JP5037212B2 - Polypropylene resin pre-expanded particles, and in-mold foam moldings - Google Patents

Polypropylene resin pre-expanded particles, and in-mold foam moldings Download PDF

Info

Publication number
JP5037212B2
JP5037212B2 JP2007116117A JP2007116117A JP5037212B2 JP 5037212 B2 JP5037212 B2 JP 5037212B2 JP 2007116117 A JP2007116117 A JP 2007116117A JP 2007116117 A JP2007116117 A JP 2007116117A JP 5037212 B2 JP5037212 B2 JP 5037212B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
resin
molding
melting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007116117A
Other languages
Japanese (ja)
Other versions
JP2008274024A (en
Inventor
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007116117A priority Critical patent/JP5037212B2/en
Publication of JP2008274024A publication Critical patent/JP2008274024A/en
Application granted granted Critical
Publication of JP5037212B2 publication Critical patent/JP5037212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は緩衝包材、通い箱、自動車内装部材、自動車バンパー用芯材、断熱材などに用いられるポリプロピレン系樹脂予備発泡粒子、及び該予備発泡粒子を用いて得られる型内発泡成形体に関するものである。   The present invention relates to a polypropylene resin pre-expanded particle used for a buffer packaging material, a return box, an automobile interior member, an automobile bumper core, a heat insulating material, and the like, and an in-mold foam-molded article obtained by using the pre-expanded particle It is.

ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴をもつ。また同様の型内発泡成形体と比較しても、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。   The in-mold foam molded article obtained by using the polypropylene resin pre-expanded particles has characteristics such as shape flexibility, light weight, and heat insulation, which are advantages of the in-mold foam molded article. Compared to similar in-mold foam moldings, it is superior in chemical resistance, heat resistance and strain recovery after compression compared to in-mold foam moldings obtained using polystyrene resin pre-expanded particles. In addition, the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with the in-mold foam molded body obtained using the polyethylene resin pre-expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin pre-expanded particles are used in various applications such as automotive interior members, automotive bumper core materials, heat insulating materials, and cushioning packaging materials. .

一般的に、型内発泡成形体においては、特に緩衝包装材を成形体として得る場合、蒸気などによる加熱成形後に“内倒れ”と呼ばれる現象が見られる。“内倒れ”とは、箱型の成形体における端部寸法に対し、中央部寸法が小さくなり、差が生じることをいい、この差は個々の設計製品サイズによって絶対値は変わるが、内倒れが大きい場合、製品として使用できない不良品となる。内倒れのほとんどは60℃以上80℃以下の高温乾燥することで概ね回復する場合があるが、高温乾燥に要する時間が長い場合、著しく生産性を悪化させる。   In general, in an in-mold foam molded product, a phenomenon called “inside-down” is observed after heat molding with steam or the like, particularly when a cushioning packaging material is obtained as a molded product. “Inclined” means that the center dimension is smaller than the end dimension of the box-shaped molded body, resulting in a difference. The absolute value of this difference varies depending on the size of each designed product. If is large, it becomes a defective product that cannot be used as a product. Most of the internal collapse may be recovered by drying at a high temperature of 60 ° C. or more and 80 ° C. or less, but if the time required for the high temperature drying is long, the productivity is remarkably deteriorated.

加熱成形後の成形体の収縮による内倒れ現象に対し、樹脂剛性の高いポリプロピレン系樹脂を使用し、反力として働く成形体剛性を付与し、変形を抑制することができる。   With respect to the inversion phenomenon due to shrinkage of the molded body after heat molding, a polypropylene resin having a high resin rigidity is used to impart a molded body rigidity that acts as a reaction force, and deformation can be suppressed.

しかし、内倒れ現象を抑制できるような高い剛性を持つポリプロピレン系樹脂とは、一般にコモノマー含量の少ない、融点の高い樹脂となるが、樹脂の融点が高くなるにつれて良好な成形体を得るために必要となる成形加熱蒸気の圧力は高くなる傾向にある。このため、より高い剛性を求める場合、加熱蒸気の多量消費のため、ユーティリティコストが高くなるため成形加工コストが高くなる。さらに高剛性の樹脂を用いた場合、加熱成形圧が高くなることから、耐圧仕様の高い成形機や金型を用いる必要が生じ、ユーティリティコストに加え、設備コストが高くなる。現在ポリプロピレン系樹脂予備発泡粒子の型内発泡成形用の成形機は、耐圧0.4MPaの仕様であるものが大半を占めており、該成形機を用いて通常生産される成形加熱蒸気圧力はおおむね0.36MPa程度までである。型内発泡成形に用いられるポリプロピレン系樹脂予備発泡粒子は、これに対応できるような特性の樹脂を用いており、一般には融点が140〜150℃程度のエチレン−ランダムポリプロピレンが用いられている。   However, polypropylene resin with high rigidity that can suppress the internal falling phenomenon is generally a resin with a low comonomer content and a high melting point, but it is necessary to obtain a good molded product as the melting point of the resin increases. The pressure of the formed heating steam tends to increase. For this reason, when a higher rigidity is required, a large amount of heating steam is consumed, resulting in an increase in utility cost, resulting in an increase in molding processing cost. Further, when a highly rigid resin is used, the heat molding pressure becomes high, so that it is necessary to use a molding machine or a mold having a high pressure resistance specification, which increases the equipment cost in addition to the utility cost. At present, most of the molding machines for in-mold foam molding of polypropylene resin pre-expanded particles occupy a specification with a pressure resistance of 0.4 MPa, and the molding heating steam pressure normally produced by using the molding machine is approximately. Up to about 0.36 MPa. The polypropylene-based resin pre-expanded particles used for in-mold foam molding use a resin having such a characteristic as to be compatible with this, and generally, ethylene-random polypropylene having a melting point of about 140 to 150 ° C. is used.

これまで、型内発泡成形体の剛性を向上するための技術に関して、様々な技術が検討されている。ポリプロピレン系樹脂で高い剛性を得るためには単純にホモポリプロピレンを用いることが考えられるが、例えば特許文献1には引張弾性率が15000〜25000kg/cmで示差走査型熱量計にて得られるDSC曲線の高温側ピークの熱量が30〜60J/gであるホモポリプロピレン系樹脂予備発泡粒子に関しての技術が開示されている。また特許文献1にはMFRが20〜100g/10分の範囲にあるホモプロピレン系樹脂を用いて、比較的低い成形温度で型内発泡成形体を得ることのできる予備発泡粒子が作製しうるという技術が開示されている。 Up to now, various techniques have been studied for improving the rigidity of the in-mold foam molded article. In order to obtain high rigidity with a polypropylene resin, it is conceivable to simply use homopolypropylene. For example, Patent Document 1 discloses a DSC obtained by a differential scanning calorimeter with a tensile elastic modulus of 15,000 to 25000 kg / cm 2. The technique regarding the homopolypropylene-type resin pre-expanded particle | grains whose calorie | heat amount of the high temperature side peak of a curve is 30-60 J / g is disclosed. Patent Document 1 also discloses that pre-foamed particles capable of obtaining an in-mold foam-molded product at a relatively low molding temperature can be produced using a homopropylene resin having an MFR in the range of 20 to 100 g / 10 min. Technology is disclosed.

しかし、特許文献1記載の技術では、良好な発泡成形体を得るために必要な成形時の加熱蒸気の圧力が0.4〜0.6MPaであると記載されており、前述のように0.4MPa耐圧仕様の成形機では成形できない。またホモポリプロピレン系樹脂を用いることで、緩衝包材としての重要な性能のである“柔軟性”が低下する。   However, in the technique described in Patent Document 1, it is described that the pressure of the heating steam at the time of molding necessary for obtaining a good foamed molded product is 0.4 to 0.6 MPa. It cannot be molded with a molding machine of 4 MPa pressure resistance specification. Further, by using a homopolypropylene resin, “flexibility”, which is an important performance as a cushioning packaging material, is lowered.

ホモポリプロピレンほど高い剛性は得られないものの、成形性を重視してポリプロピレン系ランダム共重合体を用いた技術も検討されている。例えば特許文献3には、基材樹脂として融点が149〜157℃、MFRが1〜20g/10分、かつ半結晶時間が一定の値以下のプロピレン系ランダム共重合体を基材樹脂として用いる技術が開示されている。   Although high rigidity cannot be obtained as compared with homopolypropylene, a technique using a polypropylene random copolymer has been studied with emphasis on moldability. For example, Patent Document 3 discloses a technique in which a propylene-based random copolymer having a melting point of 149 to 157 ° C., an MFR of 1 to 20 g / 10 minutes, and a half crystallization time of a certain value or less is used as the base resin. Is disclosed.

