JP2010043182A - Polypropylene-based resin foamed particle and in-mold expansion-molded body - Google Patents

Polypropylene-based resin foamed particle and in-mold expansion-molded body Download PDF

Info

Publication number
JP2010043182A
JP2010043182A JP2008208059A JP2008208059A JP2010043182A JP 2010043182 A JP2010043182 A JP 2010043182A JP 2008208059 A JP2008208059 A JP 2008208059A JP 2008208059 A JP2008208059 A JP 2008208059A JP 2010043182 A JP2010043182 A JP 2010043182A
Authority
JP
Japan
Prior art keywords
particles
polypropylene resin
mold
expanded
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208059A
Other languages
Japanese (ja)
Other versions
JP5347368B2 (en
Inventor
Fuminobu Hirose
文信 廣瀬
Shinobu Ochikoshi
忍 落越
Koji Tsuneishi
浩司 常石
Kiyotaka Nakayama
清敬 中山
Yutaka Matsumiya
豊 松宮
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008208059A priority Critical patent/JP5347368B2/en
Publication of JP2010043182A publication Critical patent/JP2010043182A/en
Application granted granted Critical
Publication of JP5347368B2 publication Critical patent/JP5347368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an in-mold expansion-molded body that is obtained by filling polypropylene-based resin foamed particles in a mold and by heat-molding with steam, especially which is excellent in the fusion of the foamed particles from low temperatures and which has little deformation in the molded body and little clearance among the constituent particles one another (owing to the high elongation of the expanded particles) and also which is uniformly fused and excellent in the surface properties. <P>SOLUTION: The solution found out is such that it is necessary to control the heat shrinkage starting temperature of the expanded particles in order not to cause the degradation of the surface properties and the fusion maldistribution in a molded body and also to use a low melting point polypropylene-based resin in order to mold under a low molding pressure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリプロピレン系樹脂発泡粒子に関するものである。さらに詳しくは、緩衝包装材、通函、断熱材、自動車のバンパー芯材などに用いられるポリプロピレン系樹脂型内発泡成形体の製造に好適に使用し得るポリプロピレン系樹脂発泡粒子およびそれからなる型内発泡成形体に関する。   The present invention relates to expanded polypropylene resin particles. More specifically, polypropylene-based resin foam particles that can be suitably used for the production of polypropylene-based resin-molded in-mold foams used for buffer packaging materials, boxing, heat insulating materials, automobile bumper core materials, and the like, and in-mold foam comprising the same It relates to a molded body.

ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を持つ。また同様の合成樹脂発泡粒子を用いる型内発泡成形体と比較すると、ポリスチレン系樹脂発泡粒子を用いて得られる型内発泡成形体に比べて、耐薬品性、耐熱性、圧縮後の歪回復率(力学特性)に優れており、またポリエチレン系樹脂発泡粒子を用いる型内発泡成形体と比べて、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いられている。   In-mold foam moldings obtained by filling polypropylene resin foam particles in molds and heat-molding with water vapor are the advantages of in-mold foam moldings, such as shape flexibility, lightness, and heat insulation. have. Compared to in-mold foam moldings using similar synthetic resin foam particles, compared with in-mold foam moldings obtained using polystyrene resin foam particles, chemical resistance, heat resistance, strain recovery rate after compression It is excellent in (mechanical characteristics) and has excellent dimensional accuracy, heat resistance, and compressive strength as compared with an in-mold foam molded article using polyethylene resin expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin foam particles are used in various applications such as heat insulating materials, shock-absorbing packaging materials, automobile interior members, and automobile bumper core materials.

使用者の目に触れる場所に使用される一般緩衝包材、自動車内装部材、通い箱と言った用途に使用される型内発泡成形体は、表面性が重要視されるものが多い。これらの用途では、型内発泡成形体に通常求められる剛性、軽量性、断熱性などの物性に加え、良好な表面性が求められる。また、型内発泡成形体は蒸気成形直後に加熱の影響で変形することがあるが、これを加熱養生して変形をなくす養生工程があり、生産性の観点から養生時間の短縮が望まれている。型内発泡成形体は、発泡粒子同士を融着させ型内発泡成形体とするため、型内発泡成形体の発泡粒子同士間に隙間が発生することがあり、外観を重視する製品には、この隙間を嫌うものも多い。発泡粒子間の隙間(粒子間隙)を目立たなくさせるためには、一般に型内発泡成形時に予め発泡粒子内の空気圧を大気圧以上加圧、及び/または、成形機の加熱蒸気圧力を高くし、発泡粒子の膨張力を高めて発泡粒子同士の隙間がなくなるようにして融着を促進させるなどの方法が採られる。   In-mold foam moldings used for applications such as general cushioning packaging materials, automobile interior members, and returnable boxes that are used in places where the user can see, often have surface properties as important. In these applications, good surface properties are required in addition to physical properties such as rigidity, lightness, and heat insulating properties normally required for in-mold foam molded products. In-mold foam moldings may be deformed immediately after steam molding due to the effect of heating, but there is a curing process that eliminates the deformation by heat curing, and shortening the curing time is desired from the viewpoint of productivity. Yes. The in-mold foam molded product is formed by fusing the foam particles together to form an in-mold foam molded product, so that a gap may occur between the foam particles of the in-mold foam molded product. Many people dislike this gap. In order to make the gap between the foam particles (particle gap) inconspicuous, generally the air pressure in the foam particles is increased to atmospheric pressure or higher in advance during foam molding in the mold, and / or the heating steam pressure of the molding machine is increased, A method is adopted in which the expansion force of the expanded particles is increased so as to eliminate the gap between the expanded particles to promote fusion.

しかし、型内発泡成形では、加熱蒸気斑や型内発泡成形体の厚みの違う部分の存在などにより、型内発泡成形体全体を均一に融着させることが難しい場合がある。加熱蒸気斑の例としては、発泡粒子の種類によるが、成形初期の流入蒸気による加熱により発泡粒子が膨張しはじめ、蒸気の流れを偏在させ、融着が偏在して起こる例がある。特に型内発泡成形体表面は融着しているものの、内部は融着していない場合がある。また、型内発泡成形体に厚みの違う部分があると、薄い部分は過度に蒸気に曝され融着しすぎ、厚い部分は十分加熱されずに融着しにくい等の問題が生じる。これも加熱蒸気斑の一種である。また加熱蒸気斑により、型内発泡成形体の特定の部位に融着性に劣る「粒子隙間」が発生する場合もある。加熱蒸気斑を解消するため加熱蒸気圧を高くすると、型内発泡成形体全体の形状が加熱しすぎで変形が大きくなり養生時間が延びたりすることがある。従来の発泡粒子では型内発泡成形体の「融着の向上」、「粒子間隙の抑制」と「変形の抑制」の両方のバランスにより加熱条件を定め成形してきたが、この成形温度幅は狭く、成型機や金型を変更する毎に条件を調査して最適条件を定める煩雑さがあった。また、金型によっては蒸気の通り易い部位や通りにくい部位が存在するため、実際には金型内での温度を均質化することが困難で、たとえば、金型を作り替えるといった金型の蒸気経路の調整などを都度変更することは、非常に難しい。加熱蒸気斑があっても、言い換えると、幅広い成形温度範囲で、成形バランスのとれた「均一融着」性に優れ、「粒子隙間」や「変形」が存在しないような型内発泡成形体が望まれていた。   However, in the in-mold foam molding, it may be difficult to uniformly fuse the entire in-mold foam-molded body due to the presence of heated steam spots or portions with different thicknesses of the in-mold foam-molded body. As an example of the heating steam spots, there is an example in which the foaming particles start to expand due to the heating by the inflowing steam at the initial stage of molding, the steam flow is unevenly distributed, and the fusion is unevenly distributed. In particular, although the surface of the in-mold foam molded product is fused, the inside may not be fused. In addition, when there are portions with different thicknesses in the in-mold foam molded product, the thin portions are excessively exposed to the vapor and fused excessively, and the thick portions are not sufficiently heated and are difficult to fuse. This is also a kind of heated steam spots. In addition, due to heated steam spots, there may be a case where a “particle gap” having a poor fusion property is generated at a specific portion of the in-mold foam molded article. If the heating steam pressure is increased in order to eliminate the heating steam spots, the shape of the entire in-mold foam-molded product may be heated too much, resulting in a large deformation and a longer curing time. Conventional foamed particles have been molded with the heating conditions determined by the balance of “improving fusion”, “suppressing particle gap” and “suppressing deformation” of the in-mold foam molded product. Each time the molding machine or the mold is changed, there is a problem that the conditions are investigated and the optimum conditions are determined. Also, depending on the mold, there are parts that are easy to pass steam and parts that are difficult to pass, so in practice it is difficult to homogenize the temperature in the mold. For example, the steam path of the mold such as remodeling the mold It is very difficult to change the adjustment of each time. Even in the presence of heated steam spots, in other words, there is an in-mold foam molded product that has excellent "uniform fusion" properties that are well-balanced over a wide range of molding temperatures and that does not have "particle gaps" or "deformation". It was desired.

また、成形直後の型内発泡成形体に粒子隙間がない場合でも、養生することにより粒子間隙が発生することがあり、これは型内発泡成形時にセル膜が延伸された歪みが養生による再加熱で収縮をするためと考えられる。   In addition, even when there is no particle gap in the in-mold foam molding immediately after molding, particle gaps may be generated by curing, and this is due to the strain that the cell membrane was stretched during in-mold foam molding and reheating due to curing. This is thought to be due to contraction.

また、昨今のエネルギー消費による二酸化炭素排出削減要望や、成形加工コスト減という意味での蒸気ユーティリティーコスト減、成形サイクル減の要望から、なるべく低温の蒸気で成形可能である発泡粒子が望まれている。また、高温蒸気での成形が必要な場合、耐圧仕様の高い成形機や金型を用いる必要が生じ、設備コストが高くなるといった問題もあるため、このような観点からも低温蒸気での成形が望まれている。   In addition, expanded particles that can be molded with steam as low as possible are desired because of recent demands for reducing carbon dioxide emissions due to energy consumption, reducing steam utility costs in terms of reducing molding processing costs, and reducing molding cycles. . In addition, when molding with high-temperature steam is required, it is necessary to use a molding machine or mold with a high pressure resistance specification, and there is a problem that equipment costs increase. From this viewpoint, molding with low-temperature steam is also necessary. It is desired.

樹脂の溶融張力に着眼した技術としては、特許文献1に、密度0.920g/cm3以上のポリエチレン系樹脂粒子を発泡させて得られた、真の密度が0.024〜0.042g/cm3の発泡粒子において、該発泡粒子の190℃、2.16kgfで測定したメルトフローインデックスが0.1〜10g/10min、190℃で測定したメルトテンションの値が2.5g以下であり、且つ該発泡粒子を構成する気泡の平均径が250μm以上であることを特徴とする無架橋ポリエチレン系樹脂発泡粒子が成型可能な温度範囲が広いことが開示されている。
特開2000−17079号公報
As a technique focusing on the melt tension of the resin, the true density obtained by foaming polyethylene resin particles having a density of 0.920 g / cm 3 or more in Patent Document 1 is 0.024 to 0.042 g / cm. In the expanded particles of 3 , the melt flow index of the expanded particles measured at 190 ° C. and 2.16 kgf is 0.1 to 10 g / 10 min, the melt tension value measured at 190 ° C. is 2.5 g or less, and It is disclosed that the non-crosslinked polyethylene resin expanded particles having a wide average temperature of bubbles constituting the expanded particles have a wide temperature range capable of being molded.
JP 2000-17079 A

本発明の目的は、ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して得られる型内発泡成形体において、発泡粒子の融着が低温から比較的良好で成形温度幅が広く、発泡粒子の伸びが良いため、型内発泡成形体を構成する粒子同士の隙間も少なく、型内発泡成形体の変形が少ない、表面性の優れた型内発泡成形体を得ることにある。   An object of the present invention is to provide an in-mold foam molded product obtained by filling polypropylene resin foam particles in a mold and heat-molding with water vapor. Widely, since the expansion of foamed particles is good, there are few gaps between the particles constituting the in-mold foam molded body, and there is little deformation of the in-mold foam molded body, and there is to obtain an in-mold foam molded body with excellent surface properties. .

