JP6357310B2 - Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles - Google Patents

Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles Download PDF

Info

Publication number
JP6357310B2
JP6357310B2 JP2013250251A JP2013250251A JP6357310B2 JP 6357310 B2 JP6357310 B2 JP 6357310B2 JP 2013250251 A JP2013250251 A JP 2013250251A JP 2013250251 A JP2013250251 A JP 2013250251A JP 6357310 B2 JP6357310 B2 JP 6357310B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
weight
resin
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013250251A
Other languages
Japanese (ja)
Other versions
JP2015108033A (en
Inventor
祥美 米田
祥美 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013250251A priority Critical patent/JP6357310B2/en
Publication of JP2015108033A publication Critical patent/JP2015108033A/en
Application granted granted Critical
Publication of JP6357310B2 publication Critical patent/JP6357310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene

Description

本発明はポリプロピレン系樹脂予備発泡粒子および、該ポリプロピレン系樹脂予備発泡粒子から得られる型内発泡成形体に関するものである。   The present invention relates to a polypropylene resin pre-expanded particle and an in-mold foam molded product obtained from the polypropylene resin pre-expanded particle.

ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、緩衝性、軽量性、断熱性などの特徴をもつ。
同様の型内発泡成形体と比較しても、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れている。また、ポリエチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。
The in-mold foam molded article obtained by using the polypropylene resin pre-expanded particles has characteristics such as shape arbitraryness, buffering property, light weight, and heat insulation, which are advantages of the in-mold foam molded article.
Compared to similar in-mold foam moldings, it is superior in chemical resistance, heat resistance, and strain recovery after compression compared to in-mold foam moldings obtained using polystyrene resin pre-expanded particles. . In addition, the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with an in-mold foam molded product obtained using polyethylene resin pre-expanded particles.

これらの特徴により、ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。最近では、自動車業界において低環境負荷の側面からガソリンの消費量低減のため自動車の燃費向上の需要が大きくなっており、燃費向上に大きく貢献できる自動車重量の軽量化、すなわち自動車部材として用いられる型内発泡成形体の軽量化が求められている。   Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin pre-expanded particles are used in various applications such as automotive interior members, automotive bumper core materials, heat insulating materials, and cushioning packaging materials. . Recently, in the automobile industry, demand for improving fuel efficiency of automobiles has been increasing for reducing gasoline consumption from the aspect of low environmental impact. There is a demand for weight reduction of the inner foamed molded article.

通常、型内発泡成形体の軽量化に対し、剛性の高いポリプロピレン系樹脂を使用して軽量化前の成形体の物性を維持する方法が取られている。一般に、高い剛性のポリプロピレン系樹脂とは、コモノマー含量の少ない、融点の高い樹脂であるが、樹脂の融点が高くなるに従って、良好な成形体を得る為に必要となる成形加熱蒸気圧力は高くなる傾向にある。このため、より高い剛性を求める場合、加熱蒸気の多量消費の為、ユーティリティーコストが高くなり、成形加工コストが高くなる。   Usually, for reducing the weight of the in-mold foamed molded body, a method of maintaining the physical properties of the molded body before weight reduction using a highly rigid polypropylene resin is used. In general, a high-stiffness polypropylene resin is a resin having a low comonomer content and a high melting point. However, as the melting point of the resin increases, the molding heating steam pressure required to obtain a good molded product increases. There is a tendency. For this reason, when a higher rigidity is required, a large amount of heating steam is consumed, resulting in a high utility cost and a high molding processing cost.

さらに、高剛性の樹脂を用いた場合、加熱成形圧が高くなることから、耐圧仕様の高い成形機や金型を用いる必要が生じ、ユーティリティーコストに加え、設備コストが高くなる。現在ポリプロピレン系樹脂予備発泡粒子の型内発泡成形用の成形機は、耐圧0.4MPaの仕様であるものが大半を占めており、該成形機を用いて通常生産される成形加熱蒸気圧力は概ね0.36MPa程度までである。型内発泡成形用に用いられるポリプロピレン系樹脂予備発泡粒子は、これに対応できるような特性の樹脂を用いており、一般には融点が130〜150℃程度のプロピレン/エチレンランダム共重合体が用いられている。   Further, when a high-rigidity resin is used, the heat molding pressure becomes high, so that it is necessary to use a molding machine or a mold having a high pressure resistance specification, which increases the equipment cost in addition to the utility cost. Currently, most of the molding machines for in-mold foam molding of polypropylene resin pre-expanded particles occupy a specification with a pressure resistance of 0.4 MPa, and the molding heating steam pressure normally produced using the molding machine is approximately Up to about 0.36 MPa. Polypropylene resin pre-expanded particles used for in-mold foam molding use a resin with characteristics that can cope with this, and generally a propylene / ethylene random copolymer having a melting point of about 130 to 150 ° C. is used. ing.

他方、型内発泡成形体の剛性を向上する為の技術に関して、従来より様々な技術が検討されている。
特許文献1には、基材樹脂として融点が149〜157℃、メルトフローレートが1〜20g/10分、かつ半結晶時間が一定の値以下のプロピレン系ランダム共重合体を基材樹脂として用いる技術が開示されている。しかしながら、該技術は、型内発泡成形に必要となる加熱蒸気圧力が0.42MPaと高く、耐圧性能の高い成形機を必要とする。
On the other hand, various techniques have been studied conventionally for improving the rigidity of the in-mold foam molded article.
In Patent Literature 1, a propylene random copolymer having a melting point of 149 to 157 ° C., a melt flow rate of 1 to 20 g / 10 minutes, and a half-crystal time of a certain value or less is used as the base resin as the base resin. Technology is disclosed. However, this technique requires a molding machine having a high pressure resistance, since the heating steam pressure required for in-mold foam molding is as high as 0.42 MPa.

また、特許文献2には、1−ブテンがコモノマーとして3〜12重量%含むポリプロピレン系樹脂予備発泡粒子を用いることにより、成形加熱蒸気圧力が0.3MPa前後で高い剛性を持つポリプロピレン系樹脂発泡成形体が得られる技術が開示されている。しかし、エチレン成分を含まない1−ブテン単独系のポリプロピレン系樹脂ランダム共重合体は、エチレン成分を含むポリプロピレン系樹脂に比べて、硬く脆い性質がある。1−ブテン単独系のポリプロピレン系樹脂ランダム共重合体を発泡体の基材樹脂として用いた場合、自動車部材用途では緩衝特性、圧縮後の寸法回復性や低温領域での衝撃性が劣るという問題がある。   Patent Document 2 discloses a polypropylene resin foam molding having high rigidity with a molding heating steam pressure of around 0.3 MPa by using polypropylene resin prefoamed particles containing 1 to butene in an amount of 3 to 12% by weight as a comonomer. A technique for obtaining a body is disclosed. However, a 1-butene homopolypropylene resin random copolymer containing no ethylene component is harder and more brittle than a polypropylene resin containing an ethylene component. When a 1-butene homopolypropylene resin random copolymer is used as a base material resin for a foam, there is a problem that in automobile member applications, buffer characteristics, dimensional recovery after compression, and impact in a low temperature region are inferior. is there.

但し、特許文献1、2は、重合時のコモノマー量を変更することによって高剛性とする技術である為、ポリプロピレン系樹脂として特殊な品種となり、樹脂コストが高い。
一方、一般的に市販されている汎用ポリプロピレン系樹脂の剛性を高める技術としては、結晶核剤やタルクなどの無機物を添加する技術があるが、射出成形でしか効果が発現せず、型内発泡成形体では成形性を悪化させて剛性が低下する傾向にあり、ほとんど技術が開発されていない。
However, since Patent Documents 1 and 2 are techniques for achieving high rigidity by changing the amount of comonomer at the time of polymerization, they become special varieties as polypropylene resins and have high resin costs.
On the other hand, as a technology for increasing the rigidity of general-purpose polypropylene resins that are generally available on the market, there is a technology that adds an inorganic substance such as a crystal nucleating agent or talc. Molded products tend to deteriorate moldability and reduce rigidity, and almost no technology has been developed.

型内発泡成形体の剛性を高くする技術として、改質ポリプロピレン系樹脂を用いた技術が報告されている。
特許文献3では、高剛性の改質ポリプロピレン系樹脂をポリプロピレン系樹脂に添加し、押出発泡法により予備発泡粒子を得る技術が開示されている。しかしながら、当該特許では高い剛性を得る為に、改質ポリプロピレン系樹脂の出発樹脂として高剛性である高融点のポリプロピレン系単独重合体を使用しており、且つ実施例の添加量は25%と多い為、型内発泡成形時の伸びに改善の余地があり、良品の型内発泡成形体が得られにくい問題があった。
A technique using a modified polypropylene resin has been reported as a technique for increasing the rigidity of the in-mold foam molded article.
Patent Document 3 discloses a technology in which a highly rigid modified polypropylene resin is added to a polypropylene resin and pre-expanded particles are obtained by an extrusion foaming method. However, in this patent, in order to obtain high rigidity, a high melting point polypropylene homopolymer having high rigidity is used as a starting resin for the modified polypropylene resin, and the amount of addition in the examples is as large as 25%. For this reason, there is room for improvement in the elongation at the time of in-mold foam molding, and there is a problem that it is difficult to obtain a good in-mold foam-molded product.

また、特許文献4では、ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混練して得られた高剛性の改質ポリプロピレン系樹脂を除圧発泡法にて予備発泡粒子とする技術が開示されている。しかしながら、基材樹脂のポリプロピレン系樹脂すべてを改質する為、溶融粘度が非常に高くなり、型内発泡成形時の伸びを悪化させ、良品の型内発泡成形体が得られにくい問題があった。   Further, Patent Document 4 discloses a technology in which a highly rigid modified polypropylene resin obtained by melt-kneading a polypropylene resin, a radical polymerization initiator, and a conjugated diene compound is used as pre-expanded particles by a decompression foaming method. Has been. However, since all the polypropylene resins of the base resin are modified, the melt viscosity becomes very high, the elongation at the time of in-mold foam molding is deteriorated, and there is a problem that it is difficult to obtain a good in-mold foam molded product. .

一方、特許文献5では、ポリプロピレン系樹脂にポリエーテルをブロック共重合させた改質ポリプロピレン系樹脂を添加する技術が開示されている。しかし、一般的にポリプロピレン系樹脂は他の素材だけでなく、例えばポリプロピレン系単独重合体とプロピレン/エチレンランダム共重合体のように組成の異なるポリプロピレン系樹脂の場合やメルトフローレートの異なるポリプロピレン系樹脂との相溶性が非常に悪い。したがって、特許文献5では、ポリプロピレン−ポリエーテル共重合体をポリプロピレン系樹脂に添加すると相溶せず、型内発泡成形体の強度は低下する問題があった。   On the other hand, Patent Document 5 discloses a technique of adding a modified polypropylene resin obtained by block copolymerization of a polyether with a polypropylene resin. However, in general, polypropylene resins are not limited to other materials. For example, polypropylene resins having different compositions such as polypropylene homopolymers and propylene / ethylene random copolymers or polypropylene resins having different melt flow rates. The compatibility with is very poor. Therefore, in patent document 5, when a polypropylene-polyether copolymer was added to a polypropylene resin, it was not compatible, and the strength of the in-mold foam molded product was reduced.

特開平11−156879号公報JP-A-11-156879 特開平1−242638号公報JP-A-1-242638 特開2008−274024号公報JP 2008-274024 A 特開2009−256460号公報JP 2009-256460 A 特開2009−298931号公報JP 2009-298931 A

本発明の目的は、0.4MPa耐圧仕様の成形機にて融着・表面美麗性に優れ、且つ剛性の高い型内発泡成形体を得ることができるポリプロピレン系樹脂予備発泡粒子を提供することにある。   An object of the present invention is to provide a polypropylene resin pre-expanded particle that can provide an in-mold expanded molded article that is excellent in fusion and surface beautification with a molding machine of 0.4 MPa pressure resistance specification and has high rigidity. is there.

本発明者は、上記課題に鑑みて鋭意研究した結果、樹脂融点が低い、すなわち、剛性の低いポリプロピレン系樹脂であっても、溶融時の動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率との比率である損失正接tanδが0.6以上2.0以下である改質ポリプロピレン系樹脂を少量添加することにより、改質時に用いられる基材のポリプロピレン系樹脂との相溶性を損なわない為、融着、表面美麗性に優れ、且つ剛性が高くなることを見出し、本発明の完成に至った。   As a result of diligent research in view of the above problems, the present inventor has found that a polypropylene resin having a low resin melting point, that is, a low rigidity, at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at the time of melting. By adding a small amount of a modified polypropylene resin having a loss tangent tan δ which is a ratio of a storage elastic modulus and a loss elastic modulus of 0.6 or more and 2.0 or less, In order not to impair the compatibility, the present inventors have found that fusion and surface aesthetics are excellent and rigidity is high, and the present invention has been completed.

すなわち、本発明の第1は、
(A)ポリプロピレン系樹脂95.0〜99.5重量%と、(B)180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率との比率である損失正接tanδが0.6以上2.0以下である改質ポリプロピレン系樹脂0.5〜5.0重量%からなる樹脂混合物[(A)および(B)の合計量を100重量%とする]を基材樹脂とするポリプロピレン系樹脂粒子を発泡して得られることを特徴とするポリプロピレン系樹脂予備発泡粒子に関する。
That is, the first of the present invention is
(A) 95.0 to 99.5% by weight of a polypropylene-based resin, and (B) ratio of storage elastic modulus and loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 180 ° C. Resin mixture comprising 0.5 to 5.0% by weight of a modified polypropylene resin having a loss tangent tan δ of 0.6 to 2.0 [the total amount of (A) and (B) is 100% by weight] It is related with the polypropylene resin pre-expanded particle obtained by foaming the polypropylene resin particle which uses as a base resin.

好ましい形態としては、
(1)改質ポリプロピレン系樹脂のメルトフローレートが5g/10分以上80g/10分以下であることを特徴とする、前記記載のポリプロピレン系予備発泡粒子、
(2)改質ポリプロピレン系樹脂が、線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合して得られた改質ポリプロピレン系樹脂であることを特徴とする、前記記載のポリプロピレン系予備発泡粒子である。
As a preferable form,
(1) The polypropylene-based pre-expanded particles as described above, wherein the modified polypropylene-based resin has a melt flow rate of 5 g / 10 min to 80 g / 10 min.
(2) The polypropylene-based resin as described above, wherein the modified polypropylene-based resin is a modified polypropylene-based resin obtained by melt-mixing a linear polypropylene-based resin, a radical polymerization initiator, and a conjugated diene compound. Pre-expanded particles.

