JP5154194B2 - Polypropylene resin foam particles - Google Patents

Polypropylene resin foam particles Download PDF

Info

Publication number
JP5154194B2
JP5154194B2 JP2007280666A JP2007280666A JP5154194B2 JP 5154194 B2 JP5154194 B2 JP 5154194B2 JP 2007280666 A JP2007280666 A JP 2007280666A JP 2007280666 A JP2007280666 A JP 2007280666A JP 5154194 B2 JP5154194 B2 JP 5154194B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
weight
molding
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007280666A
Other languages
Japanese (ja)
Other versions
JP2009108161A (en
Inventor
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007280666A priority Critical patent/JP5154194B2/en
Publication of JP2009108161A publication Critical patent/JP2009108161A/en
Application granted granted Critical
Publication of JP5154194B2 publication Critical patent/JP5154194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、ポリプロピレン系樹脂発泡粒子に関する。詳しくは、型内発泡成形体の原料として良好に使用出来るポリプロピレン系樹脂発泡粒子に関するものである。   The present invention relates to expanded polypropylene resin particles. Specifically, the present invention relates to expanded polypropylene resin particles that can be used favorably as a raw material for an in-mold expanded molded article.

ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を持つ。また同様の合成樹脂発泡粒子を用いた型内発泡成形体と比較すると、例えばポリスチレン系樹脂発泡粒子を用いて得られる型内発泡成形体に比べて、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂発泡粒子を用いる型内発泡成形体と比べて、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いられている。   In-mold foam moldings obtained by filling polypropylene resin foam particles in molds and heat-molding with water vapor are the advantages of in-mold foam moldings, such as shape flexibility, lightness, and heat insulation. have. In addition, compared with in-mold foam molded products using similar synthetic resin foam particles, for example, compared to in-mold foam molded products obtained using polystyrene resin foam particles, chemical resistance, heat resistance, post-compression strain The recovery rate is excellent, and the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with the in-mold foam-molded article using the polyethylene resin expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin foam particles are used in various applications such as heat insulating materials, shock-absorbing packaging materials, automobile interior members, and automobile bumper core materials.

ポリプロピレン系樹脂発泡粒子を閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気で加熱成形する際、発泡倍率が20〜50倍の比較的高倍率の発泡成形体の場合、高倍率の発泡成形体は強度が弱くなるため、成形後、成形体セル内が減圧になった場合、大気圧に押されて収縮・変形が起こるという問題がある。特に緩衝包装材に用いられる場合は30〜50倍の高倍率にすることが多い。そのため、成形後、成形体を60〜80℃の乾燥室に入れて収縮・変形を回復させる、いわゆる養生工程が必要となる。従来、この養生には、20〜24時間が必要で、多大な養生スペースとエネルギーコストを要し、生産性の上でも大きな問題であった。   In the case of a relatively high-magnification foamed molded product with a foaming ratio of 20 to 50 times when filled in a mold that can close the polypropylene-based resin expanded particles but cannot be sealed, and heat-molded with steam, Since the strength of the foamed molded product is weakened, there is a problem that, after molding, when the inside of the molded product cell is depressurized, it is pressed by the atmospheric pressure to cause contraction and deformation. In particular, when used for a buffer packaging material, the magnification is often 30 to 50 times. Therefore, after molding, a so-called curing process is required in which the molded body is placed in a drying chamber at 60 to 80 ° C. to recover shrinkage and deformation. Conventionally, this curing requires 20 to 24 hours, requires a large curing space and energy costs, and is a serious problem in terms of productivity.

