JP5080842B2 - Polypropylene resin pre-expanded particles and in-mold expanded molded body - Google Patents

Polypropylene resin pre-expanded particles and in-mold expanded molded body Download PDF

Info

Publication number
JP5080842B2
JP5080842B2 JP2007098368A JP2007098368A JP5080842B2 JP 5080842 B2 JP5080842 B2 JP 5080842B2 JP 2007098368 A JP2007098368 A JP 2007098368A JP 2007098368 A JP2007098368 A JP 2007098368A JP 5080842 B2 JP5080842 B2 JP 5080842B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
melting
mold
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007098368A
Other languages
Japanese (ja)
Other versions
JP2008255213A (en
Inventor
徹雄 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007098368A priority Critical patent/JP5080842B2/en
Publication of JP2008255213A publication Critical patent/JP2008255213A/en
Application granted granted Critical
Publication of JP5080842B2 publication Critical patent/JP5080842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ポリプロピレン系樹脂予備発泡粒子および型内発泡成形体に関する。更に詳しくは、型内発泡成形体としたときに、表面伸びが良好、かつ、金型追随性が良好なポリプロピレン系樹脂予備発泡粒子および、該予備発泡粒子から得られる型内発泡成形体に関する。   The present invention relates to a polypropylene resin pre-foamed particle and an in-mold foam molded article. More specifically, the present invention relates to a polypropylene resin pre-foamed particle having good surface elongation and good mold followability when used as an in-mold foam molded product, and an in-mold foam molded product obtained from the pre-foamed particle.

ポリプロピレン系樹脂型内発泡成形体は、ポリスチレン系樹脂型内発泡成形体と比較して、耐薬品性能、耐熱性能、緩衝性能、圧縮歪み回復性能に優れ、ポリエチレン系樹脂型内発泡成形体と比較しても、耐熱性能、圧縮強度に優れることから、緩衝包装資材や通い箱、自動車用部材として広く用いられている。   Polypropylene resin in-mold foam molded products have superior chemical resistance, heat resistance, buffer performance, and compression strain recovery performance compared to polystyrene resin in-mold foam molded products. Compared to polyethylene resin in-mold foam molded products. Even so, since it is excellent in heat resistance and compressive strength, it is widely used as a buffer packaging material, a returnable box, and an automobile member.

特に、様々な形状の緩衝包装資材として、内包する商品や部材の形状に合わせて柔軟に、かつ切削加工無しで成形できることから、電子機械から産業資材など幅広く利用されている。   In particular, as buffer packaging materials of various shapes, they can be molded flexibly and without cutting work in accordance with the shape of products and members to be included, so that they are widely used from electronic machines to industrial materials.

しかし、様々な形状に成形できるとはいえ、良品を得るための成形加工温度幅がポリスチレンなどと比べて狭いため、成形時の加熱蒸気圧力の調整、加熱時間の調整、および冷却時間の調整など、ユーザーの成形技術の熟練を要する。また、例えば、表面に凹凸形状を有する成形体を得ようとすると、加熱で膨張した予備発泡粒子が金型内に隅々まで入り込み、予備発泡粒子同士が融着し、形状が維持される必要があるが、金型の凹凸形状を良好に転写した、角がシャープな成形体を得ることが困難な場合がある。そのため、部品トレーなどに使用する場合、設計した張り出しが充分に形成されないため部品の保持性が損なわれる場合があり、また滑り止めのため表面に四角錘状の小突起を多数形成する場合、小突起の先端が丸いため滑り止め効果が充分に得られない場合がある。   However, although it can be molded into various shapes, the molding temperature range for obtaining good products is narrow compared to polystyrene, etc., so adjustment of heating steam pressure, adjustment of heating time, adjustment of cooling time, etc. , User skill in molding technology is required. Also, for example, when trying to obtain a molded body having a concavo-convex shape on the surface, pre-expanded particles expanded by heating enter into the mold everywhere, the pre-expanded particles need to be fused together, and the shape needs to be maintained However, there are cases where it is difficult to obtain a molded body having a sharp corner, in which the uneven shape of the mold is well transferred. For this reason, when used for component trays, etc., the designed overhang is not sufficiently formed, so the retention of the component may be impaired, and when a large number of small pyramidal projections are formed on the surface to prevent slipping, small Since the tip of the protrusion is round, the anti-slip effect may not be sufficiently obtained.

一般的に、樹脂融点温度が低い原料を使用することで、蒸気加熱した際の二次発泡性(二次発泡倍率)が高くなりやすくなる為、金型内への充填性は改善される傾向にはあるが、離型後の収縮により形状が充分に維持されず、結果として角のシャープな成形体を必ずしも得ることができない。   Generally, the use of raw materials with a low resin melting point tends to increase the secondary foamability (secondary foaming ratio) when steam-heated, so the filling property in the mold tends to be improved. However, the shape is not sufficiently maintained by the shrinkage after the mold release, and as a result, a molded article having a sharp corner cannot always be obtained.

以上のような課題に鑑み、例えば、複雑な形状の成形体を容易に得ることができるポリプロピレン系樹脂予備発泡粒子として、融点温度差が15℃以上30℃以下のポリプロピレン系樹脂を混合してなるメルトインデックスが3g/10min以上20g/10min以下のポリプロピレン系樹脂を基材に用いることが提案されている(特許文献1)。しかし、この方法では、異なる2種の樹脂を混合する必要があるが、均一な混合がなされないと予備発泡粒子内で高融点成分に起因して、成形時の伸びの劣る部位が発生する場合があり、表面に凹凸形状を有する型内発泡成形体において、金型の凹凸形状を良好に転写し得ない場合がある。   In view of the above problems, for example, as a polypropylene resin pre-expanded particle capable of easily obtaining a molded article having a complicated shape, a polypropylene resin having a melting point temperature difference of 15 ° C. or more and 30 ° C. or less is mixed. It has been proposed to use a polypropylene resin having a melt index of 3 g / 10 min or more and 20 g / 10 min or less as a base material (Patent Document 1). However, in this method, it is necessary to mix two different types of resins. If uniform mixing is not performed, a portion having poor elongation at the time of molding occurs due to the high melting point component in the pre-foamed particles. In an in-mold foam-molded product having a concavo-convex shape on the surface, the concavo-convex shape of the mold may not be transferred satisfactorily.

ポリプロピレン系樹脂を改質する技術として、有機過酸化物を用いる方法があるが、ポリプロピレン系樹脂を有機過酸化物を用いて減成して予備発泡粒子を得る技術として、例えば、特許文献2には、金型のキャビティ内を減圧しなくても粒子間隙を埋めるのに十分な加熱膨張率を有するポリプロピレン系樹脂予備発泡粒子を提供することを目的として、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が6以下であって、JIS K−7210記載のMFR測定器を用い、オリフィス径(lo)2.0959±0.005mmφ、オリフィス長8.000±0.025mm、荷重2160g、230±0.2℃の条件下でポリプロピレン系樹脂のMFRを測定する際、オリフィスから押出された樹脂の直径lと、オリフィス径(lo)との比(l/lo)が1.15以下であるポリプロピレン系樹脂を基材とする予備発泡粒子が開示されている。   As a technique for modifying a polypropylene resin, there is a method using an organic peroxide. As a technique for degrading a polypropylene resin using an organic peroxide to obtain pre-expanded particles, for example, Patent Document 2 discloses. Is intended to provide polypropylene resin pre-expanded particles having a sufficient coefficient of thermal expansion to fill the particle gap without reducing the pressure inside the mold cavity, and the weight average molecular weight (Mw) and the number average molecular weight The ratio (Mw / Mn) of (Mn) is 6 or less, an MFR measuring instrument described in JIS K-7210 is used, the orifice diameter (lo) is 2.0959 ± 0.005 mmφ, and the orifice length is 8.000 ± 0.00. When measuring MFR of polypropylene resin under the conditions of 025 mm, load 2160 g, 230 ± 0.2 ° C., the diameter l of the resin extruded from the orifice and the orifice Pre-expanded particles based on a polypropylene resin having a ratio (l / lo) to the diameter (lo) of 1.15 or less are disclosed.

また、特許文献3には、発泡温度が多少変動しても発泡倍率がほとんど変らず、そのために発泡工程の温度管理が容易な上に発泡倍率が一定なので成形性等も優れると共に、発泡倍率も高い高品質の発泡粒子、及びその製造方法を提供することを目的として、ポリプロピレン系樹脂発泡粒子において、該樹脂中にコモノマー成分としてエチレン及び/又はブテン−1を3〜10重量%含有すると共に、該樹脂のZ平均分子量Mzと重量平均分子量Mwの比Mz/Mwが1.5〜2.5の範囲にあり、該樹脂発泡粒子は融解エネルギーが11〜30J/gの二次結晶を有することを特徴とするポリプロピレン系樹脂発泡粒子が開示されている。
特開2006−96805号公報 特開平3−152136号公報 特開平8−259724号公報
Further, in Patent Document 3, the foaming ratio hardly changes even if the foaming temperature varies somewhat. Therefore, the temperature control in the foaming process is easy and the foaming ratio is constant, so that the moldability is excellent and the foaming ratio is also high. For the purpose of providing high-quality expanded particles and a method for producing the same, polypropylene resin expanded particles contain 3 to 10% by weight of ethylene and / or butene-1 as a comonomer component in the resin, The ratio Mz / Mw of the Z-average molecular weight Mz to the weight-average molecular weight Mw of the resin is in the range of 1.5 to 2.5, and the resin foam particles have secondary crystals with a melting energy of 11 to 30 J / g. Polypropylene resin expanded particles characterized by the above are disclosed.
JP 2006-96805 A JP-A-3-152136 JP-A-8-259724

本発明の目的は、例えば、表面に凹凸形状を有する型内発泡成形体において、成形に使用する金型の凹凸形状を良好に転写し得るような、型内発泡成形体としたときに、表面伸びが良好、かつ、金型追随性が良好なポリプロピレン系樹脂予備発泡粒子を提供することにある。   The object of the present invention is, for example, in the case of an in-mold foam-molded product having a concavo-convex shape on the surface, in which the concavo-convex shape of the mold used for molding can be satisfactorily transferred. An object of the present invention is to provide polypropylene resin pre-expanded particles having good elongation and good mold followability.

