル細管を経た冷媒を、冷媒の加速現象によって減圧、気化する暖房用コイル太管を有する暖房用熱変換部と、を備え、前記暖房用熱変換部の前記暖房用コイル細管は、前記冷房用熱変換部の前記冷房用コイル細管よりも流路を太く形成した、ことを特徴とする。The present invention includes a compressor, a use side heat exchanger, and a heat source side heat exchanger, and accelerates the remaining gas refrigerant discharged from the compressor and partially liquefied by the heat source side heat exchanger during cooling. A cooling coil large pipe that is depressurized and liquefied by a phenomenon, a cooling heat conversion unit that has a cooling coil thin tube that depressurizes and cools the refrigerant that has passed through the cooling coil thick pipe by a refrigerant acceleration phenomenon, and at the time of heating, The refrigerant discharged from the compressor and liquefied by the use side heat exchanger is decompressed and partially vaporized by the acceleration phenomenon of the refrigerant, and the heating coil tubule and the refrigerant passing through the heating coil tubule are converted into the refrigerant acceleration phenomenon. A heating heat conversion unit having a heating coil thick tube that is depressurized and vaporized by the heating coil, the heating coil thin tube of the heating heat conversion unit is more than the cooling coil thin tube of the cooling heat conversion unit Thicken the flow path None No, characterized in that.

本発明は、前記暖房用熱変換部の前記暖房用コイル細管は、暖房時の冷媒の入側から出側に向けて、流路が順に太くなる入側細管および出側細管で構成され、前記冷房用熱変換部の前記冷房用コイル細管は、冷房時の冷媒の入側から出側に向けて、流路が順に細くなる入側細管および出側細管で構成され、前記暖房用熱変換部の前記入側細管は、前記冷房用熱変換部の前記出側細管よりも流路を太く形成しても良い。   In the present invention, the heating coil tubule of the heating heat conversion section is composed of an inlet side tubule and an outlet side tubule whose flow path becomes thicker in order from the refrigerant inlet side to the outlet side during heating, The cooling coil tubule of the cooling heat conversion unit is composed of an inlet side tubule and an outlet side tubule whose flow path becomes narrower in order from the refrigerant inlet side to the outlet side during cooling, and the heating heat converter unit The inlet side thin tube may be formed to have a larger flow path than the outlet side thin tube of the cooling heat conversion section.

これら発明によれば、前記暖房用熱変換部の前記入側細管は、前記冷房用熱変換部の前記出側細管よりも流路を太く形成したため、冷房時にも暖房時にも、効率の良い運転を行なうことができる。   According to these inventions, since the inlet side thin tube of the heating heat conversion section is formed with a larger flow path than the outlet side thin tube of the cooling heat conversion section, it is possible to operate efficiently both during cooling and during heating. Can be performed.

本発明は、前記冷房用熱変換部および前記暖房用熱変換部の流速が、前記熱源側熱交換器における流速の2倍以上に設定されていても良い。
また、本発明は、前記熱源側熱交換器は、冷房時に、前記圧縮機から吐出される高温・高圧冷媒ガスの5乃至50重量%を液化させるよう構成されていても良い。
In the present invention, the flow rates of the cooling heat conversion unit and the heating heat conversion unit may be set to be twice or more the flow rate of the heat source side heat exchanger.
In the present invention, the heat source side heat exchanger may be configured to liquefy 5 to 50% by weight of the high temperature / high pressure refrigerant gas discharged from the compressor during cooling.

本発明の冷暖房システムは、冷房時においても、暖房時においても、効率の良い運転を行なうことができる。   The air conditioning system of the present invention can perform an efficient operation both during cooling and during heating.

図1は、本発明の一実施形態を示す回路構成図である。FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. 図2は、本発明の別実施形態を示す回路構成図である。FIG. 2 is a circuit configuration diagram showing another embodiment of the present invention.

以下、本発明の一実施形態について添付図面を参照しながら説明する。
図1は、本実施形態に係る冷暖房サイクルの回路図である。ここで、「熱交換器」と「熱変換部」の用語は、区別して使用する。
この冷暖房システムは、室外機と室内機とを冷媒配管により接続した、所謂、セパレート型の空調機に適用されている。
冷暖房システムは、圧縮機1と、冷暖切換え弁(四方弁)2と、ミニ熱交換器(熱源側熱交換器)3と、コイルを直列に繋いだ冷房用熱変換部4と、コイルを直列に繋いだ暖房用熱変換部5と、利用側熱交換器6とを備えている。室外機には、圧縮機1と、四方弁2と、ミニ熱交換器3と、冷房用熱変換部4と、暖房用熱変換部5と、が収納されている。また、室内機には、利用側熱交換器6が収納されている。なお、ミニ熱交換器3の「ミニ」は「小型」の意味であり、従来に比べてミニ熱交換器3を小さくできる本発明の特徴を明確にするために用いている。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a circuit diagram of an air conditioning cycle according to the present embodiment. Here, the terms “heat exchanger” and “heat converter” are used separately.
This air conditioning system is applied to a so-called separate type air conditioner in which an outdoor unit and an indoor unit are connected by a refrigerant pipe.
The air conditioning system includes a compressor 1, a cooling / heating switching valve (four-way valve) 2, a mini heat exchanger (heat source side heat exchanger) 3, a cooling heat conversion unit 4 in which coils are connected in series, and a coil in series. The heat conversion part 5 for heating connected to, and the use side heat exchanger 6 are provided. In the outdoor unit, a compressor 1, a four-way valve 2, a mini heat exchanger 3, a cooling heat conversion unit 4, and a heating heat conversion unit 5 are accommodated. Moreover, the use side heat exchanger 6 is accommodated in the indoor unit. The “mini” of the mini heat exchanger 3 means “small”, and is used to clarify the feature of the present invention that can make the mini heat exchanger 3 smaller than the conventional one.