特許文献1には、プロピレン系ランダム共重合体又はランダムブロック共重合体を基材樹脂とするポリプロピレン系樹脂発泡粒子であって、該発泡粒子から求められるメルトフローインデックスが0.5〜6g/10分、Z平均分子量(ポリスチレン換算)が1.2×10以上、融点が130℃以上、示差走査熱量測定によって求められるDSC曲線(但し、発泡粒子1〜3mgを示差走査熱量計によって10℃/分の昇温速度で室温から200℃まで昇温した時に得られるDSC曲線)に、二つ以上の吸熱ピークが現れ、これらの吸熱ピークのうち固有ピークよりも高温側に現れる吸熱ピークの吸熱エネルギーが1〜20J/gであることを特徴とするポリプロピレン系樹脂発泡粒子が、内圧を付与しなくても、収縮回復性が良く、成形サイクル、成形体養生回復時間が短く、製造効率が良いことが開示されている。特許文献1記載の方法では、得られた発泡粒子を板状の成形体に成形し、板状成形体の金型寸法に対する収縮率(対金型寸法収縮率)を評価している。しかしながら、板状成形体の場合の金型寸法に対する収縮率が良好であっても、箱形成形体のように開口部を有し、板状である底面よりもさらに変形しやすい形状の成形体の場合においては、板状の成形体の対金型収縮率の改善のみでは、成形体の変形率を低減させることは充分とはいえない。 Patent Document 1 discloses polypropylene-based resin expanded particles using a propylene-based random copolymer or random block copolymer as a base resin, and a melt flow index required from the expanded particles is 0.5 to 6 g / 10. DSC curve obtained by differential scanning calorimetry, wherein Z average molecular weight (polystyrene conversion) is 1.2 × 10 6 or more, melting point is 130 ° C. or more, provided that 1 to 3 mg of foamed particles is 10 ° C. / Two or more endothermic peaks appear in the DSC curve obtained when the temperature is raised from room temperature to 200 ° C. at a temperature rising rate of minutes, and the endothermic energy of the endothermic peak appearing on the higher temperature side than the intrinsic peak among these endothermic peaks. 1 to 20 J / g of polypropylene-based resin foamed particles have good shrinkage recovery characteristics even without applying internal pressure, and molded Cycle, moldings curing recovery time is short, it is disclosed that good production efficiency. In the method described in Patent Document 1, the obtained foamed particles are formed into a plate-shaped molded body, and the shrinkage ratio of the plate-shaped molded body with respect to the mold dimensions (the mold dimensional shrinkage ratio) is evaluated. However, even if the shrinkage ratio with respect to the mold size in the case of a plate-shaped molded body is good, the molded body has an opening as in the case of a box-shaped molded body and is more easily deformed than the plate-shaped bottom surface. In some cases, it is not sufficient to reduce the deformation rate of the molded body only by improving the mold shrinkage ratio of the plate-shaped molded body.

一方、特許文献2には、発泡倍率が高い粒子が得られかつ発泡倍率バラツキも小さい発泡粒子を得ることを目的として、ポリプロピレン系樹脂発泡粒子において、該樹脂中にコモノマー成分としてエチレン及び/又はブテン−1を3〜10重量%含有すると共に、該樹脂のZ平均分子量Mzと重量平均分子量Mwの比Mz/Mwが1.5〜2.5の範囲にあり、該樹脂発泡粒子は融解エネルギーが11〜30J/gの二次結晶を有することを特徴とするポリプロピレン系樹脂発泡粒子が開示されている。
特開2000−198872号公報 特開平8−259724号公報
On the other hand, in Patent Document 2, for the purpose of obtaining expanded particles with high expansion ratio and small expansion ratio variation, polypropylene resin expanded particles include ethylene and / or butene as comonomer components in the resin. -1 is 3 to 10% by weight, the ratio Mz / Mw of the Z-average molecular weight Mz to the weight-average molecular weight Mw of the resin is in the range of 1.5 to 2.5, and the resin foam particles have melting energy. Polypropylene-based resin expanded particles having a secondary crystal of 11 to 30 J / g are disclosed.
JP 2000-198872 A JP-A-8-259724

本発明の目的は、ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して得られる型内発泡成形体において、対金型収縮率、成形体変形率が小さく、かつ表面性の優れた成形体を得ることにある。   An object of the present invention is to provide an in-mold foam molded article obtained by filling polypropylene resin expanded particles in a mold and heat-molding with water vapor. It is to obtain an excellent molded article.

本願発明者らは、上記課題を解決すべく鋭意検討した結果、ポリプロピレン系樹脂のMz/Mwを特定の範囲にし、かつZ平均分子量を特定の範囲にし、メルトフローレートを特定の範囲とするポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂粒子を、耐圧容器内に発泡剤存在下、分散剤等と共に水中に分散させ、加圧下で所定の発泡温度まで加熱した後、耐圧容器内の分散物を低圧域に放出することにより得られる、DSC曲線において2つの融解ピークを有するポリプロピレン系樹脂発泡粒子とすることにより、比較的短時間の養生時間で、成形体の対金型収縮率が十分小さく、さらには箱形状のような変形しやすい形状の成形体でも成形体変形率が小さく、かつシワの少ない表面性の優れた成形体が得られることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the inventors of the present application have determined that the polypropylene resin has a Mz / Mw within a specific range, a Z average molecular weight within a specific range, and a melt flow rate within a specific range. In the presence of a foaming agent in a pressure-resistant container, polypropylene resin particles having a base resin as a base resin are dispersed in water together with a dispersant, etc., heated to a predetermined foaming temperature under pressure, and then dispersed in the pressure-resistant container. By forming a polypropylene resin foamed particle having two melting peaks in the DSC curve obtained by releasing the product into a low pressure region, the mold shrinkage ratio of the molded product is sufficiently small in a relatively short curing time. Furthermore, it has been found that even a molded body having a shape such as a box shape that is easily deformed can be obtained with a molded body having a small molded body deformation rate and excellent surface properties with less wrinkles. This has led to the completion of the present invention.