また、特許文献4には、型内発泡成形に用いるポリプロピレン系樹脂予備発泡粒子の結晶状態について、示差走査型熱量分析(以下DSCと略す)を用いて得られる融解結晶カーブの高温側結晶量と低温側結晶量の関係を一定の範囲に設定することにより、得られる型内発泡成形体の圧縮強度を向上する技術が開示されている。   Patent Document 4 describes the high-temperature-side crystal amount of a melting crystal curve obtained by using differential scanning calorimetry (hereinafter abbreviated as DSC) for the crystalline state of polypropylene resin pre-expanded particles used for in-mold foam molding. A technique for improving the compressive strength of the obtained in-mold foam molded article by setting the relationship between the low-temperature side crystal amount within a certain range is disclosed.

しかし、これらの技術に関しては、型内発泡成形に必要となる加熱蒸気の圧力は0.4〜0.5MPaと高く、前記特許文献2〜3に記載の技術と同様、特に耐圧性能の高い成形機を用いることによって可能となっている技術である。   However, regarding these technologies, the pressure of the heating steam required for in-mold foam molding is as high as 0.4 to 0.5 MPa, and in the same manner as the technologies described in Patent Documents 2 to 3, molding with particularly high pressure resistance performance. This technology is made possible by using a machine.

さらに特許文献4には、1−ブテンをコモノマーとして含むポリプロピレン系樹脂を用いると樹脂融点に対して高い引っ張り弾性率、すなわち剛性を持つ樹脂が得られ、これを用いることにより、高い剛性をもつ型内発泡成形体を得ることができるという技術が開示されている。   Further, in Patent Document 4, when a polypropylene resin containing 1-butene as a comonomer is used, a resin having a high tensile elastic modulus, that is, a rigidity is obtained with respect to the resin melting point. By using this, a mold having a high rigidity is obtained. A technique is disclosed in which an inner foamed molded product can be obtained.

しかし該技術に関しても、型内発泡成形に必要となる加熱蒸気の圧力は0.4MPa前後であり、他の技術と比較すると比較的低い成形加熱蒸気圧力であるものの、実施されている例の中で最も低いもので0.36MPaであり、現状よく用いられている0.4MPa耐圧仕様の成形機性能の下限レベルである。   However, even with this technique, the pressure of the heating steam required for in-mold foam molding is around 0.4 MPa, which is a relatively low molding heating steam pressure compared to other techniques, but in the example being implemented. The lowest is 0.36 MPa, which is the lower limit level of the molding machine performance of the 0.4 MPa pressure resistance specification that is often used at present.

さらに特許文献5には1−ブテン成分量を3〜12重量%含むプロピレン・1−ブテンランダム共重合体を基材樹脂とするポリプロピレン系樹脂予備発泡粒子を用いることにより、高い剛性を持つポリプロピレン系樹脂発泡成形体が得られる技術が開示されている。該技術を用いた場合、成形加熱蒸気の圧力が0.3MPa前後と現状よく用いられる0.4MPa耐圧仕様の成形機でも成形可能であると記載されている。しかし、該公報記載のエチレン成分を含まない1−ブテン単独系のポリプロピレン系樹脂ランダム共重合体は、エチレン成分を含むポリプロピレン系樹脂ランダム共重合体に比べ硬くもろい性質があり、この性質が発泡体の基材樹脂として用いた場合に、特に、緩衝包材用途の場合には、繰り返し緩衝性能に悪影響を及ぼし、自動車部材用途の場合、緩衝特性、圧縮後の寸法回復性や、低温領域での衝撃特性が劣ると言う性質となる。ポリプロピレン系樹脂発泡成形体は、同じ型内発泡成形体であるポリスチレン系樹脂発泡成形体と比べ、剛性面では劣るものの、繰り返し衝撃への耐性や柔軟性に優位性があり、これをもって緩衝包装材などに用いられている面もある。このため、該技術記載の技術では、剛性のみを目的とする用途以外の一般的な緩衝包材用途には向いていないという欠点もある。   Furthermore, Patent Document 5 discloses a polypropylene-based resin having high rigidity by using polypropylene-based resin pre-expanded particles whose base resin is a propylene / 1-butene random copolymer containing 3 to 12% by weight of 1-butene component. A technique for obtaining a resin foam molded article is disclosed. It is described that when this technique is used, molding can be performed even with a molding machine having a pressure resistance of 0.4 MPa, which is often used at present, with the pressure of the molding heating steam being around 0.3 MPa. However, the 1-butene homopolypropylene resin random copolymer that does not contain an ethylene component described in the publication has a hard and brittle property compared to a polypropylene resin random copolymer that contains an ethylene component. When used as a base resin, especially in the case of buffer packaging applications, it repeatedly adversely affects the buffer performance, and in the case of automotive member applications, buffer characteristics, dimensional recovery after compression, It has the property that impact characteristics are inferior. Polypropylene resin foam molded products are superior to polystyrene resin foam molded products, which are the same in-mold foam molded products, in terms of rigidity, but have superior resistance to repeated impacts and flexibility. Some aspects are used for such purposes. For this reason, the technique described in the technology also has a drawback that it is not suitable for general cushioning packaging applications other than those intended only for rigidity.

以上のように、“内倒れ”現象を抑制する方法として、高い剛性を有するポリプロピレン系樹脂を基材とする予備発泡粒子を適用するには、一般に高い成形加熱蒸気圧力に耐えうる特殊な成形機・特殊な成形金型を使用したり、高圧での成形が必要となり、コストアップの原因となる。
特開平8−277340号公報 特開平10−316791号公報 特開平11−156879号公報 特開平7−258455号公報 特開平1−242638号公報
As described above, as a method of suppressing the “inside-down” phenomenon, in order to apply pre-expanded particles based on a polypropylene resin having high rigidity, a special molding machine that can generally withstand high molding heating steam pressure. -Use of special molding dies or molding at high pressure is necessary, which causes cost increase.
JP-A-8-277340 Japanese Patent Laid-Open No. 10-316791 JP-A-11-156879 JP 7-258455 A JP-A-1-242638

本発明の目的は、ポリプロピレン系樹脂発泡粒子の型内成形において、低加熱条件かつ短時間の乾燥で内倒れを解消し得、良好な表面美麗性に優れ、緩衝包材に適した柔軟な成形体を得ることができるため、低コストで容易に型内成形体を得ることができるポリプロピレン系樹脂予備発泡粒子を提供することにある。   The object of the present invention is to mold polypropylene resin foamed particles in-mold, which can eliminate inversion by low heating conditions and drying in a short time, has excellent surface beauty, and is flexible and suitable for cushioning packaging Since a body can be obtained, it is providing the polypropylene resin pre-expanded particle which can obtain an in-mold molded object easily at low cost.

本発明は、上記課題に鑑みて鋭意研究した結果、樹脂融点が低い、すなわち剛性が低いポリプロピレン系樹脂であっても、溶融時の動的粘弾性測定において、角振動数の低い領域での貯蔵弾性率と損失弾性率の比率である損失正接であるtanδが特定の領域にあり、示差走査熱量計法で特定の融解挙動を有する場合、加熱成形・乾燥後の内倒れが少なくなることをようやく見出し、本発明の完成に至った。   As a result of diligent research in view of the above problems, the present invention has a low resin melting point, that is, even a polypropylene resin having low rigidity, and is stored in a region having a low angular frequency in the measurement of dynamic viscoelasticity at the time of melting. When tan δ, which is the loss tangent, which is the ratio of elastic modulus and loss elastic modulus, is in a specific region and has a specific melting behavior by differential scanning calorimetry, it is finally possible to reduce the internal tilt after thermoforming / drying. The headline, the present invention has been completed.