本発明の第2は、耐圧容器内に、前記ポリプロピレン系樹脂粒子、水および発泡剤を収容し、撹拌条件下分散させると共に、前記ポリプロピレン系樹脂粒子の軟化点温度以上に昇温した後、耐圧容器の内圧よりも低い圧力域に耐圧容器中の分散液を放出してポリプロピレン系樹脂粒子を発泡させることを特徴とする、ポリプロピレン系樹脂予備発泡粒子の製造方法に関する。   In the second aspect of the present invention, the polypropylene resin particles, water, and a foaming agent are accommodated in a pressure resistant container, dispersed under stirring, and heated to a temperature equal to or higher than the softening point temperature of the polypropylene resin particles. The present invention relates to a method for producing polypropylene resin pre-expanded particles, wherein the dispersion liquid in the pressure resistant container is discharged into a pressure region lower than the internal pressure of the container to foam the polypropylene resin particles.

本発明の第3は、前記ポリプロピレン系樹脂予備発泡粒子を金型に充填し、型内発泡成形させることによって得られることを特徴とするポリプロピレン系樹脂型内発泡成形体の製造方法に関する。   A third aspect of the present invention relates to a method for producing a polypropylene resin in-mold foam molded product obtained by filling the polypropylene resin pre-expanded particles in a mold and foam-molding in the mold.

本発明のポリプロピレン系樹脂発泡粒子は、0.4MPa耐圧仕様の成形機での型内発泡成形時にて融着・表面美麗性に優れ、また、得られた発泡成形体は高い剛性を有することができる。   The polypropylene resin expanded particles of the present invention are excellent in fusion and surface aesthetics during in-mold foam molding on a 0.4 MPa pressure-resistant molding machine, and the obtained foamed molded product may have high rigidity. it can.

本発明のポリプロピレン系樹脂の融点を求めるために、示差走査熱量測定(DSC)において、ポリプロピレン系樹脂粒子を10℃/分の昇温速度での40℃から220℃まで昇温し、次に10℃/分の降温速度での220℃から40℃まで降温し、そして10℃/分の昇温速度で40℃から220℃まで2回目の昇温操作を行い、該2回目の昇温時のDSC曲線の一例である。In order to determine the melting point of the polypropylene resin of the present invention, in differential scanning calorimetry (DSC), the polypropylene resin particles are heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min, then 10 The temperature is lowered from 220 ° C. to 40 ° C. at a temperature lowering rate of ° C./min, and the second temperature raising operation is performed from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min. It is an example of a DSC curve. 本発明のポリオレフィン系樹脂発泡粒子の、10℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)より得られるDSC曲線(温度vs吸熱量)の一例である。DSC曲線は、2つの融解ピークを有し、低温側融解熱量領域Qlと高温側融解熱量領域Qhの2つの融解熱量領域を有している。An example of a DSC curve (temperature vs. endothermic amount) obtained from differential scanning calorimetry (DSC) in which the polyolefin resin expanded particles of the present invention are heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min. is there. The DSC curve has two melting peaks, and has two melting calorie regions, a low temperature side melting calorie region Ql and a high temperature side melting calorie region Qh.

本発明のポリプロピレン系樹脂予備発泡粒子は、(A)ポリプロピレン系樹脂および、(B)180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率との比率である損失正接tanδが0.6以上2.0以下である改質ポリプロピレン系樹脂からなる樹脂混合物を基材樹脂とするポリプロピレン系樹脂粒子を発泡して得られるポリプロピレン系樹脂予備発泡粒子である。   The polypropylene resin pre-expanded particles of the present invention include (A) a polypropylene resin and (B) a ratio between a storage elastic modulus and a loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 180 ° C. These are polypropylene resin pre-expanded particles obtained by foaming polypropylene resin particles using a resin mixture made of a modified polypropylene resin having a loss tangent tan δ of 0.6 or more and 2.0 or less as a base resin.

本発明で用いられる(A)ポリプロピレン系樹脂は、コモノマーとして1−ブテンおよび/またはエチレンを含むポリプロピレン系ランダム共重合体である。
但し、1−ブテンやエチレン以外のコモノマーを含んでいても良く、このようなコモノマーとしては、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどのα−オレフィンが挙げられる。更にはシクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエンなどが、挙げられる。
The (A) polypropylene resin used in the present invention is a polypropylene random copolymer containing 1-butene and / or ethylene as a comonomer.
However, it may contain a comonomer other than 1-butene and ethylene. Examples of such a comonomer include isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, Examples include α-olefins such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, and 1-decene. Furthermore, cyclic olefins such as cyclopentene, norbornene, tetracyclo [6,2,1 1,8 , 1 3,6 ] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4 -Dienes such as hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene and the like.

本発明においては、ポリプロピレン系ランダム共重合体の中でも、良好な発泡性の観点から、プロピレン/エチレン/1−ブテンランダム共重合体、あるいはプロピレン/エチレンランダム共重合体が好ましい。   In the present invention, among polypropylene random copolymers, propylene / ethylene / 1-butene random copolymers or propylene / ethylene random copolymers are preferable from the viewpoint of good foamability.

更に、これらプロピレン/エチレンランダム共重合体、プロピレン/エチレン/1−ブテンランダム共重合体においては、ポリプロピレン系樹脂100重量%中、プロピレンからなる構造単位が90重量%以上99.8重量%以下、1−ブテンおよび/またはエチレンからなる構造単位が0.2重量%以上10重量%以下であることが好ましく、プロピレンからなる構造単位が92重量%以上99重量%以下、1−ブテンおよび/またはエチレンからなる構造単位が1重量%以上8重量%以下であることがより好ましい。
プロピレンからなる構造単位が99.8重量%を超え、1−ブテンおよび/またはエチレンからなる構造単位が0.2重量%未満では、型内発泡成形する際の成形加熱蒸気圧力が高くなる傾向がある。プロピレンからなる構造単位が90重量%未満で、1−ブテンおよび/またはエチレンからなる構造単位が10重量%を超えると、型内発泡成形体の寸法安定性が低下する傾向や圧縮強度が低下する傾向がある。
Furthermore, in these propylene / ethylene random copolymers and propylene / ethylene / 1-butene random copolymers, the structural unit consisting of propylene is 90% by weight or more and 99.8% by weight or less in 100% by weight of the polypropylene resin. The structural unit composed of 1-butene and / or ethylene is preferably 0.2% by weight or more and 10% by weight or less, the structural unit composed of propylene is 92% by weight or more and 99% by weight or less, 1-butene and / or ethylene. It is more preferable that the structural unit consisting of 1 to 8% by weight.
When the structural unit composed of propylene exceeds 99.8% by weight and the structural unit composed of 1-butene and / or ethylene is less than 0.2% by weight, the molding heating steam pressure tends to be high during in-mold foam molding. is there. When the structural unit composed of propylene is less than 90% by weight and the structural unit composed of 1-butene and / or ethylene exceeds 10% by weight, the dimensional stability of the in-mold foamed molded product tends to decrease and the compressive strength decreases. Tend.

本発明において、1−ブテンからなる構造単位としては、ポリプロピレン系樹脂100重量%中、6重量%以下が好ましく、3重量%以上5重量%以下がさらに好ましい。
1−ブテンからなる構造単位が6重量%を超えると、ポリプロピレン系ランダム共重合体自体の剛性が弱くなり、圧縮強度等の実用剛性を満足しなくなる傾向がある。
In the present invention, the structural unit composed of 1-butene is preferably 6% by weight or less, more preferably 3% by weight or more and 5% by weight or less in 100% by weight of the polypropylene resin.
If the structural unit composed of 1-butene exceeds 6% by weight, the rigidity of the polypropylene random copolymer itself tends to be weak, and there is a tendency that practical rigidity such as compressive strength is not satisfied.

本発明において、エチレンからなる構造単位としては、ポリプロピレン系樹脂100重量%中、0.2重量%以上4重量%以下が好ましく、0.2重量%以上3.5重量%以下がさらに好ましい。
エチレンからなる構造単位が4重量%を超えると、圧縮強度等の実用剛性に耐えなくなる傾向がある。
In the present invention, the structural unit composed of ethylene is preferably 0.2% by weight or more and 4% by weight or less, more preferably 0.2% by weight or more and 3.5% by weight or less, in 100% by weight of the polypropylene resin.
When the structural unit made of ethylene exceeds 4% by weight, there is a tendency that it cannot endure practical rigidity such as compressive strength.

本発明のポリプロピレン系樹脂を重合する際の触媒としては、特に制限は無く、チーグラーナッタ系重合触媒やメタロセン系重合触媒などを用いることができる。   The catalyst for polymerizing the polypropylene resin of the present invention is not particularly limited, and a Ziegler-Natta polymerization catalyst, a metallocene polymerization catalyst, or the like can be used.

本発明で用いられる(A)ポリプロピレン系樹脂の融点は、125℃以上153℃以下であり、130℃以上150℃以下であることが好ましく、135℃以上148℃以下であることがより好ましい。
ポリプロピレン系樹脂の融点が125℃未満では、型内発泡成形体の寸法安定性が低下する傾向があり、融点が155℃を超えると、型内発泡成形する際の成形加熱蒸気圧力が高くなる傾向がある。
The melting point of the (A) polypropylene resin used in the present invention is 125 ° C. or higher and 153 ° C. or lower, preferably 130 ° C. or higher and 150 ° C. or lower, and more preferably 135 ° C. or higher and 148 ° C. or lower.
If the melting point of the polypropylene resin is less than 125 ° C., the dimensional stability of the in-mold foam molded product tends to decrease, and if the melting point exceeds 155 ° C., the molding heating steam pressure tends to increase during in-mold foam molding. There is.

ここで、ポリプロピレン系樹脂の融点の測定は、示差走査熱量計DSC[例えば、セイコーインスツルメンツ(株)製、DSC6200型]を用いて、次のように行う。すなわち、ポリプロピレン系ランダム共重合体樹脂5〜6mgを、10℃/分の昇温速度で40℃から220℃まで昇温して樹脂を融解し、その後10℃/分の降温速度で220℃から40℃まで降温することにより結晶化させた後に、再度10℃/分の昇温速度で40℃から220℃まで昇温し、このような一連の温度履歴を与えた時に得られるDSC曲線から、2回目の昇温時の融解ピーク温度を融点とする。   Here, the melting point of the polypropylene resin is measured as follows using a differential scanning calorimeter DSC [for example, DSC6200 type, manufactured by Seiko Instruments Inc.]. That is, 5 to 6 mg of a polypropylene random copolymer resin was heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min to melt the resin, and then from 220 ° C. at a temperature decreasing rate of 10 ° C./min. From the DSC curve obtained when crystallizing by lowering the temperature to 40 ° C. and then increasing again from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min, and giving such a series of temperature history, The melting peak temperature at the second temperature rise is defined as the melting point.

本発明で用いられる(A)ポリプロピレン系樹脂のメルトフローレート(以降、「MFR」と称する。)としては、特に制限は無いが、0.5g/10分以上100g/10分以下が好ましく、2g/10分以上50g/10分以下がより好ましく、3g/10分以上20g/10分以下がさらに好ましい。
ポリプロピレン系樹脂のMFRが上記範囲にあると、比較的大きな発泡倍率のポリプロピレン系樹脂発泡粒子が得られやすく、それを型内発泡成形して得られた型内発泡成形体の表面美麗性が優れ、寸法収縮率が小さいものを得ることができる。
The melt flow rate (hereinafter referred to as “MFR”) of the (A) polypropylene resin used in the present invention is not particularly limited, but is preferably 0.5 g / 10 min to 100 g / 10 min, and preferably 2 g / 10 minutes or more and 50 g / 10 minutes or less is more preferable, and 3 g / 10 minutes or more and 20 g / 10 minutes or less is more preferable.
When the MFR of the polypropylene resin is in the above range, it is easy to obtain polypropylene resin expanded particles having a relatively large expansion ratio, and the surface beauty of the in-mold foam molded product obtained by in-mold foam molding is excellent. A product with a small dimensional shrinkage ratio can be obtained.

ここで、ポリプロピレン系樹脂のMFRの値は、JIS−K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定した時の値である。   Here, the MFR value of the polypropylene resin was measured using an MFR measuring instrument described in JIS-K7210, with an orifice of 2.0959 ± 0.005 mmφ, an orifice length of 8.000 ± 0.025 mm, a load of 2160 g, and 230 ± 0. It is a value when measured under the condition of 2 ° C.

本発明における(B)改質ポリプロピレン系樹脂としては、線状のポリプロピレン系樹脂(以下、ポリプロピレン系樹脂のことを「原料ポリプロピレン系樹脂」と称する)に電子線を照射して長鎖分岐を導入したもの(例えば、ボレアリス社製HMS−PP)や、原料ポリプロピレン系樹脂、ラジカル重合性単量体、ラジカル重合開始剤を溶融混練して得られる改質ポリプロピレン系樹脂、等が挙げられる。
特に、原料ポリプロピレン系樹脂、ラジカル重合性単量体、ラジカル重合開始剤を溶融混練して得られる改質ポリプロピレン系樹脂が、製造が容易で経済的に有利な点から好ましい。さらに改質ポリオレフィン系樹脂と予備発泡粒子の基材樹脂が同じポリオレフィン系樹脂である為、剛性が高くなったかどうかの技術的判断が明確といえる。
The (B) modified polypropylene resin in the present invention introduces a long-chain branch by irradiating an electron beam to a linear polypropylene resin (hereinafter, the polypropylene resin is referred to as “raw polypropylene resin”). And a modified polypropylene resin obtained by melt-kneading a raw material polypropylene resin, a radical polymerizable monomer, a radical polymerization initiator, and the like.
In particular, a modified polypropylene resin obtained by melting and kneading a raw material polypropylene resin, a radical polymerizable monomer, and a radical polymerization initiator is preferable because it is easy to produce and economically advantageous. Furthermore, since the modified polyolefin resin and the base resin of the pre-expanded particles are the same polyolefin resin, it can be said that the technical judgment as to whether the rigidity has increased is clear.