冷房用熱変換部4は、冷房運転時に冷媒が流れる。
冷房用熱変換部4は、圧縮機1から吐出され、ミニ熱交換器3で一部液化した残りのガス冷媒を、冷媒の加速現象によって減圧、液化する冷房用コイル太管41を備える。また、冷房用熱変換部4は、冷房用コイル太管41を経た冷媒を、冷媒の加速現象によって減圧、冷却する冷房用コイル細管42を備える。43は、開閉弁である。
In the cooling heat conversion unit 4, the refrigerant flows during the cooling operation.
The cooling heat conversion section 4 includes a cooling coil large pipe 41 that decompresses and liquefies the remaining gas refrigerant discharged from the compressor 1 and partially liquefied by the mini heat exchanger 3 due to the acceleration phenomenon of the refrigerant. Further, the cooling heat conversion unit 4 includes a cooling coil thin tube 42 that depressurizes and cools the refrigerant that has passed through the cooling coil thick tube 41 due to the acceleration phenomenon of the refrigerant. 43 is an on-off valve.

暖房用熱変換部5は、暖房運転時に冷媒が流れる。
暖房用熱変換部5は、圧縮機1から吐出され、利用側熱交換器6で液化した冷媒を、冷媒の加速現象によって減圧、一部気化する暖房用コイル細管51を備える。また、暖房用熱変換部5は、暖房用コイル細管51を経た冷媒を、冷媒の加速現象によって減圧、気化する暖房用コイル太管52を備える。53は、開閉弁である。
In the heating heat conversion section 5, the refrigerant flows during the heating operation.
The heating heat conversion section 5 includes a heating coil tubule 51 that depressurizes and partially vaporizes the refrigerant discharged from the compressor 1 and liquefied by the use side heat exchanger 6 by the acceleration phenomenon of the refrigerant. Further, the heating heat conversion section 5 includes a heating coil thick tube 52 that depressurizes and vaporizes the refrigerant that has passed through the heating coil capillary 51 due to the acceleration phenomenon of the refrigerant. 53 is an on-off valve.

冷房用コイル太管41と、暖房用コイル太管52とは、細管をコイル状に巻いた形態であり、流路面積は等しく、長さも等しく設定される。
その内径や巻き数は、冷暖房システムの冷凍能力等、様々な仕様から決定されるが、内径で2〜150mmまで許容し、望ましくは内径2〜50mm、実質的に最も望ましくは内径3〜8mmである。例えば、フロン冷媒R134aを用いた、2000cal/h程度の冷凍機の揚合、細管の内径5mm、巻き数は23巻き、コイルの径30mmで、細管の長さは2.3mである。
本実施形態では、冷房用コイル太管41と、暖房用コイル太管52とを、別々に設けたが、これら太管は共通化して1本のコイル太管としても良い。この場合、冷房時、暖房時、共に冷媒が、1本のコイル太管を流れる。1本のコイル太管とした場合には、冷媒回路の構成を簡素化できる。
The cooling coil thick tube 41 and the heating coil thick tube 52 are formed by winding a thin tube in a coil shape, and the flow passage areas are equal and the lengths are set to be equal.
The inner diameter and the number of turns are determined from various specifications such as the refrigeration capacity of the air conditioning system, but the inner diameter is allowed to be 2 to 150 mm, preferably 2 to 50 mm, substantially most preferably 3 to 8 mm. is there. For example, a refrigerator of about 2000 cal / h using Freon refrigerant R134a, an inner diameter of a thin tube of 5 mm, a number of turns of 23, a diameter of a coil of 30 mm, and a length of the thin tube of 2.3 m.
In this embodiment, the cooling coil thick tube 41 and the heating coil thick tube 52 are provided separately, but these thick tubes may be shared to form one coil thick tube. In this case, the refrigerant flows through one coil thick tube both during cooling and during heating. In the case of a single coil large tube, the configuration of the refrigerant circuit can be simplified.