すなわち、本発明の第1は、原料ポリプロピレン系樹脂がイソプレン単量体およびラジカル重合開始剤との反応により改質された、180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)が、1.0以上3.0以下である改質ポリプロピレン系樹脂を基材樹脂として、示差走査熱量計法による測定で2つの融解ピークを有し、該2つの融解ピークのうち、高温側融点に基づく融解ピーク熱量の融解ピーク全体熱量に対する比率が10%以上70%以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子に関する。
That is, in the first aspect of the present invention, the raw material polypropylene resin is modified by a reaction with an isoprene monomer and a radical polymerization initiator, and an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 180 ° C. The melting tangent (tan δ), which is the ratio between the storage elastic modulus and the loss elastic modulus, is a melting polypropylene that has two melting points as measured by differential scanning calorimetry using a modified polypropylene resin having a base resin of 1.0 or more and 3.0 or less. The present invention relates to a polypropylene resin pre-expanded particle having a peak and having a ratio of a melting peak calorie based on a high temperature side melting point to a total melting peak calorie of 10 to 70% of the two melting peaks.

好ましい態様としては、
(1)改質ポリプロピレン系樹脂のメルトフローレート(MFR)が、3g/10分以上30g/10分以下であるポリプロピレン系樹脂であること、
を特徴とする前記記載のポリプロピレン系樹脂予備発泡粒子に関する。
As a preferred embodiment,
(1) The polypropylene resin having a melt flow rate (MFR) of the modified polypropylene resin of 3 g / 10 min or more and 30 g / 10 min or less,
The above-mentioned polypropylene resin pre-expanded particles are characterized by the following.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m以上300kg/m以下の型内発泡成形体に関する。 The second of the present invention relates to an in-mold foam molded article having a density of 10 kg / m 3 or more and 300 kg / m 3 or less, obtained by using the polypropylene resin pre-foamed particles described above.

本発明のポリプロピレン系樹脂予備発泡粒子は、型内成形を行った際に、加熱成形後の変形が少ない。従って、緩衝包材として十分な柔軟性を有し、かつ内倒れの少ないポリプロピレン系樹脂型内発泡成形体を、低い成形加工温度で得ることができる。   The polypropylene resin pre-expanded particles of the present invention are less deformed after heat molding when performing in-mold molding. Therefore, it is possible to obtain a polypropylene resin-in-mold foam-molded product that has sufficient flexibility as a buffer wrapping material and has little inward tilting at a low molding processing temperature.

本発明のポリプロピレン系樹脂予備発泡粒子の基材樹脂となるポリプロピレン系樹脂は、モノマーとしてプロピレンを主体とした樹脂であり、単量体として、プロピレンを80重量%以上が好ましく、より好ましくは85重量%以上、さらに好ましくは90重量%以上含むものである。プロピレンを上記範囲含んでいれば、他の共重合可能な単量体成分を含んでいてもよく、共重合可能な単量体成分としては、例えば、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらのうち、エチレン、1−ブテンを使用することが、耐寒脆性向上、安価等という点で好ましい。 The polypropylene resin used as the base resin for the pre-expanded polypropylene resin particles of the present invention is a resin mainly composed of propylene as a monomer, and propylene is preferably 80% by weight or more as a monomer, more preferably 85% by weight. % Or more, more preferably 90% by weight or more. As long as it contains propylene in the above range, it may contain other copolymerizable monomer components. Examples of copolymerizable monomer components include ethylene, 1-butene, isobutene, and 1-pentene. , 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene Α-olefins having 2 or 4 to 12 carbon atoms such as, cyclopentene, norbornene, cyclic olefins such as tetracyclo [6,2,1 1,8 , 1 3,6 ] -4-dodecene, 5-methylene-2-norbornene , Dienes such as 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, vinyl chloride, vinyl chloride Vinyl monomers such as den, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methylstyrene, vinyltoluene, divinylbenzene, etc. Can be mentioned. Among these, it is preferable to use ethylene and 1-butene in terms of improving cold brittleness resistance, low cost, and the like.

そして本発明における予備発泡粒子の基材樹脂であるポリプロピレン系樹脂の180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδ(以下、単にtanδと称す場合がある)は、1.0以上3.0以下である。予備発泡前のポリプロピレン系樹脂でのtanδは上記範囲であるが、予備発泡粒子およびその型内成形体を樹脂化した場合、tanδは3.0以上となる場合がある。   The loss tangent tan δ (the ratio of the storage elastic modulus and the loss elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 180 ° C. of the polypropylene-based resin that is the base resin of the pre-expanded particles in the present invention. Hereinafter, it may be simply referred to as tan δ) is 1.0 or more and 3.0 or less. The tan δ in the polypropylene-based resin before the pre-foaming is in the above range, but when the pre-foamed particles and the in-mold molded product thereof are resinized, the tan δ may be 3.0 or more.

本発明において180℃での動的粘弾性測定における角振動数1rad/sでのtanδが1.0以上3.0以下の範囲が好ましい理由は明確ではないが、以下のように考えられる。tanδが1.0未満の場合は樹脂の粘性効果の低下とともに、弾性効果が非常に高く、加熱成形後の変形を抑制する効果もあるが、加熱成形時の伸びが悪くなり、加熱成形時の予備発泡粒子同士の融着性を悪化させることや、加熱成形体の表面伸びを悪化させる場合がある。また、tanδが3.0より大きい場合、弾性効果が低下し、加熱成形後の変形抑制効果が発現しない。   In the present invention, the reason why the tan δ at the angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 180 ° C. is preferably 1.0 or more and 3.0 or less is not clear, but is considered as follows. When tan δ is less than 1.0, the viscosity effect of the resin is lowered and the elastic effect is very high, and there is also an effect of suppressing deformation after heat molding, but the elongation at the time of heat molding becomes worse, and at the time of heat molding There is a case where the fusion property between the pre-expanded particles is deteriorated and the surface elongation of the thermoformed article is deteriorated. On the other hand, when tan δ is larger than 3.0, the elastic effect is lowered and the deformation suppressing effect after the heat forming is not exhibited.

本発明に用いるポリプロピレン系樹脂の融点の好ましい範囲は、130℃以上155℃以下であり、より好ましくは135℃以上150℃以下である。融点が当該範囲内であると、現状よく用いられている0.4MPa耐圧仕様の成形機でも良好な型内発泡成形体が得られる。   The preferable range of the melting point of the polypropylene resin used in the present invention is 130 ° C. or higher and 155 ° C. or lower, more preferably 135 ° C. or higher and 150 ° C. or lower. When the melting point is within the above range, a good in-mold foamed product can be obtained even with a molding machine of 0.4 MPa pressure resistance specification that is often used at present.

本発明におけるポリプロピレン系樹脂のメルトフローレート(MFR)(以下、MFRと称す場合がある)は、3g/10分以上30g/10分以下が好ましく、5g/10分以上20g/10分以下がより好ましい。MFRとtanδに一次的な相関はないものの、MFRが3g/10分未満の場合、前記tanδが1.0未満となりやすい傾向にあり、表面伸びを著しく低下させる場合がある。MFRが30g/10分を超えては、前記tanδが3.0を超えやすい傾向にあり、加熱成形後の変形抑制効果が発現しない場合がある。   The melt flow rate (MFR) (hereinafter sometimes referred to as MFR) of the polypropylene resin in the present invention is preferably 3 g / 10 min to 30 g / 10 min, and more preferably 5 g / 10 min to 20 g / 10 min. preferable. Although there is no primary correlation between MFR and tan δ, when MFR is less than 3 g / 10 min, the tan δ tends to be less than 1.0, and the surface elongation may be significantly reduced. When the MFR exceeds 30 g / 10 min, the tan δ tends to exceed 3.0, and the deformation suppressing effect after heat molding may not be exhibited.

MFRの測定は、JIS−K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定したときの値である。   MFR is measured using the MFR measuring instrument described in JIS-K7210 under the conditions of orifice 2.0959 ± 0.005 mmφ, orifice length 8.000 ± 0.025 mm, load 2160 g, 230 ± 0.2 ° C. This is the value when

本発明のポリプロピレン系樹脂予備発泡粒子は、示差走査熱量計法による測定において2つの融解ピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100(以下、DSC比と略す場合がある)が10%以上70%以下である。より好ましくは15%以上50%以下の範囲である。DSCピーク比が10%を下回ると成形体表面に収縮による皺が発生したり、加熱成形後の変形が大きくなる。70%より大きくなると、通常の成形機で成形可能な加熱圧力上限をもってしても、融着性が損なわれたり、粒間が多く見られるなど、表面美麗性が劣る型内発泡成形体となる。   The pre-expanded polypropylene resin particles of the present invention have two melting peaks in the differential scanning calorimetry measurement, and are calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side among the melting peaks. The ratio Qh / (Ql + Qh) × 100 (hereinafter sometimes abbreviated as DSC ratio) of the melting peak on the high temperature side is 10% or more and 70% or less. More preferably, it is in the range of 15% or more and 50% or less. When the DSC peak ratio is less than 10%, wrinkles due to shrinkage occur on the surface of the molded body, and deformation after heat molding becomes large. If it exceeds 70%, even if it has a heating pressure upper limit that can be molded by a normal molding machine, it becomes an in-mold foam molded product with poor surface aesthetics, such as a loss of fusion property and a large number of intergranularity. .