本発明の(B)改質ポリプロピレン系樹脂の製造で用いられるラジカル重合性単量体としては、1,3−ブタジエンやイソプレンなどの共役ジエン系単量体、スチレンやα−メチルスチレン、ジビニルベンゼンなどの芳香族ビニル単量体、トリアリルシアヌレートやトリアリルイソシアヌレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレートなどの多官能単量体などが例示される。
これらの内、少量で基材ポリプロピレン系樹脂の改質が可能なことから、イソプレンが好ましい。
Examples of the radical polymerizable monomer used in the production of the (B) modified polypropylene resin of the present invention include conjugated diene monomers such as 1,3-butadiene and isoprene, styrene, α-methylstyrene, and divinylbenzene. Examples thereof include polyfunctional monomers such as aromatic vinyl monomers such as triallyl cyanurate, triallyl isocyanurate, trimethylolpropane triacrylate, and tetramethylolmethane tetraacrylate.
Of these, isoprene is preferred because the base polypropylene-based resin can be modified with a small amount.

本発明におけるラジカル重合性単量体の添加量としては、ポリプロピレン系樹脂100重量部に対し、0.1重量部以上1重量部以下であることが好ましい。   The addition amount of the radical polymerizable monomer in the present invention is preferably 0.1 parts by weight or more and 1 part by weight or less with respect to 100 parts by weight of the polypropylene resin.

本発明の(B)改質ポリプロピレン系樹脂の製造で用いられるラジカル重合開始剤としては、1分間半減期温度が高く、水素引き抜き性が高い有機化酸化物であることが好ましい。
ラジカル重合開始剤の具体例としては、例えば、
1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール;
パーメタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドなどのハイドロパーオキサイド;ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などのジアルキルパーオキサイド;
t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどが例示される。これらは、単独で使用してもよく、2種以上を併用してもよい。
これらラジカル重合開始剤の内、少量で原料ポリプロピレン系樹脂の改質が可能なことから、パーオキシエステルが好ましい。
The radical polymerization initiator used in the production of the (B) modified polypropylene resin of the present invention is preferably an organic oxide having a high 1-minute half-life temperature and a high hydrogen abstraction property.
As a specific example of the radical polymerization initiator, for example,
1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) Peroxyketals such as oxy) valerate, 2,2-bis (t-butylperoxy) butane;
Hydroperoxides such as permethane hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide; dicumyl peroxide, 2,5-dimethyl-2, 5-di (t-butylperoxy) hexane, α, α′-bis (t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5- Dialkyl peroxides such as dimethyl-2,5-di (t-butylperoxy) hexyne-3;
t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxyisopropyl carbonate, 2,5-dimethyl-2, Examples thereof include peroxyesters such as 5-di (benzoylperoxy) hexane, t-butylperoxyacetate, t-butylperoxybenzoate, and di-t-butylperoxyisophthalate. These may be used alone or in combination of two or more.
Of these radical polymerization initiators, peroxyesters are preferred because the raw material polypropylene resin can be modified with a small amount.

本発明の(B)改質ポリプロピレン系樹脂の製造におけるラジカル重合開始剤の添加量としては、原料ポリプロピレン系樹脂100重量部に対し、0.1重量部以上1.4重量部以下であることが好ましい。   The amount of radical polymerization initiator added in the production of the (B) modified polypropylene resin of the present invention is from 0.1 parts by weight to 1.4 parts by weight with respect to 100 parts by weight of the raw material polypropylene resin. preferable.

本発明における(B)改質ポリプロピレン系樹脂を製造する工程は、各原料を樹脂の溶融状態で混練しうる装置内で行うことが好ましい。このような混練装置としては、生産性が高いことから押出機がより好ましく、効率的に反応し得ることから、二軸押出機が特に好ましい。   The step of producing the (B) modified polypropylene resin in the present invention is preferably performed in an apparatus capable of kneading each raw material in a molten state of the resin. As such a kneading apparatus, an extruder is more preferable because of high productivity, and a twin-screw extruder is particularly preferable because it can react efficiently.

本発明における(B)改質ポリプロピレン系樹脂を製造する工程において、各原料を押出機に供給する方法に特に制限はないが、例えば、ラジカル重合性単量体にイソプレンを用いる場合、原料ポリプロピレン系樹脂とラジカル重合開始剤を二軸押出機ホッパーに供給し、樹脂溶融後に押出機途中からイソプレンを圧入する方法などが例示される。   In the process of producing the (B) modified polypropylene resin in the present invention, there is no particular limitation on the method for supplying each raw material to the extruder. For example, when isoprene is used as the radical polymerizable monomer, the raw material polypropylene Examples thereof include a method in which a resin and a radical polymerization initiator are supplied to a twin screw extruder hopper, and isoprene is press-fitted from the middle of the extruder after the resin is melted.

本発明で用いられる(B)改質ポリプロピレン系樹脂の230℃におけるMFRは、5g/10分以上80g/10分以下であることが好ましく、8g/10分以上50g/10分以下であることがより好ましい。
改質ポリプロピレン系樹脂のMFRが5g/10分未満の場合は、改質ポリプロピレンの粘度が非常に高い為、成形時の伸びが悪化し、表面美麗性が劣ると共に、改質ポリプロピレン系樹脂が添加されるポリプロピレン系樹脂への相溶性が低下する為、剛性が低下する傾向がある。一方、改質ポリプロピレン系樹脂のMFRが80g/10分超では、改質度が低い為、高剛性の効果を示さない傾向がある。
The MFR at 230 ° C. of the (B) modified polypropylene resin used in the present invention is preferably 5 g / 10 min to 80 g / 10 min, and preferably 8 g / 10 min to 50 g / 10 min. More preferred.
When the MFR of the modified polypropylene resin is less than 5 g / 10 minutes, the viscosity of the modified polypropylene is very high, so the elongation at the time of molding deteriorates, the surface beauty is inferior, and the modified polypropylene resin is added. Since the compatibility with the polypropylene resin is decreased, the rigidity tends to decrease. On the other hand, when the MFR of the modified polypropylene resin exceeds 80 g / 10 min, the degree of modification is low, and thus there is a tendency that the effect of high rigidity is not exhibited.

本発明の(B)改質ポリプロピレン系樹脂の180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率との比率である損失正接tanδ(以下、単に「tanδ」と称す場合がある)は、0.6以上2.0以下が好ましく、0.8以上1.5以下がより好ましい。
改質ポリプロピレン系樹脂のtanδが0.6未満の場合は、改質ポリプロピレンの粘度が非常に高い為、成形時の伸びが悪化し、表面美麗性が劣ると共に、改質ポリプロピレン系樹脂が添加されるポリプロピレン系樹脂への相溶性が低下する為、剛性が低下する傾向がある。改質ポリプロピレン系樹脂のtanδが2.0超の場合は、改質度が低い為、高剛性の効果を示さない傾向がある。
Loss tangent tan δ (hereinafter simply referred to as “the ratio of the storage elastic modulus and the loss elastic modulus at an angular frequency of 1 rad / s” in the dynamic viscoelasticity measurement at 180 ° C. of the (B) modified polypropylene resin of the present invention. tan δ ”) is preferably 0.6 or more and 2.0 or less, and more preferably 0.8 or more and 1.5 or less.
When the tan δ of the modified polypropylene resin is less than 0.6, the viscosity of the modified polypropylene is very high, so that the elongation at the time of molding deteriorates, the surface beauty is inferior, and the modified polypropylene resin is added. Since the compatibility with the polypropylene resin decreases, the rigidity tends to decrease. When the tan δ of the modified polypropylene resin is more than 2.0, the degree of modification is low, and thus there is a tendency that a high rigidity effect is not exhibited.

本発明における(A)ポリプロピレン系樹脂と(B)改質ポリプロピレン系樹脂の混合比率としては、(A)ポリプロピレン系樹脂95.0〜99.5重量%および(B)改質ポリプロピレン系樹脂0.5〜5.0重量%[(A)および(B)の合計量が100重量%]が好ましく、(A)ポリプロピレン系樹脂96.0〜99.0重量%および(B)改質ポリプロピレン系樹脂1.0〜4.0重量%がより好ましく、(A)ポリプロピレン系樹脂97.0〜99.0重量%および(B)改質ポリプロピレン系樹脂1.0〜3.0重量%がさらに好ましい。
(B)改質ポリプロピレン系樹脂の混合比率が0.5%未満では、高剛性の効果を示さない傾向があり、混合比率が5.0重量%超では、改質ポリプロピレン系樹脂の溶融粘度が高い為、成形時の伸びが悪化し、表面美麗性が劣ると共に、改質ポリプロピレン系樹脂のポリプロピレン系樹脂への相溶性が低下するため、剛性が低下する傾向がある。
As the mixing ratio of (A) polypropylene resin and (B) modified polypropylene resin in the present invention, (A) 95.0 to 99.5 wt% of polypropylene resin and (B) modified polypropylene resin 0. 5 to 5.0% by weight [the total amount of (A) and (B) is preferably 100% by weight], (A) 96.0 to 99.0% by weight of polypropylene resin and (B) modified polypropylene resin 1.0 to 4.0% by weight is more preferable, (A) 97.0 to 99.0% by weight of polypropylene resin and (B) 1.0 to 3.0% by weight of modified polypropylene resin are more preferable.
(B) When the mixing ratio of the modified polypropylene resin is less than 0.5%, there is a tendency that the effect of high rigidity is not exhibited. When the mixing ratio exceeds 5.0% by weight, the melt viscosity of the modified polypropylene resin is low. Since it is high, the elongation at the time of molding deteriorates, the surface beauty is inferior, and the compatibility of the modified polypropylene resin with the polypropylene resin decreases, so that the rigidity tends to decrease.

本発明で用いられるポリプロピレン系樹脂発泡粒子は、(A)ポリプロピレン系樹脂および(B)改質ポリプロピレン系樹脂からなる樹脂混合物を基材樹脂とするポリプロピレン系樹脂粒子に加工した後、発泡させることにより得ることができる。   The expanded polypropylene resin particles used in the present invention are processed into polypropylene resin particles using a resin mixture comprising (A) polypropylene resin and (B) modified polypropylene resin as a base resin, and then expanded. Can be obtained.

本発明に用いられるポリプロピレン系樹脂粒子は、例えば、ポリプロピレン系樹脂および改質ポリプロピレン系樹脂を押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融し、例えばストランド状に押出し、冷却前あるいは冷却後に、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状に成形加工されて、ポリプロピレン系樹脂粒子となる。   For example, the polypropylene resin particles used in the present invention are melted by using, for example, a polypropylene resin and a modified polypropylene resin using an extruder, a kneader, a Banbury mixer, a roll, etc., extruded into a strand, and before or after cooling. Then, it is molded into a desired particle shape such as a columnar shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc., and becomes a polypropylene resin particle.

本発明においては、(A)ポリプロピレン系樹脂および(B)改質ポリプロピレン系樹脂の他に、必要に応じて、酸化防止剤、耐光性改良剤、帯電防止剤、着色剤、難燃性改良剤、導電性改良剤等の添加剤を加えて、ポリプロピレン系樹脂粒子としても良い。これらの添加剤は、通常、ポリプロピレン系樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。
また、後述する発泡剤として炭酸ガス、空気や水を用いる場合には、発泡性を向上させることのできる無機造核剤および/または吸水物質を添加することが好ましい。
In the present invention, in addition to (A) polypropylene-based resin and (B) modified polypropylene-based resin, an antioxidant, a light resistance improver, an antistatic agent, a colorant, and a flame retardant improver are optionally added. Further, an additive such as a conductivity improver may be added to form polypropylene resin particles. These additives are usually preferably added to the molten resin in the production process of polypropylene resin particles.
Moreover, when using carbon dioxide gas, air, or water as a foaming agent described later, it is preferable to add an inorganic nucleating agent and / or a water-absorbing substance that can improve foaming properties.

なお、本発明で用いられるポリプロピレン系樹脂粒子の融点を前述した示差走査熱量計を用いて測定することにより、その融点を、本発明のポリプロピレン系ランダム共重合体の融点とすることが可能である。   The melting point of the polypropylene resin particles used in the present invention can be determined as the melting point of the polypropylene random copolymer of the present invention by measuring the melting point using the differential scanning calorimeter described above. .

本発明で用いられる無機造核剤は、発泡の起点となる気泡核の形成を促し、発泡倍率の向上に寄与すると共に、均一な気泡形成にも寄与する。
無機造核剤としては、例えば、タルク、シリカ、炭酸カルシウムなどが挙げられる。これらは、単独で使用してもよく、2種以上を併用してもよい。
The inorganic nucleating agent used in the present invention promotes the formation of bubble nuclei that are the starting point of foaming, contributes to the improvement of the foaming ratio, and also contributes to uniform bubble formation.
Examples of the inorganic nucleating agent include talc, silica, calcium carbonate and the like. These may be used alone or in combination of two or more.

本発明における無機造核剤の含有量は、ポリプロピレン系樹脂粒子100重量%中、0.005重量%以上0.5重量%以下であることが好ましい。   The content of the inorganic nucleating agent in the present invention is preferably 0.005 wt% or more and 0.5 wt% or less in 100 wt% of the polypropylene resin particles.

本発明で用いられる吸水物質とは、当該物質をポリプロピレン系樹脂粒子中に添加し、該ポリプロピレン系樹脂粒子を水と接触させる或いは水分散系で発泡剤含浸をする際に、ポリプロピレン系樹脂粒子内に水を含有させうる物質をいう。   The water-absorbing substance used in the present invention means that when the substance is added to polypropylene resin particles and the polypropylene resin particles are brought into contact with water or impregnated with a foaming agent in an aqueous dispersion, A substance that can contain water.

本発明で用いられる吸水物質の具体例としては、例えば、
塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物;
ポリエチレングリコール、ポリエーテルを親水性セグメントとした特殊ブロック型ポリマー[三洋化成(株)製、商品名:ペレスタット];
エチレン−(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン−(メタ)アクリル酸共重合体等のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩及びポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマー;
エチレングリコール、グリセリン、ペンタエリスリトール、イソシアヌル酸等の多価アルコール類;メラミン等が挙げられる。
これらは、単独で使用してもよく、2種以上を併用してもよい。
As a specific example of the water-absorbing substance used in the present invention, for example,
Water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax, zinc borate;
Special block type polymer with polyethylene glycol and polyether as hydrophilic segments [manufactured by Sanyo Kasei Co., Ltd., trade name: Pelestat];
Alkali metal salt of ethylene- (meth) acrylic acid copolymer, alkali metal salt of butadiene- (meth) acrylic acid copolymer, alkali metal salt of carboxylated nitrile rubber, alkali of isobutylene-maleic anhydride copolymer Hydrophilic polymers such as metal salts and alkali metal salts of poly (meth) acrylic acid;
Polyhydric alcohols such as ethylene glycol, glycerin, pentaerythritol and isocyanuric acid; melamine and the like.
These may be used alone or in combination of two or more.