冷房用コイル細管42と、暖房用コイル細管51とは、コイル太管41、52と同様に、細管をコイル状に巻いた形態である。
その内径や巻き数は、冷暖房システムの冷凍能力等、様々な仕様から決定されるが、コイル細管42、51の内径は、コイル太管41、52の内径よりも細く設定される。例えば、コイル太管41、52の内径が、3〜8mmに設定された場合、コイル細管42、51の内径は、1〜3mmが望ましい。
The cooling coil thin tube 42 and the heating coil thin tube 51 are formed by winding a thin tube in a coil shape, like the coil thick tubes 41 and 52.
The inner diameter and the number of windings are determined from various specifications such as the refrigeration capacity of the air conditioning system. For example, when the inner diameters of the coil thick tubes 41 and 52 are set to 3 to 8 mm, the inner diameters of the coil thin tubes 42 and 51 are desirably 1 to 3 mm.

本実施形態では、暖房用コイル細管51の内径は、冷房用コイル細管42の内径よりも大きく設定されている。
その内径や巻き数は、冷暖房システムの冷凍能力等、様々な仕様から決定されるが、例えば、冷房用コイル細管42の内径が1.9mm以下に設定された場合、暖房用コイル細管51の内径は2.0mm以上である。
In the present embodiment, the inside diameter of the heating coil capillary 51 is set larger than the inside diameter of the cooling coil capillary 42.
The inner diameter and the number of windings are determined from various specifications such as the cooling capacity of the air conditioning system. For example, when the inner diameter of the cooling coil capillary 42 is set to 1.9 mm or less, the inner diameter of the heating coil capillary 51 Is 2.0 mm or more.

本実施形態では、冷房用コイル細管42と、暖房用コイル細管51とが、それぞれ1本ずつであるが、コイル細管42、51は、コイル状に巻いたものを2本並列に接続した形態でも良い。また、3本以上を並列に接続した形態でも良い。
コイル細管42、51は、巻き方向を異ならせてコイル状に巻いたものを、2本直列に接続した形態でも良く、それを更に並列に接続した形態でも良い。コイル細管42、51の冷媒の通る部分の断面積(複数本が並列に接続されている揚合は、複数本の断面積の合計)は、コイル太管41、52の断面積よりも小さいことが好ましい。断面積を小さくすると、後述するように、冷媒は、コイル細管42、51中をスピン回転し加速され、圧力が下がり、冷却効果が高められる。
In the present embodiment, there is one cooling coil thin tube 42 and one heating coil thin tube 51. However, the coil thin tubes 42 and 51 may be formed by connecting two coiled tubes in parallel. good. Moreover, the form which connected 3 or more in parallel may be sufficient.
The coil capillaries 42 and 51 may have a configuration in which two coils wound in different winding directions are connected in series, or may be connected in parallel. The cross-sectional area of the portion through which the refrigerant passes through the coiled tubes 42 and 51 (the sum of the plurality of cross-sectional areas connected in parallel is smaller than the cross-sectional area of the coiled thick tubes 41 and 52). Is preferred. When the cross-sectional area is reduced, as will be described later, the refrigerant spins and accelerates in the coil capillaries 42 and 51, the pressure is reduced, and the cooling effect is enhanced.

つぎに、本実施形態の作用を説明する。
<冷房時>
冷房時には、四方弁2を破線の冷房位置に切換えると共に、開閉弁53を閉じ、開閉弁43を開く。圧縮機1を駆動すると、冷媒は、破線の矢印で示すように、四方弁2、ミニ熱交換器3、二つのコイルを直列に繋いだ冷房用熱変換部4の順に流れ、利用側熱交換器6を経た後に、圧縮機1に戻る。
Next, the operation of this embodiment will be described.
<When cooling>
At the time of cooling, the four-way valve 2 is switched to the dashed cooling position, the on-off valve 53 is closed, and the on-off valve 43 is opened. When the compressor 1 is driven, the refrigerant flows in the order of the four-way valve 2, the mini heat exchanger 3, and the cooling heat conversion unit 4 in which the two coils are connected in series, as indicated by the dashed arrows, and uses side heat exchange. After passing through the unit 6, the process returns to the compressor 1.

冷房時には、圧縮機1から高温(40℃以上)・高圧(0.6MPa以上)のガス状の冷媒が吐出されると、ミニ熱交換器3では、冷媒の一部(5〜50重量%)だけを液化するように構成される。
従来の冷暖房システムの凝縮器では、圧縮機1から吐出される高温・高圧ガスを、ほぼ全部液化しているが、それに比べて本実施形態のミニ熱交換器3は、高温・高圧ガスの一部だけを液化すれば良い。
したがって、小型化が可能である。同じタイプの熱交換器(凝縮器)を有する同じ冷却能力の冷暖房システムと比較して、本実施形態のミニ熱交換器3は従来の凝縮器の1/10程度にすることが可能である。
During cooling, when a high-temperature (40 ° C. or higher) and high-pressure (0.6 MPa or higher) gaseous refrigerant is discharged from the compressor 1, a part of the refrigerant (5 to 50 wt%) is discharged from the mini heat exchanger 3 Only configured to liquefy.
In conventional condensers for air conditioning systems, almost all of the high-temperature / high-pressure gas discharged from the compressor 1 is liquefied, but the mini heat exchanger 3 of this embodiment is one of the high-temperature / high-pressure gases. Only the part needs to be liquefied.
Therefore, downsizing is possible. Compared to an air-conditioning system having the same cooling capacity and having the same type of heat exchanger (condenser), the mini heat exchanger 3 of the present embodiment can be made about 1/10 of a conventional condenser.

