JP5314411B2 - Method for producing polypropylene resin expanded particle molded body, and molded body - Google Patents

Method for producing polypropylene resin expanded particle molded body, and molded body Download PDF

Info

Publication number
JP5314411B2
JP5314411B2 JP2008323659A JP2008323659A JP5314411B2 JP 5314411 B2 JP5314411 B2 JP 5314411B2 JP 2008323659 A JP2008323659 A JP 2008323659A JP 2008323659 A JP2008323659 A JP 2008323659A JP 5314411 B2 JP5314411 B2 JP 5314411B2
Authority
JP
Japan
Prior art keywords
particles
polypropylene resin
foamed
molded body
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008323659A
Other languages
Japanese (ja)
Other versions
JP2010144078A (en
Inventor
政春 及川
篠原  充
徳修 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2008323659A priority Critical patent/JP5314411B2/en
Priority to CN200911000170.5A priority patent/CN101875739B/en
Publication of JP2010144078A publication Critical patent/JP2010144078A/en
Application granted granted Critical
Publication of JP5314411B2 publication Critical patent/JP5314411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to a molded product of a polypropylene-based resin expanded particle and a method for producing the same. The object of the invention is to provide a molded product of a polypropylene-based resin expanded particle with a low expansion ratio having excellent fusibility between expanded particles mutually, small density difference between a surface part and an inner part of the molded product, better mechanical properties, such as compressive strength, compared with a conventional one, and also excellent appearance. In an in-mold molding method with the polypropylene-based resin expanded particle, the expanded particle has apparent density of 60-450 g/L, the welding rate of the polypropylene-based resin expanded particle is above 50%, the ratio between the apparent density of the expanded particle molded body to the inner density of the molded body is 1-2 and the molded product of the polypropylene-based resin expanded particle is preferably molded when satisfying the special conditions.

Description

本発明は、ポリプロピレン系樹脂発泡粒子成形体の製造方法及び該成形体に関し、特に従来のポリプロピレン系樹脂発泡粒子を型内成形する成形温度よりも低い成形温度により、発泡粒子成形体の密度分布が均一な高密度の発泡粒子成形体を得ることができるポリプロピレン系樹脂発泡粒子成形体の製造方法及び該成形体に関する。   The present invention relates to a method for producing a polypropylene resin foamed particle molded body and the molded body, and in particular, the density distribution of the foamed particle molded body is reduced by a molding temperature lower than the molding temperature at which conventional polypropylene resin foamed particles are molded in a mold. The present invention relates to a method for producing a polypropylene resin foamed particle molded body capable of obtaining a uniform high-density foamed particle molded body and the molded body.

ポリプロピレン系樹脂はその機械強度、耐熱性、加工性、焼却性、リサイクル性等に優れた性質を有することから利用分野を拡大しつつある。同様にポリプロピレン系樹脂発泡粒子を型内成形してなるポリプロピレン系樹脂発泡粒子成形体は、上記ポリプロピレン系樹脂の優れた性質を失うことなく更に、緩衝性、断熱性、軽量性等の特性を付加できるため、包装材料、建築材料や車輌用衝撃吸収材料等に広く利用されてきており、電子部品の包装用トレー、自動車軽量化部材等については正確な寸法精度、高強度化が求められてきており、低倍率のポリプロピレン系樹脂発泡粒子成形体の要求が高まることが予想される。高密度の発泡粒子成形体を得るためには、見かけ密度の大きな発泡粒子を型内成形することにより行われるが、見かけ密度の大きな発泡粒子を二次発泡させると共に、発泡粒子表面のみを融解させることなど型内成形時の困難性を伴い、従来技術においては、発泡粒子の見かけ密度のバラツキを抑え、平均気泡数を調整した発泡粒子を使用することにより、発泡粒子の二次発泡性や相互の融着性を改善し、外観および剛性に優れた発泡粒子成形体を製造する方法(特許文献1)が実用化されているに過ぎなかった。   Polypropylene resins are expanding their fields of use because of their excellent mechanical strength, heat resistance, processability, incineration, recyclability, and the like. Similarly, a polypropylene resin expanded particle molded body obtained by molding polypropylene resin expanded particles in a mold has additional properties such as cushioning, heat insulation, and light weight without losing the excellent properties of the polypropylene resin. Therefore, it has been widely used for packaging materials, building materials, vehicle shock absorbing materials, etc., and accurate dimensional accuracy and high strength have been demanded for packaging trays for electronic components, automobile weight reduction members, etc. Therefore, it is expected that the demand for low-magnification polypropylene resin expanded particle molded bodies will increase. In order to obtain a high-density foamed particle molded body, foamed particles having a large apparent density are molded in-mold, but the foamed particles having a large apparent density are subjected to secondary foaming and only the surface of the foamed particles is melted. In the conventional technology, there is a difficulty in molding in-mold, etc., and in the conventional technology, the expanded density of foamed particles is controlled by controlling the average density of the foamed particles by suppressing the variation in the apparent density of the foamed particles. However, the method (Patent Document 1) for producing a foamed particle molded body that improves the fusing property and has an excellent appearance and rigidity has only been put into practical use.

しかし、高密度(60g/L以上、特に100g/L以上)のポリプロピレン系樹脂発泡粒子成形体は、該成形体を得るために使用する低倍率の発泡粒子は、高倍率の発泡粒子と比較して、どうしても型内成形時の発泡粒子相互の融着性が悪くなり易く、型内成形時の加熱条件を高くして成形体表面外観が十分になるほど発泡粒子を二次発泡させているにもかかわらず、発泡粒子の成形体内部の融着性が不十分となり易く、該融着性を満足させるために型内への発泡粒子充填時の圧縮率を高くし、加熱媒体である飽和水蒸気の水蒸気圧を更に高くするなどの必要があった。そして、該水蒸気圧が高くなることで、型内成形時の冷却時間が長くなり、生産性が悪くなるといった問題があり、また、得られる発泡粒子成形体は、高い水蒸気圧などの成形条件にて成形しなければならないため、発泡粒子成形体表層部の気泡が潰れ高密度化し、得られた発泡粒子成形体の内部と表層部との密度差が生じ、圧縮物性などの機械的強度が安定しないといった課題があった。   However, a high density (60 g / L or more, particularly 100 g / L or more) polypropylene resin foamed particle molded body has a low-magnification foamed particle used to obtain the molded body compared to a high-magnification foamed particle. Therefore, the fusibility between the foam particles during in-mold molding tends to deteriorate, and the foaming particles are secondary-foamed so that the heating condition at the time of in-mold molding is increased and the molded product surface appearance is sufficient. Regardless, the meltability of the foam particles inside the molded product tends to be insufficient, and in order to satisfy the meltability, the compression rate when filling the foam particles into the mold is increased, It was necessary to further increase the water vapor pressure. And, since the water vapor pressure becomes high, there is a problem that the cooling time at the time of molding in the mold becomes long and the productivity is deteriorated, and the obtained foamed particle molded body has a molding condition such as high water vapor pressure. Therefore, the bubbles in the surface layer part of the foamed particle molded body are crushed and densified, resulting in a density difference between the inside of the foamed particle molded body and the surface layer part, and the mechanical strength such as compression properties is stable. There was a problem of not doing.

特開2000−63556号公報JP 2000-63556 A

本発明は、ポリプロピレン系樹脂発泡粒子成形体の特徴である靭性、耐熱性、易リサイクル性などの優れた性質を損なうことなく、低い加熱温度での型内成形により安定して優れた物性を有する低倍率(高密度)のポリプロピレン系樹脂発泡粒子成形体の製造方法を提供することを目的とする。
また、本発明は、発泡粒子相互の融着性に優れ、成形体の表層部と内部との密度差が小さく、従来のものに比べて圧縮強度等の機械的物性に優れ、外観にも優れた低倍率のポリプロピレン系樹脂発泡粒子成形体を提供することを目的とする。
The present invention has stable and excellent physical properties by molding in a mold at a low heating temperature without impairing excellent properties such as toughness, heat resistance, and easy recyclability, which are characteristics of a polypropylene resin foamed molded article. An object of the present invention is to provide a method for producing a low-magnification (high-density) polypropylene-based resin expanded resin molded body.
In addition, the present invention is excellent in the fusion property between the expanded particles, the density difference between the surface layer portion and the inside of the molded body is small, the mechanical properties such as the compressive strength are excellent, and the appearance is excellent as compared with the conventional one. Another object of the present invention is to provide a low-magnification polypropylene-based resin expanded particle molded body.

本発明は、従来のポリプロピレン系樹脂発泡粒子の成形温度よりも低い温度にて、従来のポリプロピレン系樹脂発泡粒子成形体の有する特性を損なうことなく、発泡粒子相互の融着性に優れ、圧縮強度等の機械的物性に優れる低倍率の発泡粒子成形体を得ることができるポリプロピレン系樹脂発泡粒子を開発することを目的として、発泡粒子の結晶構造と発泡粒子成形体の機械的物性との関係、発泡粒子の結晶構造と発泡粒子の型内成形時の挙動との関係、型内成形方法等について検討を行ったところ、発泡粒子の型内成形可能な成形温度範囲を低温側に広げることを実現し、型内成形における金型内への発泡粒子の充填時の圧縮率を調整する成形方法を採用することにより、安定して優れた物性を有する低倍率の発泡粒子成形体が得られることを見出し、本発明を完成するに至った。   The present invention is superior in fusion property between foamed particles and compressive strength at a temperature lower than the molding temperature of the conventional polypropylene resin foamed particles, without impairing the properties of the conventional molded polypropylene resin foamed particles. For the purpose of developing polypropylene-based resin foam particles that can obtain a low-magnification foam particle molded body having excellent mechanical properties such as, the relationship between the crystal structure of the foam particles and the mechanical properties of the foam particle molded body, We investigated the relationship between the crystal structure of the foam particles and the behavior of the foam particles during in-mold molding, the in-mold molding method, etc., and realized that the molding temperature range for foam particles could be expanded to the low temperature side. In addition, by adopting a molding method that adjusts the compression ratio at the time of filling of the foam particles into the mold in the in-mold molding, a low-magnification foam particle molded body having excellent physical properties can be obtained stably. Heading the door, which resulted in the completion of the present invention.

即ち、本発明は、
(1)ポリプロピレン系樹脂発泡粒子を型内に充填して加熱成形する発泡粒子型内成形法において、該ポリプロピレン系樹脂発泡粒子が、見かけ密度が100〜720g/Lであると共に、該発泡粒子の融解温度の飽和蒸気により該発泡粒子を耐圧容器内で10秒間加熱した場合の、加熱前後の該発泡粒子の見かけ密度比(ρ)[(加熱前の発泡粒子の見かけ密度〔g/L〕)/(加熱後の発泡粒子の見かけ密度〔g/L〕)]が1〜1.7となるものであり、
該発泡粒子を示差走査熱量測定にて2℃/分の昇温速度で常温から200℃まで昇温することにより得られる1回目のDSC曲線において、全吸熱ピーク熱量に対して70〜95%の吸熱ピーク熱量を示し、かつ吸熱ピークの頂点温度が100〜140℃の主吸熱ピークと、該主吸熱ピークの高温側に吸熱ピークが現れる結晶構造を有し、
該ポリプロピレン系樹脂発泡粒子の型内充填時の圧縮率を0〜15%とすることを特徴とするポリプロピレン系樹脂発泡粒子成形体の製造方法。
(2)前記主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を有することを特徴とする前記(1)に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。
(3)前記ポリプロピレン系樹脂発泡粒子を構成する基材樹脂のポリプロピレン系樹脂が、融点100〜140℃の低融点ポリプロピレン系樹脂(A)と、該樹脂の融点よりも20℃以上高い融点を有する高融点ポリプロピレン系樹脂(B)との混合物である前記(1)または(2)に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。
(4)前記ポリプロピレン系樹脂発泡粒子を構成する基材樹脂のうち、低融点ポリプロピレン系樹脂(A)が、プロピレンと、エチレン又は/及び炭素数4〜20のα−オレフィンとの共重合体である前記(3)に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。
(5)前記ポリプロピレン系樹脂発泡粒子を構成する基材樹脂のうち、低融点ポリプロピレン系樹脂(A)が、メタロセン系重合触媒を使用して重合されたポリプロピレン系樹脂である前記(3)または(4)に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。
(6)ポリプロピレン系樹脂発泡粒子を型内に充填して加熱成形してなる発泡粒子成形体において、該成形体の密度が60〜450g/L、発泡粒子の融着率が50%以上、該成形体の表層部の密度(Ds)〔g/L〕と該成形体の内部の密度(Dc)〔g/L〕との比(Ds/Dc)が1〜2であることを特徴とするポリプロピレン系樹脂発泡粒子成形体。
That is, the present invention
(1) In a foamed particle in-mold molding method in which polypropylene-based resin foam particles are filled into a mold and heat-molded, the polypropylene-based resin foam particles have an apparent density of 100 to 720 g / L, and Apparent density ratio (ρ R ) of the foamed particles before and after heating when the foamed particles are heated for 10 seconds in a pressure vessel with saturated steam at the melting temperature [(apparent density of the foamed particles before heating [g / L] ) / (Apparent density of expanded particles after heating [g / L])] is 1 to 1.7,
In the first DSC curve obtained by heating the expanded particles from room temperature to 200 ° C. at a rate of temperature increase of 2 ° C./min by differential scanning calorimetry, 70 to 95% of the total endothermic peak heat amount is obtained. A main endothermic peak showing an endothermic peak heat quantity and a peak temperature of the endothermic peak of 100 to 140 ° C., and a crystal structure in which an endothermic peak appears on the high temperature side of the main endothermic peak,
A method for producing a molded product of expanded polypropylene resin particles, wherein the compression rate of the expanded polypropylene resin particles in a mold is 0 to 15%.
(2) The method of producing the polypropylene resin foamed beads molded article according to (1), characterized in that it has two or more endothermic peak Kugagen are crystal structure to a high temperature side of the main endothermic peak.
(3) The polypropylene resin of the base resin constituting the polypropylene resin expanded particles has a low melting point polypropylene resin (A) having a melting point of 100 to 140 ° C. and a melting point higher by 20 ° C. than the melting point of the resin. The method for producing a polypropylene resin expanded resin molded article according to (1) or (2), which is a mixture with the high melting point polypropylene resin (B).
(4) Of the base resin constituting the polypropylene resin expanded particles, the low melting point polypropylene resin (A) is a copolymer of propylene and ethylene or / and an α-olefin having 4 to 20 carbon atoms. The manufacturing method of the polypropylene-type resin expanded particle molding as described in said (3).
(5) Of the base resin constituting the polypropylene resin expanded particles, the low melting point polypropylene resin (A) is a polypropylene resin polymerized using a metallocene polymerization catalyst (3) or ( The manufacturing method of the polypropylene-type resin expanded particle molded object as described in 4).
(6) In a foamed particle molded body obtained by filling polypropylene resin foamed particles in a mold and heat-molding, the density of the molded body is 60 to 450 g / L, the fusion rate of the expanded particles is 50% or more, The ratio (Ds / Dc) of the density (Ds) [g / L] of the surface layer portion of the molded body to the density (Dc) [g / L] inside the molded body is 1-2. Polypropylene-based resin expanded particle molded body.

本発明のポリプロピレン系樹脂発泡粒子成形体の製造方法によれば、発泡粒子相互の融着性に優れる低倍率の発泡粒子成形体を、従来技術と比較して低温の型内成形加熱条件にて成形することができるので、型内成形時の加熱後の冷却時間を短縮する事ができ、ひいては型内成形時間の短縮に繋がる。また、型内成形において過剰な水蒸気加熱を行わなくてもすむので、成形機の型締め圧力を低くでき、金型の耐久性を必要以上に高めることなく金型の厚みを薄くでき、成形機や金型の製造コストや耐久性の面でのメリットも大きく、従来の型内成形に比べて大幅なエネルギーコストの削減が可能である。
また、本発明のポリプロピレン系樹脂発泡粒子成形体は、低倍率のものでありながら発泡粒子成形体の表層部と内部との密度差が、従来のものよりも小さいものであり、その画期的な特徴により発泡粒子成形体の圧縮強度が向上する効果を奏する。更に、本発明の発泡粒子成形体は発泡粒子相互の融着性に優れていることにより該成形体の機械的物性においても優れたものである。また、本発明の発泡粒子成形体はその表面において、ベント孔跡や発泡粒子間のボイドと呼ばれる間隙が小さく、平滑性に優れたものである。
According to the method for producing a polypropylene resin foamed particle molded body of the present invention, a low-magnification foamed particle molded body excellent in the fusion property between the foamed particles can be obtained under low temperature in-mold molding and heating conditions as compared with the prior art. Since it can be molded, it is possible to shorten the cooling time after heating at the time of molding in the mold, which leads to shortening of the molding time in the mold. In addition, since excessive steam heating is not required in in-mold molding, the mold clamping pressure of the molding machine can be reduced, and the mold thickness can be reduced without increasing the durability of the mold more than necessary. In addition, there are significant advantages in terms of manufacturing costs and durability of molds, and energy costs can be significantly reduced compared to conventional in-mold molding.
In addition, the polypropylene resin expanded resin molded body of the present invention has a low magnification, but the difference in density between the surface layer portion and the inside of the expanded expanded resin molded body is smaller than that of the conventional one, and its breakthrough Due to these features, the effect of improving the compressive strength of the foamed particle molded body is exhibited. Furthermore, the foamed particle molded body of the present invention is excellent in mechanical properties of the molded body due to the excellent fusion property between the foamed particles. In addition, the foamed particle molded body of the present invention has excellent smoothness because the surface thereof has a small gap called a vent hole trace or a void between the foamed particles.