本発明における吸水物質の含有量は、目的とする発泡倍率、使用する発泡剤、使用する吸水物質の種類によって異なり一概に記載することはできないが、水溶性無機物、多価アルコール類を使用する場合、ポリプロピレン系樹脂粒子100重量%中、0.01重量%以上2重量%以下であることが好ましく、親水性ポリマーを使用する場合、ポリプロピレン系樹脂粒子100重量%中、0.05重量%以上5重量%以下であることが好ましい。   The content of the water-absorbing substance in the present invention varies depending on the target foaming ratio, the blowing agent used, and the type of the water-absorbing substance used, and cannot be described in general, but when water-soluble inorganic substances and polyhydric alcohols are used In 100% by weight of polypropylene resin particles, it is preferably 0.01% by weight or more and 2% by weight or less. When a hydrophilic polymer is used, 0.05% by weight or more and 5% by weight in 100% by weight of polypropylene resin particles. It is preferable that it is below wt%.

本発明において着色剤の添加に制限はなく、着色剤を添加せずにナチュラル色とすることもできるし、青、赤、黒など着色剤を添加して所望の色とすることもできる。
着色剤としては、例えば、ペリレン系有機顔料、アゾ系有機顔料、キナクリドン系有機顔料、フタロシアニン系有機顔料、スレン系有機顔料、ジオキサジン系有機顔料、イソインドリン系有機顔料、カーボンブラックなどが挙げられる。
In the present invention, there is no limitation on the addition of the colorant, and a natural color can be obtained without adding the colorant, or a desired color can be obtained by adding a colorant such as blue, red, or black.
Examples of the colorant include perylene organic pigments, azo organic pigments, quinacridone organic pigments, phthalocyanine organic pigments, selenium organic pigments, dioxazine organic pigments, isoindoline organic pigments, and carbon black.

本発明で用いられるポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂粒子と水を含んでなる分散液を耐圧容器中に収容した後、攪拌条件下に分散させると共に、発泡剤の存在下、前記ポリプロピレン系樹脂粒子の軟化点温度以上に昇温し、次いで耐圧容器の内圧よりも低い圧力域に耐圧容器中の分散液を放出して、ポリプロピレン系樹脂粒子を発泡させ製造することができる。なお、この工程を「一段発泡工程」と称する場合があり、この工程で得られるポリプロピレン系樹脂粒子を「一段発泡粒子」と称する場合がある。   The polypropylene resin foamed particles used in the present invention contain a dispersion containing polypropylene resin particles and water in a pressure vessel, and then disperse them under stirring conditions, and in the presence of a foaming agent, The temperature can be raised above the softening point temperature of the resin particles, and then the dispersion in the pressure vessel can be discharged into a pressure range lower than the internal pressure of the pressure vessel to produce polypropylene resin particles by foaming. In addition, this process may be referred to as “one-stage foaming process”, and the polypropylene resin particles obtained in this process may be referred to as “single-stage foam particles”.

より具体的には、例えば、次の方法が挙げられる。
(1)耐圧容器内に、ポリプロピレン系樹脂粒子および水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、1MPa(ゲージ圧)以上2MPa以下(ゲージ圧)の発泡剤を導入し、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱する。加熱することによって、密閉容器内の圧力が約2MPa(ゲージ圧)以上5MPa以下(ゲージ圧)まで上がる。必要に応じて、発泡温度付近にて、さらに発泡剤を追加して所望の発泡圧力に調整、さらに温度調整を行った後、必要に応じて該発泡圧力および温度で所定時間保持し、次いで、密閉容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることができる。
(2)耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて密閉容器内を真空引きした後、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱しながら、発泡剤を導入してもよい。
(3)耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱し、さらに発泡剤を導入し、発泡温度とし、密閉容器の内圧よりも低い圧力域に放出してポリプロピレン系樹脂発泡粒子を得ることもできる。
More specifically, the following method is mentioned, for example.
(1) After charging polypropylene resin particles and an aqueous dispersion medium, a dispersing agent, etc., if necessary, the inside of the sealed container is evacuated and then 1 MPa (gauge pressure) or more and 2 MPa. The following (gauge pressure) foaming agent is introduced and heated to a temperature equal to or higher than the softening temperature of the polypropylene resin. By heating, the pressure in the sealed container rises to about 2 MPa (gauge pressure) or more and 5 MPa or less (gauge pressure). If necessary, add a foaming agent near the foaming temperature to adjust to the desired foaming pressure, further adjust the temperature, and if necessary, hold the foaming pressure and temperature for a predetermined time, and then By releasing into a pressure range lower than the internal pressure of the sealed container, polypropylene-based resin expanded particles can be obtained.
(2) After charging the pressure-resistant container with polypropylene resin particles, an aqueous dispersion medium, and a dispersant as necessary, the inside of the sealed container is evacuated and then heated to a temperature equal to or higher than the softening temperature of the polypropylene resin. A foaming agent may be introduced while heating.
(3) After charging polypropylene resin particles, aqueous dispersion medium, and dispersing agent if necessary into a pressure vessel, heating to near the foaming temperature, introducing a foaming agent to obtain the foaming temperature, and from the internal pressure of the sealed container Further, it is possible to obtain expanded polypropylene resin particles by releasing into a low pressure range.

なお、低圧域に放出する前に、炭酸ガス、窒素、空気あるいは発泡剤として用いた物質を圧入することにより、耐圧容器内の内圧を高め、発泡時の圧力開放速度を調節し、更には、低圧域への放出中にも炭酸ガス、窒素、空気あるいは発泡剤として用いた物質を耐圧容器内に導入して圧力を制御することにより、発泡倍率の調整を行うこともできる。   Before releasing into the low-pressure region, carbon dioxide, nitrogen, air or a substance used as a foaming agent is injected to increase the internal pressure in the pressure-resistant container, and the pressure release speed during foaming is adjusted. The foaming ratio can be adjusted by introducing carbon dioxide, nitrogen, air, or a substance used as a foaming agent into the pressure-resistant container and controlling the pressure during the release to the low pressure region.

ここで、耐圧容器の内圧よりも低い圧力域としては、大気圧であることが好ましい。この場合、設備が複雑なものとならず、また、低圧域の特別な圧力調節も不要となる。   Here, the pressure range lower than the internal pressure of the pressure vessel is preferably atmospheric pressure. In this case, the equipment does not become complicated, and no special pressure adjustment in the low pressure region is required.

前記低い圧力域の温度としては、常温でもかまわないし、常温よりも高温に設定しておいても良い。常温よりも高温に設定する方法としては、加熱水蒸気で加温しておく方法などが挙げられる。
加熱水蒸気で加温している圧力域に分散液を放出して、ポリプロピレン系樹脂粒子を発泡させ製造する場合、後述するように、得られるポリプロピレン系樹脂発泡粒子のDSC曲線の微分曲線中に極大値が発現しやすく、好ましい態様の一つである。
このような観点から、加温する温度としては、60℃以上120℃以下が好ましく、70℃以上115℃以下がより好ましい。
The temperature in the low pressure range may be room temperature, or may be set to a temperature higher than room temperature. Examples of a method for setting the temperature higher than normal temperature include a method of heating with heated steam.
When a dispersion is discharged into a pressure region heated with heated steam to produce polypropylene resin particles by foaming, the maximum is in the differential curve of the DSC curve of the obtained polypropylene resin foam particles as described later. The value is easy to express and is one of preferred embodiments.
From such a viewpoint, the heating temperature is preferably 60 ° C. or higher and 120 ° C. or lower, and more preferably 70 ° C. or higher and 115 ° C. or lower.

なお、軟化点温度以上に昇温する際、ポリプロピレン系樹脂粒子の融点−20℃以上、ポリプロピレン系樹脂粒子の融点+10℃以下の範囲の温度に昇温することが、発泡性を確保する上で好ましい。   In order to ensure foamability, it is necessary to raise the temperature to a temperature in the range of the melting point of the polypropylene resin particles −20 ° C. or higher and the melting point of the polypropylene resin particles + 10 ° C. or lower. preferable.

本発明に使用される発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素類;シクロペンタン、シクロブタン等の脂肪式環化水素類;空気、窒素、炭酸ガス、水等の無機ガス;等が挙げられる。これらの発泡剤は単独で用いてもよく、また、2種類以上併用してもよい。
これらのうちでも、無機ガスを用いることが好ましく、炭酸ガス、空気、水を用いることが特に好ましい。
Examples of the blowing agent used in the present invention include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane and hexane; aliphatic cyclized hydrogens such as cyclopentane and cyclobutane; air and nitrogen Inorganic gas such as carbon dioxide, water, etc. These foaming agents may be used alone or in combination of two or more.
Among these, it is preferable to use inorganic gas, and it is particularly preferable to use carbon dioxide gas, air, and water.

本発明における発泡剤の使用量は、特に限定はなく、ポリプロピレン系樹脂発泡粒子の所望の発泡倍率に応じて適宣使用すれば良い。発泡剤の使用量は、ポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下であることが好ましい。   The amount of the foaming agent used in the present invention is not particularly limited, and may be appropriately used depending on the desired expansion ratio of the polypropylene resin expanded particles. The amount of the foaming agent used is preferably 3 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin particles.

ポリプロピレン系樹脂発泡粒子製造時に使用する耐圧容器には特に制限はなく、ポリプロピレン系樹脂発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えばオートクレーブ型の耐圧容器があげられる。   There is no particular limitation on the pressure vessel used when producing the expanded polypropylene resin particles, and any vessel that can withstand the pressure and temperature in the vessel at the time of producing the expanded polypropylene resin particles can be used. For example, an autoclave type pressure vessel can be used. It is done.

本発明では、ポリプロピレン系樹脂発泡粒子製造時の分散液の分散性を高め、ポリプロピレン系樹脂発泡粒子どうしの凝着を防ぐ観点から無機分散剤を用いることが好ましい。
このような無機分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、カオリン、硫酸バリウム等が挙げられる。
In the present invention, it is preferable to use an inorganic dispersant from the viewpoint of enhancing the dispersibility of the dispersion during the production of the polypropylene resin expanded particles and preventing adhesion between the polypropylene resin expanded particles.
Examples of such inorganic dispersants include tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, aluminosilicate, kaolin, and sulfuric acid. Barium etc. are mentioned.

本発明においては、より分散性を高める為に、分散助剤を併用することが好ましい。このような分散助剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、α−オレフィンスルホン酸ナトリウム等が挙げられる。
これらの中でも、無機分散剤と分散助剤の組み合わせとしては、第三リン酸カルシウムとアルキルスルホン酸ナトリウムの組み合わせが好ましい。
In the present invention, it is preferable to use a dispersion aid in combination in order to further improve dispersibility. Examples of such a dispersion aid include sodium dodecylbenzene sulfonate, sodium alkane sulfonate, sodium alkyl sulfonate, sodium alkyl diphenyl ether disulfonate, sodium α-olefin sulfonate, and the like.
Among these, as a combination of the inorganic dispersant and the dispersion aid, a combination of tricalcium phosphate and sodium alkylsulfonate is preferable.

本発明における無機分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して、無機分散剤0.2重量部以上3重量部以下であることが好ましく、分散助剤0.001重量部以上0.1重量部以下であることが好ましい。   The amount of the inorganic dispersant and dispersion aid used in the present invention varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 part by weight of the inorganic dispersant with respect to 100 parts by weight of water. The amount is preferably 3 parts by weight or less and more preferably 0.001 part by weight or more and 0.1 parts by weight or less.

本発明においては、水中での分散性を良好なものにする為に、通常、水100重量部に対して、ポリプロピレン系樹脂粒子を20重量部以上100重量部以下で使用することが好ましい。   In the present invention, in order to improve the dispersibility in water, it is usually preferable to use polypropylene resin particles in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of water.

本発明のポリプロピレン系樹脂発泡粒子の発泡倍率は、特に制限が無いが、3倍以上50倍以下であることが好ましく、7倍以上45倍以下であることがより好ましい。
ここで、ポリプロピレン系樹脂発泡粒子の発泡倍率は、ポリプロピレン系樹脂発泡粒子の重量w(g)およびエタノール水没体積v(cm)を測定し、発泡粒子の真比重ρb=w/vを求め、発泡前のポリプロピレン系樹脂粒子の密度ρr(0.90g/cm)との比から、発泡倍率K=ρr/ρbを求めたものである。
The expansion ratio of the expanded polypropylene resin particles of the present invention is not particularly limited, but is preferably 3 to 50 times, more preferably 7 to 45 times.
Here, the expansion ratio of the polypropylene resin expanded particles was determined by measuring the weight w (g) and the ethanol submerged volume v (cm 3 ) of the polypropylene resin expanded particles, and obtaining the true specific gravity ρb = w / v of the expanded particles, The expansion ratio K = ρr / ρb is obtained from the ratio to the density ρr (0.90 g / cm 3 ) of the polypropylene resin particles before foaming.

本発明のポリプロピレン系樹脂発泡粒子の嵩密度は、特に制限が無いが、10g/L以上200g/L以下であることが好ましく、12g/L以上150g/L以下であることがより好ましい。
ここで、ポリプロピレン系樹脂発泡粒子の嵩密度は、ポリプロピレン系樹脂発泡粒子を容器に静かに投入して満たした後、容器中のポリプロピレン系樹脂発泡粒子の重量を測定し、これを容器の容量で除し、g/L単位で表したものである。
The bulk density of the expanded polypropylene resin particles of the present invention is not particularly limited, but is preferably 10 g / L or more and 200 g / L or less, and more preferably 12 g / L or more and 150 g / L or less.
Here, the bulk density of the expanded polypropylene resin particles is determined by measuring the weight of the expanded polypropylene resin particles in the container after the polypropylene expanded resin particles are gently put into the container and filling it. Divided by g / L.