すなわち本発明の第1は、
コモノマー成分として、エチレンおよび/またはブテン−1を1〜10重量%含んでなり、Z平均分子量(Mz)が7.2×10以上1.2×10未満、かつ、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.5を超えて3.0以下であり、メルトフローレートが3〜7.5g/10分であるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂粒子を、
耐圧容器内に発泡剤存在下、分散剤等と共に水中に分散させ、加圧下で所定の発泡温度まで加熱した後、耐圧容器内の分散物を低圧域に放出することにより得られる、ポリプロピレン系樹脂発泡粒子であって、
示差走査熱量計(DSC)にて、発泡粒子3〜6mgを40℃〜220℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、低温側と高温側に2つの融解ピークを有していることを特徴とするポリプロピレン系樹脂発泡粒子に関する。
That is, the first present invention,
As a comonomer component, ethylene and / or butene-1 is contained in an amount of 1 to 10% by weight, the Z average molecular weight (Mz) is 7.2 × 10 5 or more and less than 1.2 × 10 6 , and the Z average molecular weight (Mz ) and Ri ratio (Mz / Mw) is der 3.0 or less than 2.5 of the weight average molecular weight (Mw), the substrate to melt flow rate polypropylene resin is 3~7.5g / 10 min Polypropylene resin particles used as resin
Polypropylene resin obtained by dispersing in water together with a dispersant in the presence of a foaming agent in a pressure vessel, heating to a predetermined foaming temperature under pressure, and then releasing the dispersion in the pressure vessel to a low pressure region Expanded particles,
In a DSC curve obtained when 3-6 mg of expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter (DSC), two melting peaks are shown on the low temperature side and the high temperature side. characterized in that it has, to a polypropylene resin foamed beads.

本発明の第2は、前記記載のポリプロピレン系樹脂発泡粒子を型内成形してなる、発泡倍率20〜50倍である型内発泡成形体に関する。   A second aspect of the present invention relates to an in-mold foam molded product having an expansion ratio of 20 to 50 times, which is formed by molding the above-described polypropylene resin foamed particles in a mold.

本発明により、対金型収縮率が小さく、さらには箱形状のような変形しやすい形状の成形体でも成形体変形率が小さく寸法安定性に優れ、かつ表面性の優れた成形体が得られる。   According to the present invention, it is possible to obtain a molded article having a small mold shrinkage ratio, and a molded article having a shape that is easily deformed, such as a box shape. .

本発明の基材樹脂として使用するポリプロピレン系樹脂は、コモノマー成分として、エチレンおよび/またはブテン−1を1〜10重量%含んでなり、Z平均分子量(以下、Mzと表記する場合がある)が7.2×10以上1.2×10未満、かつZ平均分子量(Mz)と重量平均分子量(Mw)の比(以下、Mz/Mwと表記する場合がある)が2.5を超えて3.0以下である。 The polypropylene resin used as the base resin of the present invention contains 1 to 10% by weight of ethylene and / or butene-1 as a comonomer component, and has a Z average molecular weight (hereinafter sometimes referred to as Mz). 7.2 × 10 5 or more and less than 1.2 × 10 6 and the ratio of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) (hereinafter sometimes referred to as Mz / Mw) exceeds 2.5. 3.0 or less.

本発明で使用するプロピレン系樹脂は、単量体としてプロピレンを主成分とし、コモノマー成分として、エチレンおよび/またはブテン−1を1〜10重量%含んでなり、好ましくは、2〜5重量%含んでなる。前記ポリプロピレン系樹脂の具体例としては、エチレン−プロピレンランダム共重合体、ブテン−1−プロピレンランダム共重合体、エチレン−ブテン−1−プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−ブテン−1−プロピレンブロック共重合体があげられるが、エチレン−プロピレンランダム共重合体、ブテン−プロピレンランダム共重合体、エチレン−ブテン−1−プロピレンランダム共重合体が好ましい。   The propylene-based resin used in the present invention contains propylene as a main component as a monomer and contains 1 to 10% by weight of ethylene and / or butene-1 as a comonomer component, preferably 2 to 5% by weight. It becomes. Specific examples of the polypropylene resin include ethylene-propylene random copolymer, butene-1-propylene random copolymer, ethylene-butene-1-propylene random copolymer, ethylene-propylene block copolymer, ethylene- Examples include butene-1-propylene block copolymers, and ethylene-propylene random copolymers, butene-propylene random copolymers, and ethylene-butene-1-propylene random copolymers are preferable.