本発明者らは前記実情に鑑み、金型の凹凸形状を良好に転写し得るポリプロピレン系樹脂予備発泡粒子を得るべく鋭意研究を重ねた結果、溶融時の動的粘弾性測定において、角振動数の低い領域での貯蔵弾性率が特定の領域にあるポリプロピレン系樹脂を基材とし、予備発泡粒子の重量と示差走査熱量計法での融解挙動を特定することにより、型内発泡成形体としたとき表面伸びが良好で金型への追随性が良好なポリプロピレン系樹脂予備発泡粒子が得られることを見出した。   In view of the above circumstances, the present inventors have conducted extensive research to obtain polypropylene resin pre-expanded particles that can transfer the uneven shape of the mold well, and as a result, in the measurement of dynamic viscoelasticity during melting, the angular frequency Using a polypropylene-based resin with a storage elastic modulus in a low region of a specific region as a base material, and determining the weight of the pre-expanded particles and the melting behavior by differential scanning calorimetry, it was made into an in-mold foam molded product It was found that polypropylene resin pre-expanded particles having good surface elongation and good followability to the mold can be obtained.

溶融時の動的粘弾性測定において、角振動数の低い領域での貯蔵弾性率が特定の領域にするための手法としては、後述するとおり、有機過酸化物を用いる方法が挙げられ、特開平3−152136号公報や特開平8−259724号公報にはそのような樹脂を用いたポリプロピレン系樹脂予備発泡粒子が開示されている。本発明者らは、前記公報に記載のMw/Mn、バラス効果(l/lo)やMz/Mwと、溶融時の動的粘弾性測定における、角振動数の低い領域での貯蔵弾性率が必ずしも相関があるわけではなく、また、溶融時の動的粘弾性測定における、角振動数の低い領域での貯蔵弾性率を所定の範囲とすることで、成形加工時に予備発泡粒子が良好に膨張するだけでなく、例えば、金型端部でも予備発泡粒子が充分に変形して金型内に充満し、金型形状を良好に転写し得る、即ち、型内発泡成形体としたとき表面伸びが良好で金型への追随性が良好なポリプロピレン系樹脂予備発泡粒子が得られることをようやく見出し、本発明の完成に至った。   In the dynamic viscoelasticity measurement at the time of melting, as a method for setting the storage elastic modulus in a region having a low angular frequency to a specific region, a method using an organic peroxide can be mentioned as described later. Japanese Patent Laid-Open No. 3-152136 and Japanese Patent Laid-Open No. 8-259724 disclose pre-expanded polypropylene resin particles using such a resin. The inventors have Mw / Mn, ballast effect (l / lo) and Mz / Mw described in the above publication, and storage elastic modulus in a low angular frequency region in the dynamic viscoelasticity measurement at the time of melting. It does not necessarily have a correlation, and pre-expanded particles expand well during molding by setting the storage elastic modulus in the low angular frequency range in the dynamic viscoelasticity measurement at the time of melting. In addition, for example, the pre-expanded particles can be sufficiently deformed and filled in the mold at the end of the mold, and the mold shape can be transferred well. Finally, it was found that polypropylene resin pre-expanded particles having good and good followability to the mold were obtained, and the present invention was completed.

すなわち、本発明の第1は、
180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paであり、融点が133〜150℃であるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂予備発泡粒子であり、
1個当りの重量が0.5〜3.0mgであり、示差走査熱量計法による測定で2つの融解ピークを示し、該2つの融解ピークのうち、高温側に現われる融解ピーク熱量の融解ピーク全体熱量に対する比率が10〜50%であり、かつ、該2つの融解ピークのピーク温度の差が10℃以上17.5℃以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子に関する。
本発明の第2は、
原料ポリプロピレン系樹脂と有機過酸化物を、押出機を使用して溶融混練することにより得た、180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paであり、融点が133〜150℃、1個当りの重量が0.5〜3.0mgのポリプロピレン系樹脂粒子を、
プロパン、ブタン、ペンタン、ヘキサン、窒素、空気、炭酸ガスよりなる群から選ばれる少なくとも1種の揮発性発泡剤と共に、耐圧容器内で水中に分散させ、ポリプロピレン系樹脂分散物とし、
該分散物を、ポリプロピレン系樹脂粒子の融点−25℃〜+10℃の範囲の温度に加熱して、ポリプロピレン系樹脂粒子内に発泡剤を含浸させ、発泡剤の示す蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出することにより得られる、
示差走査熱量計法による測定で2つの融解ピークを示し、該2つの融解ピークのうち、高温側に現われる融解ピーク熱量の融解ピーク全体熱量に対する比率が10〜50%であり、かつ該2つの融解ピークのピーク温度の差が10℃以上17.5℃以下であることを特徴とする、ポリプロピレン系樹脂予備発泡粒子の製造方法に関する。
That is, the first of the present invention is
Storage modulus at angular frequency 1 rad / s in a dynamic viscoelasticity measurement at 180 ° C. is Ri 100~1000Pa der, polypropylene resin pre to a polypropylene resin having a melting point of 133-150 ° C. as a base resin Foam particles,
The weight per piece is 0.5 to 3.0 mg, and shows two melting peaks as measured by the differential scanning calorimetry method. Of the two melting peaks, the entire melting peak of the melting peak calorie appearing on the high temperature side. Ri ratio 10-50% der against heat, and the difference between the peak temperature of the two melting peaks, wherein der Rukoto 10 ° C. or higher 17.5 ° C. or less, about the pre-expanded polypropylene resin particles.
The second of the present invention is
A storage elastic modulus at an angular frequency of 1 rad / s in a dynamic viscoelasticity measurement at 180 ° C. obtained by melting and kneading a raw material polypropylene resin and an organic peroxide using an extruder is 100 to 1000 Pa. Polypropylene resin particles having a melting point of 133 to 150 ° C. and a weight of 0.5 to 3.0 mg per piece,
Along with at least one volatile foaming agent selected from the group consisting of propane, butane, pentane, hexane, nitrogen, air, carbon dioxide, it is dispersed in water in a pressure-resistant container to form a polypropylene resin dispersion,
The dispersion is heated to a temperature in the range of −25 ° C. to + 10 ° C. of the polypropylene resin particles, the polypropylene resin particles are impregnated with a foaming agent, and the container is pressed under a pressure higher than the vapor pressure indicated by the foaming agent. It is obtained by releasing a dispersion of polypropylene resin particles and water in an atmosphere at a lower pressure than in the container while maintaining the temperature and pressure inside.
Measurement by differential scanning calorimetry shows two melting peaks, of which the ratio of the melting peak calorie appearing on the high temperature side to the total melting peak calorie is 10 to 50%, and the two melting peaks The present invention relates to a method for producing polypropylene resin pre-expanded particles, wherein the difference in peak temperature between the peaks is 10 ° C. or higher and 17.5 ° C. or lower.

本発明の第は、前記記載のポリプロピレン系樹脂予備発泡粒子に0.1kg/cm−G以上の内圧を付与せしめ、閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形することを特徴とするポリプロピレン系樹脂型内発泡成形体に関する。
In the third aspect of the present invention, the polypropylene resin pre-foamed particles described above are given an internal pressure of 0.1 kg / cm 2 -G or more, filled in a mold that can be closed but cannot be sealed, and heated with steam. The present invention relates to a polypropylene resin in-mold foam-molded product characterized by

本発明のポリプロピレン系樹脂予備発泡粒子は、型内発泡成形体としたとき表面伸びが良好、かつ、金型への追随性が良好である。従い、ポリプロピレン系樹脂が本来有する耐熱性、耐溶剤性、断熱性、緩衝性を全く阻害することなく、例えば、凹凸を有する複雑な形状の成形体を容易に得ることができる。   The polypropylene resin pre-expanded particles of the present invention have good surface elongation when formed into an in-mold expanded molded article and have good followability to the mold. Therefore, for example, it is possible to easily obtain a molded article having a complex shape having irregularities without hindering the heat resistance, solvent resistance, heat insulation, and buffering properties inherent to polypropylene resins.

本発明のポリプロピレン系樹脂型内発泡成形体は、表面性が良好で、かつ、凹凸を有するような複雑な形状の金型形状を良好に反映しているため、部品トレーや緩衝材、自動車用部材などの用途で幅広く好適に利用可能である。   Since the polypropylene resin-in-mold foam-molded article of the present invention has good surface properties and well reflects the complex shape of the mold having irregularities, it can be used for parts trays, cushioning materials, and automobiles. It can be used in a wide range of applications such as members.

本発明におけるポリプロピレン系樹脂予備発泡粒子(以下、単に予備発泡粒子と称す場合がある)の基材樹脂であるポリプロピレン系樹脂の組成としては、単量体として、プロピレンを80重量%以上、より好ましくは85重量%以上、さらに好ましくは90重量%以上含むものであり、例えば、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−プロピレン−ブテン三元共重合体などが挙げられる。   The composition of the polypropylene resin that is the base resin of the polypropylene resin pre-expanded particles (hereinafter sometimes referred to simply as pre-expanded particles) in the present invention is more preferably 80% by weight or more as a monomer. Is 85% by weight or more, more preferably 90% by weight or more. For example, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-butene Examples thereof include an original copolymer.