ところで、一段発泡粒子は、製造する際の発泡剤の種類にも依るが、発泡倍率が10倍に達しない場合がある。このような場合には、一段発泡粒子に、無機ガス(例えば、空気、窒素、炭酸ガス、等)を含浸して内圧を付与した後、特定の圧力の水蒸気と接触させることにより、一段発泡粒子よりも発泡倍率が向上したポリプロピレン系樹脂予備発泡粒子を得ることができる。   By the way, although the first-stage expanded particles depend on the type of the foaming agent at the time of production, the expansion ratio may not reach 10 times. In such a case, the single-stage foamed particles are impregnated with an inorganic gas (for example, air, nitrogen, carbon dioxide gas, etc.) and given an internal pressure, and then contacted with water vapor at a specific pressure to thereby form the single-stage foam particles. As a result, it is possible to obtain pre-expanded polypropylene resin particles having an improved expansion ratio.

このように、ポリプロピレン系樹脂予備発泡粒子をさらに発泡させてより発泡倍率の高いポリプロピレン系樹脂予備発泡粒子とする工程を、「二段発泡工程」と称し、得られたポリプロピレン系樹脂予備発泡粒子を、「二段発泡粒子」と称する場合がある。   Thus, the process of further expanding the polypropylene resin pre-expanded particles to obtain a polypropylene resin pre-expanded particle having a higher expansion ratio is referred to as a “two-stage expansion process”. , Sometimes referred to as “two-stage expanded particles”.

本発明において、二段発泡工程における水蒸気の圧力は、二段発泡粒子の発泡倍率を考慮した上で、0.04MPa(ゲージ圧)以上0.25MPa(ゲージ圧)以下に調整することが好ましく、0.05MPa(ゲージ圧)以上0.15MPa(ゲージ圧)以下に調製することがより好ましい。
二段発泡工程における水蒸気の圧力が0.04MPa(ゲージ圧)未満では、必要する発泡倍率まで膨らまない場合があり、0.25MPa(ゲージ圧)を超えると、得られる二段発泡粒子同士が融着してブロッキングしてしまい、その後の型内発泡成形に供することができなくなる傾向がある。
In the present invention, the water vapor pressure in the two-stage foaming step is preferably adjusted to 0.04 MPa (gauge pressure) or more and 0.25 MPa (gauge pressure) or less in consideration of the expansion ratio of the two-stage foam particles. More preferably, the pressure is adjusted to 0.05 MPa (gauge pressure) or more and 0.15 MPa (gauge pressure) or less.
If the water vapor pressure in the two-stage foaming step is less than 0.04 MPa (gauge pressure), it may not expand to the required foaming ratio. If it exceeds 0.25 MPa (gauge pressure), the resulting two-stage foam particles melt. It tends to become worn and blocked and cannot be used for subsequent in-mold foam molding.

一段発泡粒子に含浸する空気の内圧は、二段発泡粒子の発泡倍率および二段発泡工程の水蒸気圧力を考慮して適宜変化させることが望ましいが、0.2MPa以上(絶対圧)0.6MPa以下(絶対圧)であることが好ましい。
一段発泡粒子に含浸する空気の内圧が0.2MPa(絶対圧)未満では、発泡倍率を向上させるために高い圧力の水蒸気が必要となり、二段発泡粒子がブロッキングする傾向にある。一段発泡粒子に含浸する空気の内圧が0.6MPa(絶対圧)を超えると、得られる二段発泡粒子同士が融着してブロッキングしてしまい、その後の型内発泡成形に供することができなくなる傾向がある。
The internal pressure of the air impregnated in the first-stage expanded particles is preferably changed in consideration of the expansion ratio of the second-stage expanded particles and the water vapor pressure in the second-stage expansion process, but is 0.2 MPa or more (absolute pressure) 0.6 MPa or less (Absolute pressure) is preferred.
If the internal pressure of the air impregnated in the first-stage expanded particles is less than 0.2 MPa (absolute pressure), high-pressure steam is required to improve the expansion ratio, and the second-stage expanded particles tend to block. If the internal pressure of the air impregnated in the first-stage expanded particles exceeds 0.6 MPa (absolute pressure), the resulting second-stage expanded particles are fused and blocked, and cannot be used for subsequent in-mold foam molding. Tend.

なお、一段発泡工程にて敢えて低い発泡倍率の一段発泡粒子を得ておき、次いで、二段発泡工程により、所望の発泡倍率を有する二段発泡粒子としてもかまわない。   In addition, a single-stage expanded particle having a low expansion ratio may be obtained in a single-stage expansion process, and then a two-stage expanded particle having a desired expansion ratio may be obtained by a two-stage expansion process.

本発明における二段発泡粒子の嵩密度としては、10g/L以上45g/L以下のものを用いることが好ましい。   The bulk density of the two-stage expanded particles in the present invention is preferably 10 g / L or more and 45 g / L or less.

本発明のポリプロピレン系樹脂発泡粒子の表面に付着した無機分散剤量は、2000ppm以下が好ましく、1300ppm以下がより好ましく、800ppm以下がさらに好ましい。
ポリプロピレン系樹脂発泡粒子の表面に付着した無機分散剤量が2000ppmを超えると、型内発泡成形する際の融着性が低下する傾向にある。
The amount of the inorganic dispersant adhering to the surface of the expanded polypropylene resin particles of the present invention is preferably 2000 ppm or less, more preferably 1300 ppm or less, and even more preferably 800 ppm or less.
When the amount of the inorganic dispersant adhering to the surface of the polypropylene resin foamed particles exceeds 2000 ppm, the fusion property during in-mold foam molding tends to be lowered.

本発明のポリプロピレン系樹脂発泡粒子は、図2に示すように、10℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、少なくとも2つの融解ピークを有し、低温側融解熱量(Ql)と高温側融解熱量(Qh)の少なくとも2つの融解熱量を有する。   In the DSC curve obtained by differential scanning calorimetry (DSC) in which the polypropylene resin expanded particles of the present invention are heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min, as shown in FIG. It has at least two melting peaks and has at least two heats of fusion, a low-temperature side heat of fusion (Ql) and a high-temperature side heat of fusion (Qh).

なお、本発明においては、全融解熱量(Q)、低温側融解熱量(Ql)および高温側融解熱量(Qh)を、次のように定義する。
低温側融解熱量(Ql)および高温側融解熱量(Qh)の和である全融解熱量(Q=Ql+Qh)とは、得られるDSC曲線において、低温側で融解が開始する温度100℃での吸熱量(点A)から、高温側で融解が終了する温度での吸熱量(点B)を結ぶ線分ABを引き、線分ABとDSC曲線で囲まれた部分である。
DSC曲線の低温側融解熱量および高温側融解熱量の2つの融解熱量領域の間の最も吸熱量が小さくなる点を点Cとし、点Cから線分ABに向かってY軸と平行な線を上げて交わる点をDとした時、線分ADと線分CDとDSC曲線で囲まれた部分が、低温側融解熱量(Ql)であり、線分BDと線分CDとDSC曲線で囲まれた部分が高温側融解熱量(Qh)である。
In the present invention, total heat of fusion (Q), low temperature side heat of fusion (Ql), and high temperature side heat of fusion (Qh) are defined as follows.
The total heat of fusion (Q = Ql + Qh), which is the sum of the low-temperature side heat of fusion (Ql) and the high-temperature side heat of heat (Qh), is the endotherm at a temperature of 100 ° C. at which melting starts on the low temperature side in the obtained DSC curve. A line segment AB connecting the endothermic amount (point B) at a temperature at which melting ends on the high temperature side is drawn from (point A), and is a part surrounded by the line segment AB and the DSC curve.
The point at which the endotherm between the two melting calorie regions of the DSC curve, the low-temperature side heat of fusion and the high-temperature side heat of heat, is the smallest, and is point C. A line parallel to the Y-axis is raised from point C toward the line segment AB. The point surrounded by line AD, line CD and DSC curve is the low-temperature melting heat quantity (Ql), and is surrounded by line BD, line CD and DSC curve. The part is the high temperature side heat of fusion (Qh).

本発明のポリオレフィン系樹脂発泡粒子において、高温側融解熱量の比率{Qh/(Ql+Qh)}×100)(%)(以下、「高温熱量比」と称する場合がある)が、10%以上30%以下であることが好ましく、12%以上28%未満であることがより好ましい。
ポリプロピレン系樹脂発泡粒子の高温熱量比が10%未満では、ポリプロピレン系樹脂発泡粒子が連泡化しやすくなることにより、型内発泡成形体が収縮しやすくなる傾向がある。ポリプロピレン系樹脂発泡粒子の高温熱量比が30%を超えると、型内発泡成形する際のポリプロピレン系樹脂発泡粒子の発泡性の悪化に伴い融着性が低下し、型内発泡成形体を構成するポリプロピレン系樹脂発泡粒子間の間隙が大きくなる。
In the polyolefin-based resin expanded particles of the present invention, the ratio of the high-temperature side heat of fusion {Qh / (Ql + Qh)} × 100) (%) (hereinafter sometimes referred to as “high-temperature heat quantity ratio”) is 10% to 30%. Or less, more preferably 12% or more and less than 28%.
If the high-temperature calorie ratio of the polypropylene resin foamed particles is less than 10%, the foamed polypropylene resin particles tend to open, and the in-mold foam molded product tends to shrink. When the high-temperature calorie ratio of the polypropylene resin foam particles exceeds 30%, the fusion property is lowered with the deterioration of the foamability of the polypropylene resin foam particles during in-mold foam molding, and the in-mold foam molded body is formed. The gap between the expanded polypropylene resin particles is increased.

なお、高温熱量比や高温側融解熱量は、例えば、一段発泡工程における昇温後から発泡までの保持時間(概ね発泡温度に達した後から発泡するまでの保持時間)、発泡温度(発泡時の温度)、発泡圧力(発泡時の圧力)等により適宜調整することができる。
一般的には、保持時間を長くする、発泡温度を低くする、発泡圧力を低くすることにより、高温熱量比あるいは高温側融解熱量が大きくなる傾向がある。
The high-temperature heat ratio and the high-temperature side heat of fusion are, for example, the retention time from temperature rise to foaming in the one-stage foaming process (maintenance time from reaching the foaming temperature until foaming), foaming temperature (at the time of foaming) Temperature), foaming pressure (pressure during foaming), and the like.
Generally, by increasing the holding time, lowering the foaming temperature, and lowering the foaming pressure, the high-temperature heat quantity ratio or the high-temperature side heat of fusion tends to increase.

以上のことから、保持時間、発泡温度、発泡圧力を系統的に適宜変化させた実験を何回か試行することにより、所望の高温熱量比や高温側融解ピーク熱量となる条件を容易に見出すことができる。なお、発泡圧力の調節は、発泡剤の量により調節することできる。   From the above, it is possible to easily find the conditions for the desired high-temperature calorie ratio and high-temperature side melting peak calorie by experimenting several times with systematically changing the holding time, foaming temperature, and foaming pressure. Can do. The foaming pressure can be adjusted by adjusting the amount of foaming agent.

本発明のポリプロピレン系樹脂発泡粒子の平均気泡径は、0.05mm以上0.4mm以下であることが好ましく、0.1mm以上0.3mm以下であることがより好ましい。
ポリプロピレン系樹脂発泡粒子の平均気泡径が0.05mm未満では、型内発泡成形体の表面美麗性が悪化する傾向があり、0.4mmを超えると、ポリプロピレン系樹脂発泡粒子が連泡化しやすくなることにより、型内発泡成形体が収縮しやすくなる傾向がある。
The average cell diameter of the expanded polypropylene resin particles of the present invention is preferably 0.05 mm or more and 0.4 mm or less, and more preferably 0.1 mm or more and 0.3 mm or less.
If the average cell diameter of the polypropylene resin foamed particles is less than 0.05 mm, the surface beauty of the in-mold foam molded product tends to deteriorate. If the average cell diameter exceeds 0.4 mm, the polypropylene resin foamed particles are liable to open. Thereby, there exists a tendency for an in-mold foaming molding to contract easily.

本発明のポリプロピレン系樹脂発泡粒子の粒重量は、0.5mg/粒以上4.0mg/粒以下であることが好ましく、0.7mg/粒以上1.8mg/粒以下であることがより好ましい。
なお、粒重量が0.5mg/粒以上4.0mg/粒以下であるポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂粒子の粒重量を0.5mg/粒以上4.0mg/粒以下とすることにより、容易に得ることができる。
The particle weight of the expanded polypropylene resin particles of the present invention is preferably 0.5 mg / particle to 4.0 mg / particle, more preferably 0.7 mg / particle to 1.8 mg / particle.
In addition, the polypropylene resin expanded particles having a particle weight of 0.5 mg / particle or more and 4.0 mg / particle or less are obtained by setting the particle weight of the polypropylene resin particles to 0.5 mg / particle or more and 4.0 mg / particle or less. Can be easily obtained.

本発明におけるポリプロピレン系樹脂粒子は、前述したとおり、一旦溶融した樹脂をストランド状に押出し、冷却前あるいは冷却後に、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状に成形加工することで得られるが、粒重量が0.5mg/粒未満の場合、粒重量のばらつきが大きくなり、発泡倍率ばらつきの大きなポリプロピレン系樹脂発泡粒子となる傾向がある。粒重量が4.0mg/粒を超える場合、型内発泡成形する際に、発泡粒子間の間隙が大きくなり、表面美麗性が悪化する傾向にある。   As described above, the polypropylene resin particles in the present invention are obtained by extruding a once melted resin into a strand shape, and before cooling or after cooling, a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. However, when the particle weight is less than 0.5 mg / particle, the variation in the particle weight tends to be large and the expanded polypropylene resin particles have a large variation in the expansion ratio. When the grain weight exceeds 4.0 mg / grain, the gap between the foamed particles becomes large during foam molding in the mold, and the surface beauty tends to deteriorate.