ミニ熱交換器3で一部液化された冷媒は、冷房用コイル太管41に入る。冷媒流路の断面積で見ると、ミニ熱交換器3を基準にして、冷房用コイル太管41では、ミニ熱交換器3の断面積よりも小さくなる。   The refrigerant partially liquefied by the mini heat exchanger 3 enters the cooling coil thick tube 41. When viewed from the cross-sectional area of the refrigerant flow path, the cooling coil thick tube 41 is smaller than the cross-sectional area of the mini heat exchanger 3 with respect to the mini heat exchanger 3.

一部液化した冷媒が冷房用コイル太管41に入ると、圧縮機1の吸引作用等により、冷媒が加速されて(冷媒の加速現象という)、減圧、及びエンタルピ減少を伴って、液化量を増してほぼ液化する。
冷房用コイル太管41の出側では中圧(0.4〜0.6MPa)の液冷媒となる。冷房用コイル太管41内での温度低下の主因は、冷房用コイル太管41内において熱エネルギである冷媒のエンタルピが速度エネルギへ変換し、冷媒のエンタルピが減少し、静温度低下の現象の生起に至ったものである。
冷房用コイル太管41内の流速は、本冷暖房システムの設計において、ミニ熱交換器3内の流速の2倍以上の設定が望ましい。
When the partially liquefied refrigerant enters the cooling coil thick tube 41, the refrigerant is accelerated by the suction action of the compressor 1 (referred to as an acceleration phenomenon of the refrigerant), and the amount of liquefaction is reduced with reduced pressure and enthalpy reduction. It becomes almost liquefied.
On the outlet side of the cooling coil thick tube 41, the liquid refrigerant has an intermediate pressure (0.4 to 0.6 MPa). The main cause of the temperature decrease in the cooling coil thick tube 41 is that the enthalpy of the refrigerant, which is thermal energy, is converted into velocity energy in the cooling coil thick tube 41, and the enthalpy of the refrigerant decreases, resulting in a phenomenon of a decrease in static temperature. It was the birth.
The flow rate in the cooling coil thick tube 41 is preferably set to be at least twice the flow rate in the mini heat exchanger 3 in the design of the present cooling and heating system.

冷房用コイル太管41で中圧液冷媒となった冷媒は、冷房用コイル細管42に入る。
ほぼ液化した冷媒が冷房用コイル細管42に入ると、圧縮機1の吸引作用等により、冷媒が加速されて(冷媒の加速現象という)、減圧、及びエンタルピ減少を伴って、液化冷媒が冷却される。冷房用コイル細管42の出側では、減圧され、冷却されて低温の液体となり、圧力も下がり低圧(0.4MPa以下)液となる。
この冷房用コイル細管42内での温度低下の主因も、冷房用コイル太管41内での温度低下と同様に、熱エネルギである冷媒のエンタルピが速度エネルギへ変換し、エンタルピが減少し、静温度低下の現象の生起に至ったものである。冷房用コイル細管42内の流速は、本冷暖房システムの設計において、ミニ熱交換器3内の流速の2倍以上で、冷房用コイル太管41内の流速以上であることが望ましい。
The refrigerant that has become medium-pressure liquid refrigerant in the cooling coil large tube 41 enters the cooling coil thin tube 42.
When the almost liquefied refrigerant enters the cooling coil capillary 42, the refrigerant is accelerated by the suction action of the compressor 1 or the like (referred to as an acceleration phenomenon of the refrigerant), and the liquefied refrigerant is cooled with reduced pressure and enthalpy reduction. The On the outlet side of the cooling coil capillary 42, the pressure is reduced and cooled to become a low-temperature liquid, and the pressure is lowered to a low-pressure (0.4 MPa or less) liquid.
The main cause of the temperature decrease in the cooling coil thin tube 42 is that, similarly to the temperature decrease in the cooling coil thick tube 41, the enthalpy of the refrigerant, which is thermal energy, is converted into velocity energy, and the enthalpy is reduced. This led to the phenomenon of temperature drop. The flow rate in the cooling coil thin tube 42 is preferably at least twice the flow rate in the mini heat exchanger 3 and higher than the flow rate in the cooling coil large tube 41 in the design of the present cooling and heating system.

冷房用コイル細管42により低温液体となった冷媒は、利用側熱交換器6に送られる。利用側熱交換器6では、等圧、等温膨張の吸熱により、冷媒が蒸発し、これにより冷房サイクルが完了する。   The refrigerant that has become a low-temperature liquid by the cooling coil capillary 42 is sent to the use-side heat exchanger 6. In the use-side heat exchanger 6, the refrigerant evaporates due to the endothermic heat of isobaric and isothermal expansion, thereby completing the cooling cycle.