そして本発明における予備発泡粒子の基材樹脂であるポリプロピレン系樹脂の180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率は、100〜1000Pa、好ましくは200〜900Paである。なお、貯蔵弾性率の測定には回転型のレオメータを用い、平板状のポリプロピレン系樹脂サンプルを180℃で充分に予熱した後に、一定周期で回転角を変化させて歪みを加えた際の応力を検出して行う。測定冶具としてはパラレルプレート型を使用し、窒素雰囲気下で測定を行う。測定は、角振動数0.1rad/sから100rad/sまでの範囲で行い、各角振動数での貯蔵弾性率と損失弾性率が得られる。これらの結果のうち、角振動1rad/sでの貯蔵弾性率の値を採用する。   The storage elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 180 ° C. of the polypropylene resin, which is the base resin of the pre-expanded particles in the present invention, is 100 to 1000 Pa, preferably 200 to 900 Pa. is there. The storage elastic modulus was measured using a rotary rheometer. The plate-shaped polypropylene resin sample was sufficiently preheated at 180 ° C, and then the stress when strain was applied by changing the rotation angle at a constant period was used. Detect and do. A parallel plate type is used as a measurement jig, and measurement is performed in a nitrogen atmosphere. The measurement is performed in the range of angular frequency from 0.1 rad / s to 100 rad / s, and the storage elastic modulus and loss elastic modulus at each angular frequency are obtained. Among these results, the value of the storage elastic modulus at an angular vibration of 1 rad / s is adopted.

本発明において180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paの範囲であると、型内発泡成形体としたとき表面伸びが良好、かつ、金型への追随性が良好となる理由は明確ではないが、以下のように考えられる。角振動数1rad/sは一般的に低剪断領域であり、ここでの貯蔵弾性率が1000Pa以下はポリプロピレン系樹脂としては比較的低い領域といえる。成形加工時にポリプロピレン系樹脂予備発泡粒子が加熱されて気泡内の圧力が上昇し膨張するが、低剪断領域での貯蔵弾性率が低いと膨張に対する抵抗力が小さくなるため、金型の凹凸形状にも充分に追随して伸びることが可能になると考えられる。一方、180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100を下回ると、予備発泡粒子の独立気泡率が低下し、成型加工時に気泡内圧力が抜けて膨張しにくいため、好ましくないと考えられる。   In the present invention, when the storage elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 180 ° C. is in the range of 100 to 1000 Pa, the surface elongation is good when an in-mold foam molded article is obtained, and gold The reason why the following property to the mold is good is not clear, but is considered as follows. An angular frequency of 1 rad / s is generally a low shear region, and a storage elastic modulus of 1000 Pa or less is a relatively low region for a polypropylene resin. During the molding process, the polypropylene resin pre-expanded particles are heated and the pressure in the bubbles rises and expands. However, if the storage elastic modulus is low in the low shear region, the resistance to expansion is reduced, so that the uneven shape of the mold is reduced. It is thought that it will be possible to extend with sufficient follow-up. On the other hand, when the storage elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 180 ° C. is less than 100, the closed cell ratio of the pre-expanded particles decreases, and the pressure inside the bubbles is released during the molding process to expand. This is considered undesirable because it is difficult to do.

前記180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paの範囲にあるポリプロピレン系樹脂は、例えば、重合で得たポリプロピレン系樹脂(以下、原料ポリプロピレン系樹脂と称す場合がある)を少量の有機過酸化物で処理することで得ることができる。   The polypropylene resin having a storage elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement at 180 ° C. in the range of 100 to 1000 Pa is, for example, a polypropylene resin obtained by polymerization (hereinafter referred to as a raw material polypropylene system). (Which may be referred to as a resin) can be obtained by treating with a small amount of organic peroxide.

ここで好適に使用しうる有機過酸化物としては、水素引き抜き性が高いことが好ましく、その様な有機過酸化物の目安としては、1分間半減期温度が100℃以上であることが好ましく、更には、原料ポリプロピレン系樹脂の融点以上であることが好ましい。当該1分間半減期温度の有機過酸化物を使用することで、ポリプロピレン系樹脂と有機過酸化物の混合物を溶融混練して、処理する場合に、ポリプロピレン系樹脂への有機過酸化物が良好に分散し、かつ、速やかに分解される傾向にある。本発明で用いることが出来る有機過酸化物としては、例えば、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール;パーメタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドなどのハイドロパーオキサイド;ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などのジアルキルパーオキサイド;t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどがあげられる。   As the organic peroxide that can be suitably used here, it is preferable that hydrogen abstraction is high, and as a measure of such organic peroxide, it is preferable that the half-life temperature for 1 minute is 100 ° C. or more, Furthermore, it is preferable that it is more than melting | fusing point of raw material polypropylene resin. By using an organic peroxide having a half-life temperature of 1 minute, when a mixture of a polypropylene resin and an organic peroxide is melt-kneaded and processed, the organic peroxide to the polypropylene resin is excellent. It tends to disperse and decompose quickly. Examples of the organic peroxide that can be used in the present invention include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy). Peroxyketals such as cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane; permethane hydroperoxide, 1,1,3 , 3-tetramethylbutyl hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, etc .; dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane , Α, α′-bis (t-butylperoxy-m-isopropyl) benzene, t-butyl Dialkyl peroxides such as rucumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3; t-butyl peroxyisobutyrate, t -Butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxyisopropyl carbonate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, Examples thereof include peroxyesters such as t-butyl peroxyacetate, t-butyl peroxybenzoate, and di-t-butyl peroxyisophthalate.

また、ポリプロピレン系樹脂を有機過酸化物で処理する方法としては、ポリプロピレン系樹脂と有機過酸化物の混合物を溶融混練する方法が挙げられ、生産性の観点から、単軸押出機や二軸押出機などの押出機を使用することが好ましい。この際の押出機の設定温度としては、ポリプロピレン系樹脂が充分に溶融し、押出機を通過する間に有機過酸化物が実質的に全て分解し、かつポリプロピレン系樹脂の過度の分解を抑制する観点から、180〜280℃であることが好ましい。   In addition, as a method of treating a polypropylene resin with an organic peroxide, there is a method of melt kneading a mixture of a polypropylene resin and an organic peroxide. From the viewpoint of productivity, a single screw extruder or a twin screw extruder is used. It is preferred to use an extruder such as a machine. The set temperature of the extruder at this time is such that the polypropylene resin is sufficiently melted and substantially all of the organic peroxide is decomposed while passing through the extruder, and excessive decomposition of the polypropylene resin is suppressed. From a viewpoint, it is preferable that it is 180-280 degreeC.

またポリプロピレン系樹脂を有機過酸化物で処理する方法において、使用する有機過酸化物の配合量としては、原料ポリプロピレン系樹脂のメルトフローレートにより異なるが、例えば、原料ポリプロピレン系樹脂のメルトフローレートが0.5〜5g/10分の範囲であれば0.05〜0.5重量部、原料ポリプロピレン系樹脂のメルトフローレートが5〜15g/10分の範囲であれば0.005〜0.1重量部であることが好ましい。当該範囲内であれば、前記180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paの範囲としやすいことから好ましい。なお本発明において、ポリプロピレン系樹脂のメルトフローレートは、JIS K7210に準拠し、230℃、荷重2.16kgfの条件で測定された値である。   In addition, in the method of treating a polypropylene resin with an organic peroxide, the amount of the organic peroxide to be used varies depending on the melt flow rate of the raw polypropylene resin, for example, the melt flow rate of the raw polypropylene resin is If it is in the range of 0.5 to 5 g / 10 min, 0.05 to 0.5 parts by weight, and if the melt flow rate of the raw material polypropylene resin is in the range of 5 to 15 g / 10 min, 0.005 to 0.1 It is preferable that it is a weight part. If it is in the said range, since the storage elastic modulus in the angular frequency of 1 rad / s in the dynamic-viscoelasticity measurement in said 180 degreeC is easy to set it as the range of 100-1000 Pa, it is preferable. In the present invention, the melt flow rate of the polypropylene resin is a value measured in accordance with JIS K7210 under conditions of 230 ° C. and a load of 2.16 kgf.

さらに本発明におけるポリプロピレン系樹脂予備発泡粒子の基材樹脂であるポリプロピレン系樹脂の融点は、130〜155℃であることが好ましく、133〜150℃であることがさらに好ましい。   Furthermore, the melting point of the polypropylene resin which is the base resin of the polypropylene resin pre-expanded particles in the present invention is preferably 130 to 155 ° C, more preferably 133 to 150 ° C.

ここで、予備発泡粒子の基材樹脂であるポリプロピレン系樹脂の融点とは、示差走査熱量計法による測定において、40℃と210℃の間を10℃/分の速度で昇温・降温させた後、再度40℃から210℃まで10℃/分にて昇温した際に吸熱量が最大となる結晶融解ピークの示す温度を言う。   Here, the melting point of the polypropylene resin, which is the base resin of the pre-expanded particles, is a temperature between 40 ° C. and 210 ° C. at a rate of 10 ° C./min. After that, the temperature indicated by the crystal melting peak at which the endothermic amount becomes maximum when the temperature is increased again from 40 ° C. to 210 ° C. at 10 ° C./min.

前記ポリプロピレン系樹脂の融点が130℃未満の場合、離型後の収縮が大きいために成形体の形状が維持されにくい傾向にあり、155℃を超えると、後述する予備発泡粒子の示差走査熱量計法による測定における2つの融解ピークの温度差が狭くなる傾向にある。   When the melting point of the polypropylene resin is less than 130 ° C., the shape of the molded body tends to be difficult to maintain due to large shrinkage after release, and when it exceeds 155 ° C., a differential scanning calorimeter of pre-expanded particles described later The temperature difference between the two melting peaks in the measurement by the method tends to be narrow.

また、本発明の効果を損なわない範囲で、ポリプロピレン系樹脂に、さらに別のポリプロピレン系樹脂またはポリプロピレン系樹脂以外の他の合成樹脂を添加しても良い。ポリプロピレン系樹脂以外の他の合成樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体等のエチレン系樹脂、ポリスチレン、スチレン−無水マレイン酸共重合体、スチレン−エチレン共重合体等のスチレン系樹脂等が例示される。   Further, another polypropylene resin or another synthetic resin other than the polypropylene resin may be added to the polypropylene resin as long as the effects of the present invention are not impaired. Synthetic resins other than polypropylene resins include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene-vinyl acetate copolymer ethylene-acrylic acid. Examples thereof include ethylene resins such as copolymers and ethylene-methacrylic acid copolymers, styrene resins such as polystyrene, styrene-maleic anhydride copolymers, and styrene-ethylene copolymers.