本発明の発泡粒子成形体の製造方法は、低倍率のポリプロピレン系樹脂発泡粒子成形体でありながら発泡粒子相互の融着性に優れ、成形体の表層部と内部との密度差が小さく、機械的物性、外観にも優れるものが得られものであって、低倍率の発泡粒子成形体を得る型内成形に使用する低倍率のポリプロピレン系樹脂発泡粒子において、該発泡粒子の融解温度の飽和蒸気により該発泡粒子を耐圧容器内で10秒間加熱した場合の、加熱前後の該発泡粒子の見かけ密度比(ρR)[(加熱前の発泡粒子の見かけ密度〔g/L〕)/(加熱後の発泡粒子の見かけ密度〔g/L〕)]が1〜1.7となるものを用いることを第1の特徴とするものである。
型内成形に使用される発泡粒子としては、発泡粒子を加熱することにより、先ず発泡粒子が相互に融着し得る状態になり、次いで発泡粒子が二次発泡し得る状態となる性質を有するもの(以下、この性質を有する発泡粒子を融着先行型発泡粒子という。)と、発泡粒子を加熱することにより、先ず発泡粒子が二次発泡し得る状態となり、次いで発泡粒子が相互に融着し得る状態となる性質を有するもの(以下、この性質を有する発泡粒子を二次発泡先行型発泡粒子という。)とがあり、発泡粒子の低い加熱温度での型内成形においては特に、二次発泡先行型発泡粒子よりも融着先行型発泡粒子の方がより好ましいものであるという知見を得た。
The method for producing a foamed particle molded body of the present invention is a low-magnification polypropylene resin foamed particle molded body that is excellent in fusion property between the foamed particles, and has a small density difference between the surface layer portion and the inside of the molded body. In the low-magnification polypropylene-based resin foam particles used for in-mold molding to obtain a low-magnification foamed-particle molded body, saturated steam at the melting temperature of the foamed particles can be obtained. When the foamed particles are heated in a pressure vessel for 10 seconds, the apparent density ratio (ρ R ) of the foamed particles before and after heating [(apparent density of the foamed particles before heating [g / L]) / (after heating The first characteristic is that the foamed particles have an apparent density [g / L])] of 1 to 1.7.
The foamed particles used for in-mold molding have the property that by heating the foamed particles, the foamed particles can first be fused to each other, and then the foamed particles can be secondarily foamed. (Hereinafter, the foamed particles having this property are referred to as fusion-advanced-type foamed particles) and by heating the foamed particles, the foamed particles can be in a secondary foamable state, and then the foamed particles are fused to each other. There are some which have the property to be obtained (hereinafter, the expanded particles having this property are referred to as secondary expanded preceding-type expanded particles). Especially in the in-mold molding of the expanded particles at a low heating temperature, the secondary expanded The present inventors have found that the fusion-type advanced foam particles are more preferable than the prior-type foam particles.

上記のように融着先行型発泡粒子の方が二次発泡先行型発泡粒子よりも好ましいものである理由は、二次発泡先行型発泡粒子の場合には、型内成形時の加熱工程において発泡粒子の二次発泡により型内に充填された発泡粒子間隙が埋まり易く、発泡粒子間の間隙への水蒸気の流入、通過を阻害し、その結果、発泡粒子相互の融着を阻害する要因となるのに対し、融着先行型発泡粒子は二次発泡先行型発泡粒子にみられる上記のような阻害要因が起こり難いことによる。但し、融着先行型発泡粒子であっても発泡粒子の相互融着温度よりも二次発泡温度が際立って高い場合には、外観良好な発泡粒子成形体を得るために、型内成形時の加熱温度を上げざるを得ない場合もあるため発泡粒子の融着し得る状態となる温度と二次発泡し得る状態となる温度とが大きく異ならないことが好ましい。
本発明の製造方法における上記の発泡粒子の融解温度の飽和蒸気により該発泡粒子を耐圧容器内で10秒間加熱した場合の、加熱前後の該発泡粒子の見かけ密度比(ρR)が1〜1.7であるという構成は、該製造方法にて使用される発泡粒子が融着先行型発泡粒子であることを意味している。融着先行型発泡粒子の中でも適度の二次発泡力を有するものが好ましいことから、上記見かけ密度比(ρR)は1.1〜1.6、更に1.2〜1.5であることが好ましい。
As described above, the reason why the fusion precedent foam particles are more preferable than the secondary foam precedent foam particles is that, in the case of the secondary foam precedent foam particles, foaming is performed in the heating process at the time of in-mold molding. The gap between the foamed particles filled in the mold is easily filled by the secondary foaming of the particles, which inhibits the inflow and passage of water vapor into the gap between the foamed particles, and as a result, inhibits the fusion between the foamed particles. On the other hand, the fusion-preceding foamed particles are less likely to cause the above-described inhibition factors seen in the secondary foaming-preceding foamed particles. However, if the secondary foaming temperature is markedly higher than the mutual fusing temperature of the foamed particles, even in the case of the fusion-advanced foamed particles, in order to obtain a foamed particle compact with good appearance, Since the heating temperature must be increased, it is preferable that the temperature at which the foamed particles can be fused and the temperature at which the secondary foaming can be performed are not significantly different.
The apparent density ratio (ρ R ) of the foamed particles before and after heating when the foamed particles are heated in a pressure resistant container for 10 seconds with the saturated vapor at the melting temperature of the foamed particles in the production method of the present invention is 1-1. .7 means that the expanded particles used in the production method are fusion-advanced-type expanded particles. Among the fusion-advanced-type foamed particles, those having an appropriate secondary foaming power are preferable, and thus the apparent density ratio (ρ R ) is 1.1 to 1.6, and more preferably 1.2 to 1.5. Is preferred.

なお、本発明において発泡粒子の融解温度は、熱流束示差走査熱量測定装置によりJIS K7121(1987)の「一定の熱処理を行ったのち、融解温度を測定する場合」に記載される方法にて測定される値である。具体的には、ポリプロピレン系樹脂発泡粒子1〜3mgを試料として熱流束示差走査熱量測定法により、10℃/分の昇温速度で常温から200℃まで昇温した後に、10℃/分の速度で30℃まで降温し、再度10℃/分の昇温速度で30℃から200℃まで昇温した際に得られるDSC曲線より定まる吸熱ピークの頂点温度のことである。なお、DSC曲線に複数の吸熱ピークがある場合には、最大面積の吸熱ピークの頂点温度を採用する。
また、上記見かけ密度比(ρR)の測定手順は、以下の通りである。
5Lのオートクレーブ中に嵩体積で約100cmの見かけ密度が既知の発泡粒子(加熱前の発泡粒子)を入れ、発泡粒子の融解温度の飽和蒸気により該発泡粒子を密閉したオートクレーブ内で10秒間加熱することにより加熱後の発泡粒子を得る。
In the present invention, the melting temperature of the expanded particles is measured by the method described in “When measuring the melting temperature after performing a certain heat treatment” in JIS K7121 (1987) using a heat flux differential scanning calorimeter. Is the value to be Specifically, the sample was heated from room temperature to 200 ° C. at a rate of 10 ° C./min by a heat flux differential scanning calorimetry using 1 to 3 mg of polypropylene resin foam particles as a sample, and then at a rate of 10 ° C./min. Is the peak temperature of the endothermic peak determined from the DSC curve obtained when the temperature is lowered to 30 ° C. and again raised from 30 ° C. to 200 ° C. at a rate of 10 ° C./min. When there are a plurality of endothermic peaks in the DSC curve, the apex temperature of the endothermic peak with the maximum area is adopted.
The procedure for measuring the apparent density ratio (ρ R ) is as follows.
A foam particle having a known apparent density of about 100 cm 3 in bulk volume (foamed particle before heating) is placed in a 5 L autoclave and heated for 10 seconds in an autoclave in which the foamed particle is sealed with saturated steam at the melting temperature of the foamed particle. By doing so, the foamed particles after heating are obtained.

また、加熱前の発泡粒子の見かけ密度は、発泡粒子を常圧下の温度23℃、湿度50%の条件にて48時間以上放置して状態調整を行った後に、重量:W(g)の該発泡粒子群を水の入ったメスシリンダー内に金網などを使用して沈めることにより、水位上昇分から求められる該発泡粒子群の体積:V(L)を求め、該発泡粒子群の重量を該発泡粒子群の体積にて除する(W/V)ことにより求められる値である。
また、加熱後の発泡粒子の見かけ密度は、上記耐圧容器内での10秒間加熱により得られた発泡粒子を常圧下の温度23℃、湿度50%の条件にて48時間以上放置して状態調整を行った後に、重量:W(g)の該発泡粒子群を水の入ったメスシリンダー内に金網などを使用して沈めることにより、水位上昇分から求められる該発泡粒子群の体積:V(L)を求め、該発泡粒子群の重量を該発泡粒子群の体積にて除する(W/V)ことにより求められる値である。
Also, the apparent density of the expanded particles before heating was determined by adjusting the state of the expanded particles by allowing them to stand for 48 hours or more under conditions of a temperature of 23 ° C. and a humidity of 50% under normal pressure, and then the weight: W (g) The foamed particle group is submerged in a graduated cylinder containing water by using a wire mesh or the like to obtain the volume of the foamed particle group V (L) obtained from the rise in the water level, and the weight of the foamed particle group is determined as the foamed particle group. This is a value obtained by dividing by the volume of the particle group (W / V).
The apparent density of the foamed particles after heating is adjusted by leaving the foamed particles obtained by heating for 10 seconds in the above-mentioned pressure vessel at a temperature of 23 ° C. and a humidity of 50% under normal pressure for 48 hours or more. Then, the foamed particle group having a weight: W (g) is submerged in a graduated cylinder containing water using a wire mesh or the like, so that the volume of the foamed particle group obtained from the rise in the water level: V (L ) And the weight of the expanded particle group is divided by the volume of the expanded particle group (W / V).

本発明においてポリプロピレン系樹脂発泡粒子を構成する基材樹脂は、本発明の構成要件を満足するものであれば、プロピレン単独重合体、プロピレン系ブロック共重合体またはプロピレン系ランダム共重合体を問わずに使用可能である。なお、上記プロピレン系共重合体としては、プロピレンと、エチレン又は/及び炭素数4〜20のα−オレフィンとの共重合体からなり、プロピレンと、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ブテンなどとの共重合体が例示される。上記プロピレン系共重合体は、プロピレン−エチレンランダム共重合体、プロピレン−ブテンランダム共重合体等の2元共重合体であっても、プロピレン−エチレン−ブテンランダム共重合体等の3元共重合体であっても良い。なお、ポリプロピレン系共重合体は、該共重合体中のプロピレンに由来する構造単位が70重量%以上、更に80〜99.5重量%含有し、エチレン又は/及び炭素数4〜20のα−オレフィンから得られる構造単位が、30重量%以下、好ましくは0.5〜20重量%含有するポリプロピレン系樹脂であることが好ましい。   In the present invention, the base resin constituting the polypropylene resin expanded particles may be a propylene homopolymer, a propylene block copolymer or a propylene random copolymer as long as it satisfies the constituent requirements of the present invention. Can be used. In addition, as said propylene-type copolymer, it consists of a copolymer of propylene and ethylene or / and a C4-C20 alpha olefin, Propylene, ethylene, 1-butene, 1-pentene, 1- Examples thereof include copolymers with hexene, 1-octene, 4-methyl-1-butene and the like. The propylene-based copolymer may be a binary copolymer such as a propylene-ethylene random copolymer or a propylene-butene random copolymer, or a ternary copolymer such as a propylene-ethylene-butene random copolymer. It may be a coalescence. The polypropylene copolymer contains propylene-derived structural units in the copolymer in an amount of 70% by weight or more, further 80 to 99.5% by weight, and / or ethylene and / or α-carbon having 4 to 20 carbon atoms. It is preferable that the structural unit obtained from the olefin is a polypropylene resin containing 30% by weight or less, preferably 0.5 to 20% by weight.

本発明において使用される発泡粒子は、上記見かけ密度比(ρR)の条件を満足することにより従来のポリプロピレン系樹脂発泡粒子の型内成形温度に比べて低い成形温度での型内成形が可能であると共に、発泡粒子成形体の外観、発泡粒子相互の融着性等において優れた発泡粒子成形体が安定して得られるものである。
本発明における上記見かけ密度比(ρR)の条件を満足するポリプロピレン系樹脂発泡粒子は、例えば、発泡粒子の結晶構造を調整する方法、発泡粒子の独立気泡率、気泡径、表皮層厚みを調整する方法等により得ることができる。
中でも上記見かけ密度比(ρR)の条件を満足するポリプロピレン系樹脂発泡粒子を得る上で好ましい方法である発泡粒子の結晶構造を調整する方法について以下に詳述する。
The foamed particles used in the present invention can be molded in-mold at a molding temperature lower than the molding temperature of conventional polypropylene resin foamed particles by satisfying the above apparent density ratio (ρ R ) condition. In addition, it is possible to stably obtain a foamed particle molded body excellent in the appearance of the foamed particle molded body, the fusion property between the foamed particles, and the like.
The polypropylene resin foamed particles satisfying the condition of the apparent density ratio (ρ R ) in the present invention are, for example, a method of adjusting the crystal structure of the foamed particles, a closed cell ratio of the foamed particles, a cell diameter, and a skin layer thickness. It can obtain by the method of doing.
In particular, a method for adjusting the crystal structure of the expanded particles, which is a preferable method for obtaining the expanded polypropylene resin particles satisfying the condition of the apparent density ratio (ρ R ), will be described in detail below.

密度比(ρR)の条件を満足するポリプロピレン系樹脂発泡粒子としては、ポリプロピレン系樹脂発泡粒子を熱流束示差走査熱量測定によって2℃/分の昇温速度で、常温から200℃まで昇温したときに得られる1回目のDSC曲線において、全吸熱ピーク熱量に対して70〜95%の吸熱ピーク熱量を示し、かつ吸熱ピークの頂点温度が100〜140℃の主吸熱ピークと、該主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を有することが好ましい。
上記2℃/分の昇温速度での1回目のDSC曲線において、吸熱ピークの頂点温度が100〜140℃の主吸熱ピークが現れることにより、該主吸熱ピークの頂点温度は、発泡粒子の基材樹脂であるポリプロピレン系樹脂の樹脂融点に近い温度を示すことから、低融点のポリプロピレン系樹脂からなる無架橋ポリプロピレン系樹脂発泡粒子であると言うことができる。しかし、該発泡粒子は単に低融点のポリプロピレン系樹脂からなる発泡粒子ではなく、型内成形時の加熱温度引き下げ効果や、型内成形により得られる発泡粒子成形体の外観、発泡粒子相互の融着性等の成形安定性を兼備する為の構成として、発泡粒子の1回目のDSC曲線において、該主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を示す。この場合に、二次発泡先行型発泡粒子であった従来の低融点のポリプロピレン系樹脂からなる発泡粒子が、融着先行型発泡粒子となり、型内成形時の加熱温度の引き下げ効果や成形安定性において優れたものになると考えられる。従って、本発明において使用される発泡粒子において上記主吸熱ピークの構成と併せて、該主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を示すことが好ましい。
As polypropylene-based resin expanded particles satisfying the condition of the density ratio (ρ R ), the polypropylene-based resin expanded particles were heated from normal temperature to 200 ° C. at a temperature increase rate of 2 ° C./min by heat flux differential scanning calorimetry. In the first DSC curve obtained from time to time, a main endothermic peak having an endothermic peak calorific value of 70 to 95% of the total endothermic peak calorific value and a peak temperature of the endothermic peak of 100 to 140 ° C., and the main endothermic peak It is preferable to have a crystal structure in which two or more endothermic peaks appear on the high temperature side.
In the first DSC curve at the rate of temperature increase of 2 ° C./min, when the main endothermic peak with an endothermic peak temperature of 100 to 140 ° C. appears, the apex temperature of the main endothermic peak is the base of the expanded particles. Since it shows a temperature close to the resin melting point of the polypropylene resin that is the material resin, it can be said that it is a non-crosslinked polypropylene resin expanded particle made of a low melting point polypropylene resin. However, the expanded particles are not simply expanded particles made of a polypropylene resin having a low melting point, the effect of lowering the heating temperature at the time of in-mold molding, the appearance of the expanded molded product obtained by the in-mold molding, and the fusion between the expanded particles As a structure for combining molding stability such as property, a crystal structure in which two or more endothermic peaks appear on the high temperature side of the main endothermic peak in the first DSC curve of the expanded particles is shown. In this case, the foamed particles made of the conventional low melting point polypropylene resin, which were the secondary foamed advance type foamed particles, become the fused advance type foamed particles, and the effect of lowering the heating temperature during molding and molding stability It is thought that it will be excellent. Therefore, it is preferable that the expanded particles used in the present invention have a crystal structure in which two or more endothermic peaks appear on the high temperature side of the main endothermic peak, in addition to the configuration of the main endothermic peak.

本発明において好ましく使用されるポリプロピレン系樹脂発泡粒子は、上記の通りの熱流束示差走査熱量測定により確認できる特定の結晶構造を有するポリプロピレン系樹脂発泡粒子である。具体的には、ポリプロピレン系樹脂発泡粒子の熱流束示差走査熱量測定によって、ポリプロピレン系樹脂発泡粒子1〜3mgを熱流束示差走査熱量測定装置により2℃/分の昇温速度で常温(概ね25℃)から200℃まで加熱したときに得られる1回目のDSC曲線おいて、3つ以上の吸熱ピークが現れ、全ての吸熱ピークの合計熱量に対して70〜95%の吸熱ピーク熱量を示すと共に、該吸熱ピークの頂点温度が100〜140℃である主吸熱ピークが現れ、該主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を有する発泡粒子である。なお、前記発泡粒子の示差走査熱量測定において2℃/分の昇温速度を採用する理由は、発泡粒子特有の結晶構造の有無、すなわち、発泡粒子が、1回目のDSC曲線おいて、3つ以上の吸熱ピークが現れる特定の結晶構造を有するものであるか否かを見極めるために、熱流束示差走査熱量測定の加熱速度条件を通常よりも遅くして異種結晶に基づく吸熱ピークの分解能を向上させて測定を行う必要があり、その為に好適な昇温速度が2℃/分であることによる。   The polypropylene resin expanded particles preferably used in the present invention are polypropylene resin expanded particles having a specific crystal structure that can be confirmed by heat flux differential scanning calorimetry as described above. Specifically, by heat flux differential scanning calorimetry of polypropylene resin expanded particles, 1 to 3 mg of polypropylene resin expanded particles are heated to a normal temperature (approximately 25 ° C. at a temperature rising rate of 2 ° C./min with a heat flux differential scanning calorimeter. In the first DSC curve obtained when heated to 200 ° C., three or more endothermic peaks appear, showing an endothermic peak calorific value of 70 to 95% with respect to the total calorific value of all the endothermic peaks, The endothermic peak has a crystal structure in which a main endothermic peak having an apex temperature of 100 to 140 ° C. appears and two or more endothermic peaks appear on the high temperature side of the main endothermic peak. In the differential scanning calorimetry of the foamed particles, the reason for adopting a temperature rising rate of 2 ° C./min is that there is a crystal structure peculiar to the foamed particles, that is, the foamed particles are three in the first DSC curve. In order to determine whether the endothermic peak has a specific crystal structure or not, it is possible to improve the resolution of endothermic peaks based on heterogeneous crystals by lowering the heating rate conditions for heat flux differential scanning calorimetry. It is necessary to carry out the measurement, and for this purpose, the preferable temperature rising rate is 2 ° C./min.