DSC比の測定はセイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて行い、ポリプロピレン系樹脂予備発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られる融解曲線(図1に例示)において、2つのピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100で表されるパラメータをDSC比とした。   The DSC ratio is measured using a DSC6200 differential scanning calorimeter manufactured by Seiko Instruments Inc., and 5-6 mg of polypropylene resin pre-expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. The melting curve (illustrated in FIG. 1) obtained at the time of the calculation has two peaks, and calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peak, The parameter represented by the melting peak ratio Qh / (Ql + Qh) × 100 was defined as the DSC ratio.

180℃での動的粘弾性測定における角振動数1rad/sでのtanδが1.0以上3.0以下であるポリプロピレン系樹脂は、例えば、原料ポリプロピレン系樹脂を架橋型および分解型のラジカル重合開始剤との反応により得る方法(たとえば、特開2002−80610号公報記載の方法など)、もしくは原料ポリプロピレン系樹脂をラジカル重合性単量体およびラジカル重合開始剤との反応により得るなどの方法を用いることができる。これらの内、原料ポリプロピレン系樹脂をラジカル重合性単量体およびラジカル重合開始剤との反応により得る方法が、より容易に180℃での動的粘弾性測定における角振動数1rad/sでのtanδが1.0以上3.0以下であるポリプロピレン系樹脂を得ることができることから好ましい。こうして得られるポリプロピレン系樹脂を以下、改質ポリプロピレン系樹脂と称する。   A polypropylene resin having a tan δ at an angular frequency of 1 rad / s in a dynamic viscoelasticity measurement at 180 ° C. of 1.0 or more and 3.0 or less is, for example, a raw material polypropylene resin obtained by crosslinking and decomposing radical polymerization. A method obtained by a reaction with an initiator (for example, a method described in JP-A No. 2002-80610) or a method in which a raw material polypropylene resin is obtained by a reaction with a radical polymerizable monomer and a radical polymerization initiator. Can be used. Among these, a method of obtaining a raw material polypropylene resin by reaction with a radical polymerizable monomer and a radical polymerization initiator is more easily achieved by tan δ at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 180 ° C. Is preferable because it is possible to obtain a polypropylene-based resin having 1.0 to 3.0. The polypropylene resin thus obtained is hereinafter referred to as a modified polypropylene resin.

前記ラジカル重合性単量体としては、原料ポリプロピレン系樹脂にグラフト共重合可能であって、溶融混練の際に原料ポリプロピレン系樹脂の主鎖切断に伴い大幅な溶融粘度低下を起こさないものが好ましい。   The radical polymerizable monomer is preferably one that can be graft copolymerized with the raw material polypropylene resin and does not cause a significant decrease in melt viscosity due to the main chain breakage of the raw material polypropylene resin during melt kneading.

好ましいラジカル重合性単量体の具体例としては、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン、フルオロスチレン、ヒドロキシスチレン、ジビニルベンゼンなどの芳香族ビニル化合物;ジイソプロペニルベンゼン;イソプレン、1,3−ブタジエン、クロロプレンなどの共役ジエン化合物;ジエチレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレートなどの、多価アルコールと2以上のアクリル酸からなるエステル化合物が挙げられ、単独或いは2種以上を組み合わせて使用することが出来る。これらのなかでは安価かつ取り扱いしやすく、また反応が均一に進みやすいという点でイソプレンが最も好ましい。   Specific examples of preferable radical polymerizable monomers include aromatic vinyl compounds such as styrene, methylstyrene, chlorostyrene, bromostyrene, fluorostyrene, hydroxystyrene, divinylbenzene; diisopropenylbenzene; isoprene, 1,3- Conjugated diene compounds such as butadiene and chloroprene; ester compounds composed of polyhydric alcohols and two or more acrylic acids, such as diethylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate Can be used alone or in combination of two or more. Of these, isoprene is most preferable because it is inexpensive and easy to handle, and the reaction easily proceeds uniformly.

ラジカル重合性単量体の添加量は、原料ポリプロピレン系樹脂100重量部に対して、0.1重量部以上20重量部以下が好ましく、0.2重量部以上10重量部以下がより好ましい。ラジカル重合性単量体の量が0.01重量部未満の場合、十分な変形抑制効果が得られない場合があり、20重量部を超える場合、加熱成形時の表面美麗性を損なう場合がある。   The addition amount of the radical polymerizable monomer is preferably 0.1 part by weight or more and 20 parts by weight or less, and more preferably 0.2 part by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the raw material polypropylene resin. When the amount of the radical polymerizable monomer is less than 0.01 part by weight, a sufficient deformation suppressing effect may not be obtained. When the amount exceeds 20 parts by weight, the surface beauty at the time of heat molding may be impaired. .

本発明に用いられるラジカル重合開始剤としては、いわゆる水素引き抜き能を有する有機過酸化物などがあげられ、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどが挙げられる。   Examples of the radical polymerization initiator used in the present invention include so-called hydrogen peroxide-extracting organic peroxides, such as ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydioxide. Examples include carbonates and peroxyesters.

更に具体的には、メチルエチルケトンパーオキサイド、メチルアセトアセテートパーオキサイドなどのケトンパーオキサイド;1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール;パーメタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドなどのハイドロパーオキサイド;ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などのジアルキルパーオキサイド;ベンゾイルパーオキサイドなどのジアシルパーオキサイド;ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、ジ−2−メトキシブチルパーオキシジカーボネートなどのパーオキシジカーボネート;t−ブチルパーオキシオクテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどがあげられる。   More specifically, ketone peroxides such as methyl ethyl ketone peroxide and methyl acetoacetate peroxide; 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t Peroxyketals such as -butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane; permethane hydroperoxide, Hydroperoxides such as 1,1,3,3-tetramethylbutyl hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide; dicumyl peroxide, 2,5-dimethyl-2,5-di (t- Butylperoxy) hexane, α, α'-bis ( t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, etc. Dialkyl peroxides; diacyl peroxides such as benzoyl peroxide; peroxydicarbonates such as di (3-methyl-3-methoxybutyl) peroxydicarbonate and di-2-methoxybutylperoxydicarbonate; t-butylperoxide Oxyoctate, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxyisopropyl carbonate, 2,5- Dimethyl-2,5-di (benzoylperoxy) hexa , T- butyl peroxy acetate, t- butyl peroxybenzoate, etc. peroxy esters such as di -t- butyl peroxy isophthalate and the like.

これらのうち、特に水素引き抜き能が高いラジカル重合開始剤を使用することが好ましく、例えば、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール;ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などのジアルキルパーオキサイド;ベンゾイルパーオキサイドなどのジアシルパーオキサイド;t−ブチルパーオキシオクテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどがあげられる。これらは、1種または2種以上を組み合わせて使用してもよい。   Among these, it is preferable to use a radical polymerization initiator having a particularly high hydrogen abstraction ability. For example, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis Peroxyketals such as (t-butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane; dicumyl peroxide 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, α, α′-bis (t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t Dialkyl peroxides such as butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3; Diacyl peroxides such as oxides; t-butyl peroxyoctate, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t -Butyl peroxyisopropyl carbonate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butyl peroxyacetate, t-butyl peroxybenzoate, di-t-butyl peroxyisophthalate, etc. Examples include peroxyesters. These may be used alone or in combination of two or more.