本発明においては、ポリプロピレン系樹脂予備発泡粒子を型内発泡成形して型内発泡成形体とするが、型内発泡成形方法としては、例えば、
イ)ポリプロピレン系樹脂予備発泡粒子を無機ガス、例えば空気や窒素、炭酸ガス等で加圧処理してポリプロピレン系樹脂予備発泡粒子内に無機ガスを含浸させ所定のポリプロピレン系樹脂予備発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、
ロ)ポリプロピレン系樹脂予備発泡粒子をガス圧力で圧縮して金型に充填し、ポリプロピレン系樹脂予備発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、
ハ)特に前処理することなくポリプロピレン系樹脂予備発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、等の方法が利用し得る。
In the present invention, the polypropylene resin pre-expanded particles are subjected to in-mold foam molding to form an in-mold foam molded body.
B) Polypropylene resin pre-expanded particles are pressurized with an inorganic gas such as air, nitrogen, carbon dioxide, etc., and the polypropylene resin pre-expanded particles are impregnated with inorganic gas to give a predetermined polypropylene resin pre-expanded particle internal pressure. And then filling the mold and heat-sealing with water vapor,
B) A method of compressing polypropylene resin pre-expanded particles with gas pressure and filling them into a mold, and using the recovery force of the polypropylene resin pre-expanded particles, heat-sealing with water vapor,
C) A method such as a method in which pre-expanded polypropylene resin particles are filled in a mold without heat treatment and heat-sealed with water vapor can be used.

本発明のポリプロピレン系樹脂予備発泡粒子を用いてポリプロピレン系樹脂型内発泡成形体を得る方法の具体例としては、例えば、
予めポリプロピレン系樹脂予備発泡粒子を耐圧容器内で空気加圧し、ポリプロピレン系樹脂予備発泡粒子中に空気を圧入することにより内圧(発泡能)を付与した後、これを2つの金型からなる閉鎖しうるが密閉し得ない成形空間内に充填し、水蒸気などを加熱媒体として0.1MPa以上0.4MPa以下(ゲージ圧)程度の加熱水蒸気圧下で3秒以上60秒以下程度の加熱時間で成形し、ポリプロピレン系樹脂予備発泡粒子同士を融着させた後、金型を水冷により型内発泡成形体取り出し後のポリプロピレン系樹脂型内発泡成形体の変形が抑制される程度まで冷却した後、金型を開き、ポリプロピレン系樹脂型内発泡成形体を得る方法などが挙げられる。
As a specific example of a method of obtaining a polypropylene resin-in-mold foam-molded article using the polypropylene resin pre-expanded particles of the present invention, for example,
Pre-expanded polypropylene resin pre-expanded particles are air-pressed in a pressure-resistant container and air pressure is injected into the polypropylene resin pre-expanded particles to give internal pressure (foaming ability), which is then closed with two molds. Filled into a molding space that can be sealed but cannot be sealed, and molded with a heating time of about 3 seconds to 60 seconds under a steam pressure of about 0.1 MPa to 0.4 MPa (gauge pressure) using water vapor as a heating medium. Then, after pre-expanding the polypropylene resin pre-expanded particles, the mold is cooled to the extent that deformation of the polypropylene resin in-mold foam after taking out the in-mold foam molding by water cooling is suppressed, and then the mold And a method of obtaining a foamed molded product in a polypropylene resin mold.

ポリプロピレン系樹脂予備発泡粒子の内圧は、例えば、耐圧容器内で、1時間以上48時間以下、室温以上80℃以下の温度条件下、空気、窒素等の無機ガスによって0.1MPa以上1.0MPa(ゲージ圧)以下に加圧することによって調整できる。   The internal pressure of the polypropylene resin pre-expanded particles is, for example, 0.1 MPa or more and 1.0 MPa (1 MPa or more by an inorganic gas such as air or nitrogen) under a temperature condition of 1 hour to 48 hours, room temperature to 80 ° C. in a pressure vessel. It can be adjusted by pressurizing below (gauge pressure).

本発明のポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体の密度は、特に制限がないが、10g/L以上200g/L以下が好ましく、12g/L以上150g/L以下がより好ましい。
ここで、型内発泡成形体の密度とは、成形体中央付近から直方体試験片を切り出し、縦、横、厚みの寸法の積からサンプル体積を算出し、サンプル重量をサンプル体積で除し、各サンプルの密度を算出した後平均し、g/L単位で表した。
The density of the in-mold foam molded product obtained using the polypropylene resin pre-expanded particles of the present invention is not particularly limited, but is preferably 10 g / L or more and 200 g / L or less, more preferably 12 g / L or more and 150 g / L or less. preferable.
Here, the density of the in-mold foam molded product is a rectangular parallelepiped test piece cut out from the vicinity of the center of the molded product, the sample volume is calculated from the product of the vertical, horizontal and thickness dimensions, the sample weight is divided by the sample volume, After calculating the density of the sample, it was averaged and expressed in units of g / L.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples.

実施例および比較例において、使用した物質は、以下のとおりであるが、特に精製等は行っていない。
●ポリプロピレン系樹脂
○ポリプロピレン系樹脂A:プロピレン/エチレン/1−ブテンランダム共重合体[TPC社製、融点147℃、MFR6.1g/10分]
○ポリプロピレン系樹脂B:プロピレン/エチレンランダム共重合体[プライムポリマー社製、融点151℃、MFR9.5g/10分]
○ポリプロピレン系樹脂C:プロピレン/エチレンランダム共重合体[プライムポリマー社製、融点136℃、MFR7.3g/10分]
In the examples and comparative examples, the substances used were as follows, but no particular purification was performed.
● Polypropylene resin ○ Polypropylene resin A: Propylene / ethylene / 1-butene random copolymer [manufactured by TPC, melting point 147 ° C., MFR 6.1 g / 10 min]
○ Polypropylene resin B: Propylene / ethylene random copolymer [manufactured by Prime Polymer, melting point 151 ° C., MFR 9.5 g / 10 min]
○ Polypropylene resin C: Propylene / ethylene random copolymer [manufactured by Prime Polymer Co., Ltd., melting point 136 ° C., MFR 7.3 g / 10 min]

なお、実施例および比較例における評価は、次の方法により行なった。   The evaluation in the examples and comparative examples was performed by the following method.

(ポリプロピレン系樹脂の融点測定)
ポリプロピレン系樹脂の融点の測定は、示差走査熱量計DSC[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、得られたポリプロピレン系樹脂粒子5〜6mgを、10℃/minの昇温速度で40℃から220℃まで昇温して樹脂粒子を融解し、その後10℃/minの降温速度で220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minの昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度として求められる値である。
(Measurement of melting point of polypropylene resin)
The melting point of the polypropylene resin was measured using a differential scanning calorimeter DSC [Seiko Instruments Co., Ltd., DSC6200 type] with 5-6 mg of the obtained polypropylene resin particles at a heating rate of 10 ° C./min. The temperature is raised from 40 ° C. to 220 ° C. to melt the resin particles, and then crystallized by lowering the temperature from 220 ° C. to 40 ° C. at a rate of 10 ° C./min. It is a value calculated | required as a melting peak temperature at the time of the 2nd temperature rise from the DSC curve obtained when it heats up from 40 degreeC to 220 degreeC.

(ポリプロピレン系樹脂のMFR測定)
得られたポリプロピレン系樹脂粒子に対して、JIS−K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定した時の値である。
(MFR measurement of polypropylene resin)
For the obtained polypropylene resin particles, using an MFR measuring instrument described in JIS-K7210, orifice 2.0959 ± 0.005 mmφ, orifice length 8.000 ± 0.025 mm, load 2160 g, 230 ± 0.2 It is a value when measured under the condition of ° C.

(改質ポリプロピレン系樹脂の損失正接tanδ)
得られた改質ポリプロピレン系樹脂を、1.5mm厚のスペーサーを用いて190℃にて5分間熱プレスして1.5mm厚のプレス板を作製した。得られたプレス板から、φ25mmのポンチを用いて打ち抜き、試験片を得た。
測定装置としては、粘弾性測定装置[TAインスツルメンツ社製、ARES]を用い、φ25mmのパラレルプレート型冶具を装着した。冶具を囲うように恒温槽を設置し、180℃に保温、冶具が予熱された後に恒温槽を開け、パラレルプレート間にφ25mmとした試験片を挿入して恒温槽を閉じ、5分間予熱した後にパラレルプレート間隔を1mmまで圧縮した。圧縮後、再度恒温槽を開き、パラレルプレートからはみ出した樹脂を真鍮のヘラで掻き取り、恒温槽を閉じて再度5分間保温した後に、動的粘弾性測定を開始した。
測定は、歪み量5%、窒素雰囲気下で、角振動数0.1rad/sから100rad/sまでの範囲で行い、各角振動数での貯蔵弾性率と損失弾性率を得、下記式により損失正接tanδを算出した
損失正接tanδ=損失弾性率/貯蔵弾性率
これらの結果のうち、角周波数1rad/sでの損失正接tanδの値を採用した。
(Loss tangent of modified polypropylene resin tan δ)
The obtained modified polypropylene resin was hot-pressed at 190 ° C. for 5 minutes using a 1.5 mm-thick spacer to produce a 1.5 mm-thick press plate. The obtained press plate was punched out using a punch having a diameter of 25 mm to obtain a test piece.
As a measuring device, a viscoelasticity measuring device [TA Instruments, ARES] was used, and a parallel plate jig having a diameter of 25 mm was attached. Set up a thermostatic chamber to surround the jig, keep it at 180 ° C, open the thermostat after the jig is preheated, insert a test piece with a diameter of 25 mm between the parallel plates, close the thermostat and preheat for 5 minutes The parallel plate interval was compressed to 1 mm. After compression, the thermostat was opened again, the resin protruding from the parallel plate was scraped off with a brass spatula, the thermostat was closed and the temperature was kept again for 5 minutes, and then dynamic viscoelasticity measurement was started.
The measurement is performed in a range of angular frequency from 0.1 rad / s to 100 rad / s in a nitrogen atmosphere at a strain of 5%, and the storage elastic modulus and loss elastic modulus at each angular frequency are obtained. Loss tangent tan δ calculated loss tangent tan δ = loss elastic modulus / storage elastic modulus Of these results, the value of loss tangent tan δ at an angular frequency of 1 rad / s was adopted.

(ポリプロピレン系樹脂予備発泡粒子の発泡倍率)
得られたポリプロピレン系樹脂予備発泡粒子3g以上10g以下程度を秤取り、60℃で6時間乾燥した後、温度23℃、湿度50%の恒温恒湿室内で状態調節し、重量w(g)を測定後、水没法にて体積v(cm)を測定し、発泡粒子の真比重ρb=w/vを求め、発泡前のポリプロピレン系樹脂粒子の密度ρrとの比から発泡倍率K=ρr/ρbを求めた。
なお、以下に示す実施例および比較例においては、発泡前のポリプロピレン系樹脂粒子の密度ρrは、いずれも0.90g/cmとした。
(Expansion ratio of pre-expanded polypropylene resin particles)
About 3 g or more and 10 g or less of the pre-expanded polypropylene resin particles obtained were weighed and dried at 60 ° C. for 6 hours, then conditioned in a constant temperature and humidity chamber at a temperature of 23 ° C. and a humidity of 50%, and the weight w (g) was determined. After the measurement, the volume v (cm 3 ) is measured by a submerging method to determine the true specific gravity ρb = w / v of the expanded particles, and the expansion ratio K = ρr / from the ratio with the density ρr of the polypropylene resin particles before expansion. ρb was determined.
In the following examples and comparative examples, the density ρr of the polypropylene resin particles before foaming was set to 0.90 g / cm 3 .

(最低加熱蒸気圧力)
ポリプロピレン発泡成形機[ダイセン株式会社製、KD345]を用い、縦400mm×横300mm×厚み60mmの直方体状金型に、予め発泡粒子内部の空気圧力が0.2MPa(絶対圧)になるように調整したポリプロピレン系樹脂予備発泡粒子を充填し、まず0.1MPa(ゲージ圧)の水蒸気で金型内の空気を追い出し、その後、所定の圧力の加熱蒸気を用いて10秒間加熱成形させることにより、ポリプロピレン系樹脂発泡成形体を得た。この際、加熱蒸気圧力を0.20MPa(ゲージ圧)から0.01MPaずつ増加させて、成形体を作製した。
得られた発泡成形体の表面にナイフで約5mmの深さのクラックを入れ、クラックに沿って型内発泡成形体を割り、破断面を観察し、破断面の全粒子数に対する破壊粒子数の割合を求め、成形体融着率を評価した。
融着率が80%以上に達する最低の蒸気圧力を、最低成形圧力とした。
(Minimum heating steam pressure)
Using a polypropylene foam molding machine [Daisen Co., Ltd., KD345], adjust the air pressure inside the foam particles to 0.2 MPa (absolute pressure) in advance in a rectangular parallelepiped mold 400 mm long x 300 mm wide x 60 mm thick. The polypropylene resin pre-expanded particles are filled, the air in the mold is first expelled with water vapor of 0.1 MPa (gauge pressure), and then heat-molded for 10 seconds using heating steam of a predetermined pressure, thereby forming polypropylene. -Based resin foam molding was obtained. At this time, the heating steam pressure was increased from 0.20 MPa (gauge pressure) by 0.01 MPa, thereby producing a molded body.
A crack having a depth of about 5 mm was put on the surface of the obtained foamed molded product with a knife, the foamed molded product in the mold was divided along the crack, the fractured surface was observed, and the number of fractured particles relative to the total number of particles on the fractured surface was measured. The ratio was obtained and the molded product fusion rate was evaluated.
The lowest steam pressure at which the fusion rate reached 80% or more was taken as the minimum molding pressure.

(成形体表面伸び)
最低加熱圧力で得られた型内発泡成形体に関して、表面伸びの評価を以下の基準により評価した。
○:予備発泡粒子の輪郭全てが隣り合った予備発泡粒子と融着し、成形体表面に露出する発泡粒子どうしに間隙が無い。
×:成形体表面に露出する発泡粒子どうしに間隙がある。
(Elongation of molded body surface)
With respect to the in-mold foam molded article obtained at the minimum heating pressure, the surface elongation was evaluated according to the following criteria.
◯: All the contours of the pre-expanded particles are fused with the adjacent pre-expanded particles, and there is no gap between the expanded particles exposed on the surface of the molded body.
X: There is a gap between the expanded particles exposed on the surface of the molded body.

(発泡成形体密度)
最低加熱圧力で得られた発泡成形体の中央内部より、バーチカルスライサーを用いて、縦50mm×横50mm×厚み25mmの密度測定用試験片を切り出した。
得られた密度測定用試験片の縦、横、厚みの寸法を、ノギスを用いて測定して、試験片の体積Vを求め、更に重量Wを測定して、密度=W/Vにより算出した。
(Foamed molded product density)
A test piece for density measurement having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the center inside of the foamed molded product obtained at the lowest heating pressure using a vertical slicer.
The vertical, horizontal, and thickness dimensions of the obtained density measurement test piece were measured using a caliper to determine the volume V of the test piece, and the weight W was further measured to calculate density = W / V. .