また、必要に応じて、例えば、タルク、酸化ホウ素等の造核剤をはじめ、メラミン等の吸水性化合物、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤または架橋剤、連鎖移動剤、滑剤、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤等を本発明の効果を損なわない範囲で基材樹脂に添加してもよい。   If necessary, for example, nucleating agents such as talc and boron oxide, water absorbing compounds such as melamine, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers Stabilizers or crosslinking agents such as optical brighteners and metal soaps, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, antistatic agents, etc. do not impair the effects of the present invention You may add to base resin in the range.

ポリプロピレン系樹脂予備発泡粒子を得るには、まずは基材樹脂を加工しポリプロピレン系樹脂粒子とする。例えば、本発明においては、基材樹脂となる、ポリプロピレン系樹脂と必要に応じて添加される前記合成樹脂や前記添加剤を共に押出機等で溶融混合し、ストランド状に押出してペレット化するか、ダイから吐出直後に切断することなどにより、円柱状、楕円柱状、球状、立方体状、直方体状等のような所望の粒子形状のポリプロピレン系樹脂粒子とする。   In order to obtain polypropylene resin pre-expanded particles, first, the base resin is processed into polypropylene resin particles. For example, in the present invention, a polypropylene resin that is a base resin and the synthetic resin and the additive that are added as necessary are melted and mixed together with an extruder, etc., and extruded into a strand to be pelletized. By cutting from a die immediately after discharge, polypropylene resin particles having a desired particle shape such as a cylindrical shape, an elliptical cylindrical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, and the like are obtained.

前記ポリプロピレン系樹脂粒子は、発泡させてポリプロピレン系樹脂予備発泡粒子とするため、ポリプロピレン系樹脂粒子重量は、ポリプロピレン系樹脂予備発泡粒子重量となる。そのため、ポリプロピレン系樹脂粒子の1個当りの重量は0.5〜3.0mg、好ましくは0.7〜2.0mgとする。ポリプロピレン系樹脂粒子の1個当りの重量、即ちポリプロピレン系樹脂予備発泡粒子の1個当りの重量が0.5mg未満の場合、粒子重量のばらつきが大きくなるため、発泡工程での各粒子への熱廻りにムラを生じ発泡粒子の倍率ばらつきが大きくなり、成形体にヒケやシワを生じる。3.0mgを越える場合、金型の隅々まで発泡粒子が膨張しないため金型の凹凸形状を転写しきれない。   Since the polypropylene resin particles are expanded into polypropylene resin pre-expanded particles, the weight of the polypropylene resin particles is the weight of the polypropylene resin pre-expanded particles. Therefore, the weight per polypropylene resin particle is 0.5 to 3.0 mg, preferably 0.7 to 2.0 mg. When the weight per polypropylene resin particle, that is, the weight per polypropylene resin pre-expanded particle is less than 0.5 mg, the dispersion of the particle weight increases, so the heat to each particle in the foaming process. Unevenness occurs in the surroundings, and the variation in the magnification of the expanded particles increases, which causes sink marks and wrinkles in the molded body. When it exceeds 3.0 mg, the expanded and contracted shape of the mold cannot be transferred because the expanded particles do not expand to every corner of the mold.

前記ポリプロピレン系樹脂粒子を、発泡させ、ポリプロピレン系樹脂予備発泡粒子とする方法としては、例えば、揮発性発泡剤と共に耐圧容器内で水中に分散させ、ポリプロピレン系樹脂分散物とし、該分散物を、好ましくは該ポリプロピレン系樹脂粒子の融点−25℃から+10℃、更に好ましくは−20℃から+5℃の範囲の温度に加熱して該ポリプロピレン系樹脂粒子内に発泡剤を含浸させ、該発泡剤の示す蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、該ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出することにより、ポリプロピレン系樹脂予備発泡粒子を得る方法などが挙げられる。   As a method of foaming the polypropylene resin particles to make polypropylene resin pre-expanded particles, for example, dispersed in water in a pressure resistant container together with a volatile foaming agent to form a polypropylene resin dispersion, the dispersion, Preferably, the polypropylene resin particles are heated to a temperature in the range of −25 ° C. to + 10 ° C., more preferably −20 ° C. to + 5 ° C., and the polypropylene resin particles are impregnated with a foaming agent. By releasing the dispersion of the polypropylene resin particles and water in a lower pressure atmosphere than in the container while maintaining the temperature and pressure in the container constant under a pressure higher than the vapor pressure shown, Examples thereof include a method for obtaining pre-foamed particles.

前記分散物の調製に際しては、分散剤として、例えば、第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム、カオリン等の無機系分散剤と、例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ、硫酸マグネシウム等の分散助剤を使用することが好ましい。これらの中でも、第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの併用が更に好ましい。   In the preparation of the dispersion, as a dispersant, for example, inorganic dispersants such as tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, kaolin, and so on, for example, dodecylbenzene sulfonic acid soda, n-paraffin sulfonic acid soda, α -It is preferable to use a dispersion aid such as sodium olefin sulfonate or magnesium sulfate. Among these, combined use of tricalcium phosphate and sodium dodecylbenzenesulfonate is more preferable.

分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2〜3重量部を配合することが好ましく、分散助剤0.001重量部以上0.1重量部以下を配合することが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20重量部以上100重量部以下使用するのが好ましい。   The amount of dispersant and dispersion aid used varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 to 3 parts by weight of the dispersant is added to 100 parts by weight of water. It is preferable to add 0.001 part by weight or more and 0.1 part by weight or less of the dispersion aid. Moreover, in order to make the polypropylene resin particles have good dispersibility in water, it is usually preferable to use 20 to 100 parts by weight with respect to 100 parts by weight of water.

前記発泡剤としては、プロパン、ブタン、ペンタン、ヘキサンなどの炭化水素、または、窒素、空気、炭酸ガス等の無機ガスがあげられ、これらは単独または2種以上組み合わせて使用される。これらの発泡剤の使用量に限定はなく、発泡剤の種類、容器内の樹脂量と容器内空間容積との比率を考慮して設定すれば良く、その使用量はポリプロピレン系樹脂粒子100重量部に対して、好ましくは5重量部以上50重量部以下である。   Examples of the blowing agent include hydrocarbons such as propane, butane, pentane, and hexane, and inorganic gases such as nitrogen, air, and carbon dioxide, and these are used alone or in combination of two or more. The amount of these foaming agents is not limited, and may be set in consideration of the type of foaming agent and the ratio between the amount of resin in the container and the space volume in the container, and the amount used is 100 parts by weight of polypropylene resin particles. The amount is preferably 5 parts by weight or more and 50 parts by weight or less.

前記発泡剤を利用する以外にも、経済的にポリプロピレン系樹脂予備発泡粒子を製造する方法として、ポリプロピレン系樹脂粒子中に、例えば、親水性化合物を含有させることにより、分散媒に使用する水を発泡剤として利用する方法(例えば、特開平10−306179号公報、特開平11−106576号公報)も利用可能である。   In addition to using the foaming agent, as a method for economically producing polypropylene resin pre-expanded particles, for example, by adding a hydrophilic compound in the polypropylene resin particles, water used for the dispersion medium is added. Methods used as foaming agents (for example, JP-A-10-306179 and JP-A-11-106576) can also be used.

以上のようにして得られたポリプロピレン系樹脂予備発泡粒子の発泡倍率は、好ましくは10倍以上50倍以下であり、更に好ましくは15倍以上40倍以下である。発泡倍率が当該範囲内であると、型内発泡成形加工した発泡体の利点である軽量性と満足な圧縮強度が得られる傾向にある。   The expansion ratio of the polypropylene resin pre-expanded particles obtained as described above is preferably 10 to 50 times, and more preferably 15 to 40 times. When the expansion ratio is within this range, light weight and satisfactory compressive strength, which are advantages of the foam obtained by in-mold foam molding, tend to be obtained.

更には、前記ポリプロピレン系樹脂予備発泡粒子の発泡倍率が前記範囲に至らなかった場合、予備発泡粒子内を不活性ガスで加圧し、加熱して発泡倍率を高める方法(例えば特開平10−237212号公報)も利用可能である。   Further, when the expansion ratio of the polypropylene resin pre-expanded particles does not reach the above range, the inside of the pre-expanded particles is pressurized with an inert gas and heated to increase the expansion ratio (for example, Japanese Patent Laid-Open No. 10-237212). Gazette) is also available.

本発明のポリプロピレン系樹脂予備発泡粒子は、示差走査熱量計法による測定において、ポリプロピレン系樹脂予備発泡粒子試料4〜10mgを40℃から210℃まで10℃/分の速度で昇温した時に得られる吸熱曲線において、基材樹脂が本来有していた結晶状態に基づく融解ピークと、予備発泡粒子を得る工程で融点近傍の温度に保持することで、前記融解ピークより高温側に出現する融解ピークの、2つの融解ピークを示す。そして、この2つの融解ピークのうち、高温側に現われる融解ピーク熱量の融解熱量全体に対する比率が10〜50%であり、好ましくは15〜45%である。   The polypropylene resin pre-expanded particles of the present invention are obtained when a sample of polypropylene resin pre-expanded particles 4 to 10 mg is heated from 40 ° C. to 210 ° C. at a rate of 10 ° C./min in measurement by a differential scanning calorimetry method. In the endothermic curve, the melting peak based on the crystalline state originally possessed by the base resin and the melting peak appearing on the higher temperature side than the melting peak by maintaining the temperature near the melting point in the step of obtaining the pre-foamed particles. Two melting peaks are shown. Of these two melting peaks, the ratio of the heat of fusion peak appearing on the high temperature side to the total heat of fusion is 10 to 50%, preferably 15 to 45%.

前記高温側に現われる融解ピーク熱量の比率が10%未満の場合、離型後の収縮が大きいために型内発泡成形体の形状が維持されにくく、50%を超えると、成形加工時の加熱でもポリプロピレン系樹脂予備発泡粒子が充分に膨張せず、金型内に充分に充填されない。   If the ratio of the melting peak heat amount appearing on the high temperature side is less than 10%, the shape of the in-mold foam molded product is difficult to maintain due to the large shrinkage after mold release. The polypropylene resin pre-expanded particles do not expand sufficiently and do not fully fill the mold.