ラジカル重合開始剤の添加量は、ラジカル重合開始剤の水素引き抜き能およびラジカル重合性単量体の添加量により適正量範囲は異なるが、原料ポリプロピレン系樹脂100重量部に対して、0.01重量部以上5重量部以下が好ましく、0.03重量部以上3重量部以下がさらに好ましい。ラジカル重合開始剤の添加量が0.01重量部未満の場合、tanδが3.0以下に成り難い、すなわち、加熱成形後の変形抑制効果を得にくく、5重量部を超えては、tanδが1.0以上とならない場合があり、良好な表面美麗性を得にくい。   The amount of radical polymerization initiator added is 0.01% by weight based on 100 parts by weight of the raw material polypropylene resin, although the appropriate amount range varies depending on the hydrogen abstraction ability of the radical polymerization initiator and the amount of radical polymerizable monomer added. Part to 5 parts by weight, preferably 0.03 part to 3 parts by weight. When the addition amount of the radical polymerization initiator is less than 0.01 parts by weight, tan δ is difficult to be 3.0 or less, that is, it is difficult to obtain a deformation suppressing effect after thermoforming, and when it exceeds 5 parts by weight, tan δ is It may not be 1.0 or more, and it is difficult to obtain good surface beauty.

前記改質ポリプロピレンを製造する際、原料ポリプロピレン系樹脂、ラジカル重合性単量体、ラジカル重合開始剤および必要に応じて添加される添加剤等の他の材料の混合および溶融混練に関しては、その順序および方法は、特に制限されるものではない。例えば、原料ポリプロピレン系樹脂、ラジカル重合性単量体、ラジカル重合開始剤および他の材料を混合した後、溶融混練してもよいし、あるいは、原料ポリプロピレン系樹脂、ラジカル重合開始剤および他の材料を混合した後、それらを溶融混練する際にポンプ等を用いラジカル重合性単量体を添加してもよい。   When producing the modified polypropylene, the order of mixing and melt-kneading of other materials such as a raw material polypropylene resin, a radical polymerizable monomer, a radical polymerization initiator and an additive added as necessary The method and method are not particularly limited. For example, the raw material polypropylene resin, radical polymerizable monomer, radical polymerization initiator and other materials may be mixed and then melt kneaded, or the raw material polypropylene resin, radical polymerization initiator and other materials may be mixed. After mixing, radically polymerizable monomers may be added using a pump or the like when melt kneading them.

また、前記改質ポリプロピレン系樹脂を得た後に、添加剤や他の樹脂を加える目的で溶融混練を繰り返しても良いし、さらに、原料ポリプロピレンの一部と添加剤や他の樹脂をあらかじめ溶融混練してマスターバッチとした後に、これと残余の原料ポリプロピレン系樹脂の混合物を用いて改質ポリプロピレン系樹脂としてもよい。   In addition, after obtaining the modified polypropylene-based resin, melt kneading may be repeated for the purpose of adding an additive or other resin, and a part of the raw material polypropylene and the additive or other resin may be melt kneaded in advance. Then, after forming a master batch, a modified polypropylene resin may be obtained by using a mixture of this and the remaining raw material polypropylene resin.

また、前記溶融混練に用いる装置としては、コニーダー、バンバリーミキサー、ブラベンダー、単軸押出機、2軸押出機などの混練機、2軸表面更新機、2軸多円板装置などの横型攪拌機またはダブルヘリカルリボン攪拌機などの縦型攪拌機など高分子材料を適宜の温度に加熱しえ、適宜の剪断応力を与えながら混練しうる装置があげられる。   The apparatus used for the melt kneading includes a kneader, a Banbury mixer, a Brabender, a kneader such as a single-screw extruder, a twin-screw extruder, a horizontal agitator such as a twin-screw surface renewal machine, a twin-screw multi-disk device, or the like. Examples thereof include an apparatus capable of heating a polymer material such as a vertical stirrer such as a double helical ribbon stirrer to an appropriate temperature and kneading while applying an appropriate shear stress.

中でも、前記改質ポリプロピレン系樹脂を製造する方法としては、原料ポリプロピレン系樹脂、ラジカル重合開始剤および必要に応じて添加される他の材料の混合物を、ホッパーから2軸押出機に供給し、ポンプ等を用いラジカル重合性単量体を2軸押出機に供給して、該押出機中でそれらを溶融混練する方法が特に好ましい。   Among them, as a method for producing the modified polypropylene resin, a mixture of a raw material polypropylene resin, a radical polymerization initiator and other materials added as needed is supplied from a hopper to a twin-screw extruder, and a pump A method in which radically polymerizable monomers are supplied to a twin-screw extruder using, for example, melt kneading in the extruder is particularly preferable.

本発明で使用するポリプロピレン系樹脂は、通常、予備発泡に利用されやすいように、ストランド状に押出してペレット化するか、ダイから吐出直後に切断することなどにより、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状で、その粒子の一粒当たりの重量は、0.3mg以上3.5mg以下が好ましく、より好ましくは0.5mg以上1.8mg以下になるように成形加工される。   The polypropylene-based resin used in the present invention is usually extruded into a strand shape to be easily used for pre-foaming, pelletized, or cut immediately after being discharged from a die, etc. In a desired particle shape such as a cubic shape or a rectangular parallelepiped shape, the weight per particle is preferably 0.3 mg or more and 3.5 mg or less, more preferably 0.5 mg or more and 1.8 mg or less. To be processed.

ポリプロピレン系樹脂に、必要に応じて使用される、界面活性剤型もしくは高分子型の帯電防止剤、顔料、難燃性改良剤、導電性改良剤等は、通常、樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   Surfactant-type or polymer-type antistatic agents, pigments, flame retardant improvers, conductivity improvers, etc., used as needed for polypropylene resins, are usually melted in the resin particle manufacturing process. It is preferable to add to the obtained resin.

ポリプロピレン系樹脂粒子を、発泡させ、予備発泡粒子を得る方法としては、例えば、発泡剤と共に耐圧容器内で水中に分散させ、プロピレン系樹脂分散物とし、該分散物を好ましくは該ポリプロピレン系樹脂粒子の融点−25℃から+10℃、更に好ましくは−20℃から+5℃の範囲の温度に加熱して該ポリプロピレン系樹脂粒子内に発泡剤を含浸させ、該発泡剤の示す蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、該ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出することによりポリプロピレン系予備発泡粒子を得る方法などが挙げられる。   As a method of foaming polypropylene resin particles to obtain pre-foamed particles, for example, a propylene resin dispersion is obtained by dispersing in water in a pressure vessel together with a foaming agent, and the dispersion is preferably the polypropylene resin particles. The polypropylene resin particles are impregnated with a foaming agent by heating to a temperature in the range of −25 ° C. to + 10 ° C., more preferably −20 ° C. to + 5 ° C., and the pressure is higher than the vapor pressure indicated by the foaming agent. And a method for obtaining polypropylene-based pre-expanded particles by releasing a dispersion of the polypropylene-based resin particles and water in a lower-pressure atmosphere than in the container while keeping the temperature and pressure in the container constant. It is done.

前記分散物の調製に際しては、分散剤として、例えば、第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム、カオリン、硫酸マグネシウム、二酸化チタン等の無機系分散剤と、例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダの分散助剤を使用されることが好ましい。これらの中でも第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの併用が更に好ましい。分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2重量部以上3重量部以下を配合することが好ましく、分散助剤0.001重量部以上0.1重量部以下を配合することが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20重量部以上100重量部以下使用するのが好ましい。 In the preparation of the dispersion, as a dispersant, for example, inorganic dispersants such as tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, kaolin, magnesium sulfate, titanium dioxide, and so on, for example, sodium dodecylbenzenesulfonate, n- It is preferable to use a dispersion aid such as paraffin sulfonic acid soda and α-olefin sulfonic acid soda. Among these, combined use of tricalcium phosphate and sodium dodecylbenzenesulfonate is more preferable. The amount of the dispersant and the dispersion aid varies depending on the type and the type and amount of the polypropylene resin used, but usually 0.2 parts by weight or more and 3 parts by weight or less of the dispersant with respect to 100 parts by weight of water. It is preferable to mix, and it is preferable to mix 0.001 part by weight or more and 0.1 part by weight or less of the dispersion aid. Moreover, in order to make the polypropylene resin particles have good dispersibility in water, it is usually preferable to use 20 to 100 parts by weight with respect to 100 parts by weight of water.

前記発泡剤としては、プロパン、ブタン、ペンタン、ヘキサン等の炭化水素や空気、窒素、炭酸ガス等の無機ガスがあげられ、これらは単独または2種以上組み合わせて使用することが出来る。これらの発泡剤の使用量に制限はなく、発泡剤の種類、容器内の樹脂量と容器内空間容積との比率、さらには所望する発泡倍率を考慮して設定すれば良く、その使用量はポリプロピレン系樹脂粒子100重量部に対して好ましくは5重量部以上50重量部以下である。   Examples of the blowing agent include hydrocarbons such as propane, butane, pentane, and hexane, and inorganic gases such as air, nitrogen, and carbon dioxide, and these can be used alone or in combination of two or more. There is no limit to the amount of these foaming agents used, and it may be set in consideration of the type of foaming agent, the ratio between the resin amount in the container and the space volume in the container, and the desired foaming ratio. Preferably they are 5 weight part or more and 50 weight part or less with respect to 100 weight part of polypropylene resin particles.

