JP4442068B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4442068B2
JP4442068B2 JP2001276025A JP2001276025A JP4442068B2 JP 4442068 B2 JP4442068 B2 JP 4442068B2 JP 2001276025 A JP2001276025 A JP 2001276025A JP 2001276025 A JP2001276025 A JP 2001276025A JP 4442068 B2 JP4442068 B2 JP 4442068B2
Authority
JP
Japan
Prior art keywords
refrigerant
point
pressure
compressor
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001276025A
Other languages
Japanese (ja)
Other versions
JP2003083620A (en
Inventor
慎一 若本
泰城 村上
昌之 角田
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001276025A priority Critical patent/JP4442068B2/en
Publication of JP2003083620A publication Critical patent/JP2003083620A/en
Application granted granted Critical
Publication of JP4442068B2 publication Critical patent/JP4442068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍空調装置に関し、ことに、主流冷媒とバイパス流冷媒との間で熱交換を行って主流冷媒を冷却する熱交換器を備えた冷凍空調装置に関する。
【0002】
【従来の技術】
図9は特開平10−205898号公報に開示された従来の冷凍装置の構成説明図で、11は圧縮機、12は凝縮器、13はエゼクタ、14は気液分離器、15は冷媒ポンプ、16は蒸発器、17は冷媒配管であり、フロンガスを代表とする冷媒が冷凍サイクル9を循環する構成につき開示するものである。かかる冷凍装置は、前述の通り、圧縮機、凝縮器、エゼクタ(エジェクタとも呼ばれる)、気液分離器が環状に接続され、さらに気液分離器、冷媒ポンプ、蒸発器及びエゼクタが順次連結接続された構成を有している。かかる冷凍装置の性能は、各構成要素において如何にロスなく圧力−エンタルピの変換を行うかにより決まるため、各構成要素におけるエネルギーロスの低減が技術開発の重要なポイントとなる。ことに、断熱膨張により冷媒の圧力を降下させ動力を回収するエゼクタにおけるエネルギーロスの低減が冷凍装置の性能向上に対し重要な課題として挙げられる。
【0003】
以下、従来の冷凍装置の動作につき図に従い説明する。かかる冷凍装置においては、まず最初、フロンガス等の冷媒は圧縮機11にて圧縮され高温高圧状態となり、続いて凝縮器12に導入され液化する。さらに、凝縮器12て液化された冷媒は、エゼクタ13に導入され蒸発しながら増速減圧し、気液混合状態となる。この気液混合状態となった冷媒は、気液分離器14にて気相と液相に分離され、このうち冷媒蒸気は圧縮機11へと導かれ、冷凍サイクル9を循環することになる。また、気液分離器14内の冷媒液は冷媒ポンプ15を通り、蒸発器16に導入され低温低圧状態となる。蒸発器16から流出した低温低圧の冷媒蒸気は、凝縮器12からエゼクタ13に導入され増速減圧した冷媒と一体となり、圧縮機11の吸入圧力と等しい圧力まで圧力回復する。この圧力回復した冷媒は気液分離器14に流入し、冷媒蒸気は圧縮機11に戻ることにより冷媒流路を循環し、冷媒液は冷媒ポンプ15で減圧され蒸発器16にて気化しエゼクタ13に戻ることによりバイパス流路を循環することになる。
【0004】
上述のように、従来の冷凍装置においては、エゼクタ13から流出した冷媒を気液分離器14にて気液分離し、冷媒蒸気を圧縮機11に戻し、冷媒液を冷媒ポンプ15及び蒸発器16を通してエゼクタ13へと導入する構成としていたため、凝縮器12の出口における冷媒の過冷却度を大きくすると、エゼクタ13に導入される冷媒のエンタルピが低下するため、エゼクタ13によるエンタルピ増加を低減する効果が低下する。一方、凝縮器12の出口における冷媒の過冷却度を小さくすると、エゼクタ13入口でのエンタルピは上昇するが、これは蒸発器16の出口側のエンタルピの上昇を招き、蒸発器16の出入口におけるエンタルピ差が減少することを意味する。そのため、所定の冷却能力を得るためには冷媒流量を増加させる必要が生じ、圧縮機に投入する電力量が増大するなど、性能低下を招くことになる。このように、従来の冷凍装置は、エゼクタ13に導入する冷媒のエンタルピを大きくすればエゼクタ13通過後の圧力損失の増加が生じ、また、小さくすればエゼクタ13の効果が減少するという相反する問題を有しており、エゼクタを利用した効率的な運転が困難であった。
【0005】
【発明が解決しようとする課題】
本発明はかかる状況に鑑みなされたもので、従来、流量制御手段においてロスとなっていたエネルギーを効率的に回収し、高効率な運転を実現する冷凍空調装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明にかかる冷凍空調装置は、圧縮機、凝縮器、冷媒の圧力を低下させる流量制御手段および蒸発器を冷媒が順次循環するよう連結した主流冷媒ルートと、凝縮器の出口側から冷媒の一部を分岐し、分岐した冷媒を膨張動力回収手段にて膨張させて圧縮機の入口側に戻すバイパス流冷媒ルートと、バイパス流冷媒ルートの膨張後の冷媒によって主流冷媒ルートにおける流量制御手段の入口側の冷媒を冷却する熱交換器とを備えたものである。かかる冷凍空調装置は、主流冷媒ルートにおいて、圧縮機の出口側から凝縮器の入口側に第2凝縮器と第2圧縮機を順次連結した構成とすることができ、膨張動力回収手段としては膨張機を用いることができる。
【0007】
また、本発明にかかる冷凍空調装置は、圧縮機、凝縮器、冷媒の圧力を低下させる第1流量制御手段および蒸発器を冷媒が順次循環するよう連結した主流冷媒ルートと、凝縮器の出口側から冷媒の一部を分岐し、分岐した冷媒を膨張動力回収手段にて膨張させた後、膨張した冷媒を気相及び液相に分離する気液分離器を通して圧縮機の入口側に戻す第1バイパス流冷媒ルートと、気液分離器の液相側から冷媒を分岐し、分岐した冷媒を第2流量制御手段にて膨張させた後、膨張動力回収手段に戻す第2バイパス流冷媒ルートと、第2バイパス流冷媒ルートの膨張後の冷媒によって主流冷媒ルートにおける流量制御手段の入口側の冷媒を冷却する熱交換器とを備えたものである。かかる膨張動力回収手段としては、エゼクタを用いることができる。
【0008】
かかる冷凍空調装置においては、冷媒として二酸化炭素を用いることができる。
【0009】
【発明の実施の形態】
実施の形態1