本発明において好ましく使用されるポリプロピレン系樹脂発泡粒子1〜3mgを、熱流束示差走査熱量測定装置により2℃/分の昇温速度で常温から200℃まで加熱したときに得られる代表的な1回目のDSC曲線の説明図を図1に示す。図1におけるDSC曲線において、a、a、aはそれぞれ吸熱ピークを示す。なお、上記1回目のDSC曲線の全吸熱ピーク熱量(△H)は、次のように求められる。
図1に示すように、前記DSC曲線上の80℃に対応する点αと、樹脂の融解終了温度Teに対応するDSC曲線上の点βとを結ぶ直線(α−β)を引きそれをベースラインとし、該ベースラインとDSC曲線にて囲まれる部分の面積に相当する熱量を全吸熱ピーク熱量(△H)J/gとする。上記ピークの熱量は、ピークの面積に基づいて熱流束示差走査熱量測定装置によって演算されて自動的に算出される。なお、本発明における全吸熱ピーク熱量(△H)は、40〜120J/gの範囲にあることが好ましく、さらに45〜100J/gの範囲にあることが好ましく、特に45〜85J/gの範囲にあることが好ましい。
A typical first time obtained when 1 to 3 mg of polypropylene resin expanded particles preferably used in the present invention are heated from normal temperature to 200 ° C. at a rate of temperature increase of 2 ° C./min with a heat flux differential scanning calorimeter. An explanatory diagram of the DSC curve is shown in FIG. In the DSC curve in FIG. 1, a 1 , a 2 , and a 3 each represent an endothermic peak. The total endothermic peak calorific value (ΔH) of the first DSC curve is obtained as follows.
As shown in FIG. 1, a straight line (α−β) connecting a point α corresponding to 80 ° C. on the DSC curve and a point β on the DSC curve corresponding to the melting end temperature Te of the resin is drawn. The amount of heat corresponding to the area surrounded by the base line and the DSC curve is defined as the total endothermic peak heat amount (ΔH) J / g. The amount of heat of the peak is automatically calculated by being calculated by a heat flux differential scanning calorimeter based on the area of the peak. The total endothermic peak heat quantity (ΔH) in the present invention is preferably in the range of 40 to 120 J / g, more preferably in the range of 45 to 100 J / g, and particularly in the range of 45 to 85 J / g. It is preferable that it exists in.

本発明にて好ましく使用される発泡粒子は、図1に示すように、1回目のDSC曲線上に3以上の吸熱ピークが現れるものであり、各吸熱ピークの熱量(△Ha、△Hb、△Hc・・・)は、以下に説明する部分面積解析法により求めることができる。
図1に基づいて部分面積解析法を説明する。得られたDSC曲線上において80℃に対応するDSC曲線上の点αと、樹脂の融解終了温度Teに対応するDSC曲線上の点βとを結ぶ線分(α−β)を引く。次に最も温度が低い低温部に観察されるピークaと、ピークaに隣接するピークaとの間の谷部にあたるDSC曲線上の点γからグラフの縦軸と平行な直線を引き、前記線分(α−β)と交わる点をδとする。更にピークaに隣接するピークaが観察されるので、ピークaとピークaに隣接するピークaとの間の谷部にあたるDSC曲線上の点γからグラフの縦軸と平行な直線を引き、上記線分(α−β)と交わる点をδとする。以降、ピークa、ピークa、ピークa・・・が観察される場合は同様の操作を繰り返す。上記操作により、得られる線分(δn−γn)(nは1以上の整数)が、吸熱ピークの面積を定める際の各ピーク境界線となる。
As shown in FIG. 1, the expanded particles preferably used in the present invention have three or more endothermic peaks appearing on the first DSC curve. The amount of heat (ΔHa, ΔHb, Δ Hc...) Can be obtained by a partial area analysis method described below.
The partial area analysis method will be described with reference to FIG. On the obtained DSC curve, a line segment (α−β) connecting the point α on the DSC curve corresponding to 80 ° C. and the point β on the DSC curve corresponding to the melting end temperature Te of the resin is drawn. Next, a straight line parallel to the vertical axis of the graph from the point γ 1 on the DSC curve corresponding to the valley between the peak a 1 observed in the low temperature part where the temperature is the lowest and the peak a 2 adjacent to the peak a 1 is obtained. The point intersecting the line segment (α−β) is defined as δ 1 . Further, because the peak a 3 observed adjacent to the peak a 2, parallel to the longitudinal axis from the point gamma 2 on the DSC curve corresponding to valleys of the graph between the peak a 3 adjacent to the peak a 2 and the peak a 2 pull the a straight line, the point of intersection with the line segment (α-β) and [delta] 2. Thereafter, when peak a 4 , peak a 5 , peak a 6 ... Are observed, the same operation is repeated. The line segment (δn−γn) (n is an integer of 1 or more) obtained by the above operation becomes each peak boundary line when determining the endothermic peak area.

そこで、吸熱ピークの熱量に対応する各ピークの面積は、図1においては、ピークaにおいては、ピークaを示すDSC曲線と、線分(δ−γ)と、線分(α−δ)とによって囲まれる面積であり、ピークaにおいては、ピークaを示すDSC曲線と、線分(δ−γ)と、線分(δ−γ)と、線分(δ−δ)とによって囲まれる面積であり、ピークaにおいては、ピークaを示すDSC曲線と、線分(δ−γ)と、線分(δ−β)とによって囲まれる面積として定められる。以降、ピークa、ピークa、ピークa・・・が観察される場合も同じ要領でピークの面積を定めることができる。そこで、各ピークの熱量(△Ha、△Hb、△Hc・・・)J/gは、上記のように定められた各ピークの面積に基づいて熱流束示差走査熱量測定装置によって演算されて自動的に算出される。また、図1において全吸熱ピーク熱量(△H)は、各吸熱ピークの熱量の合計(△H=△Ha+△Hb+△Hc)に相当する。 Therefore, the area of each peak corresponding to the amount of heat of the endothermic peak, in Figure 1, in the peak a 1, the DSC curve shows a peak a 1, the line segment ([delta] 1-gamma 1), line (alpha −δ 1 ), and in peak a 2 , the DSC curve indicating peak a 2 , the line segment (δ 1 −γ 1 ), the line segment (δ 2 −γ 2 ), and the line The area surrounded by the minute (δ 1 −δ 2 ). In the peak a 3 , the DSC curve showing the peak a 3 , the line segment (δ 2 −γ 2 ), and the line segment (δ 2 −β) Is defined as the area surrounded by. Thereafter, when the peak a 4 , the peak a 5 , the peak a 6 ... Are observed, the peak area can be determined in the same manner. Therefore, the calorific value (ΔHa, ΔHb, ΔHc...) J / g of each peak is automatically calculated by the heat flux differential scanning calorimeter based on the area of each peak determined as described above. Is calculated automatically. In FIG. 1, the total endothermic peak heat quantity (ΔH) corresponds to the total heat quantity of each endothermic peak (ΔH = ΔHa + ΔHb + ΔHc).

なお、上記測定方法において、ベースラインである線分(α−β)を引くために、DSC曲線上の点αを温度80℃に対応する点とした理由は、80℃に対応する点を始点とし、融解終了温度に対応する点を終点としたベースラインが、吸熱ピークの熱量を再現性良く安定して求める上で好適であることによる。
本発明において好ましく使用されるポリプロピレン系樹脂発泡粒子は、前記1回目のDSC曲線において、頂点温度(PTmA)が100〜140℃を示し、且つ吸熱ピーク熱量が全吸熱ピーク熱量(△H)の70〜95%である主吸熱ピークが現れる結晶構造を有するものである。従って、図1におけるポリプロピレン系樹脂発泡粒子のDSC曲線においては、吸熱ピークaが主吸熱ピークを示している。更に、該ポリプロピレン系樹脂発泡粒子は、1回目のDSC曲線において、該主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を有するものである。従って、図1におけるポリプロピレン系樹脂発泡粒子のDSC曲線においては、吸熱ピークa、aが主吸熱ピークaよりも高温側に存在する2つの吸熱ピークa、aを示している。
In the above measurement method, the reason why the point α on the DSC curve corresponds to the temperature of 80 ° C. in order to draw the line segment (α−β) as the base line is that the point corresponding to 80 ° C. is the starting point. And the baseline with the point corresponding to the end temperature of melting as the end point is suitable for stably obtaining the heat quantity of the endothermic peak with good reproducibility.
The polypropylene resin expanded particles preferably used in the present invention have a peak temperature (PTmA) of 100 to 140 ° C. in the first DSC curve, and the endothermic peak heat quantity is 70 of the total endothermic peak heat quantity (ΔH). It has a crystal structure in which a main endothermic peak of ˜95% appears. Thus, in the DSC curve of PP beads in Figure 1, the endothermic peak a 1 indicates a main endothermic peak. Furthermore, the polypropylene resin expanded particles have a crystal structure in which two or more endothermic peaks appear on the high temperature side of the main endothermic peak in the first DSC curve. Thus, in the DSC curve of PP beads in FIG. 1, an endothermic peak a 2, a 3 shows two endothermic peaks a 2, a 3 present in the high-temperature side of the main endothermic peak a 1.

本発明にて好ましく使用される発泡粒子おいて、頂点温度(PTmA)が100〜140℃を示し、且つ吸熱ピーク熱量が全吸熱ピーク熱量(△H)の70〜95%であるとは、ポリプロピレン系樹脂発泡粒子の前記1回目のDSC曲線に現れる3つ以上の吸熱ピークのうちで頂点温度(PTmA)が100〜140℃を示すいずれかの吸熱ピークにおいて、全吸熱ピーク熱量(△H)に対する吸熱ピーク熱量の百分率(例えば図1においては、(△Ha/△H)×100)が70〜95%であることを意味する。
上記の頂点温度及び吸熱ピーク熱量の条件を満足する主吸熱ピークの存在により、発泡粒子の型内成形時の成形温度を十分低くすることができると共に、主吸熱ピークの高温側に現れる2つ以上の吸熱ピークの存在と相俟って、得られるポリプロピレン系樹脂発泡粒子成形体本来の機械的強度、耐熱性などの物性の低下を防ぐことができる。なお、該主吸熱ピークの吸熱ピーク頂点温度(PTmA)は、105〜135℃、さらには110℃以上、125℃未満であることが耐熱性の観点と型内成形時の成形温度を更に低くする観点とから好ましい。
In the expanded particles preferably used in the present invention, the peak temperature (PTmA) indicates 100 to 140 ° C. and the endothermic peak heat amount is 70 to 95% of the total endothermic peak heat amount (ΔH). Among any three or more endothermic peaks appearing in the first DSC curve of the resin-based resin expanded particles, the endothermic peak having a peak temperature (PTmA) of 100 to 140 ° C. is relative to the total endothermic peak calorific value (ΔH). It means that the percentage of the endothermic peak heat quantity (for example, (ΔHa / ΔH) × 100 in FIG. 1) is 70 to 95%.
Due to the presence of the main endothermic peak that satisfies the above conditions of the peak temperature and endothermic peak heat amount, the molding temperature during molding of the foamed particles can be sufficiently lowered, and two or more appearing on the high temperature side of the main endothermic peak In combination with the presence of the endothermic peak, it is possible to prevent deterioration of physical properties such as the original mechanical strength and heat resistance of the obtained molded polypropylene resin particle expanded body. Note that the endothermic peak apex temperature (PTmA) of the main endothermic peak is 105 to 135 ° C., more preferably 110 ° C. or more and less than 125 ° C., to further reduce the molding temperature at the time of in-mold molding. It is preferable from the viewpoint.

また、本発明にて好ましく使用される発泡粒子おいて該主吸熱ピークの吸熱ピーク熱量は全吸熱ピーク熱量(△H)の80〜95%、更に85〜92%であることが得られる発泡粒子成形体の機械的強度、耐熱性などの物性向上と発泡粒子の低温での型内成形性とのバランスの観点から好ましい。
該主吸熱ピークの高温側に現れる2以上の吸熱ピークは、複数のポリプロピレン系樹脂の混合を駆使することや、重合触媒と重合条件を駆使することにより得ることもできるが、複数のポリプロピレン系樹脂の混合に加えて、後述する等温結晶化操作(発泡粒子を構成するポリプロピレン系樹脂の樹脂融点近辺の温度で所定時間保持しポリプロピレン系樹脂を再結晶化させる操作)を行うことにより確実に、且つ容易に形成することができる。なお、主吸熱ピークの高温側に現れる2以上の吸熱ピークが、複数のポリプロピレン系樹脂の混合と等温結晶化操作とにより、発泡粒子に形成される結晶構造である場合、該2以上の吸熱ピークはポリプロピレン系樹脂混合物の内、ポリプロピレン系樹脂発泡粒子の主吸熱ピークを形成しているプロピレン系樹脂成分に由来する吸熱ピークと、その他のプロピレン系樹脂成分による吸熱ピークとに別けられる。
Further, in the expanded particles preferably used in the present invention, the endothermic peak heat quantity of the main endothermic peak is 80 to 95%, more preferably 85 to 92% of the total endothermic peak heat quantity (ΔH). It is preferable from the viewpoint of balance between improvement in physical properties such as mechanical strength and heat resistance of the molded article and moldability of the foamed particles at low temperature.
Two or more endothermic peaks appearing on the high temperature side of the main endothermic peak can be obtained by using a mixture of a plurality of polypropylene resins or by using a polymerization catalyst and polymerization conditions. In addition to mixing, the isothermal crystallization operation described below (operation for maintaining the polypropylene resin for a predetermined time at a temperature near the resin melting point of the polypropylene resin constituting the foamed particles for a predetermined time) It can be formed easily. In addition, when two or more endothermic peaks appearing on the high temperature side of the main endothermic peak are a crystal structure formed in the expanded particles by mixing a plurality of polypropylene resins and isothermal crystallization operation, the two or more endothermic peaks Is divided into an endothermic peak derived from the propylene-based resin component forming the main endothermic peak of the polypropylene-based resin expanded particles and an endothermic peak due to the other propylene-based resin component.

該2以上の吸熱ピークのうち、上記主吸熱ピークを形成しているプロピレン系樹脂成分に由来する吸熱ピークは発泡粒子を製造する工程において、主吸熱ピークを形成しているプロピレン系樹脂の等温結晶化操作により形成し得るものである。なお、主吸熱ピークの高温側に現れる2以上の吸熱ピークが、ポリプロピレン系樹脂中の主吸熱ピークを形成しているプロピレン系樹脂成分に由来する吸熱ピーク(以下、高温ピークともいう。)と、その他のプロピレン系樹脂成分による吸熱ピークからなることは、以下のポリプロピレン系樹脂発泡粒子の熱流束示差走査熱量測定方法により確認することができる。
ポリプロピレン系樹脂発泡粒子1〜3mgを熱流束示差走査熱量測定装置により2℃/分の昇温速度で常温(概ね25℃)から200℃まで加熱し1回目のDSC曲線を得る。続いて、該200℃の温度到達後直ちに10℃/分の冷却速度で200℃から25℃まで冷却し、再度、該25℃の温度到達後直ちに2℃/分の昇温速度で25℃から200℃まで加熱し2回目のDSC曲線を得る。
Of the two or more endothermic peaks, the endothermic peak derived from the propylene-based resin component forming the main endothermic peak is an isothermal crystal of the propylene-based resin forming the main endothermic peak in the step of producing expanded particles. It can be formed by the conversion operation. Note that two or more endothermic peaks appearing on the high temperature side of the main endothermic peak are an endothermic peak derived from the propylene resin component forming the main endothermic peak in the polypropylene resin (hereinafter also referred to as a high temperature peak), and The fact that it consists of an endothermic peak due to other propylene resin components can be confirmed by the following heat flux differential scanning calorimetry method of polypropylene resin foamed particles.
1 to 3 mg of expanded polypropylene resin particles are heated from room temperature (approximately 25 ° C.) to 200 ° C. at a rate of temperature increase of 2 ° C./min with a heat flux differential scanning calorimeter to obtain a first DSC curve. Subsequently, immediately after reaching the temperature of 200 ° C., it is cooled from 200 ° C. to 25 ° C. at a cooling rate of 10 ° C./min, and again from 25 ° C. at a rate of temperature increase of 2 ° C./min immediately after reaching the temperature of 25 ° C. Heat to 200 ° C. to obtain a second DSC curve.