<暖房時>
暖房時には、四方弁2を実線の暖房位置に切換えると共に、開閉弁53を開き、開閉弁43を閉じる。圧縮機1を駆動すると、冷媒は、実線の矢印で示すように、四方弁2、利用側熱交換器6、二つのコイルを直列に繋いだ暖房用熱変換部5の順に流れ、ミニ熱交換器3を経た後に、圧縮機1に戻る。
<When heating>
At the time of heating, the four-way valve 2 is switched to the solid heating position, the on-off valve 53 is opened, and the on-off valve 43 is closed. When the compressor 1 is driven, the refrigerant flows in the order of the four-way valve 2, the use side heat exchanger 6, and the heating heat conversion unit 5 in which two coils are connected in series, as indicated by solid arrows, and mini heat exchange is performed. After passing through the unit 3, it returns to the compressor 1.

暖房時には、圧縮機1から高温(40℃以上)・高圧(0.6MPa以上)のガス状の冷媒が吐出されると、利用側熱交換器6では、冷媒が液化される。
利用側熱交換器6で液化された冷媒は、暖房用コイル細管51に入る。冷媒流路の断面積で見ると、利用側熱交換器6を基準にして、暖房用コイル細管51では、利用側熱交換器6の断面積よりも小さくなる。
During heating, when a high-temperature (40 ° C. or higher) and high-pressure (0.6 MPa or higher) gaseous refrigerant is discharged from the compressor 1, the refrigerant is liquefied in the use-side heat exchanger 6.
The refrigerant liquefied by the use side heat exchanger 6 enters the heating coil tubule 51. When viewed from the cross-sectional area of the refrigerant flow path, the heating coil capillary 51 is smaller than the cross-sectional area of the usage-side heat exchanger 6 with respect to the usage-side heat exchanger 6.

暖房用コイル細管51に入ると、圧縮機1の吸引作用等により、冷媒が加速され(冷媒の加速現象という)、減圧、及びエンタルピ減少を伴って、一部気化する。
この際に、暖房用コイル細管51の内径は、冷房用コイル細管42の内径よりも大きく設定されているため、温度をあまり下げることなく、一部気化する。
暖房用コイル細管51の出側では、中圧(0.4〜0.6MPa)の一部気化した冷媒となる。暖房用コイル細管51内での温度低下の主因は、暖房用コイル細管51内において熱エネルギである冷媒のエンタルピが速度エネルギへ変換し、冷媒のエンタルピが減少し、静温度低下の現象の生起に至ったものである。
暖房用コイル細管51内の流速は、本冷暖房システムの設計において、利用側熱交換器6内の流速の2倍以上の設定が望ましい。
When the heating coil tubule 51 is entered, the refrigerant is accelerated by the suction action of the compressor 1 or the like (referred to as an acceleration phenomenon of the refrigerant), and is partially vaporized with reduced pressure and enthalpy reduction.
At this time, since the inner diameter of the heating coil capillary 51 is set to be larger than the inner diameter of the cooling coil capillary 42, the heating coil capillary 51 is partially vaporized without much lowering the temperature.
On the outlet side of the heating coil capillary 51, the refrigerant is partially vaporized at a medium pressure (0.4 to 0.6 MPa). The main cause of the temperature drop in the heating coil tubule 51 is that the enthalpy of the refrigerant, which is thermal energy, is converted into speed energy in the heating coil tubule 51, and the enthalpy of the refrigerant is reduced, causing the phenomenon of a decrease in static temperature It has come.
The flow rate in the heating coil capillary 51 is desirably set to be twice or more the flow rate in the use-side heat exchanger 6 in the design of the cooling / heating system.

暖房用コイル細管51で一部気化した冷媒は、暖房用コイル太管52に入る。
暖房用コイル太管52に入ると、圧縮機1の吸引作用等により、冷媒が加速されて(冷媒の加速現象という)、減圧、及びエンタルピ減少を伴って、冷媒が気化される。暖房用コイル太管52の出側では、減圧され、冷却されて、圧力も下がり低圧(0.4MPa以下)のガス冷媒となる。
暖房用コイル太管52内での温度低下の主因も、暖房用コイル細管51内での温度低下と同様に、熱エネルギである冷媒のエンタルピが速度エネルギへ変換し、エンタルピが減少し、静温度低下の現象の生起に至ったものである。
The refrigerant partially vaporized in the heating coil thin tube 51 enters the heating coil thick tube 52.
When entering the heating coil thick tube 52, the refrigerant is accelerated by the suction action of the compressor 1 (referred to as an acceleration phenomenon of the refrigerant), and the refrigerant is vaporized with reduced pressure and enthalpy reduction. On the outlet side of the heating coil thick tube 52, the pressure is reduced and cooled, and the pressure is lowered to become a low-pressure (0.4 MPa or less) gas refrigerant.
The main cause of the temperature drop in the heating coil thick tube 52 is that, similarly to the temperature drop in the heating coil thin tube 51, the enthalpy of the refrigerant, which is thermal energy, is converted into velocity energy, the enthalpy is reduced, and the static temperature This has led to the phenomenon of decline.