本発明にかかる冷凍空調装置は、例えば、図1に示すように、圧縮機11、凝縮器12、流量制御手段41、蒸発器16が冷媒配管で環状に順次接続されており、フルオロカーボン系または炭化水素系の冷媒が循環する構成となっている。また、凝縮器12と流量制御手段41の間には熱交換器40が設置され、さらに凝縮器12と熱交換器40の間及び蒸発器16と圧縮機11の間がバイパス配管42にて連結接続されている。このバイパス配管42の経路には膨張機13が配置され、バイパス配管42は膨張機13の設置部の下流側で熱交換器40を通って、蒸発器16と圧縮機11の間に接続されている。
また、図2はかかる冷凍空調装置の冷凍サイクルを説明するための圧力−エンタルピ線図であり、図2に示されたAからFの各点は図1に記載された冷凍空調装置のAからFの各点に対応し、各位置における圧力−エンタルピ状態を表わすものである。
【0010】
以下、かかる冷凍空調装置の動作とその効果に付き、図2に示した圧力−エンタルピ線図を参照しつつ説明する。かかる冷凍空調装置においては、冷媒は圧縮機11の出口で最も高い圧力およびエンタルピを有している(図中A点)。次に、圧縮機11にて圧縮され高温高圧状態となった冷媒は、凝縮器12に導かれて凝縮され、圧力が一定のままエンタルピが低下する(図中A点→B点)。凝縮器12出口部(図中B点)における冷媒液の一部は、膨張機13により断熱膨張し低温低圧の冷媒二相状態に変化する(図中B点→F点)。この低温低圧の冷媒は熱交換器40にて、凝縮器12から流量制御手段41へ循環する冷媒液と熱交換して気化し、圧縮機11の吸入圧力と等しい圧力まで圧力回復して圧縮機11に戻り(図中F点→E点)、圧縮機11における動力の一部として利用されることになる。また、凝縮器12を出た冷媒の残りは、熱交換器40において膨張機13にて低温低圧となった冷媒と熱交換して冷却された後(図中B点→C点)、流量制御手段41にて減圧され低温低圧の気液二層状態の冷媒となり(図中C点→D点)蒸発器16に導入され,空気などと熱交換して気化し圧縮機11に戻る(図中D点→E点)。そして、冷媒は圧縮機11にて圧縮され、高温高圧状態となり(図中E点→A点)、上述の冷凍サイクルを再び循環することになる。
【0011】
以上、かかる冷凍空調装置においては熱交換器により凝縮器から流量制御手段に循環する冷媒を過冷却することにより、流量制御手段に導入される冷媒のエンタルピを低減することができる。即ち、流量制御手段における減圧時に失われていたエネルギーを、蒸発器を通ることなく圧縮機に循環する冷媒にて回収し、流量制御手段におけるエネルギーロスの低減による効率UPにより高効率な運転が可能となる。
【0012】
尚、上記実施の形態ではフルオロカーボン系または炭化水素系の冷媒を用いたものについて説明したが、冷媒として二酸化炭素を用いる冷凍空調装置では冷凍能力に対する断熱膨張時のエネルギーロスが大きく、本発明の効果が特に顕著である。かかる効果につき、図を用いて説明する。図3は流量制御手段41の入口温度が35℃、出口温度が10℃における二酸化炭素の断熱膨張過程における圧力―エンタルピ線図、図4は流量制御手段41の入口温度が35℃、出口温度が10℃におけるフルオロカーボン系冷媒の断熱膨張過程における圧力―エンタルピ線図である。図3、4において、50、60は35℃の等温線、51、61は等エントロピ線、52、62は10℃の等温線、53、63はエネルギーロス、54、64は冷凍能力を示している。図3に示した二酸化炭素のエネルギーロス53の方が図4に示したフルオロカーボン系冷媒のエネルギーロス63よりも大きいのは、二酸化炭素が35℃では臨界状態にあり、フルオロカーボン系冷媒のような一般的な冷媒とは異なる特有の性質を有することに起因する。一方、本願発明は流量制御手段にて生じるエネルギーロスの低減を目的としたものであるため、かかるエネルギーロスが大きい二酸化炭素を冷媒として用いた場合には通常のフルオロカーボン系冷媒を用いる場合より効果的である。
【0013】
実施の形態2
図5は本発明にかかる冷凍空調装置の構成を表す構成説明図の一例で、第1圧縮機11、第2凝縮器45、第2圧縮機46、第1凝縮器12、第1流量制御手段41、蒸発器16が冷媒配管で環状に順次接続されており、フルオロカーボン系または炭化水素系の冷媒が循環する構成となっている。また、凝縮器12と第1流量制御手段41の間には熱交換器40が設置され、さらに凝縮器12と熱交換器40の間及び蒸発器16と圧縮機11の間がバイパス配管42にて連結接続されている。このバイパス配管42には膨張機13が設置され、バイパス配管42は膨張機13の設置部の下流側で熱交換器40を通って、蒸発器16と圧縮機11の間に接続されている。
また、図6はかかる冷凍空調装置の冷凍サイクルを説明するための圧力−エンタルピ線図であり、図6中に示されたA’からH’の各点は図5に記載された冷凍空調装置のA’からH’の各点に対応し、各位置における圧力−エンタルピ状態を表わすものである。
【0014】
以下、かかる冷凍空調装置の動作とその効果に付き、図6に示した圧力−エンタルピ線図を参照しつつ説明する。かかる冷凍空調装置においては、冷媒は第2圧縮機46の出口で最も高い圧力およびエンタルピを有している(図中A’点)。次に、第2圧縮機46にて圧縮され高温高圧状態となった冷媒は、第1凝縮器12に導かれて凝縮され、圧力が一定のままエンタルピが低下する(図中A’点→B’点)。第1凝縮器12出口部(図中B’点)における冷媒液の一部は、膨張機13により断熱膨張し低温低圧の冷媒二相状態に変化する(図中B’点→H’点)。この低温低圧の冷媒は熱交換器40にて、第1凝縮器12から流量制御手段41へ循環する冷媒液と熱交換して気化し、第1圧縮機11に戻り(図中H’点→E’点)、第1圧縮機11における動力の一部として利用されることになる。第1圧縮機11に導入された冷媒はまず第一段目の圧縮が行われる(図中E’点→F’点)。第一段目の圧縮が行われた冷媒は、続いて第2凝縮器45に導かれて凝縮され、圧力が一定のままエンタルピが低下する(図中F’点→G’点)。さらに、第2凝縮器45を出た冷媒は、第2圧縮機46にて第二段目の圧縮が行われる(図中G’点→A’点)。また、凝縮器12を出た冷媒の残りは、熱交換器40において膨張機13にて低温低圧となった冷媒と熱交換して冷却された後(図中B’点→C’点)、流量制御手段41にて減圧され低温低圧の気液二層状態の冷媒となり(図中C’点→D’点)蒸発器16に導入され、空気などと熱交換して気化し第1圧縮機11に戻る(図中D’点→E’点)。蒸発器16から第1圧縮機11へと戻された冷媒は上述のバイパス配管42から第1圧縮機11に循環する冷媒同様、第1圧縮機11、第2凝縮器45および第2圧縮機46を通過することにより高温高圧状態となり(図中E’点→F’点→G’点→A’点)、上述の冷凍サイクルを再び循環することになる。
【0015】
以上、かかる冷凍空調装置においては、冷媒の圧縮工程を2段階としたことで、実施の形態1同様、流量制御手段における低圧化の際に失われていたエネルギーを、蒸発器を通ることなく圧縮機に循環する冷媒にて回収し、流量制御手段におけるエネルギーロスの低減による効率UPが図られるとともに、圧縮機に要する動力を低減することができ、さらに効率が向上するという利点がある。
【0016】
上記実施の形態ではフルオロカーボン系または炭化水素系の冷媒を用いたものについて説明したが、冷凍空調装置の冷媒として二酸化炭素を用いた場合には、実施の形態1と同様に本発明の効果が特に顕著で好適である。
【0017】
実施の形態3