本発明のポリプロピレン系樹脂発泡粒子のうち、主吸熱ピークの高温側に現れる2以上の吸熱ピークが複数のポリプロピレン系樹脂の混合と等温結晶化操作とにより形成されたものの場合は、上記の方法により得られた1回目のDSC曲線には、主吸熱ピークの高温側に2以上の吸熱ピークが現れるが、上記の方法により得られた2回目のDSC曲線では、主吸熱ピークの高温側に存在している吸熱ピークの数が減少する(但し、主吸熱ピークの高温側の吸熱ピークは1以上存在している)。そして、上記1回目のDSC曲線と上記2回目のDSC曲線との比較により、1回目のDSC曲線において現れていた主吸熱ピークより高温側に存在する2以上の吸熱ピークの内、少なくとも一つの吸熱ピークが2回目のDSC曲線において消滅していることが確認できる。この比較により、消滅した吸熱ピークが主吸熱ピークを形成しているプロピレン系樹脂成分に由来する吸熱ピークということになり、主吸熱ピークより高温側に残存する吸熱ピークがその他のプロピレン系樹脂成分による吸熱ピークということになる。例えば、図1における本発明にて使用される発泡粒子の1回目のDSC曲線には、主吸熱ピークaの高温側に2つの吸熱ピークa、aが現れている。そして、図2における該発泡粒子の2回目のDSC曲線では、主吸熱ピークの高温側に1つの吸熱ピークaのみが現れ、吸熱ピークaが消滅している。この場合、消滅した吸熱ピークaが主吸熱ピークを形成しているプロピレン系樹脂成分に由来する吸熱ピークということになり、吸熱ピークaがその他のプロピレン系樹脂成分による吸熱ピークということになる。 Of the expanded polypropylene resin particles of the present invention, when two or more endothermic peaks appearing on the high temperature side of the main endothermic peak are formed by mixing a plurality of polypropylene resins and isothermal crystallization operation, In the obtained first DSC curve, two or more endothermic peaks appear on the high temperature side of the main endothermic peak, but in the second DSC curve obtained by the above method, it exists on the high temperature side of the main endothermic peak. The number of endothermic peaks is reduced (however, there is one or more endothermic peaks on the high temperature side of the main endothermic peak). Then, by comparing the first DSC curve with the second DSC curve, at least one endothermic peak out of two or more endothermic peaks present on the higher temperature side than the main endothermic peak appearing in the first DSC curve. It can be confirmed that the peak disappears in the second DSC curve. By this comparison, the extinction endothermic peak is the endothermic peak derived from the propylene resin component forming the main endothermic peak, and the endothermic peak remaining on the higher temperature side than the main endothermic peak is due to the other propylene resin component. This is an endothermic peak. For example, in the first DSC curve of the expanded particles used in the present invention in FIG. 1, two endothermic peaks a 2 and a 3 appear on the high temperature side of the main endothermic peak a 1 . In the second DSC curve of the expanded particles in FIG. 2, only one endothermic peak a 3 appears on the high temperature side of the main endothermic peak, and the endothermic peak a 2 disappears. In this case, the extincted endothermic peak a 2 is an endothermic peak derived from the propylene resin component forming the main endothermic peak, and the endothermic peak a 3 is an endothermic peak due to the other propylene resin component. .

なお、本発明における該示差走査熱量測定にて2回目のDSC曲線を得る際の、200℃から25℃への冷却速度を10℃/分とする理由と2回目のDSC曲線を得る際の25℃から200℃への昇温速度を2℃/分とする理由は、1回目のDSC曲線を得る際の昇温速度を2℃/分とする理由と同様に異種結晶に基づく吸熱ピークの分解能を向上させて測定を行うためと、1回目のDSC曲線と2回目のDSC曲線とを対比するために測定条件をそろえる必要からと、冷却速度が遅すぎる場合は好ましくないことからである。
前記の1回目のDSC曲線で表される熱的特性を示す結晶構造を有するポリプロピレン系樹脂発泡粒子は、低い加熱蒸気圧での成形が可能であり、該ポリプロピレン系樹脂発泡粒子から得られる成形体は、これまでのポリプロピレン系樹脂発泡粒子成形体に比べ遜色のない機械的物性を有する発泡粒子成形体を得る上で特に好ましいものである。
The reason for setting the cooling rate from 200 ° C. to 25 ° C. at 10 ° C./min when obtaining the second DSC curve in the differential scanning calorimetry in the present invention and 25 when obtaining the second DSC curve. The reason for setting the rate of temperature increase from 200 ° C. to 2 ° C./min is the same as the reason for setting the rate of temperature increase at the time of obtaining the first DSC curve to 2 ° C./min. This is because it is not preferable that the measurement conditions are aligned in order to perform the measurement with improved measurement, and to compare the first DSC curve and the second DSC curve, and that the cooling rate is too slow.
The polypropylene resin expanded particles having a crystal structure exhibiting the thermal characteristics represented by the first DSC curve can be molded with a low heating vapor pressure, and a molded product obtained from the polypropylene resin expanded particles Is particularly preferable in obtaining a foamed particle molded body having mechanical properties comparable to those of conventional polypropylene resin foamed particle molded bodies.

また、本発明にて好ましく使用されるポリプロピレン系樹脂発泡粒子の前記1回目のDSC曲線における、主吸熱ピークより高温側に存在する2以上の吸熱ピークのうち、高温ピークの吸熱ピーク熱量は、2〜15J/gの範囲にあることが好ましく、さらに3〜12J/gであることがより好ましい。該吸熱ピーク熱量を上記の範囲内に調整することにより、発泡粒子の型内成形時の加熱温度条件を低くして、寸法安定性や機械的物性の優れる発泡粒子成形体を得る上で、より優れた発泡粒子となる。
また、等温結晶化操作による方法以外に、等温結晶化操作は行わずに融点の異なる複数のポリプロピレン系樹脂を混合する方法などによって、主吸熱ピークの高温側に2以上の吸熱ピークを有する結晶構造の発泡粒子を得た場合であっても、主吸熱ピークの高温側に現れる2以上の吸熱ピークのうち、最も低温側の吸熱ピークの吸熱ピーク熱量が、2〜15J/g、さらに3〜12J/gの範囲となるように、融点の異なる複数のポリプロピレン系樹脂の混合比を変えて調整することが、高温ピークの熱量の調整と同様の理由により好ましい。主吸熱ピークの高温側に現れる2以上の吸熱ピークのうち、高温ピークの吸熱ピーク熱量を上記範囲内に調整する方法としては、後述する発泡粒子製造時の等温結晶化操作による調整方法が、安定した機械的物性の発泡粒子成形体を得る上で好ましい。
Of the two or more endothermic peaks present on the higher temperature side than the main endothermic peak in the first DSC curve of the polypropylene resin expanded particles preferably used in the present invention, the endothermic peak calorific value of the high temperature peak is 2 It is preferably in the range of ˜15 J / g, more preferably 3 to 12 J / g. By adjusting the endothermic peak heat amount within the above range, it is possible to lower the heating temperature condition at the time of in-mold molding of the foamed particles, and to obtain a foamed particle molded body having excellent dimensional stability and mechanical properties. Excellent foam particles.
In addition to the method using the isothermal crystallization operation, a crystal structure having two or more endothermic peaks on the high temperature side of the main endothermic peak by a method of mixing a plurality of polypropylene resins having different melting points without performing the isothermal crystallization operation. The endothermic peak heat quantity of the endothermic peak at the lowest temperature among the two or more endothermic peaks appearing on the high temperature side of the main endothermic peak is 2-15 J / g, even 3-12 J It is preferable to adjust the mixing ratio of a plurality of polypropylene resins having different melting points so as to be in the range of / g for the same reason as the adjustment of the amount of heat at the high temperature peak. Of the two or more endothermic peaks appearing on the high temperature side of the main endothermic peak, the method of adjusting the endothermic peak heat quantity of the high temperature peak within the above range is the stable adjustment method by the isothermal crystallization operation at the time of foamed particle production described below. It is preferable to obtain a foamed particle molded article having mechanical properties.

なお、本発明においてポリプロピレン系樹脂発泡粒子の図1の1回目のDSC曲線(2℃/分の昇温速度による熱流束示差走査熱量測定法により得られる1回目のDSC曲線)における主吸熱ピークの頂点温度(PTmA)と該発泡粒子の図2の2回目のDSC曲線(2℃/分の昇温速度による熱流束示差走査熱量測定法により得られる2回目のDSC曲線)における吸熱ピークの頂点温度(TmA)とは近似する。
本発明に使用されるポリプロピレン系樹脂は、本発明の構成要件を満足するものであれば特に限定されるものではないが、メタロセン系重合触媒を使用して重合されたポリプロピレン系樹脂を使用することが、上記特定の結晶構造を有する発泡粒子を得ることが容易となる理由から好ましい。
In the present invention, the main endothermic peak in the first DSC curve (the first DSC curve obtained by the heat flux differential scanning calorimetry method at a heating rate of 2 ° C./min) of FIG. The peak temperature of the endothermic peak at the peak temperature (PTmA) and the second DSC curve of FIG. 2 (second DSC curve obtained by the heat flux differential scanning calorimetry method at a heating rate of 2 ° C./min) of the expanded particles. (TmA) approximates.
The polypropylene resin used in the present invention is not particularly limited as long as it satisfies the constituent requirements of the present invention, but a polypropylene resin polymerized using a metallocene polymerization catalyst should be used. However, it is preferable because it becomes easy to obtain expanded particles having the specific crystal structure.

また、本発明においてポリプロピレン系樹脂発泡粒子を構成する基材樹脂は、複数のポリプロピレン系樹脂を混合して調製することが前記結晶構造のポリプロピレン系樹脂発泡粒子を得る上で好ましい。更に、混合される複数のポリプロピレン系樹脂は、融点温度差が20℃以上、好ましくは25℃以上、更に好ましくは30℃以上であり、低融点のポリプロピレン系樹脂と高融点のポリプロピレン系樹脂とからなる少なくとも2種類の樹脂を含むことが好ましい。融点温度差を上記範囲内とすることにより、ポリプロピレン系樹脂発泡粒子における特定の結晶構造のうち、前記発泡粒子の前記1回目のDSC曲線上において主吸熱ピークより高温側に2つ以上の吸熱ピークを示す結晶構造となるように発泡粒子を調整することが容易となる。また、特に低融点のポリプロピレン系樹脂としてメタロセン系重合触媒を使用して重合されたものを選択して、高融点のポリプロピレン系樹脂と混合することにより、混合樹脂の低融点のポリプロピレン系樹脂成分の融点が、混合に使用する該低融点のポリプロピレン系樹脂の融点に比べて低温側に、例えば5℃前後、シフトすることから、該混合樹脂から得られる発泡粒子は型内成形時の加熱温度を更に低くすることができる。   In the present invention, the base resin constituting the polypropylene resin expanded particles is preferably prepared by mixing a plurality of polypropylene resins in order to obtain the polypropylene resin expanded particles having the crystal structure. Further, the plurality of polypropylene resins to be mixed have a melting point temperature difference of 20 ° C. or higher, preferably 25 ° C. or higher, more preferably 30 ° C. or higher, and a low melting point polypropylene resin and a high melting point polypropylene resin. It is preferable to contain at least two kinds of resins. By setting the melting point temperature difference within the above range, two or more endothermic peaks on the higher temperature side than the main endothermic peak on the first DSC curve of the expanded particles among the specific crystal structure in the polypropylene resin expanded particles. It becomes easy to adjust the foamed particles so as to have a crystal structure. In addition, by selecting a polymer that has been polymerized using a metallocene polymerization catalyst as a low melting point polypropylene resin and mixing it with a high melting point polypropylene resin, the low melting point polypropylene resin component of the mixed resin Since the melting point shifts to a low temperature side, for example, around 5 ° C., compared to the melting point of the low melting point polypropylene resin used for mixing, the foamed particles obtained from the mixed resin have a heating temperature at the time of in-mold molding. It can be further lowered.

本発明においてポリプロピレン系樹脂発泡粒子を構成する基材樹脂は、融点が100〜140℃である低融点ポリプロピレン系樹脂(以下、低融点ポリプロピレン系樹脂(A)という。)と、前記低融点ポリプロピレン系樹脂(A)のポリプロピレン系樹脂の融点より20℃以上、好ましくは25℃以上、さらに30℃超の高い融点を有するポリプロピレン系樹脂(以下、高融点ポリプロピレン系樹脂(B)という。)との混合物からなることが好ましい。
なお、この場合のポリプロピレン系樹脂の樹脂融点は、前述のポリプロピレン系樹脂発泡粒子の融解温度の測定方法と同様にして求められる値である。
前記低融点ポリプロピレン系樹脂(A)は、プロピレンとエチレン又は/及び炭素数4〜20のα−オレフィンとのランダム共重合体であることが、融点が100〜140℃のものを得る上で好ましく、延いては、得られる発泡粒子の前記1回目のDSC曲線上において頂点温度100〜140℃の主吸熱ピークを得る上で好ましい。また、前記低融点ポリプロピレン系樹脂(A)は、融点が100〜140℃、好ましくは105〜135℃、更に好ましくは105〜130℃、特に好ましくは110〜125℃のものであることにより、該樹脂を含有する混合樹脂から得られる発泡粒子の型内成形時の良好な発泡粒子成形体が得られる加熱温度を低くすることができる点で好ましく、得られる発泡粒子成形体の耐熱性も確保できる。
In the present invention, the base resin constituting the polypropylene resin expanded particles is a low melting point polypropylene resin having a melting point of 100 to 140 ° C. (hereinafter referred to as a low melting point polypropylene resin (A)) and the low melting point polypropylene resin. A mixture of the resin (A) and a polypropylene resin having a high melting point of 20 ° C. or higher, preferably 25 ° C. or higher, and more than 30 ° C. (hereinafter referred to as a high melting point polypropylene resin (B)). Preferably it consists of.
In this case, the resin melting point of the polypropylene resin is a value obtained in the same manner as in the method for measuring the melting temperature of the polypropylene resin expanded particles described above.
The low melting point polypropylene resin (A) is preferably a random copolymer of propylene and ethylene or / and an α-olefin having 4 to 20 carbon atoms, in order to obtain a resin having a melting point of 100 to 140 ° C. Therefore, it is preferable for obtaining a main endothermic peak having a vertex temperature of 100 to 140 ° C. on the first DSC curve of the foamed particles obtained. The low melting point polypropylene resin (A) has a melting point of 100 to 140 ° C, preferably 105 to 135 ° C, more preferably 105 to 130 ° C, and particularly preferably 110 to 125 ° C. It is preferable in that the heating temperature at which a good foamed particle molded body of a foamed particle obtained from a mixed resin containing a resin is obtained during molding can be lowered, and the heat resistance of the resulting foamed particle molded body can be secured. .

前記のように低融点ポリプロピレン系樹脂(A)がポリプロピレン系樹脂ランダム共重合体からなる場合、プロピレンと共重合されるコモノマーとしては、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ブテンなどが例示される。従って、低融点ポリプロピレン系樹脂(A)としては、具体的にプロピレン−エチレンランダム共重合体、プロピレン−ブテン1ランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体等が挙げられる。また、低融点ポリプロピレン系樹脂(A)中のエチレン単位成分又は/及び炭素数4〜20のα−オレフィン単位成分は、融点および強度の観点から0.01〜8重量%、更に0.05〜5重量%であることが好ましい。
低融点ポリプロピレン系樹脂(A)としては、例えば、所謂メタロセン系重合触媒を使用しプロピレンとコモノマーとを共重合して得られるプロピレン−エチレンランダム共重合体、プロピレン−ブテン1ランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体が更に好ましい。また、メタロセン系重合触媒を使用して得られる低融点ポリプロピレン系樹脂(A)は、高融点ポリプロピレン系樹脂(B)との相溶性に優れており前記のポリプロピレン系樹脂発泡粒子特有の結晶構造を形成し易いことから特に好ましいものとして挙げられる。
When the low melting point polypropylene resin (A) is made of a polypropylene resin random copolymer as described above, the comonomer copolymerized with propylene is ethylene, 1-butene, 1-pentene, 1-hexene, 1- Examples include octene and 4-methyl-1-butene. Therefore, specific examples of the low melting point polypropylene resin (A) include propylene-ethylene random copolymer, propylene-butene 1 random copolymer, propylene-ethylene-butene-1 random copolymer, and the like. Further, the ethylene unit component and / or the α-olefin unit component having 4 to 20 carbon atoms in the low melting point polypropylene resin (A) is 0.01 to 8% by weight, more preferably 0.05 to 0.05% from the viewpoint of melting point and strength. It is preferably 5% by weight.
Examples of the low melting point polypropylene resin (A) include a propylene-ethylene random copolymer, propylene-butene 1 random copolymer, propylene obtained by copolymerizing propylene and a comonomer using a so-called metallocene polymerization catalyst. -An ethylene-butene-1 random copolymer is more preferable. Further, the low melting point polypropylene resin (A) obtained using the metallocene polymerization catalyst is excellent in compatibility with the high melting point polypropylene resin (B), and has a crystal structure peculiar to the expanded polypropylene resin particles. It is particularly preferable because it is easy to form.

上記の低融点ポリプロピレン系樹脂(A)に混合される高融点ポリプロピレン系樹脂(B)としては、例えば、プロピレン単独重合体、プロピレンと、エチレン又は/及び炭素数4〜20のα−オレフィンとのブロック共重合体、コモノマーの含有量が少ないプロピレンと、エチレン又は/及び炭素数4〜20のα−オレフィンとのランダム共重合体が例示される。
なお、本発明において発泡粒子の基材樹脂の構成として好ましく例示される低融点ポリプロピレン系樹脂(A)と高融点ポリプロピレン系樹脂(B)の混合物において、例えば、両者の混合比率を、重量比で、低融点ポリプロピレン系樹脂(A):高融点ポリプロピレン系樹脂(B)=98:2〜90:10、好ましくは95:5〜92:8に調整することが好ましい。このことにより、前記主吸熱ピークの全吸熱ピーク熱量に対する割合を70〜95%に容易に調整することができる。
Examples of the high melting point polypropylene resin (B) mixed with the above low melting point polypropylene resin (A) include propylene homopolymer, propylene, and ethylene and / or an α-olefin having 4 to 20 carbon atoms. Examples of the block copolymer include a random copolymer of propylene having a low comonomer content and ethylene or / and an α-olefin having 4 to 20 carbon atoms.
In the present invention, in the mixture of the low melting point polypropylene resin (A) and the high melting point polypropylene resin (B), which is preferably exemplified as the structure of the base resin of the expanded particles, for example, the mixing ratio of the two in weight ratio The low melting point polypropylene resin (A): the high melting point polypropylene resin (B) = 98: 2 to 90:10, preferably 95: 5 to 92: 8. Thereby, the ratio of the main endothermic peak to the total endothermic peak heat quantity can be easily adjusted to 70 to 95%.