(圧縮強度測定)
剛性の評価方法は、静的圧縮強度で評価した。
密度測定用の縦50mm×横50mm×厚み25mmの試験片を気温23℃、湿度50%の恒温恒湿室にて24時間状態調整した後、引張圧縮試験機[ミネベア製、型式:TG−20kN]を用いて、10mm/分の速度で圧縮試験を行った。
試験片を圧縮したときの圧縮率50%で算出された値を圧縮強度の値とした。
(Compressive strength measurement)
The evaluation method of rigidity was evaluated by static compressive strength.
A test piece of 50 mm in length, 50 mm in width, and 25 mm in thickness for density measurement was conditioned for 24 hours in a constant temperature and humidity chamber with an air temperature of 23 ° C. and a humidity of 50%, and then a tensile and compression tester [Minebea, model: TG-20kN The compression test was performed at a speed of 10 mm / min.
The value calculated at a compression rate of 50% when the test piece was compressed was taken as the compression strength value.

(総合評価)
総合評価の基準は以下の通りとした。
○:成形体表面伸びが○、且つ、改質プロピレン系樹脂無添加品と比較して改質プロピレン系樹脂添加品の圧縮強度が増加した場合。
×:成形体表面伸びが×の場合、もしくは成形体表面伸びが○、且つ、改質プロピレン系樹脂無添加品と比較して改質プロピレン系樹脂添加品の圧縮強度が同等以下の場合。
(Comprehensive evaluation)
The criteria for comprehensive evaluation were as follows.
◯: When the surface elongation of the molded body is ◯ and the compressive strength of the modified propylene resin-added product is increased as compared to the product without the modified propylene-based resin.
X: When the molded body surface elongation is x, or when the molded body surface elongation is ◯ and the compression strength of the modified propylene resin-added product is equal to or less than that of the modified propylene-based resin additive-free product.

(実施例1)
[改質ポリプロピレン系樹脂の作製]
ポリプロピレン系樹脂A100重量部に、ラジカル重合開始剤であるt−ブチルパーオキシ−イソプロピルモノカルボネート[日本油脂(株)製、パーブチルI]0.70重量部をハンドブレンドにて混合した配合物を、計量フィーダーを用いて2軸押出機[(株)日本製鋼所製、TEX44XCT−38]に供給し、液体添加ポンプを用いて押出機途中からイソプレン0.37重量部を供給し、樹脂温度200℃で溶融混練することにより、改質ポリプロピレン系樹脂を得た。
得られた改質ポリスチレン系樹脂は、tanδが1.2で、MFRは11.2g/10分であった。
Example 1
[Production of modified polypropylene resin]
A blend of 100 parts by weight of polypropylene resin A and 0.70 parts by weight of t-butyl peroxy-isopropyl monocarbonate [manufactured by NOF Corporation, Perbutyl I] as a radical polymerization initiator by hand blending. , Is fed to a twin screw extruder [manufactured by Nippon Steel Works, Ltd., TEX44XCT-38] using a measuring feeder, 0.37 parts by weight of isoprene is fed from the middle of the extruder using a liquid addition pump, and a resin temperature of 200 A modified polypropylene resin was obtained by melt-kneading at 0 ° C.
The obtained modified polystyrene resin had a tan δ of 1.2 and an MFR of 11.2 g / 10 min.

[ポリプロピレン系樹脂粒子の作製]
得られた改質ポリプロピレン系樹脂0.5重量部およびポリプロピレン系樹脂A99.5重量部に、ポリエチレングリコール[ライオン(株)製、平均分子量300]0.5重量部および、無機造核剤としてのタルク[林化成(株)製、タルカンパウダーPK−S]0.1重量部を添加・混合した。
得られた混合物を、2軸押出機[(株)オーエヌ機械製、TEK45]を用いて、樹脂温度200℃にて溶融混練した後、ストランド状に押出し、得られたストランドを水冷後、切断してポリプロピレン系樹脂粒子(1.2mg/粒)を製造した。
[Production of polypropylene resin particles]
To 0.5 parts by weight of the obtained modified polypropylene resin and 99.5 parts by weight of polypropylene resin A, 0.5 parts by weight of polyethylene glycol [manufactured by Lion Corporation, average molecular weight 300] and an inorganic nucleating agent 0.1 part by weight of talc [manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-S] was added and mixed.
The obtained mixture was melt-kneaded at a resin temperature of 200 ° C. using a twin-screw extruder [manufactured by ONENKI Co., Ltd., TEK45], then extruded into a strand, and the resulting strand was cooled with water and cut. Thus, polypropylene resin particles (1.2 mg / particle) were produced.

[ポリプロピレン系樹脂発泡粒子の作製]
内容量10Lの耐圧容器中に、得られたポリプロピレン系樹脂粒子100重量部、分散剤としてのパウダー状塩基性第3リン酸カルシウム1重量部および分散助剤としてのn−パラフィンスルホン酸ソーダ0.05重量部を含む水系分散媒170重量部、ならびに、発泡剤として炭酸ガス6.0重量部を仕込み、攪拌しながら、発泡温度としてポリプロピレン系樹脂粒子の軟化点温度以上の150℃まで昇温し、10分間保持した後、炭酸ガスを追加圧入して発泡圧力2.5MPa(ゲージ圧)に調整し、30分間保持した。その後、炭酸ガスを圧入しながら、耐圧容器内の温度および圧力を一定に保持しつつ、耐圧容器下部のバルブを開いて、水系分散媒を開孔径3.6mmφのオリフィス板を通して、非密閉系(大気圧下)の筒状容器内に放出することにより、発泡倍率20倍のポリプロピレン系樹脂予備発泡粒子(一段発泡粒子)を得た。なお、筒状容器内は、蒸気で100℃に加温した。
[Preparation of expanded polypropylene resin particles]
In a pressure-resistant container having an internal volume of 10 L, 100 parts by weight of the obtained polypropylene-based resin particles, 1 part by weight of powdery basic tribasic calcium phosphate as a dispersing agent, and 0.05% by weight of sodium n-paraffin sulfonate as a dispersing aid 170 parts by weight of an aqueous dispersion medium containing parts, and 6.0 parts by weight of carbon dioxide gas as a foaming agent, and while stirring, the temperature is raised to 150 ° C., which is equal to or higher than the softening point temperature of the polypropylene resin particles. After maintaining for 30 minutes, carbon dioxide gas was additionally injected to adjust the foaming pressure to 2.5 MPa (gauge pressure) and maintained for 30 minutes. Thereafter, while keeping the temperature and pressure inside the pressure vessel constant while injecting carbon dioxide gas, the valve at the bottom of the pressure vessel is opened, and the aqueous dispersion medium is passed through an orifice plate having a hole diameter of 3.6 mmφ to form an unsealed system ( By releasing into a cylindrical container under atmospheric pressure), polypropylene resin pre-expanded particles (single-stage expanded particles) having an expansion ratio of 20 times were obtained. The inside of the cylindrical container was heated to 100 ° C. with steam.

[ポリプロピレン系樹脂発泡成形体の作製]
ポリプロピレン発泡成形機[ダイセン株式会社製、KD345]を用い、縦400mm×横300mm×厚み60mmの直方体状金型に、予め発泡粒子内部の空気圧力が0.2MPa(絶対圧)になるように調整したポリプロピレン系樹脂予備発泡粒子を充填し、まず0.1MPa(ゲージ圧)の水蒸気で金型内の空気を追い出し、その後、所定の圧力の加熱蒸気を用いて10秒間加熱成形させることにより、ポリプロピレン系樹脂発泡成形体を得た。この際、加熱蒸気圧力を0.20MPa(ゲージ圧)から0.01MPaずつ増加させて、成形体を作製した。
型内発泡成形時の最低加熱蒸気圧力、得られた型内発泡成形体について評価を行った。結果を、表1に示す。
[Preparation of polypropylene resin foam molding]
Using a polypropylene foam molding machine [Daisen Co., Ltd., KD345], adjust the air pressure inside the foam particles to 0.2 MPa (absolute pressure) in advance in a rectangular parallelepiped mold 400 mm long x 300 mm wide x 60 mm thick. The polypropylene resin pre-expanded particles are filled, the air in the mold is first expelled with water vapor of 0.1 MPa (gauge pressure), and then heat-molded for 10 seconds using heating steam of a predetermined pressure, thereby forming polypropylene. -Based resin foam molding was obtained. At this time, the heating steam pressure was increased from 0.20 MPa (gauge pressure) by 0.01 MPa, thereby producing a molded body.
The minimum heating steam pressure at the time of in-mold foam molding and the obtained in-mold foam molded product were evaluated. The results are shown in Table 1.

(実施例2)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)98重量部および改質ポリプロピレン系樹脂2重量部とした以外は、実施例1と同様にして予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。
結果を、表1に示す。
(Example 2)
In [Preparation of polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1, except that 98 parts by weight of polypropylene resin (A) and 2 parts by weight of modified polypropylene-based resin were obtained. In-mold foaming was obtained using and evaluated.
The results are shown in Table 1.

(実施例3)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)95重量部および改質ポリプロピレン系樹脂5重量部とした以外は、実施例1と同様にして予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Example 3)
In [Preparation of polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1 except that 95 parts by weight of the polypropylene resin (A) and 5 parts by weight of the modified polypropylene resin were obtained. In-mold foaming was obtained using and evaluated. The results are shown in Table 1.

(実施例4)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)98重量部および改質ポリプロピレン系樹脂2重量部とし、[ポリプロピレン系樹脂発泡粒子の作製]における発泡温度150℃、発泡圧力3.3MPa(ゲージ圧)に変更して予備発泡粒子の発泡倍率を30倍に変化させた以外は、実施例1と同様にして予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
Example 4
In [Preparation of polypropylene resin particles], 98 parts by weight of polypropylene resin (A) and 2 parts by weight of modified polypropylene resin were used. The foaming temperature was 150 ° C. and the foaming pressure was 3.3 MPa in [Preparation of polypropylene resin foam particles]. Except for changing to (gauge pressure) and changing the expansion ratio of the pre-expanded particles to 30 times, pre-expanded particles were obtained in the same manner as in Example 1, and in-mold expansion was obtained using the pre-expanded particles, Evaluation was performed. The results are shown in Table 1.

(実施例5)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)98重量部および改質ポリプロピレン系樹脂2重量部に変更し、[ポリプロピレン系樹脂発泡粒子の作製]において、筒状容器内を加温しなかったこと以外は、実施例1と同様の操作により予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Example 5)
In [Preparation of polypropylene resin particles], it was changed to 98 parts by weight of polypropylene resin (A) and 2 parts by weight of modified polypropylene resin, and in [Preparation of expanded polypropylene resin particles], the inside of the cylindrical container was heated. Except not having performed, pre-expanded particles were obtained by the same operation as in Example 1, and in-mold expansion was obtained using the pre-expanded particles, and evaluation was performed. The results are shown in Table 1.

(実施例6)
実施例5で得られたポリプロピレン系予備発泡粒子(一段発泡粒子)を、80℃にて6時間乾燥させた後、耐圧容器内にて、加圧空気を含浸させて、内圧を0.37MPa(絶対圧)にした後、0.08MPa(ゲージ圧)の水蒸気と接触させることにより、二段発泡させた(二段発泡粒子)以外は、実施例5と同様の操作により予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Example 6)
The polypropylene-based pre-expanded particles (single-stage expanded particles) obtained in Example 5 were dried at 80 ° C. for 6 hours, and then impregnated with pressurized air in a pressure-resistant container, so that the internal pressure was 0.37 MPa ( Absolute pressure), and then contacted with 0.08 MPa (gauge pressure) water vapor to obtain pre-foamed particles by the same operation as in Example 5 except that the two-stage foamed (two-stage foamed particles). In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 1.

参考例7)
[改質ポリプロピレン系樹脂の作製]において、ラジカル開始剤量を0.40重量部、イソプレン量を0.45重量部に変更した以外は、実施例2と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
( Reference Example 7)
[Preparation of modified polypropylene resin] Pre-expanded particles were obtained in the same manner as in Example 2 except that the radical initiator amount was changed to 0.40 parts by weight and the isoprene amount was changed to 0.45 parts by weight. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 1.

(実施例8)
[改質ポリプロピレン系樹脂の作製]において、ラジカル開始剤量を1.30重量部、イソプレン量を0.27重量部とした以外は、実施例2と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Example 8)
In [Production of Modified Polypropylene Resin], pre-expanded particles were obtained in the same manner as in Example 2 except that the amount of radical initiator was 1.30 parts by weight and the amount of isoprene was 0.27 parts by weight. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 1.

(実施例9)
[改質ポリプロピレン系樹脂の作製]において、改質ポリプロピレン系樹脂作製時のラジカル開始剤量を1.30重量部、イソプレン量を0.20重量部とした以外は、実施例2と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
Example 9
In [Production of Modified Polypropylene Resin], the same operation as in Example 2 except that the amount of radical initiator at the time of production of the modified polypropylene resin was 1.30 parts by weight and the amount of isoprene was 0.20 parts by weight. Thus, pre-expanded particles were obtained, in-mold expansion was obtained using the pre-expanded particles, and evaluation was performed. The results are shown in Table 1.

(実施例10)
[改質ポリプロピレン系樹脂の作製]において、改質ポリプロピレン系樹脂の基材樹脂をポリプロピレン系樹脂(B)に変更した以外は、実施例8と同様の操作により、改質ポリエチレン系樹脂を得、さら、実施例8と同様の操作により予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Example 10)
In [Production of modified polypropylene resin], a modified polyethylene resin was obtained by the same operation as in Example 8, except that the base resin of the modified polypropylene resin was changed to the polypropylene resin (B). Furthermore, pre-expanded particles were obtained by the same operation as in Example 8, and in-mold expansion was obtained using the pre-expanded particles, and evaluation was performed. The results are shown in Table 1.

(参考例1)
[ポリプロピレン系樹脂発泡粒子の作製]において、ポリプロピレン系樹脂(A)のみを用いた以外は、実施例5と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Reference Example 1)
In [Preparation of expanded polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 5 except that only the polypropylene resin (A) was used. Obtained and evaluated. The results are shown in Table 1.