図7は本発明にかかる冷凍空調装置の構成を表す構成説明図の一例で、圧縮機11、凝縮器12、第1流量制御手段41、蒸発器16が冷媒配管で環状に順次接続されており、フルオロカーボン系または炭化水素系の冷媒が循環する構成となっている。また、凝縮器12と第1流量制御手段41の間には熱交換器40が設置され、さらに凝縮器12と熱交換器40の間及び蒸発器16と圧縮機11の間が第1バイパス配管42にて連結接続されている。この第1バイパス配管42にはエゼクタ13及び気液分離器14が設置され、さらに、気液分離器14、第2流量制御手段43、熱交換器40及びエゼクタ13が第2バイパス配管44にて接続されている。
また、図8はかかる冷凍空調装置の冷凍サイクルを説明するための圧力−エンタルピ線図であり、図8中に示されたaからkの各点は図7に記載された冷凍空調装置のaからkの各点に対応し、各位置における圧力−エンタルピ状態を表わすものである。
【0018】
以下、かかる冷凍空調装置の動作とその効果に付き、図8に示した圧力−エンタルピ線図を参照しつつ説明する。かかる冷凍空調装置においては、冷媒は圧縮機11の出口で最も高い圧力およびエンタルピを有している(図中a点)。次に、圧縮機11にて圧縮され高温高圧状態となった冷媒は、凝縮器12に導かれて凝縮され、圧力が一定のままエンタルピが低下する(図中a点→b点)。凝縮器12出口部(図中b点)における冷媒液の一部は、第1バイパス配管42に導入されエゼクタ13に到達し、エゼクタ13にて断熱膨張することにより低温低圧の冷媒二相状態に変化する(図中b点→f点。ここでf点はエゼクタにおける冷媒が断熱膨張した直後の位置を意味している)。低温低圧の二相状態に変化した冷媒は、気液分離器14から第2流量制御手段43及び熱交換器40を通ってエゼクタ13に導入される冷媒と混合され、エンタルピ及び圧力が増大する(図中f点→g点→h点)。このエンタルピ及び圧力が増大した冷媒は気液分離器14に導入されて気相と液相に分離され、このうち冷媒蒸気は第1バイパス配管42を通り、圧縮機11へと循環する(図中h点→e点)。また、気液分離器14において液相となった冷媒(図中h点→i点)は第2バイパス配管44を通り第2流量制御手段43へと循環し、圧力が低減される(図中i点→j点)。この低温低圧となった冷媒蒸気は、熱交換器40にて凝縮器12から第1流量制御手段41へ流れる冷媒と熱交換しエンタルピが増大する(図中j点→k点)。このエンタルピが増大した冷媒は第2バイパス配管44を通りエゼクタ13に導入され、上述のように凝縮器12を出て第1バイパス配管42を通ってエゼクタ13に導入された高圧の冷媒と混合されエンタルピが低減し、圧力が増大する(図中k点→g点→h点)。また、凝縮器12を出た冷媒の残りは、熱交換器40においてエゼクタ13にて低温低圧となった冷媒と熱交換して冷却された後(図中b点→c点)、流量制御手段41にて減圧され低温低圧の気液二相状態の冷媒となり(図中c点→d点)蒸発器16に導入され,空気などと熱交換して気化し圧縮機11に戻る(図中d点→e点)。そして、冷媒は圧縮機11にて圧縮され、高温高圧状態となり(図中e点→a点)、上述の冷凍サイクルを再び循環することになる。
【0019】
以上、かかる冷凍空調装置においては、エゼクタにて膨張された冷媒を気液分離器にて分離し、第2流量制御手段にて再度膨張させ、冷媒をさらに低温低圧化することにより、凝縮器から流量制御手段に循環する冷媒をより効率的に過冷却することができる。即ち、主流冷媒ルートの流量制御手段における減圧時に失われていたエネルギーを、第2バイパス流冷媒ルートを循環する、より低温低圧な冷媒にて効率的に回収することにより、流量制御手段におけるエネルギーロスの低減による効率UPが図れ、実施の形態1および2と同様に効率的な冷凍空調装置の運転が可能となる。
【0020】
上記実施の形態ではフルオロカーボン系または炭化水素系の冷媒を用いたものについて説明したが、冷凍空調装置の冷媒として二酸化炭素を用いた場合には、実施の形態1および2と同様に本発明の効果が特に顕著で好適である。
【0021】
【発明の効果】
以上、本発明にかかる冷凍空調装置は、圧縮機、凝縮器、冷媒の圧力を低下させる流量制御手段および蒸発器を冷媒が順次循環するよう連結した主流冷媒ルートと、凝縮器の出口側から冷媒の一部を分岐し、分岐した冷媒を膨張動力回収手段にて膨張させて圧縮機の入口側に戻すバイパス流冷媒ルートと、バイパス流冷媒ルートの膨張後の冷媒によって主流冷媒ルートにおける流量制御手段の入口側の冷媒を冷却する熱交換器とを備えたもので、凝縮器から流量制御手段へ供給される冷媒を、膨張動力回収手段により低温化された冷媒により過冷却することで流量制御手段におけるエネルギーロスを低減することができ、高効率に稼動する冷凍空調装置が実現できる。また、主流冷媒ルートにおいて、圧縮機の出口側から凝縮器の入口側に第2凝縮器と第2圧縮機を順次連結した場合には、冷媒の圧縮工程を2段階とすることにより圧縮機に要する動力が低減され、効率がより向上し好適である。さらに膨張動力回収手段として膨張機を用いた場合には冷媒の膨張を簡易かつ高効率に行うことができさらに好適である。
【0022】
かかる冷凍空調装置は、圧縮機、凝縮器、冷媒の圧力を低下させる第1流量制御手段および蒸発器を冷媒が順次循環するよう連結した主流冷媒ルートと、凝縮器の出口側から冷媒の一部を分岐し、分岐した冷媒を膨張動力回収手段にて膨張させた後、膨張した冷媒を気相及び液相に分離する気液分離器を通して圧縮機の入口側に戻す第1バイパス流冷媒ルートと、気液分離器の液相側から冷媒を分岐し、分岐した冷媒を第2流量制御手段にて膨張させた後、膨張動力回収手段に戻す第2バイパス流冷媒ルートと、第2バイパス流冷媒ルートの膨張後の冷媒によって主流冷媒ルートにおける流量制御手段の入口側の冷媒を冷却する熱交換器とを備えた場合には、凝縮器から第1流量制御手段へ供給される冷媒を、第2流量制御手段によりさらに低温かつ低圧力化された冷媒を用いて過冷却することで第1流量制御手段におけるエネルギーロスをより効率よく低減するとともに、この冷媒の冷却により回収したエネルギーを利用して冷媒のエンタルピを増大させて膨張動力回収手段に導入し気液分離器を通して圧縮機に戻すことにより圧縮機における運転効率を向上させることができ、さらに高効率に稼動する冷凍空調装置が実現できる。また、膨張動力回収手段としてエゼクタを用いた場合には、冷媒を低コストかつ効率的に膨張させることができ、好適である。
【0023】
かかる冷凍空調装置は、冷媒が二酸化炭素である場合には、流量制御手段によるロスが効果的に低減でき、好適である。
【図面の簡単な説明】
【図1】 本発明にかかる冷凍空調装置の構成を示す構成説明図である。
【図2】 本発明にかかる冷凍空調装置に対応した圧力−エンタルピ線図である。
【図3】 二酸化炭素を冷媒として用いた場合の圧力−エンタルピ線図である。
【図4】 フルオロカーボン系の冷媒を用いた場合の圧力−エンタルピ線図である。
【図5】 本発明にかかる冷凍空調装置の構成を示す構成説明図である。
【図6】 本発明にかかる冷凍空調装置に対応した圧力−エンタルピ線図である。
【図7】 本発明にかかる冷凍空調装置の構成を示す構成説明図である。
【図8】 本発明にかかる冷凍空調装置に対応した圧力−エンタルピ線図である。
【図9】 従来の冷凍装置の構成を示す構成説明図である。
【符号の説明】
9 冷凍サイクル、11 圧縮機、12 凝縮器、13 エゼクタ、
14 気液分離器、15 冷媒ポンプ、16 蒸発器、17 冷媒配管、
40 熱交換器、41 流量制御手段(第1流量制御手段)、
42 バイパス配管(第1バイパス配管)、43 第2流量制御手段、
44 第2バイパス配管、45 第2凝縮器、46 第2圧縮機、