上述した問題を解決するため、本発明者らが鋭意検討した結果、ポリプロピレン系樹脂発泡粒子成形時に、加熱蒸気斑があっても均質に発泡し、「粒子間隙」、「融着斑」、「型内発泡成形体変形」が発生しにくく、さらに型内発泡成形時の歪みが少なく、養生しても「粒子間隙」が発生しにくい発泡粒子を作成することができた。詳しくは成形加熱初期に発泡粒子表層に収縮が起き、発泡粒子間に蒸気が均一に流れやすくなり、加熱蒸気斑が発生しにくく均一に発泡するため、「融着斑」や「粒子間隙」が少なく、低温蒸気で成形が可能となり、過剰加熱による「型内発泡成形体変形」も少ない型内発泡成形体が得られる。また、成形後には歪みが残りにくい樹脂を使用することで成形後の養生工程での「粒子間隙」が発生しにくい発泡粒子である。この様な発泡粒子はポリプロピレン系樹脂の60℃以上、融点−25℃以下で2%の収縮が生じる発泡粒子であることが分かり、更に、ポリプロピレン系樹脂が特定の溶融粘度と張力を有することで成形後の歪みが改善されることを見出し、本発明者らは以下の発明の完成にいたった。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, when foamed polypropylene resin particles are formed, the foams are uniformly foamed even if there are heated steam spots, “particle gaps”, “fusion spots”, “ It was possible to produce foamed particles that are less likely to undergo “in-mold foam molding deformation”, have less distortion during in-mold foam molding, and are less susceptible to “particle gap” even after curing. Specifically, the surface layer of the foamed particles shrinks in the early stage of molding heating, making it easier for the steam to flow uniformly between the foamed particles, making it difficult for the heated steam spots to occur and foaming uniformly. In-mold foam moldings can be obtained with a low amount of low-temperature steam and less “in-mold foam molding deformation” due to overheating. Further, by using a resin that does not easily remain strained after molding, it is a foamed particle that hardly causes “particle gap” in the curing process after molding. It can be seen that such expanded particles are expanded particles in which shrinkage of 2% occurs when the polypropylene resin is 60 ° C. or higher and the melting point is −25 ° C. or lower. Further, the polypropylene resin has a specific melt viscosity and tension. The present inventors have found that the distortion after molding is improved, and the inventors have completed the following invention.

即ち、本発明の第1は、融点が125℃以上150℃以下のポリプロピレン系樹脂を発泡させて得られる、真倍率が20倍以上40倍以下のポリプロピレン系樹脂発泡粒子において、該発泡粒子表面から取り出した薄膜を10℃/minの昇温速度で加熱した際、2%収縮開始温度が、60℃以上、融点−25℃以下であるポリプロピレン系樹脂発泡粒子に関する。   That is, the first aspect of the present invention is a foamed polypropylene resin particle having a true magnification of 20 times to 40 times obtained by foaming a polypropylene resin having a melting point of 125 ° C. or higher and 150 ° C. or lower. When the taken-out thin film is heated at a heating rate of 10 ° C./min, it relates to expanded polypropylene resin particles having a 2% shrinkage starting temperature of 60 ° C. or higher and a melting point of −25 ° C. or lower.

好ましい態様としては、
(1)ポリプロピレン系樹脂発泡粒子の170℃での溶融粘度が7500poise以上、12000poise以下、溶融張力が0.5g以上1.8g以下であり、該ポリプロピレン系樹脂発泡粒子の平均セル径が200μm以上500μm以下である、
(2)ポリプロピレン系樹脂発泡粒子が多段発泡方法により得られた、
前記記載のポリプロピレン系樹脂発泡粒子に関する。
As a preferred embodiment,
(1) The polypropylene resin foamed particles have a melt viscosity at 170 ° C. of 7500 poise or more and 12000 poise or less, a melt tension of 0.5 g or more and 1.8 g or less, and the average cell diameter of the polypropylene resin foamed particles is 200 μm or more and 500 μm. Is
(2) Polypropylene resin foamed particles were obtained by a multistage foaming method.
The present invention relates to the expanded polypropylene resin particles described above.

本発明の第2は、前記記載のポリプロピレン系樹脂発泡粒子を、型内に充填して加熱し、該ポリプロピレン系樹脂発泡粒子相互を融着せしめて得られる、発泡倍率が30〜50倍のポリプロピレン系樹脂型内発泡成形体に関する。   A second aspect of the present invention is a polypropylene having an expansion ratio of 30 to 50 times, obtained by filling the above-mentioned polypropylene resin expanded particles in a mold and heating them, and fusing the expanded polypropylene resin particles with each other. The present invention relates to an in-mold resin mold.

本発明のポリプロピレン系樹脂発泡粒子を使用することで、比較的低圧の加熱成形圧であっても融着性が良好であり、また、広い成形温度で得られる。えられた型内発泡成形体の表面の粒子間隙が少なく、表面美麗性に優れ、型内発泡成形体の耐変形性や養生回復性に優れる。   By using the expanded polypropylene resin particles of the present invention, the fusion property is good even at a relatively low heat molding pressure, and it can be obtained at a wide molding temperature. There are few particle gaps on the surface of the obtained in-mold foam molded article, the surface is beautiful, and the in-mold foam molded article is excellent in deformation resistance and curing recovery.

本発明に基材樹脂として使用するポリプロピレン系樹脂は、モノマーとしてプロピレンが50mol%以上含まれる樹脂である。プロピレン以外に使用し得るモノマー成分としては、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられ、それらの組み合わせも可能である。これらのうち、エチレン、若しくは1−ブテンと2元共重合体を使用することが耐寒脆性向上、安価という点で好ましい。また、比較的強度が高いことから耐変形性の意味でエチレン、1−ブテンの3元共重合体が好ましい。   The polypropylene resin used as the base resin in the present invention is a resin containing 50 mol% or more of propylene as a monomer. Examples of monomer components that can be used other than propylene include ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3,4-dimethyl-1. Α-olefins having 2 or 4 to 12 carbon atoms such as butene, 1-heptene, 3-methyl-1-hexene, 1-octene and 1-decene, cyclopentene, norbornene, tetracyclo [6,2,11,8, Cyclic olefins such as 13,6] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6 -Dienes such as octadiene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid Ethyl acrylate, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, and vinyl monomers such as divinylbenzene and the like, a combination thereof is also possible. Of these, it is preferable to use ethylene or 1-butene and a binary copolymer in terms of improving cold brittleness resistance and low cost. In addition, since it has a relatively high strength, a terpolymer of ethylene and 1-butene is preferable in terms of deformation resistance.

また、本発明のポリプロピレン系樹脂は融点が125℃以上150℃以下である。好ましくは、125℃以上145℃以下である。ここで言う融点は、示差走査熱量計(DSC)を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに、2回目の昇温時に得られるDSC曲線における融解ピーク温度である。融点が150℃より大きい場合、低い加熱成形圧では、ポリプロピレン系樹脂発泡粒子間の融着が不十分となる。125℃より小さい場合、耐熱性が良好でない。   The polypropylene resin of the present invention has a melting point of 125 ° C. or higher and 150 ° C. or lower. Preferably, it is 125 degreeC or more and 145 degrees C or less. The melting point here refers to melting the resin particles by heating 5 to 6 mg of polypropylene resin particles from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (DSC). Then, after crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, and further raising the temperature from 40 ° C. to 220 ° C. at 10 ° C./min, the DSC obtained at the second temperature rise It is the melting peak temperature in the curve. When the melting point is higher than 150 ° C., the fusion between the polypropylene resin expanded particles becomes insufficient at a low thermoforming pressure. When it is lower than 125 ° C., the heat resistance is not good.

本発明のポリプロピレン系樹脂発泡粒子は、発泡粒子の表面から取り出した薄膜を10℃/minの昇温速度で加熱した際、2%収縮開始温度が、60℃以上、融点−25℃以下である。具体的には、2%収縮開始温度は、図1に示すようにポリプロピレン系樹脂発泡粒子の表面から長さ12mm×幅1mm×厚み0.1mmの薄膜を切り出し、測定部位長さを10mmに制御して、熱機械分析装置(Thermomechanical Analyzer:TMA)により0.1gの引張荷重を与えて25℃から10℃/minで昇温し、2%収縮(TMA上での測定値は測定開始点を0μとしたときに200μmの収縮)したときの温度を言う。2%収縮開始温度が、60℃未満の場合、成形の前準備として発泡粒子内の空気圧を大気圧以上に加熱加圧処理を施す場合があるが、その加熱により収縮し真倍率が変化するため、品質管理が困難となる。また、型内発泡成形時の金型内で初期加熱により発泡粒子が収縮しすぎて、金型内の充填率が低下し、型内発泡成形体に密度斑が生じる場合がある。また、2%収縮開始温度が融点−25℃より高い場合、型内発泡成形時の金型内で初期加熱により発泡粒子が膨張しやすく、局所的に膨張した発泡粒子同士が蒸気の流れを偏在させ、融着が偏在する。   The polypropylene resin expanded particles of the present invention have a 2% shrinkage starting temperature of 60 ° C. or higher and a melting point of −25 ° C. or lower when the thin film taken out from the surface of the expanded particles is heated at a rate of temperature increase of 10 ° C./min. . Specifically, as shown in FIG. 1, the 2% shrinkage start temperature is obtained by cutting a thin film having a length of 12 mm, a width of 1 mm, and a thickness of 0.1 mm from the surface of the expanded polypropylene resin particles, and controlling the measurement site length to 10 mm. Then, applying a tensile load of 0.1 g with a thermomechanical analyzer (TMA) and raising the temperature from 25 ° C. to 10 ° C./min, 2% contraction (the measured value on TMA is the starting point of measurement) This means the temperature when the shrinkage is 200 μm. When the 2% shrinkage starting temperature is less than 60 ° C., the air pressure inside the expanded particles may be heated to a pressure higher than the atmospheric pressure as preparation before molding, but the shrinkage is caused by the heating and the true magnification changes. Quality control becomes difficult. In addition, the foaming particles may shrink too much due to initial heating in the mold during the foam molding in the mold, the filling rate in the mold may be reduced, and density unevenness may occur in the mold in the mold. In addition, when the 2% shrinkage start temperature is higher than the melting point −25 ° C., the foam particles are likely to expand due to initial heating in the mold during in-mold foam molding, and the locally expanded foam particles are unevenly distributed in steam flow. And fusion is unevenly distributed.