前記発泡剤を利用する以外にも、経済的にポリプロピレン系樹脂予備発泡粒子を製造する方法として、ポリプロピレン系樹脂中に、例えば親水性化合物を含有させることにより、分散媒に使用する水を発泡剤として利用する方法(例えば、特開平10−306179号公報、特開平11−106576号公報など)も利用可能である。   In addition to using the foaming agent, as a method for economically producing the polypropylene resin pre-expanded particles, the water used for the dispersion medium can be expanded by adding, for example, a hydrophilic compound in the polypropylene resin. (For example, JP-A-10-306179, JP-A-11-106576, etc.) can also be used.

更には、前記ポリプロピレン系樹脂予備発泡粒子が所望の発泡倍率に至らなかった場合、予備発泡粒子内を不活性ガスで加圧し、加熱して発泡倍率を高める方法(例えば、特開平10−237212号公報)も利用可能である。   Furthermore, when the polypropylene resin pre-expanded particles do not reach a desired expansion ratio, a method of increasing the expansion ratio by pressurizing the inside of the pre-expanded particles with an inert gas and heating the mixture (for example, Japanese Patent Laid-Open No. 10-237212). Gazette) is also available.

本発明のポリプロピレン系樹脂予備発泡粒子から型内発泡成形体を成形する方法としては、たとえば、あらかじめポリプロピレン系樹脂予備発泡粒子を耐圧容器内で空気加圧し、ポリプロピレン系樹脂予備発泡粒子中に空気を圧入することにより発泡能を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.20〜0.4MPa程度の加熱水蒸気圧で3〜30秒程度の加熱時間で加熱することでポリプロピレン系樹脂予備発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の後膨れを抑制できる程度まで冷却した後、金型を開き、型内発泡成形体を得る方法などが挙げられる。   As a method for molding an in-mold foam molded body from the polypropylene resin pre-expanded particles of the present invention, for example, the polypropylene resin pre-expanded particles are pre-air-pressed in a pressure-resistant container, and air is introduced into the polypropylene resin pre-expanded particles. The foaming ability is imparted by press-fitting, and this is filled in a mold that can be closed but cannot be sealed, and the steam is heated at a steam pressure of about 0.20 to 0.4 MPa for 3 to 30 seconds. To the extent that the polypropylene resin pre-expanded particles can be fused together by heating for about a heating time, and then the after-expansion of the in-mold foam molding after taking out the in-mold foam molding by water cooling can be suppressed. Examples of the method include a method of opening a mold after cooling and obtaining an in-mold foam molded article.

以上のようにして得られたポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体の密度は10kg/m以上300kg/m以下であることが好ましく、より好ましくは15kg/m以上250kg/m以下である。 The density of the in-mold foam molded body obtained using the polypropylene resin pre-expanded particles obtained as described above is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably 15 kg / m 3. It is 250 kg / m 3 or less.

つぎに、本発明を実施例及び比較例に基づき説明するが、本発明はこれらの実施例のみに限定されるものではない。また、「部」「%」は特に断りのない限り、重量基準である。   Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited only to these examples. “Parts” and “%” are based on weight unless otherwise specified.

また実施例及び比較例における評価は下記の方法で行った。   Moreover, the evaluation in an Example and a comparative example was performed with the following method.

〔貯蔵弾性率と損失弾性率の比率である損失正接tanδの測定〕
ポリプロピレン系樹脂を1.5mm厚のスペーサーを用いて190℃にて5分間熱プレスして1.5mm厚のプレス板を作製し、ここからφ25mmのポンチを用いて打ち抜き、試験片を得た。測定装置としては、TAインスツルメンツ社製粘弾性測定装置、ARESを用い、φ25mmのパラレルプレート型冶具を装着した。冶具を囲うように恒温槽を設置し180℃に保温、冶具が予熱された後に恒温槽を開け、パラレルプレート間にφ25mmとした試験片を挿入して恒温槽を閉じ、5分間予熱した後にパラレルプレート間隔を1mmまで圧縮した。圧縮後、再度恒温槽を開き、パラレルプレートからはみ出した樹脂を真鍮のヘラで掻き取り、恒温槽を閉じて再度5分間保温した後に、動的粘弾性測定を開始した。測定は、角振動数0.1rad/sから100rad/sまでの範囲で行い、各角振動数での貯蔵弾性率と損失弾性率および計算値として損失正接tanδを得た。これらの結果のうち、角周波数1rad/sでの損失正接tanδの値を採用した。なお、歪み量は5%で、窒素雰囲気下で測定を行った。
[Measurement of loss tangent tan δ, which is the ratio of storage elastic modulus to loss elastic modulus]
A polypropylene resin was hot-pressed at 190 ° C. for 5 minutes using a 1.5 mm-thick spacer to produce a 1.5 mm-thick press plate, which was punched out using a φ25 mm punch to obtain a test piece. As a measuring device, a viscoelasticity measuring device manufactured by TA Instruments, ARES was used, and a parallel plate jig having a diameter of 25 mm was attached. Set up a thermostat to surround the jig and keep it at 180 ° C. After the jig is preheated, open the thermostat, insert a test piece with a diameter of 25 mm between the parallel plates, close the thermostat and preheat for 5 minutes before paralleling The plate interval was compressed to 1 mm. After compression, the thermostat was opened again, the resin protruding from the parallel plate was scraped off with a brass spatula, the thermostat was closed and the temperature was kept again for 5 minutes, and then dynamic viscoelasticity measurement was started. The measurement was performed in the range of angular frequency from 0.1 rad / s to 100 rad / s, and the loss tangent tan δ was obtained as the storage elastic modulus and loss elastic modulus at each angular frequency and the calculated value. Among these results, the value of loss tangent tan δ at an angular frequency of 1 rad / s was adopted. The amount of strain was 5%, and the measurement was performed in a nitrogen atmosphere.

〔示差走査熱量計法による融解ピークの測定〕
DSC比の測定はセイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂予備発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られる融解曲線(図1に例示)において、2つのピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100で表されるパラメータである。
[Measurement of melting peak by differential scanning calorimetry]
The DSC ratio is measured using a DSC6200 type differential scanning calorimeter manufactured by Seiko Instruments Inc., and 5-6 mg of polypropylene resin pre-expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. The melting curve (illustrated in FIG. 1) obtained at this time has two peaks, and the melting on the high temperature side calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peaks. This is a parameter represented by the peak ratio Qh / (Ql + Qh) × 100.

〔融点の測定〕
セイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温して、3分間温度をホールドした後、−10℃/minの降温速度で40℃まで冷却して、3分間温度をホールドした後、再度10℃/minの昇温速度で40℃から220℃まで昇温する際に得られる融解曲線において、得られるピーク温度を融点とした。
[Measurement of melting point]
Using a DSC6200 type differential scanning calorimeter manufactured by Seiko Instruments Inc., 5-6 mg of polypropylene resin was heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min, and the temperature was held for 3 minutes. Then, after cooling to 40 ° C. at a temperature decrease rate of −10 ° C./min, holding the temperature for 3 minutes, the melting obtained when the temperature is increased again from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min. In the curve, the peak temperature obtained was taken as the melting point.