50 35℃の等温線、51 等エントロピ線、52 10℃の等温線、
53 エネルギーロス、54 冷凍能力、60 35℃の等温線、
61 等エントロピ線、62 10℃の等温線、63 エネルギーロス、
64 冷凍能力。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner including a heat exchanger that performs heat exchange between a mainstream refrigerant and a bypass refrigerant and cools the mainstream refrigerant.
[0002]
[Prior art]
FIG. 9 is an explanatory diagram of the configuration of a conventional refrigeration apparatus disclosed in Japanese Patent Laid-Open No. 10-205898, in which 11 is a compressor, 12 is a condenser, 13 is an ejector, 14 is a gas-liquid separator, 15 is a refrigerant pump, Reference numeral 16 denotes an evaporator, and 17 a refrigerant pipe, which discloses a configuration in which a refrigerant represented by chlorofluorocarbon circulates in the refrigeration cycle 9. In this refrigeration apparatus, as described above, a compressor, a condenser, an ejector (also called an ejector), and a gas-liquid separator are connected in a ring shape, and further, a gas-liquid separator, a refrigerant pump, an evaporator, and an ejector are sequentially connected. It has a configuration. Since the performance of such a refrigeration apparatus is determined by how the pressure-enthalpy conversion is performed without loss in each component, reduction of energy loss in each component is an important point for technological development. In particular, reduction of energy loss in an ejector that recovers power by lowering the pressure of the refrigerant by adiabatic expansion is an important issue for improving the performance of the refrigeration apparatus.
[0003]
Hereinafter, the operation of the conventional refrigeration apparatus will be described with reference to the drawings. In such a refrigeration apparatus, first, refrigerant such as chlorofluorocarbon gas is compressed by the compressor 11 to be in a high temperature and high pressure state, and then introduced into the condenser 12 to be liquefied. Further, the refrigerant liquefied by the condenser 12 is introduced into the ejector 13 and is accelerated and depressurized while evaporating to be in a gas-liquid mixed state. The refrigerant in the gas-liquid mixed state is separated into a gas phase and a liquid phase by the gas-liquid separator 14, and the refrigerant vapor is led to the compressor 11 and circulates in the refrigeration cycle 9. Further, the refrigerant liquid in the gas-liquid separator 14 passes through the refrigerant pump 15 and is introduced into the evaporator 16 to be in a low temperature and low pressure state. The low-temperature and low-pressure refrigerant vapor that has flowed out of the evaporator 16 is integrated with the refrigerant that has been introduced from the condenser 12 into the ejector 13 and increased and reduced in pressure, and the pressure is recovered to a pressure equal to the suction pressure of the compressor 11. The refrigerant whose pressure has been recovered flows into the gas-liquid separator 14, and the refrigerant vapor returns to the compressor 11 to circulate through the refrigerant flow path. The refrigerant liquid is depressurized by the refrigerant pump 15 and vaporized by the evaporator 16, and the ejector 13. By returning to step 1, the bypass passage is circulated.