ポリプロピレン系樹脂への発泡セル形成剤としての添加剤は、揮発性発泡剤を使用する場合は、タルク、シリカ、炭酸カルシウムのような無機造核剤を0.005重量部以上0.1重量部以下添加することが好ましい。空気、窒素、炭酸ガス、水のような無機発泡剤を使用する場合は、前記無機造核剤および/または吸水物質を使用することが好ましい。   In the case of using a volatile foaming agent, the additive as a foaming cell forming agent for polypropylene resin is 0.005 part by weight or more and 0.1 part by weight of an inorganic nucleating agent such as talc, silica or calcium carbonate. It is preferable to add below. When using an inorganic foaming agent such as air, nitrogen, carbon dioxide, water, it is preferable to use the inorganic nucleating agent and / or water-absorbing substance.

吸水物質としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物、メラミン(化学名1,3,5−トリアジン−2,4,6−トリアミン)、アンメリン(同1,3,5−トリアジン−2−ヒドロキシ−4,6−ジアミン)、アンメリド(同1,3,5−トリアジン−2,4−ヒドロキシ−6−アミン)、シアヌル酸(同1,3,5−トリアジン−2,4,6−トリオール)、イソシアヌル酸(同1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン)、アセトグアナミン(同1,3,5−トリアジン−2,4−ジアミン−6−メチル)、ベンゾグアナミン(同1,3,5−トリアジン−2,4−ジアミン−6−フェニル)、トリス(メチル)イソシアヌレート、トリス(エチル)イソシアヌレート、トリス(ブチル)イソシアヌレート、トリス(2−ヒドロキシエチル)イソシアヌレート、メラミン・イソシアヌル酸縮合物等のトリアジン骨格を有する化合物、ポリエチレングリコール、エチレン(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマー等の親水性有機物が挙げられる。水溶性無機物を使用する場合、その添加量は、ポリプロピレン系樹脂100重量部に対して0.01〜1重量部であることが好ましい。親水性有機物を使用する場合、その添加量は、ポリプロピレン系樹脂100重量部に対して0.1〜5重量部であることが好ましい。これら、水溶性無機物や親水性有機物は2種以上を併用してもよい。   Water-absorbing substances include water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax and zinc borate, melamine (chemical name 1,3,5-triazine-2,4,6-triamine), ammelin (same as 1, 3,5-triazine-2-hydroxy-4,6-diamine), ammelide (1,3,5-triazine-2,4-hydroxy-6-amine), cyanuric acid (1,3,5-triazine) -2,4,6-triol), isocyanuric acid (1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione), acetoguanamine (1,3,5-triazine-) 2,4-diamine-6-methyl), benzoguanamine (1,3,5-triazine-2,4-diamine-6-phenyl), tris (methyl) isocyanurate, tris (ethyl) Compounds having a triazine skeleton such as sosocyanurate, tris (butyl) isocyanurate, tris (2-hydroxyethyl) isocyanurate, melamine / isocyanuric acid condensate, polyethylene glycol, alkali metal salt of ethylene (meth) acrylic acid copolymer, Hydrophilic properties such as alkali metal salt of butadiene (meth) acrylic acid copolymer, alkali metal salt of carboxylated nitrile rubber, alkali metal salt of isobutylene-maleic anhydride copolymer, alkali metal salt of poly (meth) acrylic acid Examples thereof include hydrophilic organic substances such as polymers. When using a water-soluble inorganic substance, it is preferable that the addition amount is 0.01-1 weight part with respect to 100 weight part of polypropylene resins. When using hydrophilic organic substance, it is preferable that the addition amount is 0.1-5 weight part with respect to 100 weight part of polypropylene resins. Two or more of these water-soluble inorganic substances and hydrophilic organic substances may be used in combination.

これらの無機造核剤および/または吸水物質の添加量が不適切な場合、発泡粒子セル径が大きくなりすぎる場合や、微細になりすぎる場合がある。   When the addition amount of these inorganic nucleating agents and / or water-absorbing substances is inappropriate, the foamed particle cell diameter may be too large or too fine.

ポリプロピレン系樹脂に対して、必要に応じた添加剤として、溶融張力調整剤、造核剤、吸水剤、界面活性剤型もしくは高分子型の帯電防止剤、顔料、難燃性改良材、導電性改良材等を使用することができ、添加方法としては、通常、ポリプロピレン系樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   Additives necessary for polypropylene resins include melt tension modifiers, nucleating agents, water-absorbing agents, surfactant-type or polymer-type antistatic agents, pigments, flame retardants, and conductivity An improving material or the like can be used, and as an addition method, it is usually preferable to add to a molten resin in the production process of polypropylene resin particles.

ポリプロピレン系樹脂は、通常、発泡に利用されやすいようにあらかじめ押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融加工し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の形状のポリプロピレン系樹脂粒子とすることが出来る。ポリプロピレン系樹脂粒子の製造は、通常、所望の添加剤をポリプロピレン系樹脂にドライブレンドやマスターバッチブレンドにより添加して、押出機内で溶融混練したあと、押出機先端のダイスからストランド状に押出、水槽などで十分に冷却されたストランドをカットして粒子状に加工する方法や、ダイスから樹脂を直接水中に吐出しながら、粒子状にカットするアンダーウォーターカット方式等の方法が採られる。該押出機としては単軸押出機、二軸押出機などが使用される。加工の際の樹脂温度は樹脂の融点+30℃以上、250℃以下が好ましい。250℃を超えるとポリプロピレン系樹脂が分解劣化する場合がある。融点+30℃未満の樹脂温度では十分に混練されない場合や、押出機に過大な負荷がかかることがある。   Polypropylene resin is usually melt-processed in advance using an extruder, kneader, Banbury mixer, roll, etc. so as to be easily used for foaming, and is desired to have a cylindrical shape, elliptical shape, spherical shape, cubic shape, rectangular parallelepiped shape, etc. It can be set as the polypropylene resin particle of the shape. The production of polypropylene resin particles is usually performed by adding desired additives to polypropylene resin by dry blending or masterbatch blending, melt-kneading in the extruder, and extruding into a strand from the die at the tip of the extruder, water tank For example, a method of cutting the strand sufficiently cooled by a method such as cutting into particles, or an underwater cutting method in which the resin is directly discharged from a die into water while being cut into particles. As the extruder, a single screw extruder, a twin screw extruder or the like is used. The resin temperature during processing is preferably the melting point of the resin + 30 ° C. or more and 250 ° C. or less. If it exceeds 250 ° C., the polypropylene resin may be degraded and deteriorated. When the resin temperature is lower than the melting point + 30 ° C., the kneading may not be sufficient, or an excessive load may be applied to the extruder.

作製されたポリプロピレン系樹脂粒子は再加熱、特に発泡の際に変形することがあり、変形後の形状によっては成形時の金型へ充填が悪くなるため、適宜ポリプロピレン系樹脂粒子の形状を調整することが好ましい。   Produced polypropylene resin particles may be deformed during reheating, especially foaming, and depending on the shape after deformation, filling into the mold during molding becomes worse. It is preferable.

また、ポリプロピレン系樹脂粒子の平均粒重量は、好ましくは0.5〜3.0mg、より好ましくは0.5〜2.0mg、更に好ましくは0.5〜1.5mgである。   The average particle weight of the polypropylene resin particles is preferably 0.5 to 3.0 mg, more preferably 0.5 to 2.0 mg, and still more preferably 0.5 to 1.5 mg.

本発明のポリプロピレン系樹脂発泡粒子は、上述のポリプロピレン系樹脂粒子を後述の条件により発泡させることで得られる。   The polypropylene resin expanded particles of the present invention can be obtained by expanding the above-described polypropylene resin particles under the conditions described later.

本発明のポリプロピレン系樹脂発泡粒子は、好ましくは170℃での溶融粘度7500poise以上、12000poise以下である。更に好ましくは、8000poise以上、12000poise以下である。本発明において融点はDSC曲線により得られた融解ピークの温度としているが、実際は融点よりも低温、高温の結晶成分も存在する分布を示している。ポリプロピレン系樹脂にとって170℃という温度は、溶融延伸加工が可能であるが若干結晶の融け残りが存在しているような温度状態であり、そのときの溶融粘度はポリプロピレン系樹脂発泡粒子製造中や成形中の半溶融時の粘度、樹脂の粘り強さを間接的に反映している。溶融粘度が7500poise未満の場合、発泡時の樹脂の粘り強さが不足し、ポリプロピレン系樹脂発泡粒子の独立気泡率が低くなり成形困難となったり、型内蒸気成形の際に型内発泡成形体形状を保てず変形し、変形時の皺が養生しても残る場合がある。溶融粘度が12000poiseを超えては、半溶融時の樹脂に粘りがありすぎて目的とする高倍率のポリプロピレン系樹脂発泡粒子が得られにくい場合や、得られたとしても2%収縮開始温度が60℃未満になる場合がある。   The expanded polypropylene resin particles of the present invention preferably have a melt viscosity at 170 ° C. of 7500 poise or more and 12000 poise or less. More preferably, it is 8000 poise or more and 12000 poise or less. In the present invention, the melting point is the temperature of the melting peak obtained by the DSC curve, but actually shows a distribution in which crystal components at lower and higher temperatures than the melting point exist. For polypropylene resins, a temperature of 170 ° C. is a temperature state in which melt drawing processing is possible but there is some unmelted crystal, and the melt viscosity at that time is during the production of polypropylene resin foam particles and molding It indirectly reflects the viscosity during semi-melting and the tenacity of the resin. When the melt viscosity is less than 7500 poise, the resin does not have sufficient tenacity at the time of foaming, and the closed cell ratio of the polypropylene resin foamed particles becomes low, making it difficult to mold, or in-mold foam molding shape during in-mold steam molding It may be deformed without keeping it, and may remain even if the cocoon at the time of deformation is cured. When the melt viscosity exceeds 12000 poise, the resin at the time of semi-melting is too viscous, and it is difficult to obtain the desired high-magnification polypropylene-based resin expanded particles, or even if obtained, the 2% shrinkage start temperature is 60%. May be less than ℃.

また、本発明のポリプロピレン系樹脂発泡粒子の170℃での溶融張力は、好ましくは0.5g以上、1.8g以下である。更に好ましくは、0.5g以上1.6g以下である。溶融張力が0.5g未満の場合、ポリプロピレン系樹脂発泡粒子作製の際に気泡を保持する力が不足し、破泡しやすく、独立気泡を保つことが困難となる場合がある。溶融張力が1.8gを越えては、ポリプロピレン系樹脂発泡粒子作製時や発泡成形時にポリプロピレン系樹脂発泡粒子のセル膜に無理な延伸がかかりやすくなり、その結果、セル膜に潜在歪みが発生することがある。これにより発泡直後の収縮や養生時の加熱による収縮がおき、型内発泡成形体の発泡粒子間隙が開いて表面性が悪化したり、寸法精度が悪化したり、養生回復に長時間かかる場合がある。   Moreover, the melt tension at 170 ° C. of the expanded polypropylene resin particles of the present invention is preferably 0.5 g or more and 1.8 g or less. More preferably, it is 0.5 g or more and 1.6 g or less. When the melt tension is less than 0.5 g, the force for holding the bubbles is insufficient at the time of producing the polypropylene resin foamed particles, the bubbles are easily broken, and it may be difficult to keep the closed cells. When the melt tension exceeds 1.8 g, the cell membrane of the polypropylene resin foamed particles tends to be excessively stretched when the polypropylene resin foamed particles are produced or foamed, and as a result, latent distortion occurs in the cell membrane. Sometimes. As a result, shrinkage immediately after foaming or shrinkage due to heating during curing occurs, and the foamed particle gap of the in-mold foamed molding opens, surface properties deteriorate, dimensional accuracy deteriorates, and curing may take a long time to recover. is there.