また本発明のポリプロピレン系樹脂予備発泡粒子は、示差走査熱量計法による測定において高温側の融解ピークの最高値が示す温度(以下、高温側融点と称す)と他方の融解ピークの最高値が示す温度(以下、低温側融点と称す)の温度差が10℃以上であることが好ましく、13℃以上あることが更に好ましい。上限としては特に設けないが、現実的には35℃が製造可能な上限である。前記温度差が10℃未満である場合、加熱蒸気圧力や温度範囲といった成形加工条件幅が狭く、安定して成形体を得にくい傾向にある。   The polypropylene resin pre-expanded particles of the present invention have a temperature indicated by the highest value of the melting peak on the high temperature side (hereinafter referred to as the high temperature melting point) and a maximum value of the other melting peak in the differential scanning calorimetry method. The temperature difference in temperature (hereinafter referred to as the low temperature side melting point) is preferably 10 ° C. or more, and more preferably 13 ° C. or more. Although there is no particular upper limit, in reality, 35 ° C. is the upper limit for manufacturing. When the temperature difference is less than 10 ° C., the range of molding process conditions such as heating steam pressure and temperature range is narrow, and it tends to be difficult to obtain a molded body stably.

本発明の発泡成形体は、本発明のポリプロピレン系樹脂予備発泡粒子を用いて型内発泡成形法により得られる。   The foam molded article of the present invention is obtained by an in-mold foam molding method using the polypropylene resin pre-expanded particles of the present invention.

本発明のポリプロピレン系樹脂予備発泡粒子からポリプロピレン系樹脂型内発泡成形体を成形するには、例えば、イ)発泡粒子を無機ガスで加圧処理して粒子内に無機ガスを含浸させ所定の粒子内圧を付与した後、金型に充填し、蒸気等で加熱融着させる方法(例えば、特公昭51−22951号)、ロ)発泡粒子をガス圧力で圧縮して金型に充填し粒子の回復力を利用して、蒸気等で加熱融着させる方法(例えば、特公昭53−33996号)等の方法が利用しうる。中でも、ポリプロピレン系樹脂予備発泡粒子に0.1kg/cm−G以上の内圧を付与せしめ、閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形する方法が、薄肉形状を有する箱型成形体や表面に凹凸形状を有する型内発泡成形体等の複雑な形状を有する型内発泡成形体を美麗に成形し易いために好ましい。このようにして得られたポリプロピレン系樹脂型内発泡成形体の密度は、12〜75kg/mの範囲であることが好ましい。当該範囲の密度であるポリプロピレン系樹脂型内発泡成形体は、型内発泡成形体の特徴である軽量性を有し、かつ、金型追随性が良好であるため、成形時に収縮、変形が起こりにくく、不良品の割合が低いため生産性が良好である傾向にある。 In order to form an expanded foam in a polypropylene resin mold from the polypropylene resin pre-expanded particles of the present invention, for example, a) Pressurized foam particles with an inorganic gas and impregnated with the inorganic gas into the particles Method of filling the mold after applying the internal pressure, and heat-sealing with steam or the like (for example, Japanese Examined Patent Publication No. 51-22951), b) Recovery of the particles by compressing the foamed particles by gas pressure and filling the mold A method such as a method of heat-sealing with steam or the like using force (for example, Japanese Patent Publication No. 53-33996) can be used. Among them, the method of forming the polypropylene resin pre-expanded particles by applying an internal pressure of 0.1 kg / cm 2 -G or more, filling a mold that can be closed but cannot be sealed, and heating and forming with steam is a thin-walled shape. It is preferable because an in-mold foam molded body having a complicated shape such as a box-shaped molded body having a surface and an in-mold foam molded body having a concavo-convex shape on the surface can be easily beautifully molded. The density of the polypropylene resin in-mold foam molded product thus obtained is preferably in the range of 12 to 75 kg / m 3 . The polypropylene resin in-mold foam molded product having a density in the above range has the lightness that is characteristic of the in-mold foam molded product and has good mold followability, and thus shrinkage and deformation occur during molding. It is difficult and the ratio of defective products is low, so productivity tends to be good.

ポリプロピレン系樹脂予備発泡粒子の発泡倍率と型内発泡成形時の粒子内圧付与を適宜調整することで所望とする密度の型内発泡成形体を得ることが出来る。   An in-mold foam-molded article having a desired density can be obtained by appropriately adjusting the expansion ratio of the polypropylene resin pre-expanded particles and the application of the particle internal pressure during the in-mold foam molding.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.

〈基材樹脂の貯蔵弾性率測定〉
ポリプロピレン系基材樹脂を1.5mm厚のスペーサーを用いて190℃にて5分間熱プレスして1.5mm厚のプレス板を作製し、ここからφ25mmのポンチを用いて打ち抜き、試験片を得たる。測定装置としては、TAインスツルメンツ社製粘弾性測定装置、ARESを用い、φ25mmのパラレルプレート型冶具を装着した。冶具を囲うように恒温槽を設置し180℃に保温、冶具が予熱された後に恒温槽を開け、パラレルプレート間にφ25mmとした試験片を挿入して恒温槽を閉じ、5分間予熱した後にパラレルプレート間隔を1mmまで圧縮した。圧縮後、再度恒温槽を開き、パラレルプレートからはみ出した樹脂を真鍮のヘラで掻き取り、恒温槽を閉じて再度5分間保温した後に、動的粘弾性測定を開始した。測定は、角振動数0.1rad/sから100rad/sまでの範囲で行い、各角周波数での貯蔵弾性率と損失弾性率が得られる。これらの結果のうち、角周波数1rad/sでの貯蔵弾性率の値を採用した。なお、歪み量は5%で、窒素雰囲気下で測定を行った。
<Measurement of storage modulus of base resin>
A polypropylene base resin is hot-pressed at 190 ° C for 5 minutes using a 1.5 mm-thick spacer to produce a 1.5 mm-thick press plate, and punched out using a φ25 mm punch to obtain a test piece. It is dripping. As a measuring device, a viscoelasticity measuring device manufactured by TA Instruments, ARES was used, and a parallel plate jig having a diameter of 25 mm was attached. Set up a thermostat to surround the jig and keep it at 180 ° C. After the jig is preheated, open the thermostat, insert a test piece with a diameter of 25 mm between the parallel plates, close the thermostat and preheat for 5 minutes before paralleling The plate interval was compressed to 1 mm. After compression, the thermostat was opened again, the resin protruding from the parallel plate was scraped off with a brass spatula, the thermostat was closed and the temperature was kept again for 5 minutes, and then dynamic viscoelasticity measurement was started. The measurement is performed in the range of angular frequency from 0.1 rad / s to 100 rad / s, and storage elastic modulus and loss elastic modulus at each angular frequency are obtained. Among these results, the value of the storage elastic modulus at an angular frequency of 1 rad / s was adopted. The amount of strain was 5%, and the measurement was performed in a nitrogen atmosphere.

〈基材樹脂の分子量分布測定〉
基材樹脂をo−ジクロロベンゼンに溶解して約2.0mg/mLの試料溶液を作製した。測定装置としてはウォーターズ社製高温GPC測定装置、Alliance GPCV200を用い、カラムとしては昭和電工社製のShodex UT−807を用い、カラム温度140℃、溶離液流量1.0mL/分、注入量317μLにて測定を行い、Mw/Mn(重量平均分子量/数平均分子量)、及びMz/Mw(z平均分子量/重量平均分子量)を求めた。
<Measurement of molecular weight distribution of base resin>
The base resin was dissolved in o-dichlorobenzene to prepare a sample solution of about 2.0 mg / mL. Waters high temperature GPC measuring device, Alliance GPCV200 is used as the measuring device, Showa Denko Shodex UT-807 is used as the column, column temperature is 140 ° C., eluent flow rate is 1.0 mL / min, injection amount is 317 μL. And Mw / Mn (weight average molecular weight / number average molecular weight) and Mz / Mw (z average molecular weight / weight average molecular weight) were determined.

〈予備発泡粒子の重量測定〉
ポリプロピレン系樹脂予備発泡粒子を無作為に20個取り出し、各重量から算術平均にて求めた。
<Weight measurement of pre-expanded particles>
Twenty polypropylene resin pre-expanded particles were taken out at random, and calculated from each weight by arithmetic average.

〈ポリプロピレン系樹脂予備発泡粒子の融解熱量比率測定〉
示差走査熱量計法による測定において、発泡粒子試料4〜10mgを40℃から210℃まで10℃/分の速度で昇温して融解した時に得られる吸熱曲線において、低温側の融解ピークから得られる融点を低温側融点とし、低温側融点より高温側に現れる融解ピークから得られる融点を高温側融点とした。そして、両融点の間で最も吸熱が小さくなる点から各融点の立ち上がり部に接線を引き、該接線と吸熱曲線で囲まれた面積から各融解ピークにおける融解熱量を求める。各融解ピークの融解熱量の和を融解熱量全体として、高温側融点に基づく融解ピーク熱量の融解熱量全体に対する比率を算出した。
<Measurement of heat of fusion ratio of pre-expanded polypropylene resin particles>
It is obtained from the melting peak on the low temperature side in the endothermic curve obtained when 4-10 mg of the expanded particle sample is heated from 40 ° C. to 210 ° C. at a rate of 10 ° C./min and melted in the differential scanning calorimetry measurement. The melting point was defined as the low temperature side melting point, and the melting point obtained from the melting peak appearing on the higher temperature side than the low temperature side melting point was defined as the high temperature side melting point. Then, a tangent line is drawn to the rising portion of each melting point from the point where the endotherm becomes the smallest between both melting points, and the heat of fusion at each melting peak is determined from the area surrounded by the tangent line and the endothermic curve. The sum of the heat of fusion of each melting peak was defined as the total heat of fusion, and the ratio of the heat of fusion peak based on the high temperature side melting point to the total heat of fusion was calculated.