[0004]
As described above, in the conventional refrigeration apparatus, the refrigerant flowing out from the ejector 13 is gas-liquid separated by the gas-liquid separator 14, the refrigerant vapor is returned to the compressor 11, and the refrigerant liquid is supplied to the refrigerant pump 15 and the evaporator 16. Therefore, when the degree of supercooling of the refrigerant at the outlet of the condenser 12 is increased, the enthalpy of the refrigerant introduced into the ejector 13 is reduced, so that the increase in enthalpy due to the ejector 13 is reduced. Decreases. On the other hand, when the degree of supercooling of the refrigerant at the outlet of the condenser 12 is reduced, the enthalpy at the inlet of the ejector 13 increases. This increases the enthalpy at the outlet side of the evaporator 16, and the enthalpy at the inlet and outlet of the evaporator 16. It means that the difference decreases. Therefore, in order to obtain a predetermined cooling capacity, it is necessary to increase the flow rate of the refrigerant, resulting in a decrease in performance such as an increase in the amount of electric power input to the compressor. As described above, the conventional refrigeration apparatus has a conflicting problem that if the enthalpy of the refrigerant introduced into the ejector 13 is increased, the pressure loss after passing through the ejector 13 is increased, and if the enthalpy of the refrigerant is decreased, the effect of the ejector 13 is decreased. Therefore, efficient operation using an ejector was difficult.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a refrigeration air conditioner that efficiently recovers energy that has conventionally been lost in the flow rate control means and realizes highly efficient operation.
[0006]
[Means for Solving the Problems]
The refrigerating and air-conditioning apparatus according to the present invention includes a compressor, a condenser, a flow rate control means for reducing the pressure of the refrigerant, a main flow refrigerant route that connects the evaporator in order to circulate the refrigerant, and a refrigerant from the outlet side of the condenser. A bypass flow refrigerant route for branching the part, expanding the branched refrigerant by the expansion power recovery means and returning it to the inlet side of the compressor, and an inlet of the flow rate control means in the main flow refrigerant route by the refrigerant after expansion of the bypass flow refrigerant route And a heat exchanger for cooling the refrigerant on the side. Such a refrigerating and air-conditioning apparatus can have a configuration in which a second condenser and a second compressor are sequentially connected from the outlet side of the compressor to the inlet side of the condenser in the mainstream refrigerant route. A machine can be used.
[0007]
The refrigerating and air-conditioning apparatus according to the present invention includes a main flow refrigerant route in which a refrigerant is sequentially circulated through a compressor, a condenser, a first flow rate control means for reducing the pressure of the refrigerant, and an evaporator, and an outlet side of the condenser. A first part of the refrigerant is branched from the first, and the branched refrigerant is expanded by the expansion power recovery means, and then returned to the inlet side of the compressor through a gas-liquid separator that separates the expanded refrigerant into a gas phase and a liquid phase. A bypass flow refrigerant route, a second bypass flow refrigerant route that branches the refrigerant from the liquid phase side of the gas-liquid separator, expands the branched refrigerant by the second flow rate control means, and returns to the expansion power recovery means; A heat exchanger that cools the refrigerant on the inlet side of the flow rate control means in the main refrigerant route by the refrigerant after expansion of the second bypass refrigerant route. An ejector can be used as the expansion power recovery means.
[0008]
In such a refrigeration air conditioner, carbon dioxide can be used as the refrigerant.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
In the refrigeration air conditioner according to the present invention, for example, as shown in FIG. 1, a compressor 11, a condenser 12, a flow rate control means 41, and an evaporator 16 are sequentially connected in an annular manner through a refrigerant pipe. A hydrogen-based refrigerant circulates. In addition, a heat exchanger 40 is installed between the condenser 12 and the flow rate control means 41, and further, a bypass pipe 42 connects between the condenser 12 and the heat exchanger 40 and between the evaporator 16 and the compressor 11. It is connected. The expander 13 is disposed in the path of the bypass pipe 42, and the bypass pipe 42 is connected between the evaporator 16 and the compressor 11 through the heat exchanger 40 on the downstream side of the installation portion of the expander 13. Yes.
FIG. 2 is a pressure-enthalpy diagram for explaining the refrigeration cycle of the refrigeration air conditioner. Each point A to F shown in FIG. 2 is from A of the refrigeration air conditioner shown in FIG. Corresponding to each point of F, it represents the pressure-enthalpy state at each position.
[0010]
Hereinafter, the operation and effects of the refrigeration air conditioner will be described with reference to the pressure-enthalpy diagram shown in FIG. In such a refrigeration air conditioner, the refrigerant has the highest pressure and enthalpy at the outlet of the compressor 11 (point A in the figure). Next, the refrigerant compressed in the compressor 11 and brought into a high-temperature and high-pressure state is led to the condenser 12 to be condensed, and the enthalpy decreases with the pressure kept constant (point A → point B in the figure). A part of the refrigerant liquid at the outlet of the condenser 12 (point B in the figure) is adiabatically expanded by the expander 13 and changes to a low-temperature and low-pressure refrigerant two-phase state (point B → point F in the figure). This low-temperature and low-pressure refrigerant is vaporized by exchanging heat with the refrigerant liquid circulated from the condenser 12 to the flow rate control means 41 in the heat exchanger 40 and recovering the pressure to a pressure equal to the suction pressure of the compressor 11. Returning to FIG. 11 (F point → E point in the figure), it will be used as part of the power in the compressor 11. Further, the refrigerant remaining from the condenser 12 is cooled by exchanging heat with the refrigerant that has become low temperature and low pressure in the expander 13 in the heat exchanger 40 (point B → point C in the figure), and then the flow rate control. The refrigerant is decompressed by means 41 and becomes a low-temperature and low-pressure gas-liquid two-layer refrigerant (point C → point D in the figure), introduced into the evaporator 16, exchanges heat with air and vaporizes, and returns to the compressor 11 (in the figure). D point → E point). Then, the refrigerant is compressed by the compressor 11 to be in a high-temperature and high-pressure state (point E → point A in the figure) and circulates again through the above-described refrigeration cycle.
[0011]
As described above, in such a refrigeration air conditioner, the enthalpy of the refrigerant introduced into the flow control means can be reduced by supercooling the refrigerant circulating from the condenser to the flow control means by the heat exchanger. In other words, the energy lost at the time of pressure reduction in the flow control means is recovered by the refrigerant circulating in the compressor without passing through the evaporator, and high efficiency operation is possible by increasing the efficiency by reducing the energy loss in the flow control means. It becomes.