また、本発明にて使用される発泡粒子の基材樹脂のメルトフローレイト(MFR)は5〜60g/10分、更に10〜40g/10分であることが好ましい。基材樹脂が上記の低融点ポリプロピレン系樹脂(A)と高融点ポリプロピレン系樹脂(B)を含むもので構成されている場合、低融点ポリプロピレン系樹脂(A)はMFRが1〜100g/10分、更に2〜50g/10分のもの、高融点ポリプロピレン系樹脂(B)はMFRが0.1〜50g/10分、更に0.2〜20g/10分のものであることが好ましい。なお、MFRはJIS K7210(1999)の試験条件M(温度230℃、荷重2.16kg)で測定される値である。
本発明における発泡粒子を構成する基材樹脂として好ましく例示される前記のポリプロピレン系樹脂の混合物からなるものは、前記した融点温度差を有する少なくとも2種の樹脂を混練機により混合して得られるが、両者の混合は充分均一になるように混合することが重要である。混合が不十分である場合には、前記した結晶構造、特に1回目のDSC曲線上において主吸熱ピークの高温側に2つ以上の吸熱ピークを有するポリプロピレン系樹脂発泡粒子を得ることが難しくなる。上記の混合は、通常両者の樹脂が溶融する温度に加熱して二軸混練機等の混練性の高い押出機で混練することや、例えば特開2006-69143号公報に記載されるように飢餓的成形方法を採用して押出機にて混練することが好ましい。前記混練後、混練物を押出機から紐状に押出し、これを適宜の長さに切断して、発泡粒子を製造するのに適した大きさの樹脂粒子に造粒される。
The melt flow rate (MFR) of the base resin of the expanded particles used in the present invention is preferably 5 to 60 g / 10 minutes, more preferably 10 to 40 g / 10 minutes. When the base resin is composed of the low melting point polypropylene resin (A) and the high melting point polypropylene resin (B), the low melting point polypropylene resin (A) has an MFR of 1 to 100 g / 10 min. Further, it is preferable that the high melting point polypropylene resin (B) has a MFR of 0.1 to 50 g / 10 minutes, more preferably 0.2 to 20 g / 10 minutes. MFR is a value measured under test condition M (temperature 230 ° C., load 2.16 kg) of JIS K7210 (1999).
What consists of the mixture of the said polypropylene resin preferably illustrated as base resin which comprises the expanded particle in this invention is obtained by mixing at least 2 sort (s) of resin which has the above-mentioned melting | fusing point temperature difference with a kneader. It is important to mix the two so that they are sufficiently uniform. If the mixing is insufficient, it becomes difficult to obtain polypropylene resin expanded particles having two or more endothermic peaks on the high temperature side of the main endothermic peak on the above-described crystal structure, particularly the first DSC curve. The above mixing is usually performed by heating to a temperature at which both resins are melted and kneading with a highly kneading extruder such as a twin-screw kneader, or by starvation as described in, for example, JP-A-2006-69143. It is preferable to employ a general molding method and knead in an extruder. After the kneading, the kneaded product is extruded into a string from an extruder, cut into an appropriate length, and granulated into resin particles having a size suitable for producing foamed particles.

本発明にて使用される発泡粒子の1個当たりの平均重量は、通常0.01〜10.0mgであり、特に0.1〜5.0mgであることが好ましく、この平均重量の調整は、発泡粒子を得るための樹脂粒子を得るペレタイズ工程により調整できる。
本発明にて使用される発泡粒子の基材樹脂を構成するポリプロピレン系樹脂には、本発明の作用効果を損なわない範囲内で他のポリマー成分や添加剤を前記ペレタイズ工程などにおいて含有させることができる。
前記の他のポリマー成分としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体などのポリエチレン系樹脂、或いはポリスチレン、スチレン−無水マレイン酸共重合体等のポリスチレン系樹脂、エチレン−プロピレン系ゴム、エチレン−1−ブテンゴム、プロピレン−1−ブテンゴム、エチレン−プロピレン−ジエン系ゴム、イソプレンゴム、ネオプレンゴム、ニトリルゴムなどのゴム、スチレン−ジエンブロック共重合体やスチレン−ジエンブロック共重合体の水添物などの熱可塑性エラストマーなどが挙げられる。これらの樹脂、ゴム、或いはエラストマーは2種以上を組合せて用いることもできる。上記他のポリマー成分をポリプロピレン系樹脂に配合する場合、これら他のポリマー成分の含有量は合計で、ポリプロピレン系樹脂100重量部に対して10重量部以下となるように調整することが好ましい。
The average weight per foamed particle used in the present invention is usually from 0.01 to 10.0 mg, particularly preferably from 0.1 to 5.0 mg. It can be adjusted by a pelletizing process for obtaining resin particles for obtaining expanded particles.
The polypropylene resin constituting the base resin of the expanded particles used in the present invention may contain other polymer components and additives in the pelletizing step and the like within a range not impairing the effects of the present invention. it can.
Examples of the other polymer component include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid. Polyethylene resins such as copolymers, ethylene-methacrylic acid copolymers, or polystyrene resins such as polystyrene and styrene-maleic anhydride copolymers, ethylene-propylene rubber, ethylene-1-butene rubber, propylene-1- Examples include rubbers such as butene rubber, ethylene-propylene-diene rubber, isoprene rubber, neoprene rubber, and nitrile rubber, and thermoplastic elastomers such as styrene-diene block copolymers and hydrogenated styrene-diene block copolymers. . These resins, rubbers, or elastomers can be used in combination of two or more. When the other polymer component is blended with the polypropylene resin, the content of these other polymer components is preferably adjusted to be 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin.

前記の添加剤としては、気泡調整剤、帯電防止剤、導電性付与剤、滑剤、酸化防止剤、紫外線吸収剤、難燃剤、金属不活性剤、顔料、染料、結晶核剤、或いは無機充填材等の各種の添加剤が挙げられ、これらを所望に応じて発泡粒子を構成するポリプロピレン系樹脂に含有させることができる。これらの各種添加剤の含有量はその添加目的により異なるが、基材樹脂100重量部に対して好ましくは25重量部以下、より好ましくは15重量部以下、更に好ましくは8重量部以下であり、5重量部以下が最も好ましい。
また、発泡粒子を構成する基材樹脂は、リサイクル性、発泡粒子生産性などの観点から、無架橋ポリプロピレン系樹脂が好ましい。
本発明にて使用される発泡粒子の製造には、例えば前記の方法等により造粒して得られるプロピレン系樹脂粒子と発泡剤とを密閉容器内で水等の分散媒体に分散させ、撹拌下に加熱して樹脂粒子を軟化させるとともに樹脂粒子に発泡剤を含浸させた後、樹脂粒子の軟化温度以上の温度で容器内より低圧域(通常は大気圧域)に樹脂粒子を放出して発泡させる、特公昭49−2183号公報、特公昭56−1344号公報、特公昭62−61227号公報などに記載の公知の発泡方法を適用することができる。また、発泡粒子を得るために密閉容器内の内容物を密閉容器から低圧域に放出する際には、使用した発泡剤あるいは窒素、空気等の無機ガスで密閉容器内に背圧をかけて該容器内の圧力が急激に低下しないようにして、内容物を放出することが、得られる発泡粒子の見かけ密度の均一化の観点から好ましい。発泡粒子製造に際して樹脂粒子を分散させる分散媒体としては、上記した水に限らず、樹脂粒子を溶解しない媒体であれば使用することができる。水以外の分散媒体としては、例えばエチレングリコール、グリセリン、メタノール、エタノール等が挙げられるが、通常は水を用いる。
Examples of the additive include a bubble adjusting agent, an antistatic agent, a conductivity imparting agent, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a metal deactivator, a pigment, a dye, a crystal nucleating agent, or an inorganic filler. And various additives such as these can be included in the polypropylene resin constituting the expanded particles as desired. The content of these various additives varies depending on the purpose of addition, but is preferably 25 parts by weight or less, more preferably 15 parts by weight or less, and still more preferably 8 parts by weight or less, based on 100 parts by weight of the base resin. 5 parts by weight or less is most preferable.
The base resin constituting the expanded particles is preferably a non-crosslinked polypropylene resin from the viewpoints of recyclability, expanded particle productivity, and the like.
In the production of the foamed particles used in the present invention, for example, propylene resin particles obtained by granulation by the above-described method and the like and a foaming agent are dispersed in a dispersion medium such as water in a closed container and stirred. To soften the resin particles and impregnate the resin particles with a foaming agent, then release the resin particles into a low pressure region (usually atmospheric pressure region) at a temperature equal to or higher than the softening temperature of the resin particles to foam The known foaming methods described in JP-B-49-2183, JP-B-56-1344, JP-B-62-61227 and the like can be applied. In addition, when the contents in the sealed container are released from the sealed container to a low pressure region in order to obtain expanded particles, back pressure is applied to the sealed container with the used foaming agent or an inorganic gas such as nitrogen or air. From the viewpoint of uniforming the apparent density of the obtained expanded particles, it is preferable to release the contents in such a manner that the pressure in the container does not drop rapidly. The dispersion medium for dispersing the resin particles in the production of the expanded particles is not limited to the above-described water, and any medium that does not dissolve the resin particles can be used. Examples of the dispersion medium other than water include ethylene glycol, glycerin, methanol, ethanol and the like, but usually water is used.

上記の方法において、分散媒体中には、必要に応じて、樹脂粒子が分散媒体中に均一に分散するように、酸化アルミニウム、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化亜鉛、カオリンなどの難水溶性無機物質等の分散剤、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウムなどのアニオン系界面活性剤等の分散助剤を分散させることが好ましい。発泡粒子を製造する際に分散媒体中に添加される分散剤の量は、樹脂粒子の重量と分散剤の重量との比率(樹脂粒子の重量/分散剤の重量)を20〜2000、更に30〜1000とすることが好ましい。また、分散剤の重量と分散助剤の重量との比率(分散剤の重量/分散助剤の重量)を1〜500、更に5〜100とすることが好ましい。   In the above method, in the dispersion medium, if necessary, poorly water-soluble such as aluminum oxide, tricalcium phosphate, magnesium pyrophosphate, zinc oxide, and kaolin so that the resin particles are uniformly dispersed in the dispersion medium. It is preferable to disperse a dispersing aid such as a dispersing agent such as an inorganic substance and an anionic surfactant such as sodium dodecylbenzenesulfonate and sodium alkanesulfonate. The amount of the dispersant added to the dispersion medium when producing the foamed particles is such that the ratio of the weight of the resin particles to the weight of the dispersant (the weight of the resin particles / the weight of the dispersant) is 20 to 2000, and further 30. It is preferable to set it to -1000. Further, the ratio of the weight of the dispersing agent to the weight of the dispersing aid (the weight of the dispersing agent / the weight of the dispersing aid) is preferably 1 to 500, more preferably 5 to 100.

本発明にて使用される発泡粒子の平均気泡径は、通常30〜500μmであり、50〜350μmであることが好ましい。上記範囲内の平均気泡径を有する発泡粒子は、気泡膜の強度の関係から、後述する発泡粒子の型内成形時に発泡粒子を構成する気泡が破泡する虞がなく良好な発泡性を示す。
前記発泡粒子の平均気泡径は、発泡粒子を略2等分に切断した気泡断面を顕微鏡にて撮影した拡大写真に基づき、以下の操作により求めることができる。上記気泡断面の拡大写真において、発泡粒子の表面から他方の表面に亘り、且つ気泡断面の中心部を通過する直線を4本、中心部から発泡粒子表面に向かう8方向に放射状に引く。続いて、前記4本の直線と交わる気泡の数の総数:N(個)を求める。そして、前記4本の各直線における発泡粒子の表面から他方の表面までの線分の長さの総和:L(μm)を気泡の数の総数:N(個)にて除する(L/N)ことにより求められる値を発泡粒子の平均気泡径とする。
The average cell diameter of the expanded particles used in the present invention is usually 30 to 500 μm, and preferably 50 to 350 μm. The foamed particles having an average cell diameter in the above range show good foamability because there is no risk that the bubbles constituting the foamed particles break up during molding of the foamed particles described later from the relationship of the strength of the foam film.
The average cell diameter of the foamed particles can be obtained by the following operation based on an enlarged photograph obtained by photographing a cell cross section obtained by cutting the foamed particles into approximately two equal parts. In the enlarged photograph of the bubble cross section, four straight lines passing from the surface of the foamed particle to the other surface and passing through the center of the bubble cross section are drawn radially in 8 directions from the center toward the surface of the foamed particle. Subsequently, the total number of bubbles: N (pieces) intersecting the four straight lines is obtained. Then, the sum of the lengths of the line segments from the surface of the expanded particle to the other surface in each of the four straight lines: L (μm) is divided by the total number of bubbles: N (number) (L / N ) Is the average cell diameter of the expanded particles.

また、前記平均気泡径は、基材樹脂の高MFR化、発泡温度の上昇、発泡剤の減量、及び気泡調整剤の減量などにより大きくなるため、これらの平均気泡径変動要因を適宜調整することにより目的の平均気泡径を有する発泡粒子を得ることができる。
なお、前述した発泡粒子の平均気泡径の調整方法としては、主として、タルク、水酸化アルミニウム、シリカ、ゼオライト、硼砂等の無機物を気泡調節剤として基材樹脂100重量部に対して0.01〜5重量部の割合で、発泡粒子を得るための樹脂粒子の製造時に基材樹脂に配合することにより行われるが、上記発泡粒子製造時の発泡温度や発泡剤の種類及び使用量等でも該平均気泡径が変化するため、目的の平均気泡径を有するものを得るには予備実験をして条件を設定する必要がある。
In addition, since the average cell diameter is increased by increasing the MFR of the base resin, increasing the foaming temperature, decreasing the foaming agent, decreasing the cell regulator, and the like, appropriately adjust these average cell diameter fluctuation factors. Thus, expanded particles having a target average cell diameter can be obtained.
In addition, as a method for adjusting the average cell diameter of the above-mentioned expanded particles, an inorganic substance such as talc, aluminum hydroxide, silica, zeolite, borax or the like is mainly used as a cell regulator and is 0.01 to 100 parts by weight with respect to 100 parts by weight of the base resin. In the proportion of 5 parts by weight, it is carried out by blending into the base resin during the production of the resin particles for obtaining the foamed particles. Since the bubble diameter changes, it is necessary to set conditions by conducting a preliminary experiment in order to obtain an object having the target average bubble diameter.

本発明において使用されるポリプロピレン系樹脂発泡粒子は、通常、100g/L以上720g/L以下の見かけ密度を有する。本発明の該発泡粒子の見かけ密度の上限は、得られる発泡成形体の軽量性、緩衝性等の基本特性向上の観点から決定され、500g/Lが好ましく、300g/Lがより好ましい。一方、発泡粒子の見かけ密度があまりにも低くなりすぎると本発明が目的とする発泡成形体を得ることが難しくなることから、見かけ密度の下限は120g/Lとすることが好ましく、150g/Lとすることがより好ましい。
なお、上記発泡粒子の見かけ密度は、水の入ったメスシリンダー内に、重量:W(g)の発泡粒子群を、金網などを使用して沈めることにより、水位上昇分から求められる該発泡粒子群の体積:V(L)を求め、該発泡粒子群の重量を該発泡粒子群の体積にて除する(W/V)ことにより求められる値である。
The polypropylene resin expanded particles used in the present invention usually have an apparent density of 100 g / L or more and 720 g / L or less. The upper limit of the apparent density of the foamed particles of the present invention is determined from the viewpoint of improving basic properties such as light weight and buffering property of the foamed molded article to be obtained, preferably 500 g / L, more preferably 300 g / L. On the other hand, if the apparent density of the expanded particles is too low, it is difficult to obtain the foamed molded product targeted by the present invention. Therefore, the lower limit of the apparent density is preferably 120 g / L, and 150 g / L. More preferably.
The apparent density of the foamed particles is determined by subtracting the foamed particle group having a weight of W (g) into a graduated cylinder containing water using a wire mesh or the like from the rise in water level. Volume: V (L) is obtained, and the weight is determined by dividing the weight of the expanded particle group by the volume of the expanded particle group (W / V).

本発明において前記の高温ピークを有する発泡粒子は、前記公知の発泡方法において樹脂粒子を密閉容器内で分散媒体に分散させて加熱する際に、樹脂粒子の融解終了温度(以下、Teともいう。)以上に昇温することなく、樹脂粒子の融点(以下、Tmともいう。)よりも15℃低い温度以上、Te未満の範囲内の任意の温度Taで加熱を止め、その温度Taで充分な時間、好ましくは10〜60分程度保持し、その後、(Tm−5℃)〜(Te+5℃)の範囲の任意の温度Tbに調節し、その温度で樹脂粒子を容器内から低圧域に放出して発泡させる方法により、適切に得ることができる。なお、高温ピークを形成するための上記(Tm−15℃)以上、Te未満の範囲内での保持としては、該温度範囲内にて多段階に設定してもよいし、また、該温度範囲内で十分な時間をかけてゆっくりと昇温してもよい。   In the present invention, the foamed particles having the high temperature peak are also referred to as melting end temperatures (hereinafter referred to as Te) of the resin particles when the resin particles are dispersed in a dispersion medium in a closed container and heated in the known foaming method. ) Heating is stopped at an arbitrary temperature Ta within a range of 15 ° C. or higher and lower than Te without melting the resin particles (hereinafter also referred to as Tm) without increasing the temperature, and the temperature Ta is sufficient. Hold for about 10 to 60 minutes, and then adjust to an arbitrary temperature Tb in the range of (Tm-5 ° C.) to (Te + 5 ° C.), and release the resin particles from the container to the low pressure range at that temperature. Thus, it can be appropriately obtained by the foaming method. In addition, as the holding within the above (Tm−15 ° C.) and less than Te for forming the high temperature peak, it may be set in multiple stages within the temperature range, or the temperature range. The temperature may be increased slowly over a sufficient time.