本発明の溶融粘度および溶融張力の測定は、直径1mmφ×ランド長10mmのダイスを使用して170℃、剪断速度122sec-1にて押出を実施し、引取速度6m/min、ダイス先端と溶融張力測定用の滑車の接点距離は35cmの条件下で測定したときの値である。このとき周囲の雰囲気は25℃の湿度50%である。溶融張力はチャート上で振幅をもっているが、本発明では振幅の中央値を溶融張力とする。 The melt viscosity and melt tension of the present invention were measured by using a die having a diameter of 1 mmφ × land length of 10 mm and performing extrusion at 170 ° C. and a shear rate of 122 sec −1 , take-up speed of 6 m / min, die tip and melt tension. The contact distance of the measurement pulley is a value when measured under the condition of 35 cm. At this time, the ambient atmosphere has a humidity of 50% at 25 ° C. The melt tension has an amplitude on the chart, but in the present invention, the median value of the amplitude is the melt tension.

ポリプロピレン系樹脂発泡粒子の170℃での溶融粘度や溶融張力は、ポリプロピレン系樹脂と比して発泡させる工程においても殆ど変化しないため、本発明のポリプロピレン系樹脂発泡粒子の170℃での溶融粘度や溶融張力は発泡前のポリプロピレン系樹脂と同じと考えてよく、ポリプロピレン系樹脂の溶融粘度や溶融張力を調整することで所望の値とすることが出来る。   The melt viscosity and melt tension at 170 ° C. of the polypropylene resin expanded particles hardly change even in the step of foaming as compared with the polypropylene resin, so the melt viscosity of the polypropylene resin expanded particles of the present invention at 170 ° C. The melt tension may be considered to be the same as that of the polypropylene resin before foaming, and can be set to a desired value by adjusting the melt viscosity and melt tension of the polypropylene resin.

本発明のポリプロピレン系樹脂は半溶融時に適度な強度を持ちつつ、且つ、延伸に対して抵抗がない、潜在歪みを発生しにくいことが重要になる。このような樹脂の設計は高分子間の絡み合いが少ない方が好ましいが、溶融張力が適切な範囲にあれば高分子量成分や長鎖分岐、部分架橋がポリプロピレン系樹脂に存在をしていても構わない。ポリプロピレン系樹脂の溶融時の特性はポリプロピレン系樹脂の重合時の条件によって分子量分布や組成分布により決定されると考えられるが、溶融張力調整剤により意図的に制御することも可能である。   It is important that the polypropylene resin of the present invention has an appropriate strength at the time of semi-melting, has no resistance to stretching, and does not easily generate latent distortion. In designing such a resin, it is preferable that there is less entanglement between the polymers. However, if the melt tension is within an appropriate range, a high molecular weight component, long chain branching, or partial crosslinking may be present in the polypropylene resin. Absent. Although the properties at the time of melting of the polypropylene resin are considered to be determined by the molecular weight distribution and the composition distribution depending on the polymerization conditions of the polypropylene resin, it can be intentionally controlled by a melt tension adjusting agent.

意図的にポリプロピレン系樹脂の溶融粘度、溶融張力を制御する方法としては、溶融張力調整剤を使用する方法がある。溶融張力調整剤としては、有機過酸化物やポリプロピレン系オリゴマーがある。具体的には、ポリプロピレン系樹脂を有機過酸化物で分解させ溶融張力を低下させる方法や、ポリプロピレン系オリゴマーをポリプロピレン系樹脂に添加することにより溶融張力を低下させる方法が挙げられる。一例として、ポリプロピレン系樹脂を有機過酸化物で分解させるには、一般に押出機内で加熱溶融したポリプロピレン系樹脂に有機過酸化物を添加することによって行われる。有機過酸化物の使用量は、ポリプロピレン系樹脂100重量部に対して、0.001〜0.1重量部の範囲が好適である。市販のポリプロピレン系樹脂にも分子量分布の狭いものは、この方法で分子量分布を調整したものがあり、レオロジーコントロールあるいはビスブレーキングと呼ばれている。狭い分子量分布のポリプロピレン系樹脂は、高分子量成分が少ないため、発泡時、つまり半溶融延伸時に分子間の絡まりが少なく、溶融張力は適度な値となる。過酸化物処理の際、使用するポリプロピレン系樹脂の分子量を適宜選択し、170℃での溶融粘度が7500poise以上、12000poise以下の範囲になるようにする。使用する有機過酸化物としては、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシラウレート、2,5−ジメチル2,5ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、t−ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。   As a method for intentionally controlling the melt viscosity and melt tension of the polypropylene resin, there is a method using a melt tension adjusting agent. Examples of melt tension adjusting agents include organic peroxides and polypropylene oligomers. Specifically, a method of reducing the melt tension by decomposing a polypropylene resin with an organic peroxide and a method of reducing the melt tension by adding a polypropylene oligomer to the polypropylene resin can be mentioned. For example, in order to decompose a polypropylene resin with an organic peroxide, it is generally performed by adding an organic peroxide to a polypropylene resin heated and melted in an extruder. The amount of the organic peroxide used is preferably in the range of 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the polypropylene resin. Some commercially available polypropylene resins having a narrow molecular weight distribution are those in which the molecular weight distribution is adjusted by this method, which is called rheology control or visbreaking. A polypropylene resin having a narrow molecular weight distribution has few high molecular weight components, so that there is little entanglement between molecules at the time of foaming, that is, half melt stretching, and the melt tension becomes an appropriate value. During the peroxide treatment, the molecular weight of the polypropylene resin used is appropriately selected so that the melt viscosity at 170 ° C. is in the range of 7500 poise or more and 12000 poise or less. Examples of the organic peroxide to be used include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxylaurate, 2,5-dimethyl2,5di (benzoylperoxide). Oxy) hexane, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylperoxyisopropyl monocarbonate and the like.

ポリプロピレン系樹脂発泡粒子を製造するに当たり、使用する発泡剤に特に制限はなく、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の脂肪族炭化水素;空気、窒素、二酸化炭素等の無機ガス;水等が例示でき、これらは単独でも2種以上を併用しても使用することが出来る。発泡剤の使用量は、目的とする発泡倍率のポリプロピレン系樹脂発泡粒子を得るために異なるが、通常、ポリプロピレン系樹脂100重量部に対して3〜100重量部であることが好ましい。3重量部未満では所望の発泡倍率のポリプロピレン系樹脂発泡粒子が得られない場合があり、100重量部を超えると、ポリプロピレン系樹脂への発泡剤の溶解の飽和量以上になり、溶解しない発泡剤が無駄になる場合がある。また、適切な発泡剤の量でない場合に、ポリプロピレン系樹脂発泡粒子の平均セル径が細かくなりすぎる場合がある。   There are no particular restrictions on the foaming agent used to produce the expanded polypropylene resin particles, aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane; inorganic gases such as air, nitrogen, and carbon dioxide; water Etc., and these can be used alone or in combination of two or more. Although the amount of the foaming agent used is different in order to obtain polypropylene resin expanded particles having a desired expansion ratio, it is usually preferably 3 to 100 parts by weight with respect to 100 parts by weight of the polypropylene resin. If the amount is less than 3 parts by weight, the foamed polypropylene resin particles having a desired expansion ratio may not be obtained. If the amount exceeds 100 parts by weight, the amount of the foaming agent dissolved in the polypropylene resin exceeds the saturation amount and does not dissolve. May be wasted. If the amount of the foaming agent is not appropriate, the average cell diameter of the polypropylene resin foamed particles may be too fine.

本発明のポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器内に入れて、所定の温度まで加熱し、加圧下のもと、分散液を耐圧容器内よりも低圧雰囲気下に放出して得られるものである。具体的には、ポリプロピレン系樹脂粒子を、発泡剤、水、分散剤、分散助剤と共に耐圧容器内で分散させ、分散液を、好ましくはポリプロピレン系樹脂粒子の融点−25℃以上、融点+25℃以下の範囲、更に好ましくは融点−10℃以上、融点+10℃以下の範囲の温度に加熱するとともに発泡剤を含浸させ、耐圧容器内の温度、圧力を一定に保持しながら、加圧下で、分散液を耐圧容器内よりも低圧雰囲気下に放出することによりポリプロピレン系樹脂発泡粒子を製造するポリプロピレン系樹脂発泡粒子製造時に使用する耐圧容器には特に制限はなく、ポリプロピレン系樹脂発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えばオートクレーブ型の耐圧容器があげられる。   The expanded polypropylene resin particles of the present invention are prepared by placing a dispersion containing polypropylene resin particles, a foaming agent, water, a dispersing agent and a dispersion aid in a pressure vessel, heating to a predetermined temperature, Originally, it is obtained by discharging the dispersion into a low-pressure atmosphere rather than in the pressure vessel. Specifically, polypropylene resin particles are dispersed in a pressure vessel together with a foaming agent, water, a dispersant, and a dispersion aid, and the dispersion is preferably a melting point of polypropylene resin particles of −25 ° C. or higher, melting point + 25 ° C. Dispersion under pressure while heating to a temperature in the following range, more preferably in the range of melting point −10 ° C. or higher and melting point + 10 ° C. or lower and impregnating with a foaming agent, keeping the temperature and pressure in the pressure vessel constant. There are no particular restrictions on the pressure-resistant container used for producing polypropylene-based resin expanded particles by producing a polypropylene-based resin expanded particle by releasing the liquid in a low-pressure atmosphere than in the pressure-resistant container. Any material that can withstand the internal pressure and the internal temperature of the container may be used, and examples thereof include an autoclave type pressure resistant container.

本発明で使用することが出来る分散剤としては、例えば、第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、硫酸バリウム、カオリン等の無機系分散剤が挙げられるがこれに限った物ではない。   Examples of the dispersant that can be used in the present invention include tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, aluminosilicate, barium sulfate, and kaolin. However, the present invention is not limited to these.

本発明で使用することが出来る分散助剤としては、例えば、アルキルスルホン酸ソーダ、ドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。分散剤と分散助剤の組み合わせは、発泡剤などによって適宜調整することができる。   Examples of the dispersion aid that can be used in the present invention include sodium alkyl sulfonate, sodium dodecylbenzene sulfonate, n-paraffin sulfonic acid soda, and α-olefin sulfonic acid soda. The combination of the dispersant and the dispersion aid can be appropriately adjusted depending on the foaming agent.

分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2〜3重量部、分散助剤0.001〜0.1重量部であることが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20〜100重量部使用するのが好ましい。   The amount of dispersant and dispersion aid used varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 to 3 parts by weight of dispersant, 100 parts by weight of water, and dispersion aid. It is preferable that it is 0.001-0.1 weight part. Moreover, in order to make a polypropylene resin particle favorable in the dispersibility in water, it is preferable to use normally 20-100 weight part with respect to 100 weight part of water.