[0012]
In the above embodiment, the fluorocarbon or hydrocarbon refrigerant is used. However, the refrigerating and air-conditioning apparatus using carbon dioxide as the refrigerant has a large energy loss at the time of adiabatic expansion with respect to the refrigeration capacity. Is particularly prominent. Such an effect will be described with reference to the drawings. 3 is a pressure-enthalpy diagram in the adiabatic expansion process of carbon dioxide when the inlet temperature of the flow rate control means 41 is 35 ° C. and the outlet temperature is 10 ° C., and FIG. 4 is an inlet temperature of the flow rate control means 41 of 35 ° C. It is a pressure-enthalpy diagram in the process of adiabatic expansion of a fluorocarbon refrigerant at 10 ° C. 3 and 4, 50 and 60 are 35 ° C isotherms, 51 and 61 are isentropic wires, 52 and 62 are 10 ° C isotherms, 53 and 63 are energy losses, and 54 and 64 are refrigeration capacities. Yes. The energy loss 53 of carbon dioxide shown in FIG. 3 is larger than the energy loss 63 of the fluorocarbon refrigerant shown in FIG. 4 because carbon dioxide is in a critical state at 35 ° C. This is due to having unique properties different from typical refrigerants. On the other hand, the present invention is intended to reduce the energy loss caused by the flow rate control means, and therefore, when carbon dioxide having a large energy loss is used as a refrigerant, it is more effective than when a normal fluorocarbon refrigerant is used. It is.
[0013]
Embodiment 2
FIG. 5 is an example of a configuration explanatory diagram showing the configuration of the refrigerating and air-conditioning apparatus according to the present invention. The first compressor 11, the second condenser 45, the second compressor 46, the first condenser 12, and the first flow rate control means. 41 and the evaporator 16 are sequentially connected in an annular manner by a refrigerant pipe, so that a fluorocarbon or hydrocarbon refrigerant circulates. Further, a heat exchanger 40 is installed between the condenser 12 and the first flow rate control means 41, and further, a bypass pipe 42 is provided between the condenser 12 and the heat exchanger 40 and between the evaporator 16 and the compressor 11. Are connected. The expander 13 is installed in the bypass pipe 42, and the bypass pipe 42 is connected between the evaporator 16 and the compressor 11 through the heat exchanger 40 on the downstream side of the installation section of the expander 13.
FIG. 6 is a pressure-enthalpy diagram for explaining the refrigeration cycle of the refrigeration air conditioner. Each point from A ′ to H ′ shown in FIG. 6 indicates the refrigeration air conditioner shown in FIG. Corresponding to each point from A ′ to H ′, and represents the pressure-enthalpy state at each position.
[0014]
Hereinafter, the operation and effects of the refrigeration air conditioner will be described with reference to the pressure-enthalpy diagram shown in FIG. In such a refrigeration air conditioner, the refrigerant has the highest pressure and enthalpy at the outlet of the second compressor 46 (point A ′ in the figure). Next, the refrigerant compressed in the second compressor 46 and brought into a high-temperature and high-pressure state is led to the first condenser 12 and condensed, and the enthalpy decreases with the pressure kept constant (point A ′ → B in the figure). 'point). Part of the refrigerant liquid at the outlet of the first condenser 12 (point B ′ in the figure) is adiabatically expanded by the expander 13 and changes to a low-temperature and low-pressure refrigerant two-phase state (point B ′ → point H ′ in the figure). . This low-temperature and low-pressure refrigerant is vaporized by heat exchange with the refrigerant liquid circulated from the first condenser 12 to the flow rate control means 41 in the heat exchanger 40, and returns to the first compressor 11 (point H ′ in the figure → E ′ point), which is used as part of the power in the first compressor 11. The refrigerant introduced into the first compressor 11 is first compressed at the first stage (point E ′ → point F ′). The refrigerant subjected to the first-stage compression is then led to the second condenser 45 and condensed, and the enthalpy decreases with the pressure kept constant (point F ′ → G ′ in the figure). Further, the refrigerant that has exited the second condenser 45 is compressed in the second stage by the second compressor 46 (point G ′ → point A ′). Further, after the refrigerant remaining from the condenser 12 is cooled by exchanging heat with the refrigerant that has become low temperature and low pressure in the expander 13 in the heat exchanger 40 (B ′ point → C ′ point in the figure), The refrigerant is decompressed by the flow rate control means 41 to become a low-temperature and low-pressure refrigerant in a gas-liquid two-layer state (C ′ point → D ′ point in the figure), introduced into the evaporator 16 and vaporized by heat exchange with air or the like. Return to 11 (D ′ point → E ′ point in the figure). The refrigerant returned from the evaporator 16 to the first compressor 11 is the first compressor 11, the second condenser 45, and the second compressor 46, like the refrigerant circulating from the bypass pipe 42 to the first compressor 11. Passes through the high temperature and high pressure state (E ′ point → F ′ point → G ′ point → A ′ point in the figure), and the above-described refrigeration cycle is circulated again.
[0015]
As described above, in this refrigeration air-conditioning apparatus, the refrigerant compression process is performed in two stages, so that the energy lost during the low pressure in the flow rate control means is compressed without passing through the evaporator as in the first embodiment. The refrigerant is recovered by the refrigerant circulating in the machine, and the efficiency is improved by reducing the energy loss in the flow rate control means, and the power required for the compressor can be reduced, and the efficiency is further improved.
[0016]
In the above embodiment, the fluorocarbon type or hydrocarbon type refrigerant is described. However, when carbon dioxide is used as the refrigerant of the refrigerating and air-conditioning apparatus, the effect of the present invention is particularly similar to the first embodiment. Remarkable and preferred.
[0017]
Embodiment 3
FIG. 7 is an example of a configuration explanatory diagram showing the configuration of the refrigerating and air-conditioning apparatus according to the present invention, in which the compressor 11, the condenser 12, the first flow rate control means 41, and the evaporator 16 are sequentially connected in an annular manner through a refrigerant pipe. Fluorocarbon-based or hydrocarbon-based refrigerant circulates. Further, a heat exchanger 40 is installed between the condenser 12 and the first flow rate control means 41, and further, a first bypass pipe is provided between the condenser 12 and the heat exchanger 40 and between the evaporator 16 and the compressor 11. At 42, they are connected together. The first bypass pipe 42 is provided with the ejector 13 and the gas-liquid separator 14, and the gas-liquid separator 14, the second flow rate control means 43, the heat exchanger 40 and the ejector 13 are connected by the second bypass pipe 44. It is connected.
FIG. 8 is a pressure-enthalpy diagram for explaining the refrigeration cycle of the refrigeration air conditioner. Each point from a to k shown in FIG. 8 is a of the refrigeration air conditioner shown in FIG. To k, and represents the pressure-enthalpy state at each position.