〈基材樹脂の樹脂融点測定〉
示差走査熱量計法による測定において、発泡前の樹脂粒子試料4〜10mgを40℃から210℃まで10℃/分の速度で昇温して一旦融解し、次に210℃から40℃まで10℃/分の速度で冷却するという熱履歴の後、再度40℃から210℃まで10℃/分の速度で昇温して融解した時に得られる吸熱曲線においてえられる吸熱量が最大となる結晶融解ピークを樹脂融点とした。
<Measurement of resin melting point of base resin>
In the measurement by differential scanning calorimetry, resin particle samples 4 to 10 mg before foaming were heated from 40 ° C. to 210 ° C. at a rate of 10 ° C./min to be melted once, and then 210 ° C. to 40 ° C. at 10 ° C. After the thermal history of cooling at a rate of / min, the crystal melting peak at which the endothermic amount obtained in the endothermic curve obtained when the temperature is increased again from 40 ° C to 210 ° C at a rate of 10 ° C / min and melted is maximized. Was the resin melting point.

〈発泡倍率測定〉
試料となる予備発泡粒子重量と、該試料をメスフラスコ中のエタノールに水没させてえられる容積から予備発泡粒子密度を算出し、基材樹脂密度を除して発泡倍率とした。
<Measurement of foaming ratio>
The pre-foamed particle density was calculated from the weight of the pre-foamed particles used as a sample and the volume obtained by immersing the sample in ethanol in a volumetric flask, and the base resin density was divided to obtain the expansion ratio.

〈成形評価〉
内寸300mm×400mm×50mmで、300mm×400mmの一面に、2.5mm×2.5mm、深さ1.2mmの四角錐状の凹部(成形体表面に四角錐形状の突起を形成)を全面に配した成形金型を用いる。そして予備発泡粒子を2.0kg/cm−Gの加圧空気下に約24時間放置して、予備発泡粒子に1.5kg/cm−Gの内圧を付与せしめ、閉塞しうるが密閉しえない前記成形金型に充填し、3.0kgf/cm−Gの水蒸気加熱により成形を行った。成形後、25℃で2時間静置し、次いで65℃に温調した恒温室内に5時間静置した後取り出し、25℃で4時間静置して放冷し、成形体を得た。
<Molding evaluation>
A 300 mm x 400 mm x 50 mm inner dimension with a 2.5 mm x 2.5 mm, 1.2 mm deep quadrangular pyramid-shaped recess (forms a quadrangular pyramid-shaped projection on the surface of the molded body) on one side of the 300 mm x 400 mm A molding die arranged in the above is used. Then, the pre-expanded particles are allowed to stand under a pressurized air of 2.0 kg / cm 2 -G for about 24 hours to apply an internal pressure of 1.5 kg / cm 2 -G to the pre-expanded particles, which can be closed but sealed. The molding die was filled and molded by steam heating at 3.0 kgf / cm 2 -G. After molding, the mixture was allowed to stand at 25 ° C. for 2 hours, then left in a thermostatic chamber adjusted to 65 ° C. for 5 hours, then taken out, allowed to stand at 25 ° C. for 4 hours and allowed to cool to obtain a molded body.

(1)表面性
成形体表面(四角錐形状の突起を形成した面、及びそれ以外の面)を観察し、以下の基準に基づいて評価した。
○:表面に現れる発泡粒子の輪郭全てが隣り合った粒子と融着し、成形体表面に露出する発泡粒子表面に皺がない。
×:表面に現れる発泡粒子間に隙間が観られる、もしくは、成形体表面に露出する発泡粒子表面に皺が見られる。
(1) Surface property The surface of the molded body (a surface on which a quadrangular pyramid-shaped protrusion was formed and other surfaces) was observed and evaluated based on the following criteria.
○: All the contours of the expanded particles appearing on the surface are fused with the adjacent particles, and the surface of the expanded particles exposed on the surface of the molded body is free from wrinkles.
X: A gap is observed between the expanded particles appearing on the surface, or wrinkles are observed on the surface of the expanded particles exposed on the surface of the molded body.

(2)成形体収縮率
成形体の四角錘状の突起を形成した面の縦横寸法(金型内寸で300mm、400mmの辺)を測定し、金型からの収縮率を算出し、縦方向及び横方向の収縮率を算術平均した。
(2) Shrinkage of molded body Measure the vertical and horizontal dimensions (300mm, 400mm sides in the mold inside) of the surface of the molded body on which the quadrangular pyramidal projections are formed, and calculate the shrinkage ratio from the mold. And the shrinkage rate in the transverse direction was arithmetically averaged.

(3)金型転写性
成形体表面に形成された四角錘状の突起について、30個を任意(成形時の水蒸気を通過させるべく小孔を設けた部位を除く)に選定し、四角錐の頂点を通る面で切り出して四角錐の高さを測定し算術平均を行う。予備発泡粒子が金型転写性に劣る場合や成形後の収縮が大きい場合は、四角錘状の突起部先端が丸く四角錐の高さは低くなることから、以下の基準で金型転写性を評価した。
○:四角錐状の突起の平均高さが1.0mm以上
×:四角錐状の突起の平均高さが1.0mm未満
(3) Mold transferability About 30 square pyramidal protrusions formed on the surface of the molded body, arbitrarily select 30 pieces (excluding the portion provided with a small hole to allow water vapor to pass during molding). Cut out on the plane passing through the apex, measure the height of the quadrangular pyramid, and perform the arithmetic average. If the pre-expanded particles are inferior in mold transferability or have a large shrinkage after molding, the tip of the quadrangular pyramidal protrusion is round and the height of the quadrangular pyramid is lowered. evaluated.
○: The average height of the quadrangular pyramidal protrusions is 1.0 mm or more. ×: The average height of the quadrangular pyramidal protrusions is less than 1.0 mm.

(実施例1)
エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm、樹脂融点142.3℃、230℃におけるメルトフローインデックス6.0g/10分)100重量部に対し、有機過酸化物としてt−ブチルパーオキシイソプロピルカーボネート(日本油脂製、パーブチルI、1分間半減期温度159℃)0.01重量部とパウダー状タルク0.1重量部をドライブレンドして200℃に設定した50mm単軸押出機にて押し出し、エチレン−プロピレンランダム共重合体樹脂粒子(樹脂密度0.90g/cm、樹脂融点142.3℃、180℃角振動数1rad/sでの貯蔵弾性率870Pa、Mw/Mn4.8、Mz/Mw2.7、1個当りの重量1.3mg)とした。得られた樹脂粒子100重量部(2kg)を、攪拌機を有する10L容の耐圧容器の中に入れ、第3リン酸カルシウム(大平化学産業製)2.0重量部及びノルマルパラフィンスルホン酸ナトリウム0.03重量部の存在下で、水300重量部中に分散させた。該分散液を攪拌しながら、イソブタン12.4重量部を加え(初期仕込み量)、該分散液を132.9℃に加熱した。この時、ガス状のイソブタンを追加して、該耐圧容器の内圧を20.2kgf/cmになるように調整した。次に、該耐圧容器内の圧力をガス状のイソブタンで維持しながら、内径25mmの放出バルブの後方端に取り付けた直径4mmの円形オリフィスを通して、ペレット及び水の分散液を大気中に放出して、発泡倍率28.4倍、1個当りの重量が1.3mg、示差走査熱量計に基づく高温側融点の熱量比率は23.1%、高融点ピーク温度と低融点ピーク温度の差は15.7℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は○、成形体収縮率は2.4%であり、四角錘状突起高さは1.1mmで金型転写性は○であった。評価結果を表1に示す。
Example 1
To 100 parts by weight of ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 142.3 ° C., melt flow index 6.0 g / 10 min at 230 ° C.) t- 50 mm single screw extruder set at 200 ° C. by dry blending 0.01 parts by weight of butyl peroxyisopropyl carbonate (Nippon Yushi, Perbutyl I, 1 minute half-life temperature 159 ° C.) and 0.1 parts by weight of powdered talc Extruded with ethylene-propylene random copolymer resin particles (resin density: 0.90 g / cm 3 , resin melting point: 142.3 ° C., storage elastic modulus at 180 ° C. angular frequency: 1 rad / s, 870 Pa, Mw / Mn 4.8 , Mz / Mw 2.7, weight per piece 1.3 mg). 100 parts by weight (2 kg) of the obtained resin particles are put into a 10 L pressure vessel having a stirrer, and 2.0 parts by weight of tribasic calcium phosphate (manufactured by Ohira Chemical Industry) and 0.03 weight of sodium normal paraffin sulfonate. In the presence of parts, it was dispersed in 300 parts by weight of water. While stirring the dispersion, 12.4 parts by weight of isobutane was added (initial charge amount), and the dispersion was heated to 132.9 ° C. At this time, gaseous isobutane was added to adjust the internal pressure of the pressure vessel to 20.2 kgf / cm 2 . Next, while maintaining the pressure in the pressure vessel with gaseous isobutane, the pellet and water dispersion were discharged into the atmosphere through a circular orifice with a diameter of 4 mm attached to the rear end of a discharge valve with an inner diameter of 25 mm. The foaming ratio is 28.4 times, the weight per piece is 1.3 mg, the calorific ratio of the high-temperature side melting point based on the differential scanning calorimeter is 23.1%, and the difference between the high melting point peak temperature and the low melting point peak temperature is 15. Pre-expanded particles at 7 ° C. were obtained. As a result of molding evaluation of the pre-expanded particles, the surface property was ◯, the compact shrinkage ratio was 2.4%, the height of the quadrangular pyramidal protrusions was 1.1 mm, and the mold transferability was ◯. The evaluation results are shown in Table 1.