なお、本発明において、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器内に入れて、所定の温度まで加熱し、加圧下のもと、分散液を耐圧容器内よりも低圧雰囲気下に放出して発泡させることを「一段発泡」と称し、一段発泡で得られたポリプロピレン系樹脂発泡粒子を「一段発泡粒子」と称す場合がある。   In the present invention, a dispersion liquid containing polypropylene-based resin particles, foaming agent, water, dispersant, and dispersion aid is placed in a pressure vessel, heated to a predetermined temperature, and dispersed under pressure. In some cases, the liquid is discharged in a low-pressure atmosphere from the pressure-resistant container and foamed, and this is referred to as “one-stage foaming”, and the polypropylene-based resin foam particles obtained by one-stage foaming are sometimes referred to as “single-stage foam particles”.

以上の製造方法により真倍率5倍以上40倍以下のポリプロピレン系樹脂一段発泡粒子を作製する。発泡粒子の倍率が5倍未満の場合は後述する多段発泡を行っても発泡倍率バラツキが大きくなったりして、品質が不良になることがある。   The polypropylene resin single-stage expanded particles having a true magnification of 5 to 40 times are produced by the above production method. When the expansion ratio of the expanded particles is less than 5 times, even if the multistage expansion described later is performed, the expansion ratio varies greatly, and the quality may be deteriorated.

本発明では、真倍率20倍以上40倍以下のポリプロピレン系樹脂発泡粒子を成形に使用するため、真倍率が5倍以上20倍未満の一段発泡粒子が得られた場合は、さらに再発泡させ所望の発泡倍率になるように制御する。具体的には所望の倍率に満たない一段発泡粒子が得られた場合、該一段発泡粒子を密閉容器内に入れて窒素、空気などを含浸させる加圧処理により一段発泡粒子内の圧力を常圧以上にした後、該一段発泡粒子をスチーム等で加熱加圧して除圧、更に発泡させることにより、発泡倍率20倍以上40倍以下のポリプロピレン系樹脂発泡粒子を得ることができる。   In the present invention, polypropylene-based resin expanded particles having a true magnification of 20 times or more and 40 times or less are used for molding. Therefore, when single-stage expanded particles having a true magnification of 5 times or more and less than 20 times are obtained, they are further expanded and desired. The foaming ratio is controlled to be. Specifically, when single-stage expanded particles that do not satisfy the desired magnification are obtained, the pressure in the single-stage expanded particles is increased to normal pressure by a pressure treatment in which the single-stage expanded particles are placed in a sealed container and impregnated with nitrogen, air, or the like. After the above, the first-stage expanded particles are heated and pressurized with steam or the like to remove the pressure and further expand, thereby obtaining polypropylene-based resin expanded particles having an expansion ratio of 20 to 40 times.

ここで一段発泡粒子をさらに再発泡させることを「二段発泡」と称し、二段発泡で得られた発泡粒子を「二段発泡粒子」と称す場合がある。   Here, re-foaming the single-stage expanded particles is sometimes referred to as “two-stage foam”, and the foam particles obtained by the two-stage foam are sometimes referred to as “two-stage foam particles”.

二段発泡粒子でも所望の発泡倍率に達しない場合は、再度同様の操作を行い、三段、四段と繰り返すことで所望の発泡倍率とする。このように、再発泡することを多段発泡方法と称し、多段発泡方法によって得られた発泡粒子を総称して「多段発泡粒子」と称する。   If even the two-stage expanded particles do not reach the desired expansion ratio, the same operation is performed again, and the desired expansion ratio is obtained by repeating the third and fourth stages. Thus, re-foaming is referred to as a multistage foaming method, and foamed particles obtained by the multistage foaming method are collectively referred to as “multistage foamed particles”.

多段発泡の一例として、二段発泡を行う場合、二段発泡させる際の一段発泡粒子内の圧力は、1.5〜7.0kg/cm2が好ましく、特に2.0〜5.5kg/cm2が好ましい。加熱加圧条件は、密閉容器中で粒子同士が溶融したり接着したりしない温度を適宜選択する。一段発泡粒子内の圧力が1.5kg/cm2未満の場合、二段発泡の効果が少なく殆ど倍率が増加しない場合があり、7.0kg/cm2以上の場合、発泡倍率バラツキが大きくなることがある。 As an example of multi-stage foaming, when performing two-stage foaming, the pressure in the first-stage foamed particles during the two-stage foaming is preferably 1.5 to 7.0 kg / cm 2 , particularly 2.0 to 5.5 kg / cm 2. 2 is preferred. The heating and pressing conditions are appropriately selected at a temperature at which the particles do not melt or adhere in the sealed container. If the pressure in the first-stage expanded particles is less than 1.5 kg / cm 2 , the effect of the second-stage expansion may be small and the magnification may hardly increase. If the pressure is greater than 7.0 kg / cm 2 , the variation in the expansion ratio will increase. There is.

以上のように、一段発泡または二段発泡以上の多段発泡方法により、成形に使用できる真倍率20倍以上40倍以下のポリプロピレン系樹脂発泡粒子を製造する。   As described above, polypropylene-based resin expanded particles having a true magnification of 20 times or more and 40 times or less that can be used for molding are produced by a multistage foaming method of one-stage foaming or two-stage foaming or more.

本発明においてポリプロピレン系樹脂発泡粒子は、特に断りのない限り、型内発泡成形に供する直前のものをいい、例えば、二段発泡を行った場合は、二段発泡粒子のことである。本発明の発泡粒子は、発泡粒子の表面層を特定条件で加熱した際、特定の収縮挙動を有するが、この様な性質を獲得させやすい一つの方法として、多段発泡方法がある。   In the present invention, the polypropylene-based resin expanded particles are those immediately before being subjected to in-mold foam molding unless otherwise specified. For example, when two-stage foaming is performed, the two-stage foamed particles. The foamed particles of the present invention have a specific shrinkage behavior when the surface layer of the foamed particles is heated under specific conditions. One method for easily obtaining such properties is a multistage foaming method.

真倍率が20倍未満のポリプロピレン系樹脂発泡粒子を成形に使用すると目的とする発泡倍率の型内発泡成形体が得られない。真倍率が40倍より大きい場合は金型成形の際に型内発泡成形体が収縮・変形しやすくなり、所望の形状が得られない場合がある。   If polypropylene resin foamed particles having a true magnification of less than 20 times are used for molding, an in-mold foam-molded product having a desired expansion ratio cannot be obtained. When the true magnification is larger than 40 times, the in-mold foam molded product easily contracts and deforms during mold molding, and a desired shape may not be obtained.

ここでポリプロピレン系樹脂発泡粒子の真倍率は、ポリプロピレン系樹脂発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のポリプロピレン系樹脂粒子の密度d(g/cm3)から次式により求めたものである。
真倍率=d×v/w
Here, the true magnification of the polypropylene resin foam particles is obtained by determining the weight w (g) and the ethanol submerged volume v (cm 3 ) of the polypropylene resin foam particles, and the density d (g / cm 3 ) of the polypropylene resin particles before foaming. ) From the following equation.
True magnification = d × v / w

本発明のポリプロピレン系樹脂発泡粒子の平均セル径は好ましくは200μm以上500μm以下である。平均セル径が200μm未満の場合、セル膜は薄く引き延ばされて延伸が大きくかかっており、金型成形時の収縮・変形、表面性の悪化の原因になる場合がある。また500μmより大きい場合には、型内発泡成形体表面に皺が発生し、型内発泡成形体外観が不良となる場合がある。   The average cell diameter of the expanded polypropylene resin particles of the present invention is preferably 200 μm or more and 500 μm or less. When the average cell diameter is less than 200 μm, the cell membrane is thinly stretched and stretched greatly, which may cause shrinkage / deformation and deterioration of surface properties during molding. On the other hand, if it is larger than 500 μm, wrinkles are generated on the surface of the in-mold foam molded product, and the appearance of the in-mold foam molded product may be poor.

平均セル径が当該範囲のポリプロピレン系樹脂発泡粒子を得るには、ポリプロピレン系樹脂中の添加剤や発泡剤の種類、使用量、発泡圧力を適宜調整することで得られる。   In order to obtain polypropylene resin foamed particles having an average cell diameter in the above range, it can be obtained by appropriately adjusting the type, amount of use, and foaming pressure of the additive and foaming agent in the polypropylene resin.

ポリプロピレン系樹脂発泡粒子の平均セル径は、ポリプロピレン系樹脂発泡粒子のほぼ直径を含むような切断面を顕微鏡により観察、撮影し、ポリプロピレン系樹脂発泡粒子のほぼ中央を通る直線を引き、ポリプロピレン系樹脂発泡粒子表面との2カ所の交点の距離(L)と該直線が貫通している気泡数(n)より以下のように求める。
平均セル径=L/n
The average cell diameter of the expanded polypropylene resin particles is obtained by observing and photographing a cut surface that includes almost the diameter of the expanded polypropylene resin particles with a microscope, and drawing a straight line passing through the approximate center of the expanded polypropylene resin particles. From the distance (L) of the two intersections with the surface of the expanded particle and the number of bubbles (n) through which the straight line penetrates, the following is obtained.
Average cell diameter = L / n

本発明のポリプロピレン系樹脂発泡粒子を示差走査熱量計(DSC)で測定したとき、DSC曲線において、低温側と高温側に2つの融解ピークを有し、DSC高温側融解ピーク熱量比(以下、単にDSCピーク比と称す場合がある)が10〜50%の範囲にあることが好ましい。DSCピーク比の測定方法は、試料3〜6mgを40℃〜220℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、低温側ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である、低温側の融解ピーク熱量QLと、DSC曲線の高温側ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量QHから、
DSCピーク比(%)=QH/(QH+QL)×100
として求められる。DSCピーク比が当該範囲であると、表面性のよい型内発泡成形体が得られやすい。
When the polypropylene resin expanded particles of the present invention were measured with a differential scanning calorimeter (DSC), the DSC curve had two melting peaks on the low temperature side and the high temperature side, and the DSC high temperature side melting peak calorie ratio (hereinafter simply referred to as “DSC high temperature side melting peak calorie ratio”). (It may be referred to as DSC peak ratio) is preferably in the range of 10 to 50%. In the DSC curve obtained when the sample is heated at a rate of 10 ° C./min from 40 ° C. to 220 ° C., the DSC peak ratio is measured between the low temperature side peak, the low temperature side peak, and the high temperature side peak. The amount of heat surrounded by the tangent to the melting start baseline from the local maximum point, the melting peak calorie QL on the low temperature side, and the melting end from the local maximum point between the high temperature side peak, the low temperature side peak, and the high temperature side peak of the DSC curve From the high temperature side melting peak calorific value QH, which is the amount of heat surrounded by the tangent to the baseline,
DSC peak ratio (%) = QH / (QH + QL) × 100
As required. When the DSC peak ratio is within this range, an in-mold foam molded article with good surface properties can be easily obtained.

本発明のポリプロピレン系樹脂発泡粒子を型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)あらかじめポリプロピレン系樹脂発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)ポリプロピレン系樹脂発泡粒子を圧縮状態で金型内に充填し成形する方法、など従来既知の方法が使用しうる。   When the polypropylene resin foamed particles of the present invention are used for in-mold foam molding, a) a method of using as it is, b) a method of previously injecting an inorganic gas such as air into the polypropylene resin foamed particles to impart foaming ability. C) Conventionally known methods such as a method of filling polypropylene resin foamed particles in a mold in a compressed state and molding may be used.