本発明で使用するポリプロピレン系樹脂は、Z平均分子量が7.2×10以上1.2×10未満であり、好ましくは、80×10以上110×10以下である。Z平均分子量Mzが7.2×10未満の場合、成形体変形率が大きくなり、1.2×10以上の場合、対金型収縮率が大きくなる。 The polypropylene resin used in the present invention has a Z average molecular weight of 7.2 × 10 5 or more and less than 1.2 × 10 6 , preferably 80 × 10 5 or more and 110 × 10 5 or less. When the Z average molecular weight Mz is less than 7.2 × 10 5 , the deformation ratio of the molded body increases, and when it is 1.2 × 10 6 or more, the shrinkage ratio against the mold increases.

本発明で使用するポリプロピレン系樹脂は、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.5を超えて3.0以下であり、好ましくは、2.6以上2.9以下である。Mz/Mwが2.5以下の場合、成形体の対金型収縮率は良好であるが、成形後、成形体セル内が減圧になって、大気圧に押されて収縮・変形が起こった時、樹脂の強度(セル膜強度)が弱くて変形が大きくなり、養生後に成形体の変形が回復しても、成形体表面にシワが残り、外観の劣った成形体しか得られず、Mz/Mwが3.0より大きい場合、対金型収縮率が大きくなる。   The polypropylene resin used in the present invention has a ratio (Mz / Mw) of Z average molecular weight (Mz) to weight average molecular weight (Mw) of more than 2.5 and not more than 3.0, preferably 2.6. It is above 2.9. When Mz / Mw is 2.5 or less, the mold shrinkage ratio of the molded body is good, but after molding, the inside of the molded body cell is depressurized, and is compressed and deformed by being pressed to atmospheric pressure. When the strength of the resin (cell membrane strength) is weak and deformation increases, even if the deformation of the molded body recovers after curing, wrinkles remain on the surface of the molded body, and only a molded body with poor appearance can be obtained. When / Mw is larger than 3.0, the mold shrinkage ratio increases.

なお、重量平均分子量(Mw)、Z平均分子量(Mz)、は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下の測定条件にて得られたMw、Mzを採用し、これらの値から、Z平均分子量と重量平均分子量の比(Mz/Mw)を算出した。   The weight average molecular weight (Mw) and the Z average molecular weight (Mz) are obtained by gel permeation chromatography (GPC) using Mw and Mz obtained under the following measurement conditions. The ratio (Mz / Mw) between the average molecular weight and the weight average molecular weight was calculated.

<測定条件>
測定装置 :ゲル浸透クロマトグラフ Alliance GPC 2000型(Waters社製)
カラム :TSKgel GMH−HT 2本、TSKgel GMH−HTL 2本(それぞれ、内径7.5mm×長さ300mm、東ソー社製)
移動相 :O−ジクロロベンゼン(0.025%BHT含有)
カラム温度:140℃
流速 :1.0mL/min
試料濃度 :0.15%(W/V)−O−ジクロロベンゼン
注入量 :500μL
分子量較正:ポリスチレン換算(標準ポリスチレンによる較正)
<Measurement conditions>
Measuring apparatus: Gel permeation chromatograph Alliance GPC 2000 type (manufactured by Waters)
Column: 2 TSKgel GMH 6- HT, 2 TSKgel GMH 6- HTL (inner diameter 7.5 mm × length 300 mm, manufactured by Tosoh Corporation)
Mobile phase: O-dichlorobenzene (containing 0.025% BHT)
Column temperature: 140 ° C
Flow rate: 1.0 mL / min
Sample concentration: 0.15% (W / V) -O-dichlorobenzene Injection amount: 500 μL
Molecular weight calibration: Polystyrene conversion (calibration with standard polystyrene)

本発明に規定するZ平均分子量(Mz)、Z平均分子量と重量平均分子量の比(Mz/Mw)であるポリプロピレン系樹脂は、メタロセン触媒、ポストメタロセン触媒等の触媒を用いて、重合条件を調整することで得ることもできるし、重合されたポリプロピレン系樹脂を有機過酸化物等で分解処理を行うことによっても得ることができる。このようなポリプロピレン系樹脂は、市販のポリプロピレン系樹脂から選択することもできる。また、市販のポリプロピレン系樹脂を有機過酸化物で分解してもよい。市販のポリプロピレン系樹脂を有機過酸化物で分解する方法を用いると所望のZ平均分子量と重量平均分子量の比を有するポリプロピレン系樹脂としやすいため好ましい。   Polypropylene resin having a Z average molecular weight (Mz) and a ratio of the Z average molecular weight to the weight average molecular weight (Mz / Mw) specified in the present invention is adjusted using polymerization catalysts such as metallocene catalyst and post metallocene catalyst. The polymerized polypropylene resin can also be obtained by performing a decomposition treatment with an organic peroxide or the like. Such a polypropylene resin can also be selected from commercially available polypropylene resins. In addition, a commercially available polypropylene resin may be decomposed with an organic peroxide. It is preferable to use a method in which a commercially available polypropylene resin is decomposed with an organic peroxide because a polypropylene resin having a desired ratio of Z average molecular weight to weight average molecular weight can be easily obtained.