発泡粒子の上記高温ピークの形成、および高温ピークの熱量の大小は、主として、発泡粒子を製造する際の樹脂粒子に対する上記温度Taと該温度Taにおける保持時間、及び上記温度Tb、並びに(Tm−15℃)〜(Te+5℃)の範囲内での昇温速度に依存する。発泡粒子の上記高温ピークの熱量は、温度Ta又はTbが上記各々の温度範囲内において低い程、(Tm−15℃)以上、Te未満の範囲内での保持時間が長い程、そして(Tm−15℃)以上、Te未満の範囲内での昇温速度が遅い程、大きくなる傾向を示す。なお、上記昇温速度は通常0.5〜5℃/分の範囲内で選択される。一方、発泡粒子の上記高温ピークの熱量は、温度Ta又はTbが上記各々の温度範囲内において高い程、(Tm−15℃)以上、Te未満の範囲内での保持時間が短い程、そして(Tm−15℃)以上、Te未満の範囲内での昇温速度が速い程、Te〜(Te+5℃)の範囲内での昇温速度が遅い程、小さくなる傾向を示す。これらの点を考慮して予備実験を繰り返せば、所望の高温ピーク熱量を示す発泡粒子の製造条件を知ることができる。なお、上述した高温ピークの形成に係る温度範囲は、発泡剤として無機系物理発泡剤を使用した場合の適切な温度範囲である。従って、発泡剤が有機系物理発泡剤に変更された場合には、その種類や使用量に応じてその適切な温度範囲は上記温度範囲よりもそれぞれ低温側に0〜30℃程度シフトする。   The formation of the high-temperature peak of the expanded particles and the magnitude of the heat quantity of the high-temperature peak are mainly due to the temperature Ta with respect to the resin particles when the expanded particles are produced, the retention time at the temperature Ta, the temperature Tb, and (Tm− 15 ° C.) to (Te + 5 ° C.). The amount of heat at the high temperature peak of the expanded particles is such that the lower the temperature Ta or Tb within the above temperature ranges, the longer the holding time in the range of (Tm−15 ° C.) or more and less than Te, and (Tm− 15 ° C.) or higher and lower than Te. In addition, the said temperature increase rate is normally selected within the range of 0.5-5 degreeC / min. On the other hand, the amount of heat at the high temperature peak of the expanded particles is such that, as the temperature Ta or Tb is higher in each of the above temperature ranges, the retention time in the range of (Tm−15 ° C.) or more and less than Te is shorter. Tm−15 ° C.) or more, the higher the temperature rising rate within the range of Te, the lower the temperature rising rate within the range of Te to (Te + 5 ° C.). If the preliminary experiment is repeated in consideration of these points, it is possible to know the production conditions of the expanded particles exhibiting a desired high-temperature peak heat quantity. In addition, the temperature range which concerns on formation of the high temperature peak mentioned above is a suitable temperature range at the time of using an inorganic type physical foaming agent as a foaming agent. Therefore, when the foaming agent is changed to an organic physical foaming agent, the appropriate temperature range shifts by about 0 to 30 ° C. to the lower temperature side than the above temperature range depending on the type and amount of use.

上記方法において用いる発泡剤としては、有機系物理発泡剤や無機系物理発泡剤、或いはこれらの混合物等を用いることができる。有機系物理発泡剤としてはプロパン、ブタン、ヘキサン、ペンタン、ヘプタン等の脂肪族炭化水素、シクロブタン、シクロヘキサン等の脂環式炭化水素、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のジアルキルエーテル等が挙げられ、これらは2種以上を混合して用いることができる。また、無機系物理発泡剤としては、窒素、二酸化炭素、アルゴン、空気、水等が挙げられ、これらは2種以上を混合して用いることができる。有機系物理発泡剤と無機系物理発泡剤とを混合して用いる場合、上記した有機系物理発泡剤と無機系物理発泡剤より任意に選択したものを組み合わせて用いることができる。なお、無機系物理発泡剤と有機系物理発泡剤とを併用する場合には無機系物理発泡剤が少なくとも30重量%以上含有することが好ましい。   As the foaming agent used in the above method, an organic physical foaming agent, an inorganic physical foaming agent, or a mixture thereof can be used. Organic physical foaming agents include aliphatic hydrocarbons such as propane, butane, hexane, pentane and heptane, alicyclic hydrocarbons such as cyclobutane and cyclohexane, halogenated hydrocarbons such as methyl chloride, ethyl chloride and methylene chloride, dimethyl ether , And dialkyl ethers such as diethyl ether and methyl ethyl ether. These may be used in combination of two or more. Moreover, as an inorganic type physical foaming agent, nitrogen, carbon dioxide, argon, air, water, etc. are mentioned, These can be used in mixture of 2 or more types. When an organic physical foaming agent and an inorganic physical foaming agent are mixed and used, those arbitrarily selected from the above-described organic physical foaming agent and inorganic physical foaming agent can be used in combination. In addition, when using together an inorganic type physical foaming agent and an organic type physical foaming agent, it is preferable that an inorganic type physical foaming agent contains at least 30 weight% or more.

上記発泡剤のうち、特に環境への配慮の点から、無機系物理発泡剤が好ましく、中でも窒素、空気、二酸化炭素、水が好ましい。なお、発泡粒子を得る際に密閉容器内に樹脂粒子と共に分散媒として水を使用する場合には、該樹脂粒子に吸水性樹脂などを混練したものを使用することにより分散媒である水を効率的に発泡剤として使用することができる。
発泡剤の使用量は、目的とする発泡粒子の見かけ密度、基材樹脂の種類、または発泡剤の種類等を考慮して決定する。通常、物理発泡剤を、密閉容器内空間部分の圧力が0.05〜10MPa(G)、更に1〜8MPa(G)となるように容器内に供給することが好ましい。
前記した方法によって発泡剤を含有する軟化状態の樹脂粒子を密閉容器から低圧域に放出されることにより得られたポリプロピレン系樹脂発泡粒子は、該放出後に通常行われる大気圧域での養生工程を経て成形用のポリプロピレン系樹脂発泡粒子となる。
Among the above foaming agents, an inorganic physical foaming agent is particularly preferable from the viewpoint of environmental considerations, and nitrogen, air, carbon dioxide, and water are particularly preferable. In addition, when water is used as a dispersion medium together with the resin particles in the sealed container when obtaining the foamed particles, the water that is the dispersion medium is efficiently obtained by using the resin particles kneaded with a water absorbent resin or the like. It can be used as a blowing agent.
The amount of foaming agent used is determined in consideration of the apparent density of the intended foamed particles, the type of base resin, the type of foaming agent, and the like. Usually, it is preferable to supply the physical foaming agent into the container so that the pressure in the space inside the sealed container is 0.05 to 10 MPa (G), and further 1 to 8 MPa (G).
The polypropylene resin foamed particles obtained by releasing the softened resin particles containing the foaming agent from the sealed container to the low pressure region by the above-described method are subjected to a curing step in an atmospheric pressure range that is usually performed after the release. After that, it becomes a polypropylene resin expanded particle for molding.

本発明の発泡粒子成形体は、必要に応じて、前記した方法により得られた成形用のポリプロピレン系樹脂発泡粒子を加圧用の密閉容器に入れ、空気などの加圧気体により密閉容器内の圧力が0.01〜1MPa(G)となるように調整して加圧処理して発泡粒子内の圧力を高める操作を行い発泡粒子内の圧力を0.01〜0.2MPa(G)に調整した後、加熱及び冷却が可能であって、且つ開閉し密閉できる従来公知の熱可塑性樹脂発泡粒子型内成形用の金型のキャビティー内に充填し、次いで金型内に飽和蒸気圧が0.05〜0.30MPa(G)、好ましくは0.08〜0.25MPa(G)の水蒸気を供給することにより発泡粒子を加熱して、発泡粒子同士を膨張、融着させ、次いで得られた発泡粒子成形体を冷却して、キャビティー内から取り出すバッチ式型内成形法(例えば、特公平4−46217号公報、特公平6−49795号公報等に記載される成形方法)を採用して製造することができる。また、上記型内成形法における水蒸気加熱の方法としては、一方加熱、逆一方加熱、両方向同時加熱などの加熱方法を適宜組み合わせる従来公知の方法を採用できるが、特に、予備加熱、一方加熱、逆一方加熱、両方向同時加熱の順に発泡粒子を加熱する方法が好ましい。なお、発泡粒子成形時の上記0.05〜0.30MPa(G)の飽和蒸気圧は、型内成形工程において、金型内に供給される水蒸気の飽和蒸気圧の最大値である。   The foamed particle molded body of the present invention, if necessary, puts the polypropylene resin foam particles for molding obtained by the above-described method in a sealed container for pressurization, and pressurizes the sealed container with a pressurized gas such as air. The pressure in the expanded particles was adjusted to 0.01 to 0.2 MPa (G) by adjusting the pressure to 0.01 to 1 MPa (G) and increasing the pressure in the expanded particles by pressure treatment. Thereafter, it is filled in a cavity of a conventionally known thermoplastic resin foam particle molding mold that can be heated and cooled, and can be opened and closed, and then the saturated vapor pressure is 0. The foamed particles are heated by supplying water vapor at a pressure of 05 to 0.30 MPa (G), preferably 0.08 to 0.25 MPa (G) to expand and fuse the foamed particles together, and then obtained foam Cool the particle compact Batch type in molding is taken out from the inner (e.g., Kokoku 4-46217 and JP-molding method described in KOKOKU 6-49795 Patent Publication) can be produced by employing a. In addition, as the method of steam heating in the above in-mold molding method, a conventionally known method that appropriately combines heating methods such as one-side heating, reverse one-side heating, and simultaneous heating in both directions can be adopted. On the other hand, a method of heating the foamed particles in the order of heating and simultaneous heating in both directions is preferable. The saturated vapor pressure of 0.05 to 0.30 MPa (G) at the time of foamed particle molding is the maximum value of the saturated vapor pressure of water vapor supplied into the mold in the in-mold molding step.

また、本発明の発泡粒子成形体は、発泡粒子を、必要に応じて発泡粒子内の圧力を0.01〜0.2MPa(G)に調整した後、加熱領域と冷却領域とを有する通路内の上下に沿って連続的に移動するベルトによって形成される型内に連続的に供給し、加熱領域を通過する際に飽和蒸気圧が0.05〜0.30MPa(G)、好ましくは0.08〜0.25MPa(G)の水蒸気を型内に供給して発泡粒子を加熱して、発泡粒子同士を膨張、融着させ、その後冷却領域を通過させて冷却し、次いで得られた発泡粒子成形体を型内から取り出し、適宜長さに順次切断する連続式型内成形法(例えば特開平9−104026号公報、特開平9−104027号公報及び特開平10−180888号公報等に記載される成形方法)により製造することもできる。
本発明のポリプロピレン系樹脂発泡粒子による型内成形は、前記水蒸気による加熱により、先ず発泡粒子の表面同士が融着し得る状態となり、次いで発泡粒子自体が軟化して二次発泡し得る状態となることにより、外観と発泡粒子相互の融着性が共に優れる良好な発泡粒子成形体となると同時に、型内成形時に仮に多少の加熱ムラが発生したとしても成形温度範囲が広いことにより良好な発泡粒子成形体となる。
Moreover, the foamed particle molded body of the present invention has a foamed particle in a passage having a heating region and a cooling region after adjusting the pressure in the foamed particle to 0.01 to 0.2 MPa (G) as necessary. Is continuously fed into a mold formed by a belt continuously moving along the upper and lower sides of the sheet, and when passing through the heating region, the saturated vapor pressure is 0.05 to 0.30 MPa (G), preferably 0.8. Steam of 08 to 0.25 MPa (G) is supplied into the mold to heat the foamed particles to expand and fuse the foamed particles, and then cooled by passing through a cooling region, and then obtained foamed particles A continuous in-mold molding method (for example, disclosed in JP-A-9-104026, JP-A-9-104027, JP-A-10-180888, etc.) in which a molded body is taken out from the mold and sequentially cut to an appropriate length. Manufacturing method) You can also.
In-mold molding with the polypropylene resin foam particles of the present invention is such that the surfaces of the foam particles can be fused together by heating with the water vapor, and then the foam particles themselves are softened and can be secondary foamed. As a result, it becomes a good foamed particle molded body having both excellent appearance and fusion property between the foamed particles, and at the same time, even if some heating unevenness occurs during molding in the mold, the foamed particle is good due to the wide molding temperature range. It becomes a molded body.

なお、密度が高い発泡粒子成形体を得る場合、従来のポリプロピレン系樹脂発泡粒子の型内成形では、見かけ密度70g/L以上の発泡粒子を製造し、発泡粒子の金型キャビティー内への充填時の圧縮率を20%以上の高い状態にして0.30MPa(G)を超える高い水蒸気圧力での飽和水蒸気加熱にて型内成形する方法でなければ良好な発泡粒子成形体を得ることが難しかったが、本発明のポリプロピレン系樹脂発泡粒子成形体の製造方法によれば、そのような方法に拠らずとも、或いは従来ほど発泡粒子内の圧力を高めなくても良好な低倍率の発泡粒子成形体を得ることができる特徴を有する。
したがって、本発明の発泡粒子成形体の製造方法は、該ポリプロピレン系樹脂発泡粒子型内成形における型内充填時の圧縮率を0〜15%とすることを第2の特徴とするものである。
In the case of obtaining a foamed molded article having a high density, in the conventional molding of polypropylene resin foamed particles, foamed particles having an apparent density of 70 g / L or more are produced, and the foamed particles are filled into the mold cavity. It is difficult to obtain a good foamed particle molded body unless the compression ratio at the time is set to a high state of 20% or more and the molding is performed by saturated steam heating at a high steam pressure exceeding 0.30 MPa (G). However, according to the method for producing a polypropylene resin foamed particle molded body of the present invention, the low-magnification foamed particles can be obtained without using such a method or without increasing the pressure in the foamed particles as in the prior art. It has the characteristics which can obtain a molded object.
Therefore, the method for producing a foamed particle molded body of the present invention has a second feature that the compression rate at the time of filling in the mold in the polypropylene resin foamed particle in-mold molding is 0 to 15%.

なお、上記の発泡粒子の金型キャビティー内への充填時の圧縮率は、金型キャビティー内容積:MV(L)と金型に充填される発泡粒子の嵩体積:BV(L)から、(BV−MV)/MV×100の計算式にて求められる。また、金型に充填される発泡粒子の嵩体積:BVは、発泡粒子の嵩密度を、空のメスシリンダーへ発泡粒子を入れ、メスシリンダーの目盛りが示す体積(L)にて、該メスシリンダーに入れた発泡粒子の重量(g)を除することにより求め、嵩密度が既知の発泡粒子を金型内に充填し、金型内に充填した該発泡粒子の重量(g)を該発泡粒子の嵩密度にて除することにより算出される。
本発明の発泡粒子成形体は、前記の通り、密度が100〜720g/Lであると共に、該発泡粒子の融解温度の飽和蒸気により該発泡粒子を耐圧容器内で10秒間加熱した場合の、加熱前後の該発泡粒子の見かけ密度比(ρR)[(加熱前の発泡粒子の見かけ密度〔g/L〕)/(加熱後の発泡粒子の見かけ密度〔g/L〕)]が1〜1.7となる発泡粒子を使用して、該発泡粒子を型内へ充填時する際の圧縮率を0〜15%に調整して型内成形時することにより容易に得ることができる。なお、上記圧縮率は、発泡粒子成形体の発泡粒子相互の融着性や外観の観点から3〜15%、更に5〜13%であることが好ましい。
The compression rate at the time of filling the above-mentioned foamed particles into the mold cavity is determined from the mold cavity internal volume: MV (L) and the bulk volume of the foamed particles filled in the mold: BV (L). , (BV-MV) / MV × 100. In addition, the volume volume of the foamed particles filled in the mold: BV is the volume density of the foamed particles, the foamed particles are put into an empty graduated cylinder, and the volume (L) indicated by the scale of the graduated cylinder is the graduated cylinder. Obtained by dividing the weight (g) of the foamed particles contained in the mold, filled with foamed particles having a known bulk density in the mold, and the weight (g) of the foamed particles filled in the mold was determined as the foamed particles. It is calculated by dividing by the bulk density.
As described above, the foamed particle molded body of the present invention has a density of 100 to 720 g / L and is heated when the foamed particles are heated in a pressure resistant container for 10 seconds with saturated vapor at the melting temperature of the foamed particles. The apparent density ratio (ρ R ) of the foamed particles before and after [(apparent density of the foamed particles before heating [g / L]) / (apparent density of the foamed particles after heating [g / L])] is 1-1. .7 can be easily obtained by adjusting the compression rate when filling the foamed particles into the mold to 0 to 15% and molding in the mold. In addition, it is preferable that the said compression rate is 3 to 15%, and also 5 to 13% from a viewpoint of the fusion | melting property between foam particles of a foamed particle molded object, and an external appearance.

このようにして得られる本発明の発泡粒子成形体は、発泡粒子同士が緊密に融着しており、実施例で詳述する発泡粒子の融着率が50%以上、好ましくは70%以上のもので良好な圧縮強度などの機械的物性を示すものである。また、発泡粒子成形体の表面の凹凸が極めて少なく平滑であり、寸法安定性にも優れたものである。また、本発明の発泡粒子成形体の密度は、機械的強度、緩衝性、軽量性などの所期の目的から、60〜450g/L、更に90〜300g/Lであることが好ましい。なお、発泡粒子成形体の密度(g/L)は、発泡粒子成形体の重量(g)を該発泡粒子成形体の外形寸法から求められる体積(L)にて除することにより求めることができる。
更に、本発明の発泡粒子成形体は、該成形体の表層部の密度(Ds)〔g/L〕と該成形体の内部の密度(Dc)〔g/L〕との比(Ds/Dc)が1〜2であることを特徴とするものであり、このことは、発泡粒子成形体の密度分布が従来のものと比較して均一なものであることを意味している。従来の低倍率の発泡粒子成形体は、発泡粒子成形体の製造法上の制約に起因して、成形体の内部の密度に比べて表層部の密度が遥かに高く、あたかも高密度の発泡層に低密度の発泡層が挟み込まれているような多層構造のものであった。したがって従来の発泡粒子成形体は、該成形体全体の平均密度に対して表層部の密度の方が遥かに高く、かつ該成形体全体の平均密度に対して内部の密度の方が遥かに低いものであった。
In the foamed particle molded body of the present invention thus obtained, the foamed particles are closely fused, and the fusion rate of the foamed particles described in detail in the examples is 50% or more, preferably 70% or more. It exhibits mechanical properties such as good compressive strength. Further, the surface of the foamed particle molded body is extremely small and smooth, and is excellent in dimensional stability. In addition, the density of the foamed particle molded body of the present invention is preferably 60 to 450 g / L, more preferably 90 to 300 g / L, from the intended purposes such as mechanical strength, buffering property, and lightness. The density (g / L) of the foamed particle molded body can be determined by dividing the weight (g) of the foamed particle molded body by the volume (L) determined from the external dimensions of the foamed particle molded body. .
Furthermore, the foamed particle molded body of the present invention has a ratio (Ds / Dc) between the density (Ds) [g / L] of the surface layer portion of the molded body and the density (Dc) [g / L] inside the molded body. ) Is 1 to 2, which means that the density distribution of the foamed particle molded body is uniform as compared with the conventional one. The conventional low-magnification expanded particle molded body has a surface layer part density much higher than the internal density of the molded body due to restrictions on the production method of the expanded particle molded body, as if it had a high density expanded layer It has a multilayer structure in which a low-density foam layer is sandwiched between them. Therefore, in the conventional foamed particle molded body, the density of the surface layer is much higher than the average density of the entire molded body, and the internal density is much lower than the average density of the entire molded body. It was a thing.