本発明のポリプロピレン系樹脂発泡粒子から型内発泡成形体を成形する方法としては、例えば、ロ)の方法を用いると、あらかじめポリプロピレン系樹脂発泡粒子を耐圧容器内で空気加圧し、粒子中に空気を圧入することにより発泡力を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.15MPa〜0.33MPa(ゲージ圧)程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリプロピレン系樹脂発泡粒子同士を融着させこのあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き、型内発泡成形体を得る方法などが挙げられる。ロ)の方法において、あらかじめポリプロピレン系樹脂発泡粒子内に空気を圧入する場合、耐圧容器は常温でもよいが、容器を加熱して空気加圧(加熱加圧)すると、粒子中への空気の圧入を短時間で行えるため、生産効率が高くなり好ましい。   As a method for forming an in-mold foam molded article from the polypropylene resin foam particles of the present invention, for example, when the method b) is used, the polypropylene resin foam particles are previously air-pressurized in a pressure-resistant container, and air is contained in the particles. Is injected into the mold, which can be closed but cannot be sealed, and is heated to a water vapor pressure of about 0.15 MPa to 0.33 MPa (gauge pressure) using water vapor as a heating medium. In the heating time of about 3 to 30 seconds, the polypropylene resin foamed particles are fused to each other, and then the molding die is cooled with water to the extent that deformation of the in-mold foam molded body after taking out the in-mold foam molded body can be suppressed. Examples of the method include a method of opening a mold after cooling and obtaining an in-mold foam molded article. In the method of (b), when air is press-fitted into the polypropylene resin foam particles in advance, the pressure vessel may be at room temperature, but when the vessel is heated and pressurized with air (heat pressurization), the air is injected into the particles. Can be carried out in a short time, which is preferable because production efficiency is increased.

本発明のポリプロピレン系樹脂発泡粒子は、融点の低いポリプロピレン系樹脂発泡粒子を使用しているため、場合によっては0.15MPa程度の加熱成形圧が低い場合でも成形が出来る点に特徴を有している。   Since the polypropylene resin expanded particles of the present invention use polypropylene resin expanded particles having a low melting point, in some cases, the polypropylene resin expanded particles can be molded even when the heat molding pressure of about 0.15 MPa is low. Yes.

本発明において、型内発泡成形によりポリプロピレン系樹脂型内発泡成形体を得ることが出来る。得られた型内発泡成形体の発泡倍率は、好ましくは30〜50倍である。   In the present invention, a polypropylene resin in-mold foam molded product can be obtained by in-mold foam molding. The expansion ratio of the obtained in-mold foam molded article is preferably 30 to 50 times.

型内発泡成形体の発泡倍率は、型内発泡成形体のエタノール水没体積(cm3)を重量(g)で除して、発泡前の樹脂粒子の密度(g/cm3)を乗じたものである。 The expansion ratio of the in-mold foam molded product is obtained by dividing the ethanol submerged volume (cm 3 ) of the in-mold foam molded product by the weight (g) and multiplying by the resin particle density (g / cm 3 ) before foaming. It is.

以下、本発明を実施例、比較例によって詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.

実施例、比較例で用いたポリプロピレン系樹脂を表1に、発泡粒子作製条件および諸物性を表2に示した。また、成形評価結果を表3に示した。   Table 1 shows the polypropylene resins used in Examples and Comparative Examples, and Table 2 shows conditions for producing expanded particles and various physical properties. The molding evaluation results are shown in Table 3.

各種項目の測定および評価は以下の様に実施した。 Measurement and evaluation of various items were performed as follows.

<融点の測定>
セイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事によりポリプロピレン系樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度を融点とした。
<Measurement of melting point>
Using a DSC6200 differential scanning calorimeter manufactured by Seiko Instruments Inc., 5-6 mg of polypropylene resin particles are heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min. From the DSC curve obtained by melting and then crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, and then increasing the temperature from 40 ° C. to 220 ° C. at 10 ° C./min. The melting peak temperature when the temperature was raised was defined as the melting point.

<溶融粘度・溶融張力の測定>
ポリプロピレン系樹脂の溶融粘度および溶融張力の測定は発泡前の樹脂を使用して測定を行った。キャピログラフ(東洋精機製)を使用して、直径1mmφ×ランド長10mmのダイスを使用して170℃、剪断速度122sec-1にて押出を実施し、引取速度6m/min、ダイス先端と溶融張力測定用の滑車の接点距離は35cmの条件下で測定したときの値である。このとき周囲の雰囲気は25℃の湿度50%である。溶融張力はチャート上で振幅をもっているが、本発明では振幅の中央値を溶融張力とする。
<Measurement of melt viscosity and melt tension>
The melt viscosity and melt tension of the polypropylene resin were measured using the resin before foaming. Using a capillograph (manufactured by Toyo Seiki Co., Ltd.), extrusion was performed at 170 ° C. and a shear rate of 122 sec −1 using a die having a diameter of 1 mmφ × land length of 10 mm, a take-up speed of 6 m / min, a die tip and melt tension measurement. The contact distance of the pulley is a value when measured under the condition of 35 cm. At this time, the ambient atmosphere has a humidity of 50% at 25 ° C. The melt tension has an amplitude on the chart, but in the present invention, the median value of the amplitude is the melt tension.

<ポリプロピレン系樹脂発泡粒子の真倍率>
成形に使用したポリプロピレン系樹脂発泡粒子の嵩体積約50cmの重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前の樹脂粒子の密度d(g/cm3)から次式により求めた。
真倍率=d×v/w
使用した発泡粒子が二段発泡品の場合は一段の真倍率も記載した。
<True magnification of expanded polypropylene resin particles>
The bulk volume of about 50 cm 3 of weight w of using the molded polypropylene resin expanded particles (g) and ethanol submerged volume v the (cm 3) calculated by the following formula from the density d of before foaming of the resin particles (g / cm 3) Determined by
True magnification = d × v / w
When the foamed particles used were two-stage foamed products, the true magnification of one stage was also described.

<内部平均セル径>
ポリプロピレン系樹脂発泡粒子10個、それぞれのほぼ直径を含むような切断面を顕微鏡により観察、撮影し、各ポリプロピレン系樹脂発泡粒子のほぼ中央を通る直線を引き、ポリプロピレン系樹脂発泡粒子表面との2カ所の交点の距離(Li)と該直線が貫通している気泡数(ni)より以下のように求め、更に10個の相加平均とした。
セル径Ri=Li/ni
平均セル径=Riの10個の相加平均
<Internal average cell diameter>
10 polypropylene resin expanded particles, each cut surface including substantially the diameter is observed and photographed with a microscope, and a straight line passing through substantially the center of each polypropylene resin expanded particle is drawn, and 2 with the polypropylene resin expanded particle surface. It calculated | required as follows from the distance (Li) of the intersection of a place, and the number of bubbles (ni) which this straight line penetrated, and also set it as the arithmetic mean of ten pieces.
Cell diameter Ri = Li / ni
10 arithmetic averages of average cell diameter = Ri

<発泡粒子表面部位の2%収縮開始温度の測定>
ポリプロピレン系樹脂発泡粒子10個についてBrukerAXS製、TMA4000SAを使用し引張荷重法で測定を実施した。図1に示すように発泡粒子の表面部位から長さ12mm×幅1mm×厚み0.1mmのフィルムサンプルを切り出し、サンプルを挟み込むチャック間距離(サンプル測定長)を10mmになるように装置にセットし、引張荷重0.1gをかけて25℃で安定した時点で位置をゼロとし、10℃/minの昇温速度で融点付近まで昇温し、200μm収縮した温度を2%収縮開始温度とした。各ポリプロピレン系樹脂発泡粒子10個の2%収縮温度を求め、相加平均とした。
<Measurement of 2% shrinkage start temperature of foam particle surface part>
Ten polypropylene resin expanded particles were measured by a tensile load method using TMA4000SA manufactured by Bruker AXS. As shown in FIG. 1, a film sample having a length of 12 mm, a width of 1 mm, and a thickness of 0.1 mm is cut out from the surface portion of the expanded particle, and the distance between the chucks (sample measurement length) for sandwiching the sample is set to 10 mm. When the tensile load of 0.1 g was applied and the temperature was stabilized at 25 ° C., the position was zero, the temperature was raised to the vicinity of the melting point at a temperature increase rate of 10 ° C./min, and the temperature contracted by 200 μm was defined as the 2% contraction start temperature. The 2% shrinkage temperature of 10 expanded polypropylene resin particles was determined and used as the arithmetic average.

<加熱加圧処理特性>
ポリプロピレン系樹脂発泡粒子に発泡力を付与するために、予め耐圧容器内で50℃に加熱した空気で加圧、該粒子中に空気を圧入促進するときに、加熱空気による発泡粒子の倍率変化が起きるかどうかについて調査した。
倍率の変化が5%以内のもの:○
倍率の変化が5%以上のもの:×
<Heat and pressure treatment characteristics>
In order to impart foaming force to the polypropylene resin foamed particles, when the air is pressurized with air heated to 50 ° C. in advance in a pressure resistant container and the air is promoted to press into the particles, the magnification change of the foamed particles by the heated air is changed. I investigated whether it happened.
Change in magnification within 5%: ○
When the change in magnification is 5% or more: ×

<発泡粒子DSCピーク比>
ポリプロピレン系樹脂発泡粒子を示差走査熱量計(DSC)で測定した。発泡粒子3〜6mgを40℃〜220℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、低温側ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である、低温側の融解ピーク熱量QLと、DSC曲線の高温側ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量QHから、
DSCピーク比(%)=QH/(QH+QL)×100
として求めた。
<Foamed particle DSC peak ratio>
The polypropylene resin expanded particles were measured with a differential scanning calorimeter (DSC). In the DSC curve obtained when 3-6 mg of expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min, the melting start base from the maximum point between the low temperature side peak, the low temperature side peak, and the high temperature side peak Surrounded by the tangent to the melting end baseline from the maximum point between the high temperature side peak and the low temperature side peak and the high temperature side peak of the DSC curve, which is the amount of heat surrounded by the tangent to the line From the high temperature side melting peak calorific value QH, which is the amount of heat generated,
DSC peak ratio (%) = QH / (QH + QL) × 100
As sought.

<対金型収縮率(収縮率)>
400×300×22mmの板状の型内発泡成形体をポリプロピレン系樹脂発泡粒子により成形・冷却後金型から取り出し、25℃、50%rhに1時間放置した後、75℃で8時間養生した後、再度25℃、50%Rhに12時間放置し、縦・横・厚み寸法を測定し金型寸法に対する収縮率を求めた。その後、縦・横・厚みの収縮率の平均を求め、平均収縮率とした。平均収縮率3.0%以下のものを○、3.0%より大きいものを×とした。平均収縮率が3.0%より大きくなると、型内発泡成形体の寸法精度が悪くなり、実用上問題があるとされている。
<Shrinkage against mold (shrinkage)>
A 400 × 300 × 22 mm plate-like in-mold foam molded product was molded and cooled with polypropylene resin foam particles, taken out from the mold, allowed to stand at 25 ° C. and 50% rh for 1 hour, and then cured at 75 ° C. for 8 hours. Thereafter, the sample was left again at 25 ° C. and 50% Rh for 12 hours, and the vertical, horizontal, and thickness dimensions were measured to determine the shrinkage ratio relative to the mold dimensions. Thereafter, the average of the shrinkage ratios of the length, width, and thickness was obtained and used as the average shrinkage ratio. Those having an average shrinkage of 3.0% or less were rated as “○”, and those having an average shrinkage greater than 3.0% were evaluated as “x”. When the average shrinkage rate is larger than 3.0%, the dimensional accuracy of the in-mold foam molded article is deteriorated, and it is considered that there is a problem in practical use.