市販品のポリプロピレン系樹脂を有機過酸化物で分解するには、一般には、押出機内で加熱溶融したポリプロピレン系樹脂に有機過酸化物を添加することで行うことができる。有機過酸化物の使用量は、目的とするZ平均分子量と重量平均分子量の比にもよるが、ポリプロピレン系樹脂100重量部に対して、0.001〜0.1重量部であることが好ましい。   In order to decompose a commercially available polypropylene resin with an organic peroxide, generally, the organic peroxide can be added to a polypropylene resin heated and melted in an extruder. The amount of the organic peroxide used is preferably 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the polypropylene resin, although it depends on the ratio between the target Z average molecular weight and the weight average molecular weight. .

所望のMzおよびMz/Mwを有するポリプロピレン系樹脂は、元になるポリプロピレン系樹脂のメルトフローレート(MFR)および有機過酸化物の量を調整して得ることが好ましい。   The polypropylene resin having the desired Mz and Mz / Mw is preferably obtained by adjusting the melt flow rate (MFR) and the amount of organic peroxide of the original polypropylene resin.

使用しうる有機過酸化物としては、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシラウレート、2,5−ジメチル2,5ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、t−ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。   Examples of organic peroxides that can be used include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxylaurate, 2,5-dimethyl2,5di (benzoyl) Peroxy) hexane, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylperoxyisopropyl monocarbonate and the like.

本発明のポリプロピレン系樹脂のメルトフローレート(以下、MFRと表記する場合がある)は、3〜12g/10分が好ましい。MFRが3g/10分未満では、樹脂の流動性が不足し発泡性が悪くなる傾向があり、MFRが12g/10分を超えると樹脂の流動性が高くなりすぎて発泡粒子のセル膜が破れ独立気泡率が低くなり、型内成形性が悪くなる可能性がある。   The melt flow rate of the polypropylene resin of the present invention (hereinafter sometimes referred to as MFR) is preferably 3 to 12 g / 10 min. If the MFR is less than 3 g / 10 min, the flowability of the resin tends to be insufficient and the foamability tends to deteriorate. If the MFR exceeds 12 g / 10 min, the resin fluidity becomes too high and the cell membrane of the expanded particles is broken. There is a possibility that the closed cell ratio is lowered and the moldability in the mold is deteriorated.

メルトフローレートの測定方法は、JIS K 7210の方法で測定する。試験温度は230℃、荷重2.16kgで測定する。   The melt flow rate is measured by the method of JIS K 7210. The test temperature is 230 ° C. and the load is 2.16 kg.

上記ポリプロピレン系樹脂は通常、発泡粒子を製造し易いように、予め押し出し機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状等の樹脂粒子形状に加工しておくことが好ましい。樹脂粒子の大きさは、一粒の重量が0.1mg〜30mgであることが好ましく、より好ましくは0.3mg〜10mgになるように加工する。樹脂粒子の一粒の重量は、樹脂粒子をランダムに100粒採取し、重量を測定し、1粒あたりに平均して得られた平均樹脂粒子重量であり、mg/粒で表示する。   The polypropylene resin is usually melted in advance using an extruder, kneader, Banbury mixer, roll, etc., so that it is easy to produce foamed particles, and resin particles in a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. It is preferable to process into a shape. The size of the resin particles is preferably processed so that the weight of one particle is 0.1 mg to 30 mg, more preferably 0.3 mg to 10 mg. The weight of one resin particle is an average resin particle weight obtained by taking 100 resin particles at random, measuring the weight, and averaging per one particle, and is expressed in mg / grain.