このような従来の発泡粒子成形体の圧縮強度は、該成形体の圧縮時には密度の遥かに低い内部の発泡体が先に変形してしまうために、全体密度相当の高い圧縮物性を得ることが困難であった。それに対し、本発明の発泡粒子成形体は、前記の通り発泡粒子成形体の密度分布が従来のものと比較して均一なものであることから、同密度相当の高い圧縮物性を発現させることができると共に、機械的物性の安定性にも優れ、二次加工時等の物性バラツキの課題も改善することができる。上記観点から、本発明の発泡粒子成形体における上記比(Ds/Dc)が1.1〜1.7、更に1.1〜1.5、特に1.2〜1.4であることが好ましい。なお、本発明の発泡粒子成形体の比(Ds/Dc)は、おもて面の表層部と裏面の表層部ともに上記の比(Ds/Dc)の関係を満足するものである。
なお、本発明の発泡粒子成形体の表層部の密度(Ds)〔g/L〕と内部の密度(Dc)〔g/L〕の測定方法は以下の通りである。
The compressive strength of such a conventional foamed particle molded body is such that when the molded body is compressed, the internal foam having a much lower density is deformed first, so that a high compression property equivalent to the overall density can be obtained. It was difficult. On the other hand, since the expanded particle molded body of the present invention has a uniform density distribution of the expanded particle molded body as compared with the conventional one as described above, it is possible to express a high compression property equivalent to the density. In addition, the stability of mechanical properties is excellent, and the problem of variation in physical properties during secondary processing can be improved. From the above viewpoint, the ratio (Ds / Dc) in the foamed particle molded body of the present invention is preferably 1.1 to 1.7, more preferably 1.1 to 1.5, and particularly preferably 1.2 to 1.4. . The ratio (Ds / Dc) of the foamed particle molded body of the present invention satisfies the relationship of the above ratio (Ds / Dc) for both the front surface portion and the back surface portion.
In addition, the measuring method of the density (Ds) [g / L] of the surface layer part and the internal density (Dc) [g / L] of the foamed particle molded body of the present invention is as follows.

本発明の発泡粒子成形体の表層部とは、発泡粒子成形体のスキン面と呼ばれる表面を含み、かつ発泡粒子成形体の表面から厚み方向に5mmの深さまでの部分である。そして、該発泡粒子成形体の表層部の密度(Ds)は、発泡粒子成形体から、表層部を切り出し(発泡粒子成形体の表面を含み、かつ発泡粒子成形体の表面から厚み方向に5mmの深さまでの部分を縦50mm、横50mm、厚み5mmの直方体の試料として切り出し)、切り出した試料の重量(g)を該試料の体積(L)にて除して求めることができる。
一方、本発明の発泡粒子成形体の内部とは、発泡粒子成形体の厚み方向の中心部であり、発泡粒子成形体の表面を含まず、かつ発泡粒子成形体の厚み方向の中央からおもて面と裏面に向かって各々5mmまでの部分である。そして、該発泡粒子成形体の内部の密度(Dc)は、発泡粒子成形体から、内部を切り出し(発泡粒子成形体の表面を含まず、かつ発泡粒子成形体の厚み方向の中央からおもて面と裏面に向かって各々5mmまでの部分を縦50mm、横50mm、厚み10mmの直方体の試料として切り出し)、切り出した試料の重量(g)を該試料の体積(L)にて除して求めることができる。
また、本発明の発泡粒子成形体は、ASTM−D2856−70の手順Cに基づく連続気泡率が40%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることが最も好ましい。連続気泡率が小さい発泡粒子成形体ほど、機械的強度に優れる。
本発明の発泡粒子成形体は、緩衝性、寸法安定性、剛性、軽量性等の特性を有し、包装材料、建築材料や車輌用衝撃吸収材料等に広く利用できるものであり、特に、精密電気電子部品の包装材、自動車用薄肉部品に好適なものである。
The surface layer portion of the foamed particle molded body of the present invention includes a surface called a skin surface of the foamed particle molded body and is a portion from the surface of the foamed particle molded body to a depth of 5 mm in the thickness direction. And the density (Ds) of the surface layer part of the foamed particle molded body is obtained by cutting out the surface layer part from the foamed particle molded body (including the surface of the foamed particle molded body and 5 mm in the thickness direction from the surface of the foamed particle molded body). A portion up to the depth is cut out as a rectangular parallelepiped sample having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm), and the weight (g) of the cut sample is divided by the volume (L) of the sample.
On the other hand, the inside of the foamed particle molded body of the present invention is the central portion in the thickness direction of the foamed particle molded body, does not include the surface of the foamed particle molded body, and is mainly from the center in the thickness direction of the foamed particle molded body. It is a portion up to 5 mm each toward the front and back surfaces. Then, the density (Dc) inside the foamed particle molded body is cut out from the foamed particle molded body (not including the surface of the foamed particle molded body and from the center in the thickness direction of the foamed particle molded body). A portion of up to 5 mm toward the surface and the back surface is cut out as a rectangular parallelepiped sample having a length of 50 mm, a width of 50 mm, and a thickness of 10 mm), and the weight (g) of the cut sample is divided by the volume (L) of the sample. be able to.
Further, in the foamed particle molded body of the present invention, the open cell rate based on the procedure C of ASTM-D2856-70 is preferably 40% or less, more preferably 30% or less, and 25% or less. Is most preferred. A foamed particle molded body having a smaller open cell ratio is superior in mechanical strength.
The foamed particle molded body of the present invention has characteristics such as shock-absorbing property, dimensional stability, rigidity, and lightness, and can be widely used for packaging materials, building materials, vehicle impact absorbing materials, and the like. It is suitable for packaging materials for electric and electronic parts and thin parts for automobiles.

以下に、本発明について実施例、比較例を挙げて説明する。
下記表1に実施例、比較例に使用した樹脂及びその性状を示す。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
Table 1 below shows resins used in Examples and Comparative Examples and their properties.

Figure 0005314411
Figure 0005314411

[実施例1〜6、及び比較例1、2]
(1)ポリプロピレン系樹脂発泡粒子の製造
65mmφの単軸押出機により、表1に記載のポリプロピレン系樹脂を表2に示す配合にて、ホウ酸亜鉛500重量ppmと共に押出機にて溶融混練し(但し、実施例1〜4については、以下の通りの飢餓運転条件下で該押出機にて溶融混練した。)、混練物を押出機先端に取り付けた口金の小孔からストランド状に押出し、水槽で冷却し、ストランドを重量が略1mgになるように切断し、乾燥して樹脂粒子を得た。なお、上記の飢餓運転条件とは、前記の飢餓的成形方法により融点や溶融粘度の大きく異なる樹脂同士が良好に分散するように混練するための手法であって、押出機の原料供給部を原料樹脂ペレットで満たし、押出機内を樹脂で満たす一般的な充満運転条件時の押出機の樹脂の吐出量に対し、同じスクリュー回転数での樹脂の吐出量が充満運転時以下となる様に、樹脂の供給を容量式のフィーダーで調整しつつ供給して押出す方法である。実施例1〜4においては、充満運転時に対する飢餓運転時の吐出量は70%とした。
上記により得られた樹脂粒子1kgを分散媒の水3L(リットル)と共に撹拌機を備えた5Lの密閉容器内に仕込み、更に分散媒中に、分散剤としてカオリン0.3重量部、界面活性剤としてアルキルベンゼンスルホン酸ナトリウム(商品名:ネオゲンS−20、第一工業製薬社製)0.004重量部(但し、この0.004重量部はネオゲンS−20中のアルキルベンゼンスルホン酸ナトリウム量)、及び硫酸アルミニウム0.01重量部を添加し、密閉容器内に発泡剤として圧縮空気を表2に示す圧力まで圧入し、撹拌下に表2に示す発泡温度にまで昇温し、同温度で15分間保持して高温側吸熱ピーク熱量を調整した後、内容物を大気圧下に放出して表2に示す見かけ密度の発泡粒子を得た。なお、上記重量部は、樹脂粒子100重量部に対する重量部である。得られた発泡粒子の性状を表2に併せて示す。
[Examples 1 to 6 and Comparative Examples 1 and 2]
(1) Production of expanded polypropylene resin particles Using a 65 mmφ single-screw extruder, the polypropylene resin listed in Table 1 was melt kneaded in an extruder together with 500 ppm by weight of zinc borate (Table 2). However, about Examples 1-4, it melt-kneaded with the extruder under the following starvation operation conditions.), The kneaded product was extruded into a strand shape from a small hole of a die attached to the tip of the extruder, and a water tank The strand was cut to a weight of approximately 1 mg and dried to obtain resin particles. The above starvation operation conditions are a method for kneading so that resins having greatly different melting points and melt viscosities are well dispersed by the above-mentioned starvation molding method. Fill the resin pellets and fill the extruder with resin. Is supplied and extruded while adjusting the supply with a capacity-type feeder. In Examples 1-4, the discharge amount at the time of starvation operation with respect to the time of full operation was 70%.
1 kg of the resin particles obtained as described above was charged into a 5 L sealed container equipped with a stirrer together with 3 L (liter) of water as a dispersion medium, and further 0.3 parts by weight of kaolin as a dispersant, a surfactant in the dispersion medium. Sodium alkylbenzene sulfonate (trade name: Neogen S-20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 0.004 parts by weight (provided that 0.004 parts by weight is the amount of sodium alkylbenzene sulfonate in Neogen S-20), and Add 0.01 parts by weight of aluminum sulfate, press the compressed air as a foaming agent into the airtight container up to the pressure shown in Table 2, raise the temperature to the foaming temperature shown in Table 2 with stirring, and continue at that temperature for 15 minutes. After holding and adjusting the high temperature side endothermic peak heat amount, the contents were released under atmospheric pressure to obtain expanded particles having an apparent density shown in Table 2. In addition, the said weight part is a weight part with respect to 100 weight part of resin particles. The properties of the obtained expanded particles are also shown in Table 2.

(2)発泡成形体の製造
上記に得られた発泡粒子を縦250mm、横200mm、厚み50mmの平板用金型に充填し、スチーム加熱による型内成形を表3に示す型内成形条件にて行って板状の発泡成形体を得た。得られた発泡成形体は80℃のオーブンにて12時間養生してポリプロピレン系樹脂発泡粒子成形体を得た。得られた発泡粒子成形体の性状を表3に併せて示す。
(2) Production of Foam Molded Body The foam particles obtained above are filled into a flat plate mold having a length of 250 mm, a width of 200 mm, and a thickness of 50 mm, and in-mold molding by steam heating is performed under the in-mold molding conditions shown in Table 3. It went and obtained the plate-shaped foaming molding. The obtained foamed molded body was cured in an oven at 80 ° C. for 12 hours to obtain a polypropylene resin foamed particle molded body. The properties of the obtained foamed particle molded body are also shown in Table 3.

Figure 0005314411
Figure 0005314411






Figure 0005314411
Figure 0005314411

(3)発泡粒子、及び発泡粒子成形体の評価
表3における発泡粒子、及び発泡粒子成形体の評価は下記(イ)〜(ヘ)により行った。
(イ)発泡粒子の融着圧力の測定
発泡粒子の1回目のDSC曲線に基づき発泡粒子の表面が溶融する温度の下限を予想し、該下限温度に相当する飽和蒸気圧のスチームによる発泡粒子の型内成形を行い得られた発泡粒子成形体について下記の発泡粒子相互の融着性の評価を行い発泡粒子成形体の融着率が50%未満であることを確かめる。次いで、スチームの飽和蒸気圧を0.01MPa高く設定する以外は、同様にして上記の融着性の評価を行った。スチームの飽和蒸気圧を0.01MPa高く設定して融着性の評価を行う操作を、発泡粒子成形体の融着率が50%以上となるまで順次行い、該融着率が初めて50%以上となった時の飽和蒸気圧(該融着率が50%以上となる最低の飽和蒸気圧)を融着圧力とした。なお、上記型内成形にて使用した金型は、成形空間が、縦250mm、横250mm、厚み20mmの直方体形状のものであり、該金型内に発泡粒子を充填する際の圧縮率を10%とした。また、上記測定に使用される発泡粒子として、気温23℃、相対湿度50%、大気圧下の条件にて、48時間放置することにより状態調整したものを用いた。なお、上記の発泡粒子成形体の融着率は、後述方法により求められる値である。
(3) Evaluation of Expanded Particles and Expanded Particle Molded Body Evaluation of the expanded particles and the expanded particle molded body in Table 3 was performed according to the following (A) to (F).
(A) Measurement of fusion pressure of foamed particles Based on the first DSC curve of the foamed particles, a lower limit of the temperature at which the surface of the foamed particles melts is predicted, and the foamed particles by steam having a saturated vapor pressure corresponding to the lower limit temperature The foamed particle molded body obtained by in-mold molding is evaluated for the fusing property between the following foamed particles to confirm that the fusion rate of the foamed particle molded body is less than 50%. Next, the above-described fusion property was evaluated in the same manner except that the steam saturated vapor pressure was set higher by 0.01 MPa. The operation for evaluating the fusing property by setting the saturated vapor pressure of steam high by 0.01 MPa is sequentially performed until the fusing rate of the foamed particle molded body becomes 50% or more, and the fusing rate is 50% or more for the first time. The saturation vapor pressure (the lowest saturated vapor pressure at which the fusion rate is 50% or more) at that time was taken as the fusion pressure. The mold used in the in-mold molding has a rectangular parallelepiped shape with a molding space of 250 mm in length, 250 mm in width, and 20 mm in thickness, and the compression rate when the foam particles are filled in the mold is 10 %. Further, as the expanded particles used for the above measurement, those which were conditioned by leaving them to stand for 48 hours under conditions of an air temperature of 23 ° C., a relative humidity of 50% and atmospheric pressure were used. In addition, the fusion rate of said foamed particle molded object is a value calculated | required by the below-mentioned method.

(ロ)発泡粒子の二次発泡圧力の測定
発泡粒子の1回目のDSC曲線に基づき発泡粒子が二次発泡する温度の下限を予想し、該下限温度に相当する飽和蒸気圧のスチームにより密閉容器に適量入れられた発泡粒子の加熱を10秒行い、得られた加熱後の発泡粒子の見かけ密度の測定を行う。上記の通り測定された加熱後の発泡粒子の見かけ密度(g/L)と、該発泡粒子の加熱前の見かけ密度(g/L)の密度比を求め、〔加熱前の見かけ密度(g/L)〕/〔加熱後の見かけ密度(g/L)〕の値が1.5未満であることを確かめる。次いで、スチームの飽和蒸気圧を0.01MPa高く設定する以外は、同様にして上記の二次発泡性の評価を行った。スチームの飽和蒸気圧を0.01MPa高く設定して融着性の評価を行う操作を、発泡粒子の密度比[〔加熱前の見かけ密度(g/L)〕/〔加熱後の見かけ密度(g/L)〕]の値が1.5以上となるまで順次行い、該密度比の値が初めて1.5以上となった時の飽和蒸気圧(該密度比の値が1.5以上となる最低の飽和蒸気圧)を二次発泡圧力とした。なお、上記測定に使用される発泡粒子として、気温23℃、相対湿度50%、大気圧下の条件にて、48時間放置することにより状態調整したものを用いた。
(B) Measurement of secondary foaming pressure of foamed particles Based on the first DSC curve of the foamed particles, a lower limit of the temperature at which the foamed particles undergo secondary foaming is predicted, and the container is sealed with steam having a saturated vapor pressure corresponding to the lower limit temperature. The foamed particles put in an appropriate amount are heated for 10 seconds, and the apparent density of the obtained foamed particles after heating is measured. A density ratio between the apparent density (g / L) of the expanded foam after heating measured as described above and the apparent density (g / L) of the expanded foam before heating was determined, and [the apparent density before heating (g / L) L)] / [apparent density after heating (g / L)] is confirmed to be less than 1.5. Subsequently, the secondary foaming property was evaluated in the same manner except that the saturated vapor pressure of steam was set higher by 0.01 MPa. The operation for evaluating the fusing property by setting the saturated vapor pressure of steam as high as 0.01 MPa is carried out by the density ratio of foamed particles [[apparent density before heating (g / L)] / [apparent density after heating (g / L)]] until the value becomes 1.5 or more, and the saturated vapor pressure when the density ratio value becomes 1.5 or more for the first time (the density ratio value becomes 1.5 or more). The lowest saturated vapor pressure) was taken as the secondary foaming pressure. In addition, as the expanded particles used for the above measurement, those whose state was adjusted by leaving them to stand for 48 hours under conditions of an air temperature of 23 ° C., a relative humidity of 50% and atmospheric pressure were used.

(ハ)50%圧縮応力の測定
(i)表皮付試験片の50%圧縮応力
発泡粒子成形体から縦50mm、横50mm、厚み(成形体の全厚み)50mmの表皮付試験片を切り出し、JIS K6767(1999)に基づき、圧縮速度10mm/分にて試験片を厚み方向に圧縮する圧縮試験を行い発泡粒子成形体の50%圧縮応力を求めた。
(ii)表皮無試験片の50%圧縮応力
発泡粒子成形体から縦50mm、横50mm、厚み(成形体の全厚み)50mmの立方体を切り出し、更に成形体の厚み方向の上下面に存在する表皮を切り取る為に厚み方向の上下面から各々12.5mmの厚さで表皮を切り取り、縦50mm、横50mm、厚み25mmの表皮無試験片とし、JIS K6767(1999)に基づき、圧縮速度10mm/分にて試験片を厚み方向に圧縮する圧縮試験を行い発泡粒子成形体の50%圧縮応力を求めた。
(C) Measurement of 50% compressive stress (i) 50% compressive stress of the test piece with skin 50 mm vertical, 50 mm wide, 50 mm thick (total thickness of the molded product) test piece with skin was cut out from the foamed molded product, and JIS Based on K6767 (1999), a compression test was performed in which the test piece was compressed in the thickness direction at a compression rate of 10 mm / min, and the 50% compression stress of the foamed particle molded body was determined.
(Ii) 50% compressive stress of skin-free test piece A cube having a length of 50 mm, a width of 50 mm, and a thickness (total thickness of the molded body) of 50 mm is cut out from the foamed particle molded body, and further the skin present on the upper and lower surfaces in the thickness direction of the molded body In order to cut off the skin, the skin is cut at a thickness of 12.5 mm from the upper and lower surfaces in the thickness direction to obtain a test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm, and a compression speed of 10 mm / min based on JIS K6767 (1999). A compression test for compressing the test piece in the thickness direction was performed to obtain a 50% compression stress of the foamed particle molded body.