<型内発泡成形体変形評価(変形)>
対金型収縮率を測定した板状の型内発泡成形体の外観を目視観察し、ヒケ(凹み)やヒケに由来すると思われるおおきな皺(1cm以上の筋)がほとんど無いものは○、僅かに皺があるがヒケがないものは△、皺が多く形状全体が波打っているものを×とした。
<In-mold foam molding deformation evaluation (deformation)>
The appearance of the plate-like in-mold foam-molded product whose mold shrinkage was measured was visually observed, and those that had almost no sink marks (dents) or large wrinkles (streaks of 1 cm or more) that would be derived from sink marks were ○. In the case where there is a wrinkle but there is no sink, Δ is marked, and a case where there are many wrinkles and the entire shape is waved is marked with ×.

<成形体辺部伸び評価(伸び)>
型内発泡成形体変形評価を実施した板状(直方体)の型内発泡成形体の12辺部を観察し、辺に発泡粒子が十分伸びなかったためにできた隙間個数を求める、もしくは発泡粒子形状がそのまま残って辺のエッジが出ていないことを観察して以下の判定とした。
隙間無し・・・◎
5個未満・・・○
5個以上10個以下・・・△
辺のエッジが出ていない・・・×
<Evaluation of molded body side elongation (elongation)>
Observe the 12 sides of the plate-shaped (rectangular) in-mold foam molded body subjected to the deformation evaluation of the in-mold foam molded body, and obtain the number of gaps formed because the foam particles did not extend sufficiently on the side, or the foam particle shape The following judgment was made by observing that no edge was left and no edge was left.
No gap ... ◎
Less than 5 ... ○
5 or more and 10 or less ... △
The edge of the side does not come out ... ×

<表面性評価(養生前後粒子間隙)>
型内発泡成形体変形評価を実施した板状の型内発泡成形体の表面を観察し、10cm当たりの発泡粒子間の1mm以上の陥没や間隙の平均個数を求めて以下の判定とした。
30箇所未満・・・○
30箇所以上100個未満・・・△
100箇所以上・・・×
<Surface property evaluation (particle gap before and after curing)>
The surface of the plate-like in-mold foam molded body subjected to the in-mold foam molded body deformation evaluation was observed, and the average number of depressions or gaps of 1 mm 2 or more between the foam particles per 10 cm 2 was determined as the following judgment. .
Less than 30 ... ○
30 or more and less than 100 ... △
More than 100 ... ×

<融着性評価(融着斑)>
表面性評価を実施した板状の型内発泡成形体を、カッターナイフで型内発泡成形体の厚み方向に約2mmの切り込みを入れた後、手で切り込み部から型内発泡成形体を破断し、破断面を観察して、破壊されたポリプロピレン系樹脂発泡粒子と破壊されないポリプロピレン系樹脂発泡粒子の分布状態を観察した。
全体的に融着している場合:○
融着斑がある場合:×
<Fusability evaluation (fusion spot)>
The plate-shaped in-mold foam molded body for which surface properties were evaluated was cut with a cutter knife in the thickness direction of the in-mold foam molded body, and then the in-mold foam molded body was broken by hand from the cut portion. By observing the fracture surface, the distribution state of the broken polypropylene resin foam particles and the unbreakable polypropylene resin foam particles was observed.
When fused as a whole: ○
If there are fusing spots: ×

<型内発泡成形体の発泡倍率>
融着性評価を実施した板状の型内発泡成形体より、嵩体積約50cmのブロックを切り出し、その重量W(g)およびエタノール水没体積V(cm)を求め、発泡前の樹脂粒子の密度d(g/cm)から次式により求める。
発泡倍率=d×V/W
<Foaming ratio of in-mold foam molding>
A block having a bulk volume of about 50 cm 3 is cut out from the plate-like in-mold foam molded body subjected to the evaluation of fusion property, and its weight W (g) and ethanol submerged volume V (cm 3 ) are obtained. It calculates | requires by following Formula from the density d (g / cm < 3 >) of this.
Foaming ratio = d × V / W

(実施例1)
ポリプロピレン系樹脂として、エチレン−プロピレンランダム共重合体(A2)100重量部に溶融張力調整剤として有機過酸化物を使用して得られた融点137.2℃のエチレン−プロピレンランダム共重合体(A3)を使用し、セル造核剤としてポリエチレングリコール0.5重量部およびタルク0.1重量部をドライブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。溶融混練した樹脂を直径2mmの円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
Example 1
As a polypropylene resin, an ethylene-propylene random copolymer (A3) having a melting point of 137.2 ° C. obtained by using an organic peroxide as a melt tension adjusting agent in 100 parts by weight of an ethylene-propylene random copolymer (A2). ) And 0.5 parts by weight of polyethylene glycol and 0.1 parts by weight of talc as a cell nucleating agent were dry blended, and then a 50 mm single-screw extruder (20VSE-50-28, manufactured by Osaka Seiki Co., Ltd.) The mixture was melt-kneaded inside. The melt-kneaded resin was extruded in a strand shape from a circular die having a diameter of 2 mm, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.2 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部、水300重量部、分散剤としてカオリン(エンゲルハード社製ASP−170)0.8重量部、分散助剤としてドデシルベンゼンスルホン酸ナトリウム0.02重量部を容量10Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤として炭酸ガスを6重量部添加した。オートクレーブ内容物を昇温し、143℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.0MPa(ゲージ圧)とした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、4.0mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出してポリプロピレン系樹脂ポリプロピレン系樹脂発泡粒子を得た。得られたポリプロピレン系樹脂発泡粒子(一段発泡粒子)の真倍率は11倍、DSCピーク比は21%であった。さらに、得られたポリプロピレン系樹脂発泡粒子を耐圧容器内に入れ加熱空気加圧処理を行い、ポリプロピレン系樹脂発泡粒子内部の空気圧力(以下内圧と呼ぶ)を0.36MPaとした。このとき一段発泡粒子の真倍率は変化しなかった。この内圧0.36MPaの一段発泡粒子を0.12MPa(ゲージ圧)の蒸気により加熱膨張、二段発泡させ、真倍率約30倍、セル径320μm、DSC比21%のポリプロピレン系樹脂(二段)発泡粒子(A3C1)を得た。   100 parts by weight of the obtained polypropylene resin particles, 300 parts by weight of water, 0.8 part by weight of kaolin (ASP-170 manufactured by Engelhard) as a dispersant, 0.02 part by weight of sodium dodecylbenzenesulfonate as a dispersion aid Into a pressure-resistant autoclave having a capacity of 10 L, 6 parts by weight of carbon dioxide gas was added as a foaming agent under stirring. After the temperature of the autoclave was raised and heated to a foaming temperature of 143 ° C., carbon dioxide was further added to adjust the autoclave internal pressure to 3.0 MPa (gauge pressure). Then, after holding for 30 minutes, the valve | bulb of the autoclave lower part was opened, the autoclave content was discharge | released under atmospheric pressure through the 4.0 mm diameter opening orifice, and the polypropylene resin polypropylene resin expanded particle was obtained. The obtained polypropylene resin expanded particles (single-stage expanded particles) had a true magnification of 11 times and a DSC peak ratio of 21%. Furthermore, the obtained polypropylene resin foamed particles were placed in a pressure resistant container and subjected to a heated air pressurizing treatment, and the air pressure inside the polypropylene resin foamed particles (hereinafter referred to as internal pressure) was set to 0.36 MPa. At this time, the true magnification of the first-stage expanded particles did not change. This one-stage expanded particle with an internal pressure of 0.36 MPa is heated and expanded by steam of 0.12 MPa (gauge pressure), expanded in two stages, and a polypropylene resin (two-stage) with a true magnification of about 30 times, a cell diameter of 320 μm, and a DSC ratio of 21%. Expanded particles (A3C1) were obtained.

得られたポリプロピレン系樹脂発泡粒子(A3C1)は再度加熱空気加圧処理を行い、内圧0.19MPaになるように調整した。このとき発泡倍率は変化していなかった。このポリプロピレン系樹脂発泡粒子(A3C1)をダイセン株式会社製ポリオレフィン発泡成形機KD−345を用い、縦300mm×横400mm×厚み22mmの金型に充填し、0.21MPa(ゲージ圧)の水蒸気で厚み方向に5%圧縮して加熱成形させることにより、ポリプロピレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体は25℃×50%rhで1時間放置した後、75℃の恒温室内で8時間養生乾燥を行い、再び25℃×50%rhで1時間放置した後に各種評価、観察を実施した。型内発泡成形体の評価結果を表3に示す。   The obtained expanded polypropylene resin particles (A3C1) were heated and pressurized again to adjust the internal pressure to 0.19 MPa. At this time, the expansion ratio did not change. The polypropylene resin expanded particles (A3C1) are filled into a mold having a length of 300 mm, a width of 400 mm and a thickness of 22 mm using a polyolefin foam molding machine KD-345 manufactured by Daisen Co., Ltd., and the thickness thereof is 0.21 MPa (gauge pressure) with water vapor. By compressing 5% in the direction and heat-molding, a polypropylene resin in-mold foam molded product was obtained. The obtained in-mold foam molded product was left to stand at 25 ° C. × 50% rh for 1 hour, then cured and dried in a constant temperature room at 75 ° C. for 8 hours, and again left at 25 ° C. × 50% rh for 1 hour to make various evaluations. Observed. Table 3 shows the evaluation results of the in-mold foam molding.

(実施例2)
ポリプロピレン系樹脂として、表1記載のA1、表2記載の添加剤配合、及び発泡粒子製造条件とし、二段発泡条件を適宜調整した以外は、実施例1と同様の方法にて、真倍率約30倍のポリプロピレン系樹脂(二段)発泡粒子(A1C1)を得た。得られたポリプロピレン系樹脂発泡粒子(A1C1)に関して、0.27MPa(ゲージ圧)の水蒸気圧で成形を実施し、実施例1と同様の方法にてポリプロピレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体は実施例1と同様の評価を行った。型内発泡成形体の評価結果を表3に示す。
(Example 2)
As the polypropylene-based resin, A1 shown in Table 1, additive composition shown in Table 2, and foamed particle production conditions, except that the two-stage foaming conditions were appropriately adjusted, the true magnification was about 30-fold polypropylene resin (two-stage) expanded particles (A1C1) were obtained. The obtained polypropylene resin expanded particles (A1C1) were molded at a water vapor pressure of 0.27 MPa (gauge pressure), and a polypropylene resin in-mold foam molded product was obtained in the same manner as in Example 1. The obtained in-mold foam molded article was evaluated in the same manner as in Example 1. Table 3 shows the evaluation results of the in-mold foam molding.