Figure 0005080842
Figure 0005080842

(比較例1)
実施例1でブレンド時に添加した有機過酸化物を添加せずに押出機による混練を実施し、エチレン−プロピレンランダム共重合体樹脂粒子(樹脂密度0.90g/cm、樹脂融点142.4℃、180℃角振動数1rad/sでの貯蔵弾性率1269Pa、Mw/Mn5.2、Mz/Mw3.0、1個当りの重量1.3mg)を得た以外は実施例1と同様な方法により発泡倍率24.5倍、1個当りの重量が1.3mg、示差走査熱量計に基づく高温側融点の熱量比率は22.4%、高融点ピーク温度と低融点ピーク温度の差は15.8℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は○で、成形体収縮率は2.3%であり、四角錘状突起高さは0.8mmで金型転写性は×であった。
(Comparative Example 1)
The kneading was carried out by an extruder without adding the organic peroxide added during blending in Example 1, and ethylene-propylene random copolymer resin particles (resin density 0.90 g / cm 3 , resin melting point 142.4 ° C. And a storage elastic modulus of 1269 Pa at an angular frequency of 1 rad / s of 180 ° C., Mw / Mn 5.2, Mz / Mw 3.0, and a weight of 1.3 mg per piece) were obtained in the same manner as in Example 1. The expansion ratio is 24.5 times, the weight per piece is 1.3 mg, the calorific ratio of the high temperature side melting point based on the differential scanning calorimeter is 22.4%, and the difference between the high melting point peak temperature and the low melting point peak temperature is 15.8. Pre-expanded particles at 0 ° C. were obtained. As a result of molding evaluation of the pre-expanded particles, the surface property was ○, the compact shrinkage was 2.3%, the height of the quadrangular pyramidal protrusions was 0.8 mm, and the mold transferability was x. .

(実施例2)
実施例1で用いた樹脂を用いる代わりに、エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm、樹脂融点137.7℃、230℃におけるメルトフローインデックス2.0g/10分)100重量部とパウダー状タルク0.1重量部、有機過酸化物としてα,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン(日本油脂製、パーブチルP、1分間半減期温度175℃)0.08重量部をドライブレンド・押出機による混練を実施し、エチレン−プロピレンランダム共重合体樹脂粒子(樹脂密度0.90g/cm、樹脂融点137.9℃、180℃角振動数1rad/sでの貯蔵弾性率525Pa、Mw/Mn3.7、Mz/Mw2.5、1個当りの重量0.9mg)を得た。イソブタンの初期仕込み量を15.0重量部とし、分散液を126.9℃に加熱し、該耐圧容器の内圧を19.4kgf/cmに調整した以外は実施例1と同様な方法により、発泡倍率25.8倍、1個当りの重量が0.9mg、示差走査熱量計に基づく高温側融点の熱量比率は30.1%、高融点ピーク温度と低融点ピーク温度の差が17.5℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は○で、成形体収縮率は2.5%であり、四角錘状突起高さは1.1mmで金型転写性は○であった。
(Example 2)
Instead of using the resin used in Example 1, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 137.7 ° C., melt flow index 2.0 g / 10 min at 230 ° C.) 100 Part by weight and 0.1 part by weight of powdered talc, α, α′-bis (t-butylperoxy-m-isopropyl) benzene (manufactured by NOF Corporation, perbutyl P, 1 minute half-life temperature 175 ° C. as organic peroxide ) 0.08 parts by weight were kneaded by dry blending / extruding machine, and ethylene-propylene random copolymer resin particles (resin density 0.90 g / cm 3 , resin melting point 137.9 ° C., 180 ° C. angular frequency 1 rad) Storage elastic modulus at / s, 525 Pa, Mw / Mn 3.7, Mz / Mw 2.5, weight 0.9 mg per piece). In the same manner as in Example 1, except that the initial charge of isobutane was 15.0 parts by weight, the dispersion was heated to 126.9 ° C., and the internal pressure of the pressure vessel was adjusted to 19.4 kgf / cm 2 . The expansion ratio is 25.8 times, the weight per piece is 0.9 mg, the calorific ratio of the high temperature side melting point based on the differential scanning calorimeter is 30.1%, and the difference between the high melting point peak temperature and the low melting point peak temperature is 17.5. Pre-expanded particles at 0 ° C. were obtained. When the pre-expanded particles were evaluated for molding, the surface property was ○, the compact shrinkage was 2.5%, the height of the quadrangular pyramidal protrusions was 1.1 mm, and the mold transferability was ○. .

(実施例3)
実施例1で用いた樹脂を用いる代わりに、エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm、樹脂融点142.4℃、230℃におけるメルトフローインデックス0.5g/10分)100重量部とパウダー状タルク0.1重量部、有機過酸化物としてt−ブチルパーオキシイソプロピルカーボネート(日本油脂製、パーブチルI、1分間半減期温度159℃)0.3重量部をドライブレンド・押出機による混練を実施し、エチレン−プロピレンランダム共重合体樹脂粒子(樹脂密度0.90g/cm、樹脂融点142.5℃、180℃角振動数1rad/sでの貯蔵弾性率245Pa、Mw/Mn2.8、Mz/Mw2.1、1個当りの重量1.7mg)を得た。イソブタンの初期仕込み量を12.0重量部とし、分散液を136.2℃に加熱し、該耐圧容器の内圧を19.0kgf/cmに調整した以外は実施例1と同様な方法により、発泡倍率23.8倍、1個当りの重量が1.7mg、示差走査熱量計に基づく高温側融点の熱量比率は17.7%、高融点ピーク温度と低融点ピーク温度の差が17.1℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は○で、成形体収縮率は2.7%であり、四角錘状突起高さは1.0mmで金型転写性は○であった。
(Example 3)
Instead of using the resin used in Example 1, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 142.4 ° C., melt flow index 0.5 g / 10 min at 230 ° C.) 100 Dry blending and extrusion of 0.1 parts by weight of powder and 0.1 parts by weight of powdered talc and 0.3 parts by weight of t-butyl peroxyisopropyl carbonate (manufactured by NOF Corporation, Perbutyl I, 1 minute half-life temperature 159 ° C) as organic peroxide Kneading with a machine, ethylene-propylene random copolymer resin particles (resin density 0.90 g / cm 3 , resin melting point 142.5 ° C., storage elastic modulus 245 Pa at 180 ° C. angular frequency 1 rad / s, Mw / Mn2.8, Mz / Mw2.1, weight per piece 1.7 mg). In the same manner as in Example 1, except that the initial charge of isobutane was 12.0 parts by weight, the dispersion was heated to 136.2 ° C., and the internal pressure of the pressure vessel was adjusted to 19.0 kgf / cm 2 . The expansion ratio is 23.8 times, the weight per piece is 1.7 mg, the calorific ratio of the high temperature side melting point based on the differential scanning calorimeter is 17.7%, and the difference between the high melting point peak temperature and the low melting point peak temperature is 17.1. Pre-expanded particles at 0 ° C. were obtained. As a result of molding evaluation of the pre-expanded particles, the surface property was ◯, the compact shrinkage was 2.7%, the height of the quadrangular pyramidal protrusions was 1.0 mm, and the mold transferability was ◯. .

(比較例2)
実施例3でブレンド時に添加する有機過酸化物を0.7重量部としてドライブレンド・押出機による混練を実施し、エチレン−プロピレンランダム共重合体樹脂粒子(樹脂密度0.90g/cm、樹脂融点142.4℃、180℃角振動数1rad/sでの貯蔵弾性率84Pa、Mw/Mn2.8、Mz/Mw2.1、1個当りの重量が1.7mg)を得た以外は実施例3と同様な方法により発泡倍率22.8倍、1個当りの重量が1.7mg、示差走査熱量計に基づく高温側融点の熱量比率は25.0%、高融点ピーク温度と低融点ピーク温度の差は16.9℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は皺が多く×で、成形体収縮率は3.5%であり、四角錘状突起高さは0.8mmで金型転写性は×であった。
(Comparative Example 2)
In Example 3, 0.7 parts by weight of the organic peroxide added during blending was dry blended and kneaded by an extruder, and ethylene-propylene random copolymer resin particles (resin density 0.90 g / cm 3 , resin) Except for having obtained a storage elastic modulus of 84 Pa at a melting point of 142.4 ° C. and an angular frequency of 1 rad / s of 180 ° C., Mw / Mn 2.8, Mz / Mw 2.1, and a weight per piece of 1.7 mg). 3, the expansion ratio is 22.8 times, the weight per piece is 1.7 mg, the calorific ratio of the high temperature side melting point based on the differential scanning calorimeter is 25.0%, the high melting point temperature and the low melting point temperature The difference was that 16.9 ° C. pre-expanded particles were obtained. As a result of molding evaluation of the pre-expanded particles, the surface property was a lot of wrinkles, the molded product contraction rate was 3.5%, the height of the quadrangular pyramidal projections was 0.8 mm, and the mold transferability was × Met.

(比較例3)
実施例1で押出の際の引取速度と切断速度を調整してエチレン−プロピレンランダム共重合体樹脂粒子(樹脂密度0.90g/cm、樹脂融点142.3℃、180℃角振動数1rad/sでの貯蔵弾性率870Pa、Mw/Mn4.8、Mz/Mw2.7、1個当りの重量3.5mg)を得、イソブタンの初期仕込み量を16.0重量部とした以外は実施例1と同様な方法により発泡倍率23.1倍、1個当りの重量が3.5mg、示差走査熱量計に基づく高温側融点の熱量比率は22.7%、高融点ピーク温度と低融点ピーク温度の差は15.1℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は発泡粒子間に隙間が見られる個所があり×で、成形体収縮率は2.5%であり、四角錘状突起高さは0.9mmで金型転写性は×であった。
(Comparative Example 3)
The ethylene-propylene random copolymer resin particles (resin density 0.90 g / cm 3 , resin melting point 142.3 ° C, 180 ° C angular frequency 1 rad / Example 1 except that the storage elastic modulus at s, 870 Pa, Mw / Mn 4.8, Mz / Mw 2.7, and the weight per piece of 3.5 mg were obtained, and the initial charge of isobutane was 16.0 parts by weight. In the same manner as above, the expansion ratio is 23.1 times, the weight per piece is 3.5 mg, the calorie ratio of the high-temperature side melting point based on the differential scanning calorimeter is 22.7%, the high melting point peak temperature and the low melting point peak temperature The difference was 15.1 ° C pre-expanded particles. As a result of molding evaluation of the pre-expanded particles, the surface property was x where there was a gap between the expanded particles, the compact shrinkage was 2.5%, and the height of the quadrangular pyramidal projections was 0. The mold transferability was x at 9 mm.