ポリプロピレン系樹脂への添加剤としては、プロパン、ブタン、ペンタン、ヘキサン等の炭化水素系発泡剤を使用する場合は、タルク、シリカ、炭酸カルシウムのような無機造核剤を0.005〜0.5重量部添加することが好ましい。また、空気、窒素、炭酸ガス、水等の無機発泡剤を使用する場合は、前記無機造核剤および/または吸水物質を使用することが好ましい。   As an additive to the polypropylene resin, when a hydrocarbon foaming agent such as propane, butane, pentane, hexane or the like is used, an inorganic nucleating agent such as talc, silica, calcium carbonate is added in an amount of 0.005 to 0.005. It is preferable to add 5 parts by weight. Moreover, when using inorganic foaming agents, such as air, nitrogen, a carbon dioxide gas, and water, it is preferable to use the said inorganic nucleating agent and / or a water absorbing substance.

本発明において吸水物質とは、当該物質を樹脂粒子中に添加し、該樹脂粒子を水と接触させる或いは水分散系で発泡剤含浸をする際に、樹脂粒子内に水を含有させうる物質をいい、具体的には、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物等の吸水性有機物、ポリエチレングリコール、ポリエチレンオキシド等のポリエーテル、ポリエーテルとPP等のアロイ、エチレン(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩及びポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマーが挙げられる。   In the present invention, the water-absorbing substance means a substance that can contain water in the resin particles when the substance is added to the resin particles and the resin particles are brought into contact with water or impregnated with a foaming agent in a water dispersion system. Specifically, water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax, zinc borate, water-absorbing organic substances such as melamine, isocyanuric acid, melamine / isocyanuric acid condensate, polyethylene glycol, polyethylene oxide, etc. Polyethers, alloys of polyethers and PP, alkali metal salts of ethylene (meth) acrylic acid copolymers, alkali metal salts of butadiene (meth) acrylic acid copolymers, alkali metal salts of carboxylated nitrile rubber, isobutylene- Alkali metal salt of maleic anhydride copolymer and alkali metal salt of poly (meth) acrylic acid They include hydrophilic polymers.

吸水物質の添加量は、目的とする発泡倍率、使用する発泡剤、使用する吸水物質の種類によって異なり一概に記載することはできないが、水溶性無機物を使用する場合、ポリプロピレン系樹脂100重量部に対して、0.01〜1重量部であることが好ましく、親水性ポリマーを使用する場合、ポリプロピレン系樹脂100重量部に対して、0.1〜5重量部であることが好ましい。また、これら、水溶性無機物や親水性ポリマー2種以上を併用してもよい。   The amount of water-absorbing substance added varies depending on the target foaming ratio, the foaming agent used, and the type of water-absorbing substance used, and cannot be described in general, but when using a water-soluble inorganic substance, the amount is 100 parts by weight of polypropylene resin. On the other hand, it is preferable that it is 0.01-1 weight part, and when using a hydrophilic polymer, it is preferable that it is 0.1-5 weight part with respect to 100 weight part of polypropylene resins. Moreover, you may use together these 2 or more types of these water-soluble inorganic substances and hydrophilic polymers.

本発明のポリプロピレン系樹脂発泡粒子を製造する方法には、特に限定はないが、耐圧容器内にポリプロピレン系樹脂粒子を発泡剤存在下、分散剤等と共に水中に分散させ、加圧下で所定の発泡温度まで加熱したのち、耐圧容器内の分散物を低圧域に放出する方法が好ましい。   The method for producing the polypropylene resin expanded particles of the present invention is not particularly limited, but the polypropylene resin particles are dispersed in water together with a dispersant in the presence of a foaming agent in a pressure resistant container, and predetermined foaming is performed under pressure. A method of discharging the dispersion in the pressure vessel to the low pressure region after heating to a temperature is preferable.

本発明に使用する発泡剤としては、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素類、シクロペンタン、シクロブタン等の環式脂肪族炭化水素類等の炭化水素系発泡剤、空気、窒素、炭酸ガス、水等の無機発泡剤等が挙げられる。   As the blowing agent used in the present invention, hydrocarbon blowing agents such as aliphatic hydrocarbons such as propane, butane, pentane and hexane, cycloaliphatic hydrocarbons such as cyclopentane and cyclobutane, air, nitrogen, Examples thereof include inorganic foaming agents such as carbon dioxide and water.

ポリプロピレン系樹脂粒子を耐圧容器内で水に分散させて加熱し、発泡剤を含浸させるとき、樹脂粒子同士の融着を防止するため、分散剤、分散助剤を用いることが好ましい。   When polypropylene resin particles are dispersed in water in a pressure-resistant container and heated to impregnate the foaming agent, it is preferable to use a dispersant and a dispersion aid in order to prevent fusion of the resin particles.