〔予備発泡粒子の発泡倍率〕
嵩体積約50cmのポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm)を求め、発泡前の樹脂粒子の密度d(g/cm)から次式により求める。
発泡倍率=d×v/w
[Expansion ratio of pre-expanded particles]
Seeking bulk volume weight w of the pre-expanded polypropylene resin particles of about 50 cm 3 (g) and ethanol submerged volume v (cm 3), calculated by the following equation from the density d of before foaming of the resin particles (g / cm 3).
Foaming ratio = d × v / w

〔成形体密度〕
成形体の乾燥の後、成形体重量w(g)および水没体積v(L)を求め、下記式より成形体密度(g/L)を算出した。
成形体密度=w/v
[Molded body density]
After drying the molded body, the molded body weight w (g) and the submerged volume v (L) were determined, and the molded body density (g / L) was calculated from the following formula.
Compact density = w / v

〔最低成形加熱蒸気圧力〕
東洋機械金属株式会社製ポリオレフィン発泡成形機パールスターP−150Nを用い、縦270mm×横290mm×厚み40mmのブロック金型に、あらかじめ粒子内部の空気圧力が2.0atmになるように調整したポリプロピレン系樹脂予備発泡粒子を充填し、まず0.1MPaの水蒸気で金型内の空気を追い出し、その後任意の圧力の加熱蒸気を用いて10秒間加熱成形させることにより、ポリプロピレン系樹脂発泡成形体を得る。この発泡成形体を手で割り、内部発泡粒子の融着状態を確認した。発泡粒子同士の融着が目視にて60%以上の発泡粒子が材料破壊している状態の最低の成形加熱蒸気圧力を調べた。一般に用いられる0.4MPa耐圧仕様の成形機を用いる場合の連続生産可能圧力である0.34MPa以下を基準とした。
[Minimum molding heating steam pressure]
Polypropylene based on polyolefin foam molding machine Pearlstar P-150N manufactured by Toyo Machine Metal Co., Ltd., adjusted in advance so that the air pressure inside the particles becomes 2.0 atm in a block mold of 270 mm long x 290 mm wide x 40 mm thick The resin pre-expanded particles are filled, the air in the mold is first expelled with water vapor of 0.1 MPa, and then heat-molded for 10 seconds using heated steam at an arbitrary pressure to obtain a polypropylene-based resin foam molded article. The foamed molded product was divided by hand to confirm the fused state of the internal foamed particles. The lowest molding heating steam pressure in a state where 60% or more of the foamed particles were visually destroyed by fusion between the foamed particles was examined. The standard was a pressure capable of continuous production of 0.34 MPa or less when a generally used 0.4 MPa pressure-resistant molding machine was used.

〔箱型成形体における成形評価〕
東洋機械金属株式会社製ポリオレフィン発泡成形機パールスターP−150Nを用い、0.28MPaの水蒸気加熱により成形した後、25℃で2時間静置し、次いで65℃に温調した恒温室内に5時間静置した後、取り出し、25℃で放冷し、図2に示す形状の成形体を得た。
[Molding evaluation in box-shaped compacts]
After molding by 0.28MPa steam heating using a polyolefin foam molding machine Pearlstar P-150N manufactured by Toyo Machine Metal Co., Ltd., left at 25 ° C for 2 hours, and then kept in a temperature-controlled room at 65 ° C for 5 hours. After leaving still, it took out and it stood to cool at 25 degreeC, and the molded object of the shape shown in FIG. 2 was obtained.

内倒れ量は、成形体2試験体の長手方向の端部分の寸法c1とc2の平均値から、中央部分の寸法bを差し引いた値を測定・平均値化したものとし、製品要求品質である−10〜10mmであることを合格(○)とした。   The amount of inward tilt is the product required quality, which is obtained by measuring and averaging the value obtained by subtracting the dimension b of the center part from the average value of the dimensions c1 and c2 of the end part in the longitudinal direction of the molded body 2 specimen. It was set as the pass ((circle)) that it was -10-10 mm.

また、薄肉部表面性の評価では、粒間や皺がほとんどないことを合格(○)、粒間や皺が見られる場合(×)とした。   Further, in the evaluation of the surface property of the thin-walled portion, it was determined that there was almost no intergranularity or wrinkles, and the case where intergranularity or wrinkles were observed (×).

(樹脂1の製造)
原料ポリプロピレン(樹脂融点142℃、MFR6.5g/10分)100重量部と、ラジカル開始剤であるt−ブチルパーオキシ−イソプロピルモノカーボネート(日本油脂社製、パーブチルI)を表1の割合でリボンブレンダーで撹拌混合した配合物を、計量フィーダーを用いて2軸押出機((株)日本製鋼所製、TEX44XCT−38)に供給し、液体添加ポンプを用いて押出機途中からイソプレンを、原料ポリプロピレン100重量部に対して表1の割合で供給し、溶融混練することにより、各種のペレットを得た。
(Manufacture of resin 1)
100 parts by weight of raw material polypropylene (resin melting point 142 ° C., MFR 6.5 g / 10 min) and a radical initiator t-butyl peroxy-isopropyl monocarbonate (Nippon Yushi Co., Ltd., Perbutyl I) in the ratio of Table 1 The blend stirred and mixed is supplied to a twin screw extruder (manufactured by Nippon Steel Works, Ltd., TEX44XCT-38) using a metering feeder, and isoprene is fed from the middle of the extruder using a liquid addition pump to a raw material polypropylene. Various pellets were obtained by supplying at a ratio of Table 1 to 100 parts by weight, and melt-kneading.

なお、前記2軸押出機は、同方向2軸タイプであり、スクリュー径が44mmφであり、最大スクリュー有効長(L/D)が38であった。2軸押出機のシリンダー部の設定温度は、イソプレン単量体圧入までは180℃、イソプレン圧入以降は200℃とし、スクリュー回転速度は120rpmに設定した。   The biaxial extruder was of the same direction biaxial type, the screw diameter was 44 mmφ, and the maximum screw effective length (L / D) was 38. The set temperature of the cylinder part of the twin screw extruder was 180 ° C. until the isoprene monomer injection, 200 ° C. after the isoprene injection, and the screw rotation speed was set to 120 rpm.

(樹脂2〜7の製造)
表1に示した原料ポリプロピレンの種類、ラジカル開始剤の量、イソプレンの量をそれぞれ変更した以外は、樹脂1と同様の操作により、樹脂2〜樹脂7のペレットを得た。
(Production of resins 2 to 7)
Resin 2 to Resin 7 pellets were obtained by the same operation as Resin 1 except that the type of raw material polypropylene, the amount of radical initiator, and the amount of isoprene shown in Table 1 were changed.

Figure 0005037212
表1に示すポリプロピレン系樹脂を用い、ポリプロピレン系樹脂100部に対し、造核剤としてタルクを0.03部添加・混合し、50mmφ単軸押出機で混練したのち造粒し、ポリプロピレン系樹脂粒子(1.3mg/粒)を製造した。
Figure 0005037212
Using polypropylene resin shown in Table 1, 0.03 part of talc as a nucleating agent is added to and mixed with 100 parts of polypropylene resin, kneaded with a 50 mmφ single screw extruder, granulated, and polypropylene resin particles (1.3 mg / grain) was produced.

該ポリプロピレン系樹脂粒子100部、分散剤としてパウダー状塩基性第3リン酸カルシウム2部および分散助剤としてn−パラフィンスルホン酸ソーダ0.05部、水300部を、内容量10Lの耐圧容器に仕込み、攪拌しながら、イソブタン15重量部を加え、表2記載の温度まで昇温し、さらにイソブタンを圧入して表2記載の圧力に調整し、30分間保持した。その後、窒素を圧入しながら容器内温、圧力を表2記載の圧力に保持しつつ、耐圧容器下部のバルブを開いて、水系分散媒を開孔径4.0mmφのオリフィス板を通して大気圧下に放出することによってポリプロピレン系樹脂予備発泡粒子をえた。   100 parts of the polypropylene resin particles, 2 parts of powdery basic tricalcium phosphate as a dispersing agent, 0.05 part of n-paraffin sulfonic acid sodium as a dispersing aid, and 300 parts of water are charged into a pressure-resistant container having an internal volume of 10 L. While stirring, 15 parts by weight of isobutane was added, the temperature was raised to the temperature shown in Table 2, and isobutane was further injected to adjust the pressure as shown in Table 2 and maintained for 30 minutes. Then, while maintaining the internal temperature and pressure of the vessel as shown in Table 2 while injecting nitrogen, the valve at the bottom of the pressure vessel is opened, and the aqueous dispersion medium is released under atmospheric pressure through an orifice plate having an aperture diameter of 4.0 mmφ. As a result, pre-expanded polypropylene resin particles were obtained.

Figure 0005037212
次に得られた発泡粒子を用いて最低成形加熱蒸気圧力、および箱型成形体における成形評価(内倒れ量、薄肉部表面性)を行った。
Figure 0005037212
Next, using the obtained foamed particles, the minimum molding heating steam pressure and the molding evaluation (inside-down amount, thin-wall surface property) in a box-shaped molded body were performed.