暖房用コイル太管52により低温となったガス冷媒は、ミニ熱交換器3に送られる。このミニ熱交換器3では、等圧、等温膨張の吸熱により、冷媒が蒸発し、これにより暖房サイクルが完了する。   The gas refrigerant whose temperature has been lowered by the heating coil thick tube 52 is sent to the mini heat exchanger 3. In this mini heat exchanger 3, the refrigerant evaporates due to the endothermic heat of isobaric and isothermal expansion, thereby completing the heating cycle.

従来の冷暖房システム(例えば、特許文献1参照。)では、暖房用コイル細管51の内径と、冷房用コイル細管42の内径と、が等しく設定されるため、冷房時には効率良い運転を行なうことができても、暖房時において、暖房用コイル細管51内で、減圧する際、冷媒の温度が下がりすぎる課題がある。冷暖房システムの設計が、冷房時の効率を考慮して設計されているためである。
本実施形態では、上述したように、暖房用コイル細管51の内径が、冷房用コイル細管42の内径よりも大きく設定されるため、暖房用コイル細管51で、減圧する際に、冷媒の温度をあまり下げることがない。
したがって、圧縮機1への戻りのガス冷媒の温度が、比較的に高くなるため、暖房サイクルの効率を向上することができる。
冷房時の効率を確保し、暖房時にも効率が確保され、冷・暖房時何れにおいても、効率の良い運転を行なうことができる。
In a conventional cooling / heating system (for example, see Patent Document 1), the inner diameter of the heating coil thin tube 51 and the inner diameter of the cooling coil thin tube 42 are set to be equal, so that efficient operation can be performed during cooling. However, there is a problem that the temperature of the refrigerant is too low when the pressure is reduced in the heating coil capillary 51 during heating. This is because the design of the air conditioning system is designed in consideration of the efficiency during cooling.
In the present embodiment, as described above, since the inner diameter of the heating coil capillary 51 is set larger than the inner diameter of the cooling coil capillary 42, the temperature of the refrigerant is reduced when the heating coil capillary 51 is depressurized. There is not much lowering.
Therefore, since the temperature of the gas refrigerant returned to the compressor 1 becomes relatively high, the efficiency of the heating cycle can be improved.
Efficiency during cooling is ensured, efficiency is ensured even during heating, and efficient operation can be performed both during cooling and heating.

図2は、別の実施形態を示す。図2では、図1と同一構成の部分には同一符号を付して示し、説明を省略する。
この実施形態では、暖房用熱変換部5の暖房用コイル細管51が、暖房時の冷媒の入側から出側に向けて、流路が順に太くなるように、入側細管51Aと、それよりも内径が大きい出側細管51Bとにより構成されている。
また、冷房用熱変換部4の冷房用コイル細管42は、冷房時の冷媒の入側から出側に向けて、流路が順に細くなるように、入側細管42Aと、それよりも内径が小さい出側細管42Bとにより構成されている。
そして、暖房用熱変換部5の入側細管51Aは、冷房用熱変換部4の出側細管42Bよりも流路が太く、内径が大きく形成されている。
FIG. 2 shows another embodiment. In FIG. 2, parts having the same configuration as in FIG.
In this embodiment, the heating coil thin tube 51 of the heating heat conversion section 5 has an inlet thin tube 51A, and a flow passage that gradually increases in thickness from the refrigerant inlet side to the outlet side during heating. Is also composed of an outlet side thin tube 51B having a large inner diameter.
Further, the cooling coil thin tube 42 of the cooling heat conversion unit 4 has an inner diameter smaller than that of the inlet thin tube 42A so that the flow path becomes narrower in order from the refrigerant inlet side to the outlet side during cooling. It is comprised by the small exit side thin tube 42B.
The inlet side thin tube 51A of the heating heat conversion unit 5 has a larger flow path and a larger inner diameter than the outlet side thin tube 42B of the cooling heat conversion unit 4.