分散剤としては、例えば第3燐酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム、リン酸マグネシウム、酸化アルミニウム、硫酸バリウム、酸化チタン、カオリン等が挙げられる。分散剤の使用量は、ポリプロピレン系樹脂粒子と水の仕込み比が1/3〜1/1の範囲の場合、ポリプロピレン系樹脂粒子100重量部に対して0.1〜5重量部であることが、分散安定性を確保し、かつ、得られる発泡粒子表面に分散剤が付着しにくく成形時に発泡粒子同士の融着を阻害させない傾向があるため好ましい。   Examples of the dispersant include tertiary calcium phosphate, basic magnesium carbonate, calcium carbonate, magnesium phosphate, aluminum oxide, barium sulfate, titanium oxide, and kaolin. The amount of the dispersant used may be 0.1 to 5 parts by weight with respect to 100 parts by weight of the polypropylene resin particles when the charging ratio of the polypropylene resin particles and water is in the range of 1/3 to 1/1. It is preferable because the dispersion stability is ensured, and the dispersant does not easily adhere to the surface of the obtained foamed particles, and there is a tendency not to inhibit the fusion of the foamed particles during molding.

分散助剤としては、ドデシルベンゼンスルホン酸ソーダ、アルキルスルホン酸ソーダ等の界面活性剤等が挙げられる。分散助剤の使用量は、ポリプロピレン系樹脂粒子と水の仕込み比が1/3〜1/1の範囲の場合、ポリプロピレン系樹脂粒子100重量部に対して0.001〜0.1重量部であることが、分散安定性を確保し、得られる発泡粒子表面に分散剤が付着しにくく成形時に発泡粒子同士の融着を阻害させない傾向があるため好ましい。   Examples of the dispersion aid include surfactants such as sodium dodecylbenzene sulfonate and sodium alkyl sulfonate. The amount of the dispersion aid used is 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the polypropylene resin particles when the charging ratio of the polypropylene resin particles and water is in the range of 1/3 to 1/1. It is preferable that the dispersion stability is ensured and the dispersant does not easily adhere to the surface of the obtained foamed particles, and there is a tendency not to inhibit the fusion of the foamed particles during molding.

耐圧容器内から分散物を低圧域に放出させるときの耐圧容器内の温度(以下、発泡温度と称する場合がある)は、ポリプロピレン系樹脂粒子の融点近傍の温度で、樹脂の種類、発泡剤の種類によって変わるが、おおむね融点−15℃から融点+15℃の間であることが好ましい。   The temperature in the pressure vessel when the dispersion is discharged from the pressure vessel into the low pressure region (hereinafter sometimes referred to as the foaming temperature) is a temperature near the melting point of the polypropylene resin particles, and the type of resin and the foaming agent Although it varies depending on the type, it is generally preferable that the melting point is between −15 ° C. and melting point + 15 ° C.

なお、本発明においてポリプロピレン系樹脂粒子の融点は、示差走査熱量計(DSC)にて、試料3〜6mgを40℃〜220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で降温し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線の融解ピーク温度をいう。   In the present invention, the melting point of the polypropylene resin particles is 10 to 10 ° C. up to 40 ° C. after the sample 3 to 6 mg is heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter (DSC). It means the melting peak temperature of the DSC curve obtained when the temperature is lowered at a rate of ° C./min and again raised to 220 ° C. at a rate of 10 ° C./min.

以上のようにして、本発明のポリプロピレン系樹脂発泡粒子が得られるが、高発泡倍率の発泡粒子を得る場合は、前記方法にて一旦ポリプロピレン系樹脂発泡粒子を得た後、該発泡粒子に空気等の不活性ガスを含浸させて発泡力を付与した後、加熱を行って更に発泡させるという、いわゆる二段発泡法を採用してもよい。   As described above, the expanded polypropylene resin particles of the present invention are obtained. When obtaining expanded foam particles having a high expansion ratio, after obtaining the expanded polypropylene resin particles by the above-described method, air is then passed through the expanded particles. A so-called two-stage foaming method may be employed in which after impregnation with an inert gas or the like to impart foaming force, heating is performed to further foam.

本発明のポリプロピレン系樹脂発泡粒子を示差走査熱量計(DSC)にて、試料3〜6mgを40℃〜220℃まで10℃/分の速度で昇温したときに得られるDSC曲線において、低温側と高温側に2つの融解ピークを有していることが好ましい。2つの融解ピークを有することにより、ポリプロピレン系樹脂発泡粒子を型内発泡成形行う際の加熱温度範囲等の成形条件の幅が広くなる。   In the DSC curve obtained when the polypropylene resin foamed particles of the present invention were heated at a rate of 10 ° C./min from 3 ° C. to 220 ° C. with a differential scanning calorimeter (DSC), the low temperature side It is preferable to have two melting peaks on the high temperature side. By having two melting peaks, the range of the molding conditions such as the heating temperature range when the expanded polypropylene resin particles are subjected to in-mold foam molding is widened.