(参考例2)
[ポリプロピレン系樹脂発泡粒子の作製]において、ポリプロピレン系樹脂(A)のみを用いた以外は、実施例1と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Reference Example 2)
[Preparation of expanded polypropylene resin particles] In the same manner as in Example 1 except that only the polypropylene resin (A) was used, pre-expanded particles were obtained, and in-mold expansion was performed using the pre-expanded particles. Obtained and evaluated. The results are shown in Table 1.

(参考例3)
[ポリプロピレン系樹脂発泡粒子の作製]において、ポリプロピレン系樹脂(A)のみを用いた以外は、実施例4と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
なお、参考例1〜3は、圧縮強度比較における基準値とした為、総合評価は実施しない。
(Reference Example 3)
[Preparation of expanded polypropylene resin particles] In the same manner as in Example 4 except that only the polypropylene resin (A) was used, pre-expanded particles were obtained, and in-mold expansion was performed using the pre-expanded particles. Obtained and evaluated. The results are shown in Table 1.
In addition, since Reference Examples 1 to 3 were used as reference values in the compression strength comparison, comprehensive evaluation was not performed.

(比較例1)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)99.8重量部および改質ポリプロピレン系樹脂0.2重量部とした以外は、実施例1と同様にして予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Comparative Example 1)
In [Production of polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1 except that 99.8 parts by weight of polypropylene resin (A) and 0.2 parts by weight of modified polypropylene resin were used. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 1.

(比較例2)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)92重量部および改質ポリプロピレン系樹脂8重量部とした以外は、実施例1と同様にして予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Comparative Example 2)
In [Preparation of polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1 except that 92 parts by weight of polypropylene resin (A) and 8 parts by weight of modified polypropylene-based resin were obtained. In-mold foaming was obtained using and evaluated. The results are shown in Table 1.

(比較例3)
[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂(A)87重量部および改質ポリプロピレン系樹脂13重量部とした以外は、実施例1と同様にして予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Comparative Example 3)
In [Preparation of polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1 except that 87 parts by weight of polypropylene resin (A) and 13 parts by weight of modified polypropylene resin were used. In-mold foaming was obtained using and evaluated. The results are shown in Table 1.

(比較例4)
[改質ポリプロピレン系樹脂の作製]において、イソプレン量を0.62重量部に変更した以外は、実施例2と同様の操作により、予備発泡粒子を得、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Comparative Example 4)
In [Production of Modified Polypropylene Resin], pre-expanded particles were obtained by the same operation as in Example 2 except that the amount of isoprene was changed to 0.62 parts by weight. In-mold foaming was obtained using and evaluated. The results are shown in Table 1.

(比較例5)
[改質ポリプロピレン系樹脂の作製]において、ラジカル開始剤量を1.5重量部、イソプレン量を0.20重量部に変更した以外は、実施例2と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Comparative Example 5)
In [Production of Modified Polypropylene Resin], pre-expanded particles were obtained in the same manner as in Example 2, except that the radical initiator amount was changed to 1.5 parts by weight and the isoprene amount was changed to 0.20 parts by weight. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 1.

(比較例6)
[改質ポリプロピレン系樹脂の作製]において、ラジカル開始剤量を2.0重量部、イソプレン量を0.20重量部に変更した以外は、実施例2と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表1に示す。
(Comparative Example 6)
In [Production of Modified Polypropylene Resin], pre-expanded particles were obtained in the same manner as in Example 2 except that the radical initiator amount was changed to 2.0 parts by weight and the isoprene amount was changed to 0.20 parts by weight. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 1.

(実施例11)
[改質ポリプロピレン系樹脂の作製]において、改質ポリプロピレン系樹脂の基材樹脂をポリプロピレン系樹脂(B)に変更した以外は、実施例8と同様の操作により改質ポリプロピレン系樹脂を得、さらに、[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂種をポリプロピレン系樹脂(B)に変更した以外は、実施例8と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表2に示す。
(Example 11)
In [Production of Modified Polypropylene Resin], a modified polypropylene resin was obtained by the same operation as in Example 8, except that the base resin of the modified polypropylene resin was changed to polypropylene resin (B). In [Preparation of polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 8, except that the polypropylene resin type was changed to polypropylene resin (B). In-mold foaming was obtained and evaluated. The results are shown in Table 2.

(参考例4)
[ポリプロピレン系樹脂発泡粒子の作製]において、ポリプロピレン系樹脂(B)のみを用いた以外は、実施例1と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表2に示す。
なお、参考例4は、圧縮強度比較における基準値とした為、総合評価は実施しない。
(Reference Example 4)
In [Preparation of expanded polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1 except that only the polypropylene resin (B) was used. Obtained and evaluated. The results are shown in Table 2.
In addition, since Reference Example 4 was used as a reference value in the comparison of compressive strength, comprehensive evaluation was not performed.

(比較例7)
[改質ポリプロピレン系樹脂の作製]において、ラジカル開始剤量を1.50重量部、イソプレン量を0.20重量部に変更した以外は、実施例11と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表2に示す。
(Comparative Example 7)
In [Production of Modified Polypropylene Resin], pre-expanded particles were obtained in the same manner as in Example 11 except that the radical initiator amount was changed to 1.50 parts by weight and the isoprene amount was changed to 0.20 parts by weight. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 2.

(実施例12)
[改質ポリプロピレン系樹脂の作製]において、改質ポリプロピレン系樹脂の基材樹脂をポリプロピレン系樹脂(C)に変更した以外は、実施例8と同様の操作により改質ポリプロピレン系樹脂を得、さらに、[ポリプロピレン系樹脂粒子の作製]において、ポリプロピレン系樹脂種をポリプロピレン系樹脂(C)に変更した以外は、実施例8と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表3に示す。
(Example 12)
In [Production of Modified Polypropylene Resin], a modified polypropylene resin was obtained by the same operation as in Example 8, except that the base resin of the modified polypropylene resin was changed to polypropylene resin (C). [Preparation of polypropylene resin particles] In the same manner as in Example 8 except that the polypropylene resin type was changed to polypropylene resin (C), pre-expanded particles were obtained, and the pre-expanded particles were used. In-mold foaming was obtained and evaluated. The results are shown in Table 3.

(参考例5)
[ポリプロピレン系樹脂発泡粒子の作製]において、ポリプロピレン系樹脂(B)のみを用いた以外は、実施例1と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表3に示す。
なお、参考例5は、圧縮強度比較における基準値とした為、総合評価は実施しない。
(Reference Example 5)
In [Preparation of expanded polypropylene resin particles], pre-expanded particles were obtained in the same manner as in Example 1 except that only the polypropylene resin (B) was used. Obtained and evaluated. The results are shown in Table 3.
In addition, since Reference Example 5 was used as a reference value in the compression strength comparison, comprehensive evaluation was not performed.

(比較例8)
[改質ポリプロピレン系樹脂の作製]において、ラジカル開始剤量を1.50重量部、イソプレン量を0.20重量部に変更した以外は、実施例12と同様の操作により、予備発泡粒子を得、該予備発泡粒子を用いて型内発泡を得、評価を実施した。結果を、表3に示す。
(Comparative Example 8)
In [Production of Modified Polypropylene Resin], pre-expanded particles were obtained in the same manner as in Example 12 except that the radical initiator amount was changed to 1.50 parts by weight and the isoprene amount was changed to 0.20 parts by weight. In-mold foaming was obtained using the pre-foamed particles and evaluated. The results are shown in Table 3.

以上のように、ポリプロピレン系樹脂予備発泡粒子において、本発明記載の技術を用いると、現状よく使用されている0.4MPa耐圧仕様の成形機にて融着、表面美麗性に優れた高剛性の型内発泡体の製造が可能である。したがって、軽量化した型内発泡体を提供することが可能である。
As described above, in the polypropylene resin pre-expanded particles, when the technique described in the present invention is used, the high-rigidity is excellent in fusion and surface beauty in a molding machine of 0.4 MPa pressure resistance specification which is often used at present. In-mold foam can be produced. Therefore, it is possible to provide a lightweight foam in the mold.

Claims (5)

(A)ポリプロピレン系樹脂95.0〜99.5重量%と、(B)180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率との比率である損失正接tanδが0.6以上2.0以下である改質ポリプロピレン系樹脂0.5〜5.0重量%からなる樹脂混合物[(A)および(B)の合計量を100重量%とする]を基材樹脂とするポリプロピレン系樹脂粒子を発泡して得られるものであり、
改質ポリプロピレン系樹脂のメルトフローレートが8g/10分以上であることを特徴とする、ポリプロピレン系樹脂予備発泡粒子。
(A) 95.0 to 99.5% by weight of a polypropylene-based resin, and (B) ratio of storage elastic modulus and loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 180 ° C. Resin mixture comprising 0.5 to 5.0% by weight of a modified polypropylene resin having a loss tangent tan δ of 0.6 to 2.0 [the total amount of (A) and (B) is 100% by weight] Is obtained by foaming polypropylene resin particles having a base resin as a base resin ,
A polypropylene resin pre-expanded particle, wherein the melt flow rate of the modified polypropylene resin is 8 g / 10 min or more .
改質ポリプロピレン系樹脂のメルトフローレートが80g/10分以下であることを特徴とする、請求項1記載のポリプロピレン系樹脂予備発泡粒子。 The polypropylene resin pre-expanded particles according to claim 1, wherein the melt flow rate of the modified polypropylene resin is 80 g / 10 min or less. 改質ポリプロピレン系樹脂が、線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合して得られた改質ポリプロピレン系樹脂であることを特徴とする、請求項1または2記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene according to claim 1 or 2, wherein the modified polypropylene resin is a modified polypropylene resin obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound. -Based resin pre-expanded particles. ポリプロピレン系樹脂粒子、水および発泡剤を耐圧容器中に収容し、攪拌条件下に分散させると共に、前記ポリプロピレン系樹脂粒子の軟化点温度以上に昇温した後、耐圧容器の内圧よりも低い圧力域に耐圧容器中の分散液を放出してポリプロピレン系樹脂粒子を発泡させることを特徴とする、請求項1〜3のいずれかに記載のポリプロピレン系樹脂予備発泡粒子の製造方法。 Polypropylene resin particles, water and a foaming agent are accommodated in a pressure vessel and dispersed under stirring conditions, and after raising the temperature above the softening point temperature of the polypropylene resin particles, a pressure range lower than the internal pressure of the pressure vessel The method for producing pre- expanded polypropylene resin particles according to any one of claims 1 to 3, wherein the polypropylene resin particles are expanded by discharging the dispersion in the pressure vessel. 請求項1〜3のいずれかに記載のポリプロピレン系樹脂予備発泡粒子を金型に充填し、型内発泡成形させることによって得られることを特徴とする、ポリプロピレン系樹脂成形体の製造方法。   A method for producing a polypropylene resin molded article, which is obtained by filling a polypropylene resin pre-expanded particle according to any one of claims 1 to 3 into a mold and subjecting the resin to foam molding in a mold.
JP2013250251A 2013-12-03 2013-12-03 Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles Active JP6357310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250251A JP6357310B2 (en) 2013-12-03 2013-12-03 Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250251A JP6357310B2 (en) 2013-12-03 2013-12-03 Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles

Publications (2)

Publication Number Publication Date
JP2015108033A JP2015108033A (en) 2015-06-11
JP6357310B2 true JP6357310B2 (en) 2018-07-11

Family

ID=53438642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250251A Active JP6357310B2 (en) 2013-12-03 2013-12-03 Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles

Country Status (1)

Country Link
JP (1) JP6357310B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177298A1 (en) * 2016-07-19 2023-05-10 Kaneka Corporation Polypropylene-type resin pre-expanded particles, and method for producing said pre-expanded particles
JP6836866B2 (en) 2016-09-16 2021-03-03 株式会社ジェイエスピー Crosslinked foamed particles and their molded product
JP6961607B2 (en) * 2016-11-04 2021-11-05 株式会社ジェイエスピー Foamed particle molded product
JP6519813B2 (en) 2016-11-11 2019-05-29 株式会社ジェイエスピー Expanded particles and their compacts
WO2021172016A1 (en) 2020-02-25 2021-09-02 株式会社カネカ Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600930B2 (en) * 1997-05-15 2004-12-15 株式会社カネカ Polypropylene resin pre-expanded particles and in-mold expanded molded article
JP5037212B2 (en) * 2007-04-25 2012-09-26 株式会社カネカ Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP2009126914A (en) * 2007-11-21 2009-06-11 Kaneka Corp Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP5351433B2 (en) * 2008-04-16 2013-11-27 株式会社カネカ Polypropylene resin pre-expanded particles and a polypropylene resin in-mold foam molded product obtained from the polypropylene resin pre-expanded particles
JP5279413B2 (en) * 2008-08-29 2013-09-04 株式会社カネカ Method for producing polypropylene resin pre-expanded particles

Also Published As

Publication number Publication date
JP2015108033A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5351433B2 (en) Polypropylene resin pre-expanded particles and a polypropylene resin in-mold foam molded product obtained from the polypropylene resin pre-expanded particles
JP6357310B2 (en) Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
JPWO2018016399A1 (en) Polypropylene-based resin pre-expanded particles and method for producing the pre-expanded particles
WO2011043032A1 (en) Polypropylene resin expanded particles and polypropylene resin in-mold expanded molded body
CN102574948B (en) Polypropylene resin, polypropylene resin composition, and foam-injection-molded article
JPWO2014136933A1 (en) Method for producing expanded polypropylene resin particles
WO2017030124A1 (en) Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles, method for producing polypropylene resin in-mold foam-molded article, and polypropylene resin in-mold foam-molded article
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
CN114341237B (en) Polypropylene resin foam pellets, process for producing the same, and polypropylene resin foam molded article
WO2021172016A1 (en) Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body
JP5037212B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP5909368B2 (en) Polypropylene resin-in-mold foam-molded article and method for producing the same
WO2021131933A1 (en) Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles
JP5080842B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5358452B2 (en) Polypropylene resin expanded particles and expanded molded articles
EP3214101A1 (en) Modified polypropylene-based resin, foamed polypropylene-based resin sheet, container constituted of foamed resin, and process for producing modified polypropylene-based resin
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP5749039B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDED PRODUCT, AND METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM
JP5154194B2 (en) Polypropylene resin foam particles
JP5638928B2 (en) Polypropylene resin for injection foam molding and injection foam molded body thereof
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP2010043182A (en) Polypropylene-based resin foamed particle and in-mold expansion-molded body
JP5095451B2 (en) Method for producing expanded polypropylene resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6357310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250