本発明者らは、暖房用コイル細管51を、入側細管51Aと、それよりも内径が大きい出側細管51Bとにより構成し、冷房用コイル細管42を、入側細管42Aと、それよりも内径が小さい出側細管42Bとにより構成した場合、暖房用コイル細管51の入側細管51Aの内径を、冷房用コイル細管42の出側細管42Bの内径よりも大きく設定したときに、暖房時の効率を向上できることを確認した。
この実施形態によれば、暖房用コイル細管51の入側細管51Aの内径が、冷房用コイル細管42の出側細管42Bの内径よりも大きく設定されているため、入側細管51Aで、減圧する際に、冷媒の温度をあまり下げることがない。したがって、図1の実施形態と同様に、圧縮機1への戻りのガス冷媒の温度が、比較的に高くなり、暖房サイクルの効率を向上することができる。
The present inventors configured the heating coil tubule 51 by an entrance side tubule 51A and an exit side tubule 51B having an inner diameter larger than that, and the cooling coil tubule 42 by an entrance side tubule 42A. When the inner diameter of the inlet side thin tube 51A of the heating coil thin tube 51 is set to be larger than the inner diameter of the outlet side thin tube 42B of the cooling coil thin tube 42, when it is configured by the outlet thin tube 42B having a small inner diameter, It was confirmed that the efficiency could be improved.
According to this embodiment, since the inner diameter of the inlet side thin tube 51A of the heating coil thin tube 51 is set larger than the inner diameter of the outlet side thin tube 42B of the cooling coil thin tube 42, the inlet side thin tube 51A is depressurized. In this case, the temperature of the refrigerant is not lowered too much. Therefore, similarly to the embodiment of FIG. 1, the temperature of the gas refrigerant returned to the compressor 1 becomes relatively high, and the efficiency of the heating cycle can be improved.

以上、一実施形態に基づいて、本発明の冷暖房システムを説明したが、本発明は、これに限定されるものではない。例えば、室外機、室内機にセパレートされた空調機に限らず、一体型の空調機にも適用が可能である。   As mentioned above, although the air conditioning system of this invention was demonstrated based on one Embodiment, this invention is not limited to this. For example, the present invention can be applied not only to an outdoor unit and an air conditioner separated into an indoor unit, but also to an integrated air conditioner.

1 圧縮機
3 ミニ熱交換器(熱源側熱交換器)
4 冷房用熱変換部
5 暖房用熱変換部
6 利用側熱交換器
41 冷房用コイル太管
42 冷房用コイル細管
42A 冷房用熱変換部の入側細管
42B 冷房用熱変換部の出側細管
51 暖房用コイル細管
51A 暖房用熱変換部の入側細管
51B 暖房用熱変換部の出側細管
52 暖房用コイル太管
1 Compressor 3 Mini heat exchanger (heat source side heat exchanger)
DESCRIPTION OF SYMBOLS 4 Heat conversion part for cooling 5 Heat conversion part for heating 6 Use side heat exchanger 41 Coil large tube for cooling 42 Coil thin tube for cooling 42A Inlet side thin tube of the heat conversion part for cooling 42B Outlet side thin tube of the heat conversion part for cooling 51 Heating coil thin tube 51A Heating heat conversion unit inlet side thin tube 51B Heating heat conversion unit outlet thin tube 52 Heating coil thick tube

Claims (4)

圧縮機、利用側熱交換器、熱源側熱交換器を備え、
冷房時に、前記圧縮機から吐出され、前記熱源側熱交換器で一部液化した残りのガス冷媒を、冷媒の加速現象によって減圧、液化する冷房用コイル太管、および、前記冷房用コイル太管を経た冷媒を、冷媒の加速現象によって減圧、冷却する冷房用コイル細管を有する冷房用熱変換部と、
暖房時に、前記圧縮機から吐出され、前記利用側熱交換器で液化した冷媒を、冷媒の加速現象によって減圧、一部気化する暖房用コイル細管、および、前記暖房用コイル細管を経た冷媒を、冷媒の加速現象によって減圧、気化する暖房用コイル太管を有する暖房用熱変換部と、を備え、
前記暖房用熱変換部の前記暖房用コイル細管は、前記冷房用熱変換部の前記冷房用コイル細管よりも流路を太く形成した、
ことを特徴とする冷暖房システム。
It is equipped with a compressor, use side heat exchanger, heat source side heat exchanger,
During cooling, the remaining gas refrigerant discharged from the compressor and partially liquefied by the heat source side heat exchanger is decompressed and liquefied by the acceleration phenomenon of the refrigerant, and the cooling coil large pipe A cooling heat conversion section having a cooling coil capillary that depressurizes and cools the refrigerant that has passed through the acceleration phenomenon of the refrigerant;
During heating, the refrigerant discharged from the compressor and liquefied by the use side heat exchanger is decompressed and partially vaporized by the acceleration phenomenon of the refrigerant, and the heating coil tubule, and the refrigerant that has passed through the heating coil tubule, A heating heat conversion section having a heating coil thick tube that is decompressed and vaporized by the acceleration phenomenon of the refrigerant,
The heating coil tubule of the heating heat conversion section has a channel formed thicker than the cooling coil tubule of the cooling heat conversion section.
An air conditioning system characterized by that.
前記暖房用熱変換部の前記暖房用コイル細管は、暖房時の冷媒の入側から出側に向けて、流路が順に太くなる入側細管および出側細管で構成され、
前記冷房用熱変換部の前記冷房用コイル細管は、冷房時の冷媒の入側から出側に向けて、流路が順に細くなる入側細管および出側細管で構成され、
前記暖房用熱変換部の前記入側細管は、前記冷房用熱変換部の前記出側細管よりも流路を太く形成した、
ことを特徴とする請求項1に記載の冷暖房システム。
The heating coil tubule of the heating heat conversion section is composed of an inlet side tubule and an outlet side tubule whose flow path becomes thicker in order from the inlet side to the outlet side of the refrigerant during heating,
The cooling coil tubule of the cooling heat conversion section is composed of an inlet-side tubule and an outlet-side tubule whose flow path becomes narrower in order from the refrigerant inlet side to the outlet side during cooling,
The inlet side thin tube of the heating heat conversion part is formed thicker than the outlet side thin tube of the cooling heat conversion part,
The air conditioning system according to claim 1.
前記冷房用熱変換部および前記暖房用熱変換部の流速が、前記熱源側熱交換器における流速の2倍以上に設定されている、
ことを特徴とする請求項1又は2に記載の冷暖房システム。
The flow rates of the cooling heat conversion unit and the heating heat conversion unit are set to be twice or more the flow rate in the heat source side heat exchanger,
The air-conditioning system according to claim 1 or 2 characterized by things.
前記熱源側熱交換器は、冷房時に、前記圧縮機から吐出される高温・高圧冷媒ガスの5乃至50重量%を液化させるよう構成されている、
ことを特徴とする請求項1乃至3の何れか一項に記載の冷暖房システム。
The heat source side heat exchanger is configured to liquefy 5 to 50% by weight of the high-temperature / high-pressure refrigerant gas discharged from the compressor during cooling.
The air conditioning system according to any one of claims 1 to 3, wherein
JP2018534181A 2018-02-09 2018-02-09 Air conditioning system Active JP6406485B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006096 WO2019155644A1 (en) 2018-02-09 2018-02-09 Cooling/heating system