(ニ)試験片密度
(i)表皮付試験片密度
発泡粒子成形体から縦50mm、横50mm、厚み(成形体の全厚み)50mmの表皮付試験片を切り出し、試験片重量(g)を該試験片の体積(L)にて除して求めた。
(ii)表皮無試験片密度
発泡粒子成形体から縦50mm、横50mm、厚み(成形体の全厚み)50mmの立方体を切り出し、更に成形体の厚み方向の上下面に存在する表皮を切り取る為に厚み方向の上下面から各々12.5mmの厚さで表皮を切り取り、縦50mm、横50mm、厚み25mmの表皮無試験片とし、試験片重量(g)を該試験片の体積(L)にて除して求めた。
(D) Density of test piece (i) Density of test piece with skin Cut out a test piece with a skin of 50 mm in length, 50 mm in width and 50 mm in thickness (total thickness of the molded product) from the foamed particle molded body, It was obtained by dividing by the volume (L) of the test piece.
(Ii) Density of skin test piece To cut out a 50 mm long, 50 mm wide, 50 mm thick (total thickness of the molded body) 50 mm cube from the foamed particle molded body, and to cut out the skin existing on the upper and lower surfaces in the thickness direction of the molded body The skin is cut from the upper and lower surfaces in the thickness direction at a thickness of 12.5 mm each to obtain a test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm, and the test piece weight (g) is the volume (L) of the test piece. It was calculated by dividing.

(ホ)融着性
発泡粒子成形体において、発泡粒子の融着率の測定を、試験片寸法を縦10mm、横10mm、長さ80mmに変更した以外は、JIS K7111−1(2006)のシャルピー衝撃強さのノッチなし試験方法に準拠しで試験を行い、試験片を破断させて破断面における材料破壊した発泡粒子の割合より求めた。なお、試験片が破断しなかった場合は融着率100%とする。
融着率=材料破壊した発泡粒子数(個)/断面(縦10mm、横10mm)における全発泡粒子数(個)×100
上記の通り求められた融着率に基づき以下の基準により評価した。
◎:融着率が70%以上
○:融着率が50%以上70%未満
△:融着率が30%以上50%未満
×:融着率が30%未満
(E) Fusing property In the foamed particle molded body, Charpy of JIS K7111-1 (2006) was used except that the measurement of the fusion rate of the foamed particles was changed to a test piece size of 10 mm in length, 10 mm in width, and 80 mm in length. A test was conducted in accordance with the notch test method for impact strength, and the test piece was broken and obtained from the ratio of foamed particles whose material was broken on the fracture surface. When the test piece does not break, the fusion rate is 100%.
Fusing rate = Number of expanded particles with material destruction (number) / total number of expanded particles (number) in cross section (vertical 10 mm, horizontal 10 mm) × 100
Evaluation was made according to the following criteria based on the fusion rate obtained as described above.
A: Fusing rate is 70% or more B: Fusing rate is 50% or more and less than 70% B: Fusing rate is 30% or more and less than 50% X: Fusing rate is less than 30%

(ヘ)外観
発泡粒子成形体の表面を肉眼で観察し以下の基準にて評価した。
○:発泡粒子成型体の表面に粒子間隙や凹凸が殆どない良好な表面状態を示す。
△:発泡粒子成型体の表面に粒子間隙および/または凹凸が明らかに認められる。
×:発泡粒子成型体の表面に粒子間隙および/または凹凸が著しい。
(F) Appearance The surface of the expanded particle molded body was observed with the naked eye and evaluated according to the following criteria.
A: A good surface state in which there are almost no particle gaps or irregularities on the surface of the foamed particle molded body.
Δ: Particle gaps and / or irregularities are clearly observed on the surface of the foamed particle molded body.
X: The particle | grain space | interval and / or unevenness | corrugation are remarkable on the surface of a foaming particle molding.

表3に示す通り、本発明の実施例の係るポリプロピレン系樹脂発泡粒子成形体は、低倍率の発泡粒子成形体でありながら、発泡粒子相互の融着性に優れ、該成形体の外観においても良好なものであった。また、発泡粒子成形体の表層部と内部との密度比は2以下であり、比較例に示されるような従来のものよりも遥かに該密度比が1に近づいており発泡粒子成形体の密度の均一性が高いものになっている。
表3における従来技術による比較例のポリプロピレン系樹脂発泡粒子成形体は、発泡粒子相互の融着性および外観において不十分なもの、或は融着性および外観は許容される範囲内のものであっても発泡粒子成形体の表層部と内部との密度の均一性が不十分なものであった。
As shown in Table 3, the polypropylene resin expanded particle molded body according to the example of the present invention is excellent in the fusion property between the expanded particles while being a low-magnified expanded particle molded body, and also in the appearance of the molded body. It was good. Further, the density ratio between the surface layer portion and the inside of the foamed particle molded body is 2 or less, which is much closer to 1 than the conventional one as shown in the comparative example, and the density of the foamed particle molded body The uniformity is high.
The comparative example polypropylene-based resin expanded particle molded body of Table 3 according to the prior art is insufficient in the fusion property and appearance between the expanded particles, or the fusion property and appearance are within the allowable range. However, the density uniformity between the surface layer portion and the inside of the foamed particle molded body was insufficient.

また、発泡粒子成形体の圧縮強度に関して、本発明による実施例3、4と従来技術による比較例1との同密度のもの同士の表3の50%圧縮応力の比較により、基材樹脂の相違はあるものの本発明の発泡粒子成形体は、従来のものよりも圧縮強度が優れるものであることが分かる。また、表3の圧縮物性比の値についての実施例1〜6と比較例1、2との比較から本発明の発泡粒子成形体は、従来のものよりも成形体の表層部と内部との圧縮強度の差が小さく、圧縮強度の均一性において優れているものであることが分かる。
表2の本発明の実施例に示されるポリプロピレン系樹脂発泡粒子は、表3に示す通り型内成形時のスチーム圧力が低いにもかかわらず(特に実施例1はスチーム圧力が極めて低いにもかかわらず)、発泡粒子成形体の発泡粒子相互の融着性、及び外観が良好な発泡粒子成形体を得ることができることが分かる。
Further, regarding the compressive strength of the foamed particle molded body, the difference in the base resin was found by comparing the 50% compressive stress in Table 3 of the same density of Examples 3 and 4 according to the present invention and Comparative Example 1 according to the prior art. However, it can be seen that the foamed particle molded body of the present invention is superior in compressive strength to the conventional one. Moreover, from the comparison with Examples 1-6 and Comparative Examples 1 and 2 about the value of the compression property ratio of Table 3, the foamed particle molded body of the present invention has a surface layer portion and an inside of the molded body rather than the conventional one. It can be seen that the difference in compressive strength is small and the compressive strength uniformity is excellent.
The foamed polypropylene resin particles shown in the examples of the present invention in Table 2 have low steam pressure during in-mold molding as shown in Table 3 (particularly in Example 1, although the steam pressure is extremely low). It can be seen that it is possible to obtain a foamed particle molded body having a good fusion property between the foamed particles and a good appearance.

本発明の成形体の製造方法に係るポリプロピレン系樹脂発泡粒子の1回目のDSC曲線の説明図を示す。Explanatory drawing of the 1st DSC curve of the polypropylene resin expanded particle which concerns on the manufacturing method of the molded object of this invention is shown. 本発明の成形体の製造方法に係るポリプロピレン系樹脂発泡粒子の2回目のDSC曲線の説明図を示す。Explanatory drawing of the 2nd DSC curve of the polypropylene resin expanded particle which concerns on the manufacturing method of the molded object of this invention is shown.

符号の説明Explanation of symbols

α DSC曲線上の80℃に相当する点
β DSC曲線上の融解終了温度に相当する点
γ 低温側ピークと高温側ピークの谷部
δ 直線α−βとγからの垂線との交点
Te 融解終了温度
主吸熱ピーク
主吸熱ピークの高温側の吸熱ピーク
主吸熱ピークの高温側の吸熱ピーク
TmA、PTmA 吸熱ピーク頂点温度
△Ha 主吸熱ピーク熱量
△Hb 吸熱ピークaの吸熱ピーク熱量
△Hc 吸熱ピークaの吸熱ピーク熱量
The point corresponding to 80 ° C on the α DSC curve The point corresponding to the melting end temperature on the β DSC curve γ The valley of the low temperature side peak and the high temperature side peak δ Intersection of the straight line α-β and the perpendicular from γ Te End of melting temperature a 1 main endothermic peak a 2 main endothermic peak on the high temperature side of the endothermic peak a 3 main endothermic peak on the high temperature side of the endothermic peak TmA, PTMA endothermic peak apex temperature △ Ha main endothermic peak heat quantity △ Hb endothermic peak of the endothermic peak a 2 heat △ Hc endothermic peak heat quantity of the endothermic peak a 3

Claims (6)

ポリプロピレン系樹脂発泡粒子を型内に充填して加熱成形する発泡粒子型内成形法において、該ポリプロピレン系樹脂発泡粒子が、見かけ密度が100〜720g/Lであると共に、該発泡粒子の融解温度の飽和蒸気により該発泡粒子を耐圧容器内で10秒間加熱した場合の、加熱前後の該発泡粒子の見かけ密度比(ρ)[(加熱前の発泡粒子の見かけ密度〔g/L〕)/(加熱後の発泡粒子の見かけ密度〔g/L〕)]が1〜1.7となるものであり、
該発泡粒子を示差走査熱量測定にて2℃/分の昇温速度で常温から200℃まで昇温することにより得られる1回目のDSC曲線において、全吸熱ピーク熱量に対して70〜95%の吸熱ピーク熱量を示し、かつ吸熱ピークの頂点温度が100〜140℃の主吸熱ピークと、該主吸熱ピークの高温側に吸熱ピークが現れる結晶構造を有し、
該ポリプロピレン系樹脂発泡粒子の型内充填時の圧縮率を0〜15%とすることを特徴とするポリプロピレン系樹脂発泡粒子成形体の製造方法。
In a foamed particle in-mold molding method in which polypropylene resin foam particles are filled into a mold and heat molded, the polypropylene resin foam particles have an apparent density of 100 to 720 g / L and a melting temperature of the foam particles. Apparent density ratio (ρ R ) of the foamed particles before and after heating when the foamed particles are heated in a pressure vessel for 10 seconds with saturated steam [(apparent density of the foamed particles before heating [g / L]) / ( The apparent density [g / L])] of the foamed particles after heating is 1 to 1.7,
In the first DSC curve obtained by heating the expanded particles from room temperature to 200 ° C. at a rate of temperature increase of 2 ° C./min by differential scanning calorimetry, 70 to 95% of the total endothermic peak heat amount is obtained. A main endothermic peak showing an endothermic peak heat quantity and a peak temperature of the endothermic peak of 100 to 140 ° C., and a crystal structure in which an endothermic peak appears on the high temperature side of the main endothermic peak,
A method for producing a molded product of expanded polypropylene resin particles, wherein the compression rate of the expanded polypropylene resin particles in a mold is 0 to 15%.
前記主吸熱ピークの高温側に2以上の吸熱ピークが現れる結晶構造を有することを特徴とする請求項1に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。 Method for producing PP beads molded article according to claim 1, characterized in that it comprises two or more endothermic peak Kugagen are crystal structure to a high temperature side of the main endothermic peak. 前記ポリプロピレン系樹脂発泡粒子を構成する基材樹脂のポリプロピレン系樹脂が、融点100〜140℃の低融点ポリプロピレン系樹脂(A)と、該樹脂の融点よりも20℃以上高い融点を有する高融点ポリプロピレン系樹脂(B)との混合物である請求項1または2に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。 The polypropylene resin as the base resin constituting the polypropylene resin expanded particles is a low melting point polypropylene resin (A) having a melting point of 100 to 140 ° C. and a high melting point polypropylene having a melting point higher by 20 ° C. than the melting point of the resin. The method for producing a foamed molded product of polypropylene resin particles according to claim 1 or 2, wherein the product is a mixture with the resin based resin (B). 前記ポリプロピレン系樹脂発泡粒子を構成する基材樹脂のうち、低融点ポリプロピレン系樹脂(A)が、プロピレンと、エチレン又は/及び炭素数4〜20のα−オレフィンとの共重合体である請求項3に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。 The low melting point polypropylene resin (A) is a copolymer of propylene and ethylene or / and an α-olefin having 4 to 20 carbon atoms among the base resin constituting the polypropylene resin expanded particles. 4. A method for producing a polypropylene resin expanded resin molded article according to 3. 前記ポリプロピレン系樹脂発泡粒子を構成する基材樹脂のうち、低融点ポリプロピレン系樹脂(A)が、メタロセン系重合触媒を使用して重合されたポリプロピレン系樹脂である請求項3または4に記載のポリプロピレン系樹脂発泡粒子成形体の製造方法。 The polypropylene according to claim 3 or 4, wherein, among the base resins constituting the polypropylene resin expanded particles, the low melting point polypropylene resin (A) is a polypropylene resin polymerized using a metallocene polymerization catalyst. For producing a molded resin-based foamed particle molded body. ポリプロピレン系樹脂発泡粒子を型内に充填して加熱成形してなる発泡粒子成形体において、該成形体の密度が60〜450g/L、発泡粒子の融着率が50%以上、該成形体の表層部の密度(Ds)〔g/L〕と該成形体の内部の密度(Dc)〔g/L〕との比(Ds/Dc)が1〜2であることを特徴とするポリプロピレン系樹脂発泡粒子成形体。 In a foamed particle molded body formed by filling polypropylene resin expanded particles into a mold and heat-molding, the density of the molded body is 60 to 450 g / L, the fusion rate of the expanded particles is 50% or more, A polypropylene resin characterized in that the ratio (Ds / Dc) of the density (Ds) [g / L] of the surface layer part and the density (Dc) [g / L] inside the molded body is 1-2. Expanded particle molded body.
JP2008323659A 2008-12-19 2008-12-19 Method for producing polypropylene resin expanded particle molded body, and molded body Active JP5314411B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008323659A JP5314411B2 (en) 2008-12-19 2008-12-19 Method for producing polypropylene resin expanded particle molded body, and molded body
CN200911000170.5A CN101875739B (en) 2008-12-19 2009-12-18 Molded product of a polypropylene-based resin expanded particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323659A JP5314411B2 (en) 2008-12-19 2008-12-19 Method for producing polypropylene resin expanded particle molded body, and molded body

Publications (2)

Publication Number Publication Date
JP2010144078A JP2010144078A (en) 2010-07-01
JP5314411B2 true JP5314411B2 (en) 2013-10-16

Family

ID=42564826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323659A Active JP5314411B2 (en) 2008-12-19 2008-12-19 Method for producing polypropylene resin expanded particle molded body, and molded body

Country Status (2)

Country Link
JP (1) JP5314411B2 (en)
CN (1) CN101875739B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547628B2 (en) * 2013-11-20 2019-07-24 株式会社カネカ Polyethylene-based resin foam particles, polyethylene-based resin in-mold foam molded article and method for producing the same
JP6347718B2 (en) * 2014-10-15 2018-06-27 株式会社ジェイエスピー Skin-coated foamed particle molded body
WO2016060162A1 (en) 2014-10-15 2016-04-21 株式会社カネカ Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
ES2743495T3 (en) * 2014-12-17 2020-02-19 Kaneka Corp Foamed polypropylene resin particles
CN107428982B (en) 2015-03-13 2020-08-28 株式会社钟化 Polypropylene resin foamed particles and process for producing the same
KR102261471B1 (en) * 2017-03-08 2021-06-07 도레이 카부시키가이샤 Foam and its manufacturing method
CN112189032B (en) 2018-05-15 2023-02-03 株式会社钟化 Polypropylene resin foamed particle, polypropylene resin in-mold foamed molded article, and method for producing polypropylene resin foamed particle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950557B2 (en) * 1998-07-30 2007-08-01 株式会社カネカ Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP4761414B2 (en) * 2000-12-21 2011-08-31 株式会社ジェイエスピー Method for producing thermoplastic resin foam molding
WO2006054727A1 (en) * 2004-11-22 2006-05-26 Kaneka Corporation Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion
JP5107692B2 (en) * 2007-12-17 2012-12-26 株式会社ジェイエスピー Polypropylene-based resin foamed particles and molded article of the foamed particles

Also Published As

Publication number Publication date
CN101875739A (en) 2010-11-03
JP2010144078A (en) 2010-07-01
CN101875739B (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
JP5107692B2 (en) Polypropylene-based resin foamed particles and molded article of the foamed particles
JP5727210B2 (en) Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
WO2010150466A1 (en) Expanded polypropylene resin beads and expanded bead molding
JP5927343B2 (en) Propylene-based resin expanded particles and expanded molded articles
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
WO2017010494A1 (en) Propylene resin foamed particle and foamed particle molded body
JP2013181157A (en) Polypropylene-based resin-foamed particle, and molded article thereof
JPWO2016060162A1 (en) Polypropylene-based resin expanded particles, polypropylene-based resin in-mold expanded molded body, and method for producing the same
JP2018076464A (en) Foam particle and molding thereof
JPWO2009047998A1 (en) Polypropylene resin pre-expanded particles and method for producing the same
TWI691534B (en) Thermoplastic resin foaming particle
JP6730979B2 (en) Expanded polypropylene resin particles and method for producing the same
JPWO2007004524A1 (en) Foam board for heat insulating building material and method for manufacturing the same
JP6026814B2 (en) Polyolefin resin expanded particles and molded articles thereof
TW202140651A (en) Polypropylene-based resin expanded beads and molded article of the polypropylene-based resin expanded beads
JP2009221258A (en) Pre-expanded polypropylene resin particle
WO2023063081A1 (en) Expanded polypropylene-based-resin particles and method for producing molded expanded-particle object
EP4393986A1 (en) Expanded polypropylene-based-resin particles and method for producing molded expanded-particle object
WO2023189114A1 (en) Expanded beads, and expanded bead molded body
JP2023176570A (en) Foamed particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250