(比較例1)
ポリプロピレン系樹脂として、実施例2と同じ表1記載のA1を使用し、セル造核剤としてタルク0.1重量部をドライブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。溶融混練した樹脂を直径2mmの円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
(Comparative Example 1)
A1 of Table 1 same as Example 2 was used as a polypropylene-based resin, 0.1 parts by weight of talc was dry blended as a cell nucleating agent, and then a 50 mm single screw extruder (20 VSE manufactured by Osaka Seiki Co., Ltd.). -50-28 type). The melt-kneaded resin was extruded in a strand shape from a circular die having a diameter of 2 mm, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.2 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部、水300重量部、分散剤として第三リン酸カルシウム(太平化学産業社製)2重量部、分散助剤としてアルキルスルホン酸ナトリウム0.04重量部を容量4.5Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤としてイソブタンを28重量部添加した。オートクレーブ内容物を昇温し、136.0℃の発泡温度まで加熱した。その後、30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出してポリプロピレン系樹脂発泡粒子を得た。得られたポリプロピレン系樹脂発泡粒子(A1B1)の発泡倍率は約30倍、セル径は270μm、DSCピーク比は22%であった。   3. 100 parts by weight of the obtained polypropylene resin particles, 300 parts by weight of water, 2 parts by weight of tricalcium phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) as a dispersing agent, and 0.04 part by weight of sodium alkylsulfonate as a dispersing aid. Into a 5 L pressure-resistant autoclave, 28 parts by weight of isobutane was added as a blowing agent with stirring. The autoclave contents were heated to a foaming temperature of 136.0 ° C. Then, after holding for 30 minutes, the valve | bulb of the autoclave lower part was opened, the autoclave content was discharge | released under atmospheric pressure through the opening orifice of diameter 4.0mm, and the polypropylene resin expanded particle was obtained. The obtained expanded polypropylene resin particles (A1B1) had an expansion ratio of about 30 times, a cell diameter of 270 μm, and a DSC peak ratio of 22%.

得られたポリプロピレン系樹脂発泡粒子(A1B1)は、0.27MPa(ゲージ圧)の水蒸気で加熱成形させることにより、ポリプロピレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体は実施例1と同様の評価を行った。結果を表3に示す。   The obtained polypropylene resin expanded particles (A1B1) were heat-molded with water vapor of 0.27 MPa (gauge pressure) to obtain a polypropylene resin in-mold expanded foam. The obtained in-mold foam molded article was evaluated in the same manner as in Example 1. The results are shown in Table 3.

(比較例2)
表2記載の樹脂種、添加剤配合、及び発泡粒子製造条件とし、二段発泡条件を適宜調整した以外は、実施例1と同様の方法にて、真倍率約30倍のポリプロピレン系樹脂(二段)発泡粒子(A2C1)を得た。成形前に耐圧容器を60℃として加熱空気加圧処理を行い、内圧0.19MPaになるように調整しようとしたが、発泡粒子が収縮し、真倍率が低下したため発泡粒子の倍率制御ができなくなった。
(Comparative Example 2)
Polypropylene resin having a true magnification of about 30 times (two times) in the same manner as in Example 1 except that the resin type, additive formulation, and foamed particle production conditions shown in Table 2 were used, and the two-stage foaming conditions were appropriately adjusted. Step) Expanded particles (A2C1) were obtained. Prior to molding, the pressure vessel was set to 60 ° C. and heated air pressure treatment was performed to adjust the internal pressure to 0.19 MPa. However, the foam particles contracted and the true magnification decreased, making it impossible to control the magnification of the foam particles. It was.

以上の実施例では、いずれも型内発泡成形体の対金型収縮率、型内発泡成形体変形、辺部伸び、粒子間隙、融着斑とも良好であった。   In the above Examples, the mold shrinkage ratio of the in-mold foam molded article, the deformation of the in-mold foam molded article, the side elongation, the particle gap, and the fusion spots were all good.

比較例1では、2%収縮開始温度が融点−25℃以上で、本発明の範囲外であり、表面性に若干劣り、融着斑のある型内発泡成形体となった。また、比較例2では、2%収縮開始温度が60℃以下で、本発明の範囲外であり、加熱加圧処理工程で発泡粒子が収縮してしまうため生産管理が困難となった。   In Comparative Example 1, the 2% shrinkage start temperature was a melting point of −25 ° C. or higher, which was outside the range of the present invention, was slightly inferior in surface properties, and became an in-mold foam molded product with fusion spots. In Comparative Example 2, the 2% shrinkage start temperature was 60 ° C. or less, which was outside the scope of the present invention, and the foamed particles shrunk in the heat and pressure treatment process, making production management difficult.

本発明のポリプロピレン系樹脂発泡粒子を型内成形した型内発泡成形体は、高倍率で緩衝包装材用途等の変形や収縮しやすい形状においても変形が少なく、寸法安定性に優れており発泡粒子間の伸びが優れており、型内発泡成形体表面が美麗で、型内発泡成形体内部に融着斑もない。且つ、比較的低圧の水蒸気圧で成形可能であり、工業的に経済的に製造することができる。   The in-mold foam-molded product obtained by molding the polypropylene resin foam particles of the present invention in-mold is highly deformed and has little dimensional stability even in a shape that easily deforms or shrinks for buffer packaging materials, etc., and has excellent dimensional stability. The elongation between them is excellent, the surface of the in-mold foam molding is beautiful, and there is no fusion spot inside the in-mold foam molding. In addition, it can be molded with a relatively low water vapor pressure and can be produced industrially and economically.

本発明における2%収縮開始温度測定の薄膜採取から測定までのイメージを表した図である。It is the figure showing the image from the thin film collection of a 2% shrinkage | contraction start temperature measurement in this invention to a measurement.

Claims (4)

融点が125℃以上150℃以下のポリプロピレン系樹脂を発泡させて得られる、真倍率が20倍以上40倍以下のポリプロピレン系樹脂発泡粒子において、該発泡粒子表面から取り出した薄膜を10℃/minの昇温速度で加熱した際、2%収縮開始温度が、60℃以上、融点−25℃以下であるポリプロピレン系樹脂発泡粒子。   In a polypropylene resin foamed particle having a true magnification of 20 times or more and 40 times or less obtained by foaming a polypropylene resin having a melting point of 125 ° C. or higher and 150 ° C. or lower, a thin film taken out from the surface of the foamed particles is 10 ° C./min. Polypropylene resin expanded particles having a 2% shrinkage start temperature of 60 ° C. or higher and a melting point of −25 ° C. or lower when heated at a temperature rising rate. ポリプロピレン系樹脂発泡粒子の170℃での溶融粘度が7500poise以上、12000poise以下、溶融張力が0.5g以上1.8g以下であり、該ポリプロピレン系樹脂発泡粒子の平均セル径が200μm以上500μm以下である請求項1記載のポリプロピレン系樹脂発泡粒子。   The polypropylene resin expanded particles have a melt viscosity at 170 ° C. of 7500 poise or more and 12000 poise or less, a melt tension of 0.5 g or more and 1.8 g or less, and the average cell diameter of the polypropylene resin expanded particles is 200 μm or more and 500 μm or less. The expanded polypropylene resin particles according to claim 1. ポリプロピレン系樹脂発泡粒子が多段発泡方法により得られた請求項1または2に記載のポリプロピレン系樹脂発泡粒子。   The expanded polypropylene resin particles according to claim 1 or 2, wherein the expanded polypropylene resin particles are obtained by a multistage foaming method. 請求項1〜3のいずれか一項に記載のポリプロピレン系樹脂発泡粒子を、型内に充填して加熱し、該ポリプロピレン系樹脂発泡粒子相互を融着せしめて得られる、発泡倍率が30〜50倍のポリプロピレン系樹脂型内発泡成形体。   A foaming ratio of 30 to 50 obtained by filling the polypropylene resin foamed particles according to any one of claims 1 to 3 in a mold and heating to fuse the polypropylene resin foamed particles with each other. Double expanded polypropylene resin mold.
JP2008208059A 2008-08-12 2008-08-12 Polypropylene resin foam particles and in-mold foam moldings Active JP5347368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208059A JP5347368B2 (en) 2008-08-12 2008-08-12 Polypropylene resin foam particles and in-mold foam moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208059A JP5347368B2 (en) 2008-08-12 2008-08-12 Polypropylene resin foam particles and in-mold foam moldings

Publications (2)

Publication Number Publication Date
JP2010043182A true JP2010043182A (en) 2010-02-25
JP5347368B2 JP5347368B2 (en) 2013-11-20

Family

ID=42014815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208059A Active JP5347368B2 (en) 2008-08-12 2008-08-12 Polypropylene resin foam particles and in-mold foam moldings

Country Status (1)

Country Link
JP (1) JP5347368B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144735A (en) * 2012-01-13 2013-07-25 Kaneka Corp Tote box
JP2013144733A (en) * 2012-01-13 2013-07-25 Kaneka Corp Polypropylene-based resin in-mold foam molding and method for producing the same
KR101853824B1 (en) * 2016-02-03 2018-05-10 주식회사 씨라이프 METHOD FOR PREPARING Expanded PolyPropylene BUOYANCY MEMBER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147972A (en) * 1997-11-17 1999-06-02 Jsp Corp Production of foamed polypropylene resin particle, foamed polypropylene resin particle, and molded item thereof
JP2000198872A (en) * 1998-10-29 2000-07-18 Jsp Corp Expanded polypropylene-based resin particle, and formed product thereof
JP2007302784A (en) * 2006-05-11 2007-11-22 Kaneka Corp Polypropylene resin pre-expanded particle and in-mold expansion molded product
WO2009054212A1 (en) * 2007-10-26 2009-04-30 Kaneka Corporation Polypropylene resin foamed beads and foam moldings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147972A (en) * 1997-11-17 1999-06-02 Jsp Corp Production of foamed polypropylene resin particle, foamed polypropylene resin particle, and molded item thereof
JP2000198872A (en) * 1998-10-29 2000-07-18 Jsp Corp Expanded polypropylene-based resin particle, and formed product thereof
JP2007302784A (en) * 2006-05-11 2007-11-22 Kaneka Corp Polypropylene resin pre-expanded particle and in-mold expansion molded product
WO2009054212A1 (en) * 2007-10-26 2009-04-30 Kaneka Corporation Polypropylene resin foamed beads and foam moldings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144735A (en) * 2012-01-13 2013-07-25 Kaneka Corp Tote box
JP2013144733A (en) * 2012-01-13 2013-07-25 Kaneka Corp Polypropylene-based resin in-mold foam molding and method for producing the same
KR101853824B1 (en) * 2016-02-03 2018-05-10 주식회사 씨라이프 METHOD FOR PREPARING Expanded PolyPropylene BUOYANCY MEMBER

Also Published As

Publication number Publication date
JP5347368B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP6568801B2 (en) Polyolefin resin foam particles and polyolefin resin in-mold foam molding
JP5375613B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP6547628B2 (en) Polyethylene-based resin foam particles, polyethylene-based resin in-mold foam molded article and method for producing the same
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP5242321B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP5347368B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP5358452B2 (en) Polypropylene resin expanded particles and expanded molded articles
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
JP6670850B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article
JP2010180295A (en) Polyolefin resin pre-expanded bead in control of sound of friction
JP5358106B2 (en) Polypropylene resin pre-expanded particles
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
JPWO2017169568A1 (en) Production method for polyethylene resin expanded particles, and method for producing expanded foam in polyethylene resin mold
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP5216353B2 (en) Method for producing expanded polypropylene resin particles
JP5298642B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP5364289B2 (en) Method for producing expanded polypropylene resin particles
JP2009256410A (en) Method for producing polypropylene-based resin foam particle
JP5095451B2 (en) Method for producing expanded polypropylene resin particles
JP2010209286A (en) Polyolefin resin foaming particle
JP5331344B2 (en) Polypropylene resin pre-expanded particles
JP2010138226A (en) Method for producing polypropylene resin in-mold expansion molded product using compressive filling method
JP5248939B2 (en) Polypropylene resin foam particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250