Publications (2)

Publication Number Publication Date
JP6406485B1 true JP6406485B1 (en) 2018-10-17
JPWO2019155644A1 JPWO2019155644A1 (en) 2020-02-27

Family

ID=63855143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534181A Active JP6406485B1 (en) 2018-02-09 2018-02-09 Air conditioning system

Country Status (2)

Country Link
JP (1) JP6406485B1 (en)
WO (1) WO2019155644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117254A1 (en) * 2019-12-09 2021-06-17 株式会社E・T・L Spot cooler device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374746B1 (en) * 2018-03-13 2022-03-17 가부시키가이샤 이·티·에루 heating and cooling system
CN112856588B (en) * 2021-01-22 2022-11-15 青岛海尔空调器有限总公司 Air conditioner indoor unit and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073073U (en) * 1983-10-26 1985-05-23 三菱電機株式会社 Multi-room air conditioner
JP2005515395A (en) * 2002-01-24 2005-05-26 ▲チュ▼▲軍▼ 願 Air conditioner with air conditioning function
JP4411349B2 (en) * 2005-09-26 2010-02-10 株式会社Hara Tech Condensation heat converter and refrigeration system using the same
JP2010281558A (en) * 2009-01-13 2010-12-16 Takao Hara Velocity-heat convertor, heating system utilizing the same, and heating and cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073073U (en) * 1983-10-26 1985-05-23 三菱電機株式会社 Multi-room air conditioner
JP2005515395A (en) * 2002-01-24 2005-05-26 ▲チュ▼▲軍▼ 願 Air conditioner with air conditioning function
JP4411349B2 (en) * 2005-09-26 2010-02-10 株式会社Hara Tech Condensation heat converter and refrigeration system using the same
JP2010281558A (en) * 2009-01-13 2010-12-16 Takao Hara Velocity-heat convertor, heating system utilizing the same, and heating and cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117254A1 (en) * 2019-12-09 2021-06-17 株式会社E・T・L Spot cooler device

Also Published As

Publication number Publication date
WO2019155644A1 (en) 2019-08-15
JPWO2019155644A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
KR100905995B1 (en) Air conditioner
JP6406485B1 (en) Air conditioning system
JP4832563B2 (en) Refrigeration system
WO2011105270A1 (en) Refrigeration cycle device
JP2005077088A (en) Condensation machine
JP4118254B2 (en) Refrigeration equipment
JP2006052898A (en) Refrigerant cycle device
CN103930744A (en) Double-pipe heat exchanger and air conditioner using same
JP2005214550A (en) Air conditioner
JP6253370B2 (en) Refrigeration cycle equipment
JP4442068B2 (en) Refrigeration air conditioner
JP5213986B2 (en) Refrigeration cycle equipment
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
JP6458918B1 (en) Air conditioning system
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2006003023A (en) Refrigerating unit
JP2013210155A (en) Refrigerating device
JP2017129320A (en) Freezer
JP2005337577A5 (en)
JP2011017513A (en) Refrigerating system
JP2005337577A (en) Refrigerating device
WO2022107343A1 (en) Freezing apparatus
JP2013210133A (en) Refrigerating device
JP4814823B2 (en) Refrigeration equipment
WO2021117254A1 (en) Spot cooler device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180612

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6406485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250