[0018]
Hereinafter, the operation and effects of the refrigeration air conditioner will be described with reference to the pressure-enthalpy diagram shown in FIG. In such a refrigeration air conditioner, the refrigerant has the highest pressure and enthalpy at the outlet of the compressor 11 (point a in the figure). Next, the refrigerant compressed in the compressor 11 and brought into a high-temperature and high-pressure state is led to the condenser 12 to be condensed, and the enthalpy decreases with the pressure kept constant (point a → b in the figure). A part of the refrigerant liquid at the outlet of the condenser 12 (point b in the figure) is introduced into the first bypass pipe 42, reaches the ejector 13, and adiabatically expands in the ejector 13 to form a low-temperature and low-pressure refrigerant two-phase state. It changes (b point-> f point in the figure. Here, f point means the position immediately after the refrigerant in the ejector adiabatically expands). The refrigerant changed to the low-temperature and low-pressure two-phase state is mixed with the refrigerant introduced from the gas-liquid separator 14 through the second flow rate control means 43 and the heat exchanger 40 into the ejector 13, and the enthalpy and pressure increase ( In the figure, point f → g point → h point). The refrigerant having increased enthalpy and pressure is introduced into the gas-liquid separator 14 and separated into a gas phase and a liquid phase, and the refrigerant vapor circulates to the compressor 11 through the first bypass pipe 42 (in the drawing). h point → e point). Further, the refrigerant that has become a liquid phase in the gas-liquid separator 14 (point h → point i in the figure) passes through the second bypass pipe 44 and circulates to the second flow rate control means 43, and the pressure is reduced (in the figure). i point-> j point). The low-temperature and low-pressure refrigerant vapor exchanges heat with the refrigerant flowing from the condenser 12 to the first flow rate control means 41 in the heat exchanger 40 to increase the enthalpy (j point → k point in the figure). The refrigerant with the increased enthalpy is introduced into the ejector 13 through the second bypass pipe 44 and mixed with the high-pressure refrigerant introduced into the ejector 13 through the first bypass pipe 42 after leaving the condenser 12 as described above. The enthalpy is reduced and the pressure is increased (k point → g point → h point in the figure). Further, the refrigerant remaining from the condenser 12 is cooled by exchanging heat with the refrigerant having a low temperature and low pressure at the ejector 13 in the heat exchanger 40 (b point → c point in the figure), and then the flow rate control means. The refrigerant is depressurized at 41 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant (from point c to point d in the figure), introduced into the evaporator 16, vaporized by heat exchange with air and the like, and returned to the compressor 11 (d in the figure). Point → e). Then, the refrigerant is compressed by the compressor 11 to be in a high temperature and high pressure state (point e → point a), and circulates again through the above-described refrigeration cycle.
[0019]
As described above, in such a refrigerating and air-conditioning apparatus, the refrigerant expanded by the ejector is separated by the gas-liquid separator, expanded again by the second flow rate control means, and the refrigerant is further reduced in temperature and pressure by the refrigerant. The refrigerant circulating in the flow rate control means can be subcooled more efficiently. That is, the energy lost in the flow control means is recovered by efficiently recovering the energy lost at the time of pressure reduction in the flow control means of the main refrigerant route with the lower temperature and low pressure refrigerant circulating in the second bypass flow refrigerant route. As a result, the efficiency of the refrigeration / air-conditioning apparatus can be efficiently operated as in the first and second embodiments.
[0020]
In the above embodiment, the fluorocarbon type or hydrocarbon type refrigerant is used. However, when carbon dioxide is used as the refrigerant of the refrigerating and air-conditioning apparatus, the effect of the present invention is the same as in the first and second embodiments. Is particularly prominent and preferred.
[0021]
【The invention's effect】
As described above, the refrigeration and air-conditioning apparatus according to the present invention includes a compressor, a condenser, a flow rate control means for reducing the pressure of the refrigerant, and a mainstream refrigerant route in which the refrigerant is continuously circulated through the evaporator, and a refrigerant from the outlet side of the condenser. A bypass flow refrigerant route for branching a part of the refrigerant and returning the branched refrigerant to the inlet side of the compressor by expansion power recovery means, and a flow rate control means in the main flow refrigerant route by the refrigerant after expansion of the bypass flow refrigerant route And a heat exchanger for cooling the refrigerant on the inlet side of the refrigerant, and the flow rate control means by supercooling the refrigerant supplied from the condenser to the flow rate control means with the refrigerant cooled by the expansion power recovery means Energy loss can be reduced, and a refrigerating and air-conditioning apparatus that operates with high efficiency can be realized. In the mainstream refrigerant route, when the second condenser and the second compressor are sequentially connected from the outlet side of the compressor to the inlet side of the condenser, the refrigerant compression process is performed in two stages. The power required is reduced and the efficiency is further improved. Furthermore, when an expander is used as the expansion power recovery means, the refrigerant can be expanded easily and efficiently, which is more preferable.
[0022]
Such a refrigerating and air-conditioning apparatus includes a main flow refrigerant route in which a refrigerant is sequentially circulated through a compressor, a condenser, a first flow rate control means for reducing the pressure of the refrigerant, and an evaporator, and a part of the refrigerant from the outlet side of the condenser. A first bypass flow refrigerant route that returns to the inlet side of the compressor through a gas-liquid separator that separates the expanded refrigerant into a gas phase and a liquid phase after the branched refrigerant is expanded by the expansion power recovery means A second bypass flow refrigerant route that branches the refrigerant from the liquid phase side of the gas-liquid separator, expands the branched refrigerant by the second flow rate control means, and returns to the expansion power recovery means; and second bypass flow refrigerant And a heat exchanger that cools the refrigerant on the inlet side of the flow rate control means in the mainstream refrigerant route with the refrigerant after expansion of the route, the refrigerant supplied from the condenser to the first flow rate control means is By flow control means By subcooling using the refrigerant whose temperature and pressure are reduced, the energy loss in the first flow rate control means is more efficiently reduced, and the enthalpy of the refrigerant is increased by using the energy recovered by cooling the refrigerant. Thus, by introducing it into the expansion power recovery means and returning it to the compressor through the gas-liquid separator, it is possible to improve the operating efficiency of the compressor, and it is possible to realize a refrigeration air conditioner that operates more efficiently. Further, when an ejector is used as the expansion power recovery means, the refrigerant can be expanded efficiently at low cost, which is preferable.
[0023]
Such a refrigerating and air-conditioning apparatus is preferable because the loss due to the flow rate control means can be effectively reduced when the refrigerant is carbon dioxide.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory diagram showing a configuration of a refrigerating and air-conditioning apparatus according to the present invention.
FIG. 2 is a pressure-enthalpy diagram corresponding to the refrigeration air conditioner according to the present invention.
FIG. 3 is a pressure-enthalpy diagram when carbon dioxide is used as a refrigerant.
FIG. 4 is a pressure-enthalpy diagram when a fluorocarbon refrigerant is used.