実施例1〜4で示す樹脂を用いたポリプロピレン系樹脂予備発泡粒子と、比較例1〜5で示すポリプロピレン系樹脂予備発泡粒子のそれぞれの評価結果を比べると、本発明記載の技術を用いた実施例では、最低成形蒸気過熱圧力、内倒れ量および薄肉部表面性のすべてで優れた結果が得られたのに対し、比較例では、最低成形蒸気過熱圧力、内倒れ量、薄肉部表面性のいずれか、もしくは複数の点で劣るものであった。   When the evaluation results of the polypropylene resin pre-expanded particles using the resins shown in Examples 1 to 4 and the polypropylene resin pre-expanded particles shown in Comparative Examples 1 to 5 are compared, implementation using the technique described in the present invention is performed. In the example, excellent results were obtained for all of the minimum forming steam superheating pressure, the amount of inclining and the surface property of the thin wall portion, while in the comparative example, the minimum forming steam superheating pressure, the amount of inclining and the surface property of the thin portion It was inferior in one or more points.

以上のように、ポリプロピレン系樹脂予備発泡粒子において、本発明記載の技術を用いると、内倒れが少なく、現状よく用いられている0.4MPa耐圧仕様の成形機を用いて、表面美麗でかつ乾燥時間が短い成形体を得られることから効率的に成形体の製造が可能である。   As described above, in the pre-expanded polypropylene resin particles, when the technique described in the present invention is used, there is little inversion and the surface is beautiful and dry using a molding machine of 0.4 MPa pressure resistance specification which is often used at present. Since a molded article having a short time can be obtained, the molded article can be efficiently produced.

示差走査熱量計を用い、本発明記載のポリプロピレン系樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側の網掛け部分がQl、高温側の網掛け部分がQhである。It is an example of a DSC curve obtained when a differential scanning calorimeter is used to measure polypropylene resin pre-expanded particles according to the present invention. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The shaded portion on the low temperature side is Ql, and the shaded portion on the high temperature side is Qh. 成形評価に用いた箱型成形体の形状を示す斜視図である。It is a perspective view which shows the shape of the box-shaped molded object used for shaping | molding evaluation.

符号の説明Explanation of symbols

a 薄肉形状部位
b 中央部寸法を測定した箇所
c 端部寸法を測定した箇所
a Thin-walled part b Location where the center dimension was measured c Location where the end dimension was measured

Claims (3)

原料ポリプロピレン系樹脂がイソプレン単量体およびラジカル重合開始剤との反応により改質された、180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接tanδが、1.0以上3.0以下である改質ポリプロピレン系樹脂を基材樹脂として、示差走査熱量計法による測定で2つの融解ピークを有し、該2つの融解ピークのうち、高温側融点に基づく融解ピーク熱量の融解ピーク全体熱量に対する比率が10%以上70%以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子。 Ratio of storage elastic modulus and loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement at 180 ° C., in which raw material polypropylene resin was modified by reaction with isoprene monomer and radical polymerization initiator in a loss tangent tanδ are, the modified polypropylene resin is 1.0 to 3.0 as a base resin has two melting peaks as measured by differential scanning calorimetry, of the two melting peaks Of these, the ratio of the melting peak heat quantity based on the high temperature side melting point to the total melting peak heat quantity is 10% or more and 70% or less, and the polypropylene resin pre-expanded particles are characterized in that: 改質ポリプロピレン系樹脂のメルトフローレート(MFR)が、3g/10分以上30g/10分以下であるポリプロピレン系樹脂であることを特徴とする請求項1に記載のポリプロピレン系樹脂予備発泡粒子。 Modified polypropylene resin of melt flow rate (MFR), characterized in that it is a polypropylene resin is 3 g / 10 min or more 30 g / 10 min or less, the pre-expanded polypropylene resin particles according to claim 1. 請求項1または2に記載のポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m以上300kg/m以下の型内発泡成形体。 Obtained using the pre-expanded polypropylene resin particles according to claim 1 or 2, density of 10 kg / m 3 or more 300 kg / m 3 or less in-mold expansion molded article.
JP2007116117A 2007-04-25 2007-04-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings Active JP5037212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116117A JP5037212B2 (en) 2007-04-25 2007-04-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116117A JP5037212B2 (en) 2007-04-25 2007-04-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Publications (2)

Publication Number Publication Date
JP2008274024A JP2008274024A (en) 2008-11-13
JP5037212B2 true JP5037212B2 (en) 2012-09-26

Family

ID=40052435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116117A Active JP5037212B2 (en) 2007-04-25 2007-04-25 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Country Status (1)

Country Link
JP (1) JP5037212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717898C1 (en) * 2019-10-23 2020-03-26 Открытое акционерное общество "Межгосударственная Корпорация Развития" (ОАО "Межгосударственная Корпорация Развития") Broadband power divider
RU2805010C1 (en) * 2023-06-05 2023-10-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" High-frequency signals divider

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770634B2 (en) * 2009-10-13 2015-08-26 株式会社カネカ Polypropylene resin, polypropylene resin composition, and injection-foamed molded article
JP5460227B2 (en) * 2009-10-14 2014-04-02 株式会社カネカ Polypropylene resin in-mold foam molding
JP5638928B2 (en) * 2010-12-07 2014-12-10 株式会社カネカ Polypropylene resin for injection foam molding and injection foam molded body thereof
JP6357310B2 (en) * 2013-12-03 2018-07-11 株式会社カネカ Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
JP7057752B2 (en) * 2016-07-19 2022-04-20 株式会社カネカ Polypropylene resin pre-foamed particles and method for producing the pre-foamed particles
WO2021131933A1 (en) * 2019-12-23 2021-07-01 株式会社カネカ Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302131A (en) * 1996-05-08 1997-11-25 Kanegafuchi Chem Ind Co Ltd Expanded particle composed of modified polypropylene resin composition and its production
JP3564264B2 (en) * 1997-07-10 2004-09-08 鐘淵化学工業株式会社 Buffer material made of new polypropylene resin foam
JP4035233B2 (en) * 1998-06-05 2008-01-16 株式会社カネカ Foamed sheet made of modified polypropylene resin and its production method
JP4779330B2 (en) * 2004-09-28 2011-09-28 株式会社カネカ Polypropylene resin pre-expanded particles and in-mold expanded molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717898C1 (en) * 2019-10-23 2020-03-26 Открытое акционерное общество "Межгосударственная Корпорация Развития" (ОАО "Межгосударственная Корпорация Развития") Broadband power divider
RU2805010C1 (en) * 2023-06-05 2023-10-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" High-frequency signals divider

Also Published As

Publication number Publication date
JP2008274024A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5037212B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
CN102574948B (en) Polypropylene resin, polypropylene resin composition, and foam-injection-molded article
EP1829919A1 (en) Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion
JPWO2018016399A1 (en) Polypropylene-based resin pre-expanded particles and method for producing the pre-expanded particles
US20020043643A1 (en) Modified polypropylene, process for preparing modified polypropylene, modified polyropylene composition and foamed product
EP4112678A1 (en) Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
JP6357310B2 (en) Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
JP5112674B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
US10308747B2 (en) Modified polypropylene-based resin, polypropylene-based resin expanded sheet, expanded resin-made container, and method for producing modified polypropylene-based resin
JP5080842B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP2004339365A (en) Modified polypropylene-based resin composition and foam thereof
JP2012107097A (en) Polypropylene-based resin composition and injection foaming molded article comprising the resin composition
JP5638928B2 (en) Polypropylene resin for injection foam molding and injection foam molded body thereof
JP2012197345A (en) Polypropylenic resin composition for injection foam molding, and injection foam molded body comprising the same
JP5992723B2 (en) Thermoplastic elastomer composition for extrusion foam molding and extruded foam molding comprising the resin composition
JP3634935B2 (en) Modified polypropylene resin foam and process for producing the same
JP3662728B2 (en) Polypropylene resin composition and extruded foam
JP2001187824A (en) Extrusion-foamed board of mixture of polypropylene and polystyrene resins
JPH10306171A (en) Thermoplastic resin foam
JPH09124827A (en) Foamed material consisting of modified polyolefinic resin and its production
WO2022154070A1 (en) Polypropylene resin extruded foam particles, method for producing same, and foam molded body
JP3564264B2 (en) Buffer material made of new polypropylene resin foam
JPH10298336A (en) Foam made from modified polypropylene-based resin composition and production of the foam
JP2012166522A (en) Method for manufacturing injection foam molding made of polypropylene resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250