(比較例4)
実施例1のエチレン−プロピレンランダム共重合体樹脂粒子を用い、分散液を129.5℃に加熱した以外は実施例1と同様な方法により発泡倍率27.1倍、1個当りの重量が1.3mg、示差走査熱量計に基づく高温側融点の熱量比率は52.1%、高融点ピーク温度と低融点ピーク温度の差は14.9℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は発泡粒子間に隙間が見られる個所があり×で、成形体収縮率は2.2%であり、四角錘状突起高さは0.7mmで金型転写性は×であった。
(Comparative Example 4)
Except that the ethylene-propylene random copolymer resin particles of Example 1 were used and the dispersion was heated to 129.5 ° C., the foaming ratio was 27.1 times and the weight per piece was 1 in the same manner as in Example 1. .3 mg, pre-expanded particles having a high-temperature melting point ratio of 52.1% based on a differential scanning calorimeter and a difference between the high-melting point peak temperature and the low-melting point peak temperature of 14.9 ° C. were obtained. As a result of molding evaluation of the pre-expanded particles, the surface property is x where there are gaps between the expanded particles, the compact shrinkage rate is 2.2%, and the height of the quadrangular pyramidal projections is 0. The mold transferability was x at 7 mm.

(比較例5)
実施例1のエチレン−プロピレンランダム共重合体樹脂粒子を用い、分散液を135.0℃に加熱した以外は実施例1と同様な方法により発泡倍率28.7倍、1個当りの重量が1.3mg、示差走査熱量計に基づく高温側融点の熱量比率は9.4%、高融点ピーク温度と低融点ピーク温度の差は15.3℃の予備発泡粒子を得た。この予備発泡粒子の成形評価を行ったところ、表面性は発泡粒子間に隙間が見られないが皺が多く×で、成形体収縮率は3.3%であり、四角錘状突起高さは0.8mmで金型転写性は×であった。
(Comparative Example 5)
Except that the ethylene-propylene random copolymer resin particles of Example 1 were used and the dispersion was heated to 135.0 ° C., the foaming ratio was 28.7 times and the weight per piece was 1 in the same manner as in Example 1. .3 mg, pre-expanded particles having a high-temperature melting point ratio of 9.4% based on a differential scanning calorimeter and a difference between the high-melting point peak temperature and the low-melting point peak temperature of 15.3 ° C. were obtained. As a result of molding evaluation of the pre-foamed particles, the surface property is that there are no gaps between the foamed particles, but there are many wrinkles, the molded product shrinkage rate is 3.3%, and the height of the quadrangular pyramidal protrusions is The mold transferability was x at 0.8 mm.

示差走査熱量計を用い、本発明記載のポリプロピレン系樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側の網掛け部分(Ql)が低温側融点に基づく融解ピーク熱量、高温側の網掛け部分(Qh)が高温側融点に基づく融解ピーク熱量を表す。It is an example of a DSC curve obtained when a differential scanning calorimeter is used to measure polypropylene resin pre-expanded particles according to the present invention. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The low temperature side shaded part (Ql) represents the melting peak heat quantity based on the low temperature side melting point, and the high temperature side shaded part (Qh) represents the melting peak heat quantity based on the high temperature side melting point.

Claims (3)

180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paであり、融点が133〜150℃であるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂予備発泡粒子であり、
1個当りの重量が0.5〜3.0mgであり、示差走査熱量計法による測定で2つの融解ピークを示し、該2つの融解ピークのうち、高温側に現われる融解ピーク熱量の融解ピーク全体熱量に対する比率が10〜50%であり、かつ、該2つの融解ピークのピーク温度の差が10℃以上17.5℃以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子。
Storage modulus at angular frequency 1 rad / s in a dynamic viscoelasticity measurement at 180 ° C. is Ri 100~1000Pa der, polypropylene resin pre to a polypropylene resin having a melting point of 133-150 ° C. as a base resin Foam particles,
The weight per piece is 0.5 to 3.0 mg, and shows two melting peaks as measured by the differential scanning calorimetry method. Of the two melting peaks, the entire melting peak of the melting peak calorie appearing on the high temperature side. Ri ratio 10-50% der against heat and the difference between the peak temperature of the two melting peaks, wherein der Rukoto 10 ° C. or higher 17.5 ° C. or less, pre-expanded polypropylene resin particles.
原料ポリプロピレン系樹脂と有機過酸化物を、押出機を使用して溶融混練することにより得られる、180℃での動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率が100〜1000Paであり、融点が133〜150℃、1個当りの重量が0.5〜3.0mgのポリプロピレン系樹脂粒子を、A storage elastic modulus at an angular frequency of 1 rad / s in a dynamic viscoelasticity measurement at 180 ° C. obtained by melt-kneading a raw material polypropylene resin and an organic peroxide using an extruder is 100 to 1000 Pa. Polypropylene resin particles having a melting point of 133 to 150 ° C. and a weight of 0.5 to 3.0 mg per piece,
プロパン、ブタン、ペンタン、ヘキサン、窒素、空気、炭酸ガスよりなる群から選ばれる少なくとも1種の揮発性発泡剤と共に、耐圧容器内で水中に分散させ、ポリプロピレン系樹脂分散物とし、Along with at least one volatile foaming agent selected from the group consisting of propane, butane, pentane, hexane, nitrogen, air, carbon dioxide, it is dispersed in water in a pressure-resistant container to form a polypropylene resin dispersion,
該分散物を、ポリプロピレン系樹脂粒子の融点−25℃〜+10℃の範囲の温度に加熱して、ポリプロピレン系樹脂粒子内に発泡剤を含浸させ、発泡剤の示す蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出することにより得られる、The dispersion is heated to a temperature in the range of −25 ° C. to + 10 ° C. of the polypropylene resin particles, the polypropylene resin particles are impregnated with a foaming agent, and the container is pressed under a pressure higher than the vapor pressure indicated by the foaming agent. It is obtained by releasing a dispersion of polypropylene resin particles and water in an atmosphere at a lower pressure than in the container while maintaining the temperature and pressure inside.
示差走査熱量計法による測定で2つの融解ピークを示し、該2つの融解ピークのうち、高温側に現われる融解ピーク熱量の融解ピーク全体熱量に対する比率が10〜50%であり、かつ該2つの融解ピークのピーク温度の差が10℃以上17.5℃以下であることを特徴とする、ポリプロピレン系樹脂予備発泡粒子の製造方法。Measurement by differential scanning calorimetry shows two melting peaks, of which the ratio of the melting peak calorie appearing on the high temperature side to the total melting peak calorie is 10 to 50%, and the two melting peaks The method for producing polypropylene resin pre-expanded particles, wherein a difference in peak temperature between the peaks is 10 ° C or higher and 17.5 ° C or lower.
請求項1に記載のポリプロピレン系樹脂予備発泡粒子に、0.1kg/cm−G以上の内圧を付与せしめ、閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形することを特徴とするポリプロピレン系樹脂型内発泡成形体。
The polypropylene resin pre-expanded particles according to claim 1 are given an internal pressure of 0.1 kg / cm 2 -G or more, filled in a mold that can be closed but cannot be sealed, and heated and molded with water vapor. A foamed molded product in a polypropylene resin mold characterized by the above.
JP2007098368A 2007-04-04 2007-04-04 Polypropylene resin pre-expanded particles and in-mold expanded molded body Active JP5080842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098368A JP5080842B2 (en) 2007-04-04 2007-04-04 Polypropylene resin pre-expanded particles and in-mold expanded molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098368A JP5080842B2 (en) 2007-04-04 2007-04-04 Polypropylene resin pre-expanded particles and in-mold expanded molded body

Publications (2)

Publication Number Publication Date
JP2008255213A JP2008255213A (en) 2008-10-23
JP5080842B2 true JP5080842B2 (en) 2012-11-21

Family

ID=39979119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098368A Active JP5080842B2 (en) 2007-04-04 2007-04-04 Polypropylene resin pre-expanded particles and in-mold expanded molded body

Country Status (1)

Country Link
JP (1) JP5080842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185944B (en) 2008-01-25 2015-06-17 松下电器产业株式会社 Lens barrel
JP5638928B2 (en) * 2010-12-07 2014-12-10 株式会社カネカ Polypropylene resin for injection foam molding and injection foam molded body thereof
JP6286363B2 (en) 2012-11-27 2018-02-28 株式会社カネカ POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDING AND METHOD FOR PRODUCING THEM
EP4177298A1 (en) 2016-07-19 2023-05-10 Kaneka Corporation Polypropylene-type resin pre-expanded particles, and method for producing said pre-expanded particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831647B2 (en) * 2002-02-22 2011-12-07 株式会社ジェイエスピー Polypropylene resin foam particles
JP4144781B2 (en) * 2002-03-19 2008-09-03 株式会社ジェイエスピー Method for producing molded polypropylene resin foam particles
JP5041812B2 (en) * 2004-11-22 2012-10-03 株式会社カネカ Polypropylene resin pre-expanded particles and in-mold foam molding

Also Published As

Publication number Publication date
JP2008255213A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
JP5041812B2 (en) Polypropylene resin pre-expanded particles and in-mold foam molding
JP5770634B2 (en) Polypropylene resin, polypropylene resin composition, and injection-foamed molded article
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
JP5037212B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
WO2010113471A1 (en) Expandable polypropylene copolymer resin particles
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
JP5080842B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP6357310B2 (en) Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
JP4779330B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP5358452B2 (en) Polypropylene resin expanded particles and expanded molded articles
JP5347368B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JP5177247B2 (en) Polypropylene-based resin pre-expanded particles, in-mold foam molded product, and method for producing the same
JP5638928B2 (en) Polypropylene resin for injection foam molding and injection foam molded body thereof
JP5154194B2 (en) Polypropylene resin foam particles
JP2010138226A (en) Method for producing polypropylene resin in-mold expansion molded product using compressive filling method
JP5364289B2 (en) Method for producing expanded polypropylene resin particles
JP5331344B2 (en) Polypropylene resin pre-expanded particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250