FIG. 5 is a configuration explanatory diagram showing a configuration of a refrigeration air conditioner according to the present invention.
FIG. 6 is a pressure-enthalpy diagram corresponding to the refrigeration air conditioner according to the present invention.
FIG. 7 is a configuration explanatory diagram showing a configuration of a refrigeration air conditioner according to the present invention.
FIG. 8 is a pressure-enthalpy diagram corresponding to the refrigerating and air-conditioning apparatus according to the present invention.
FIG. 9 is an explanatory diagram showing a configuration of a conventional refrigeration apparatus.
[Explanation of symbols]
9 Refrigeration cycle, 11 Compressor, 12 Condenser, 13 Ejector,
14 gas-liquid separator, 15 refrigerant pump, 16 evaporator, 17 refrigerant piping,
40 heat exchanger, 41 flow rate control means (first flow rate control means),
42 bypass piping (first bypass piping), 43 second flow rate control means,
44 second bypass pipe, 45 second condenser, 46 second compressor,
50 isotherm of 35 ° C, 51 isentropic wire, 52 isotherm of 10 ° C,
53 energy loss, 54 freezing capacity, 60 isotherm at 35 ° C,
61 isentropic line, 62 10 ° C isotherm, 63 energy loss,
64 Freezing capacity.

Claims (3)

圧縮機、凝縮器、冷媒の圧力を低下させる第1流量制御手段および蒸発器を冷媒が順次循環するよう連結した主流冷媒ルートと、前記凝縮器の出口側から冷媒の一部を分岐し、分岐した冷媒を膨張動力回収手段にて膨張させた後、膨張した冷媒を気相及び液相に分離する気液分離器を通して前記圧縮機の入口側に戻す第1バイパス流冷媒ルートと、前記気液分離器の液相側から冷媒を分岐し、分岐した冷媒を第2流量制御手段にて膨張させた後、前記膨張動力回収手段に戻す第2バイパス流冷媒ルートと、当該第2バイパス流冷媒ルートの膨張後の冷媒によって前記主流冷媒ルートにおける前記流量制御手段の入口側の冷媒を冷却する熱交換器とを備えた冷凍空調装置。  A main flow refrigerant route in which a refrigerant is sequentially circulated through a compressor, a condenser, a first flow rate control means for reducing the pressure of the refrigerant, and an evaporator, and a part of the refrigerant is branched from the outlet side of the condenser. A first bypass flow refrigerant route that expands the expanded refrigerant by expansion power recovery means and then returns the expanded refrigerant to the inlet side of the compressor through a gas-liquid separator that separates the expanded refrigerant into a gas phase and a liquid phase; A second bypass flow refrigerant route that branches the refrigerant from the liquid phase side of the separator, expands the branched refrigerant by the second flow rate control means, and then returns to the expansion power recovery means; and the second bypass flow refrigerant route And a heat exchanger that cools the refrigerant on the inlet side of the flow rate control means in the mainstream refrigerant route by the expanded refrigerant. 前記膨張動力回収手段が、エゼクタである請求項1に記載の冷凍空調装置。  The refrigerating and air-conditioning apparatus according to claim 1, wherein the expansion power recovery means is an ejector. 前記冷媒が二酸化炭素である請求項1からのいずれかに記載の冷凍空調装置。Refrigeration and air conditioning apparatus according to any one of 2 to claim 1, wherein the refrigerant is carbon dioxide.
JP2001276025A 2001-09-12 2001-09-12 Refrigeration air conditioner Expired - Lifetime JP4442068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276025A JP4442068B2 (en) 2001-09-12 2001-09-12 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276025A JP4442068B2 (en) 2001-09-12 2001-09-12 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2003083620A JP2003083620A (en) 2003-03-19
JP4442068B2 true JP4442068B2 (en) 2010-03-31

Family

ID=19100794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276025A Expired - Lifetime JP4442068B2 (en) 2001-09-12 2001-09-12 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4442068B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897681B2 (en) 2002-10-31 2007-03-28 松下電器産業株式会社 Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP4595607B2 (en) * 2005-03-18 2010-12-08 株式会社デンソー Refrigeration cycle using ejector
JP4725223B2 (en) * 2005-05-24 2011-07-13 株式会社デンソー Ejector type cycle
US7406839B2 (en) * 2005-10-05 2008-08-05 American Power Conversion Corporation Sub-cooling unit for cooling system and method
JP2008032275A (en) * 2006-07-27 2008-02-14 Daikin Ind Ltd Air conditioner
JP5324749B2 (en) 2006-09-11 2013-10-23 ダイキン工業株式会社 Refrigeration equipment
FR2909439B1 (en) * 2006-12-01 2009-02-13 Commissariat Energie Atomique VAPOR COMPRESSION DEVICE AND METHOD OF REALIZING A TRANSCRITICAL CYCLE THEREFOR
JP2008215773A (en) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp Air conditioner
JP5049889B2 (en) * 2008-06-10 2012-10-17 日立アプライアンス株式会社 Refrigeration equipment
ITUA20163047A1 (en) * 2016-04-11 2016-07-11 Giuseppe Verde OPERATOR THERMAL MACHINE

Also Published As

Publication number Publication date
JP2003083620A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US7818978B2 (en) Vapour compression device and method of performing an associated transcritical cycle
JP2001221517A (en) Supercritical refrigeration cycle
JP2002228275A (en) Supercritical steam compression refrigerating cycle
JP2009229051A (en) Refrigerating device
JP5049889B2 (en) Refrigeration equipment
JP4442068B2 (en) Refrigeration air conditioner
JP5125611B2 (en) Refrigeration equipment
JP4971877B2 (en) Refrigeration cycle
WO2013146415A1 (en) Heat pump-type heating device
KR100991859B1 (en) A fluid cooling system and a method for cooling a fluid using the same
JP2003130477A (en) Refrigeration device
JP6406485B1 (en) Air conditioning system
JP5895662B2 (en) Refrigeration equipment
KR101724226B1 (en) Natural gas liquefaction process
JPH05203342A (en) Method and device for liquefying supercritical gas
JP2001041598A (en) Multi-stage compression refrigerating machine
KR20120062144A (en) A refrigerant system
JP4814823B2 (en) Refrigeration equipment
JP2017129320A (en) Freezer
JP2009204243A (en) Refrigerating device
TWI851069B (en) System for use in single-stage cooling cycle and single stage cooling method
KR101464433B1 (en) Natural gas liquefaction process
JP2000320908A (en) Refrigerating cycle circuit
JPH04268165A (en) Double-stage compression and freezing cycle device
JP4452137B2 (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R151 Written notification of patent or utility model registration

Ref document number: 4442068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term