本発明においては、DSC曲線の2つの融解ピークにおいて、低温側融解ピーク熱量Qと高温側融解ピーク熱量Qから算出できる、高温側の融解ピーク熱量の比率(Q/(Q+Q)×100)(以下、DSC比と称す場合がある)が10〜40%の範囲にあることが好ましい。ここで、低温側の融解ピーク熱量Qは、低温側融解ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量であり、高温側融解ピーク熱量Qは、DSC曲線の高温側の融解ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量を言う。 In the present invention, at the two melting peaks of the DSC curve, the ratio of the melting peak heat quantity on the high temperature side (Q H / (Q H + Q L) that can be calculated from the low temperature side melting peak heat quantity Q L and the high temperature side melting peak heat quantity Q H. ) × 100) (hereinafter sometimes referred to as DSC ratio) is preferably in the range of 10 to 40%. Here, the melting peak calorie Q L on the low temperature side is the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the low temperature side melting peak, the low temperature side peak, and the high temperature side peak, and the high temperature side melting peak heat Q H refers to the amount of heat which is surrounded by tangents to the melting completion baseline from the maximum point between the fusion peak on the high temperature side of the DSC curve and the low temperature side peak and the high temperature side peak.

DSC比が10%未満では、ポリプロピレン系樹脂発泡粒子の独立気泡率が低く、成形体変形率が大きくなる傾向にある。DSC比が40%を超えると、ポリプロピレン系樹脂発泡粒子の型内発泡成形する際の2次発泡力が十分得られない場合があり、粟おこし状で粒子同士の融着の劣る発泡成形体が得られる場合がある。   When the DSC ratio is less than 10%, the closed cell ratio of the polypropylene resin expanded particles is low, and the deformation rate of the molded product tends to increase. When the DSC ratio exceeds 40%, there may be a case where the secondary foaming force in the in-mold foam molding of the polypropylene resin foamed particles may not be sufficiently obtained, and the foamed molded product having a frustrating shape and inferior fusion between the particles. May be obtained.

以上のようにして得られる、本発明のポリプロピレン系樹脂発泡粒子は、たとえばあらかじめ耐圧容器内で空気加圧し、ポリプロピレン系樹脂粒子中に空気を圧入することにより発泡能を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.2〜0.4MPa(ゲージ圧)程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリプロピレン系樹脂発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却することで、型内発泡成形体とすることが出来る。   The polypropylene-based resin expanded particles of the present invention obtained as described above are, for example, previously pressurized with air in a pressure-resistant container and imparted with a foaming ability by pressurizing air into the polypropylene-based resin particles, and then closed. Filled in a mold that can be sealed but cannot be sealed, and molded with a water vapor pressure of about 0.2 to 0.4 MPa (gauge pressure) as a heating medium and molded in a heating time of about 3 to 30 seconds. By fusing the foamed particles together, and then cooling the mold to a level that can suppress deformation of the in-mold foam molded article after taking out the in-mold foam molded article by water cooling, an in-mold foam molded article can be obtained. I can do it.

得られる型内発泡成形体の発泡倍率は、好ましくは20〜50倍であり、当該範囲内であると、一般的には、成形後のセル内減圧による成形体の変形が起こり、成形体変形率が大きくなるりやすいため、本発明のポリプロピレン系樹脂発泡粒子を好適に使用することができる。なお型内発泡成形体の発泡倍率は、発泡体の乾燥重量(W:g)と水没体積(V:cm)から、(成形体の発泡倍率)=1/(W/V)×0.9(ポリプロピレン系樹脂の樹脂密度)で求められる。 The foaming ratio of the obtained in-mold foam molded product is preferably 20 to 50 times, and if it is within the range, generally, the molded product is deformed by the reduced pressure in the cell after molding, and the molded product is deformed. Since the rate tends to increase, the expanded polypropylene resin particles of the present invention can be suitably used. The foaming ratio of the in-mold foamed molded product is calculated by (foaming ratio of the molded product) = 1 / (W / V) × 0.0 from the dry weight (W: g) of the foam and the submerged volume (V: cm 3 ). 9 (resin density of polypropylene resin).

本発明を実施例、比較例で説明するが、本発明がこれに限定されるものではない。
本実施例において評価は以下のように行った。
The present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.
In this example, the evaluation was performed as follows.

<ポリプロピレン系樹脂発泡粒子の嵩密度>
ポリプロピレン系樹脂発泡粒子を10L容器に入れ、容器内の発泡粒子重量(g)を測定する。得られた重量を容器容量(L)で除して嵩密度(g/L)とした。
<Bulk density of polypropylene resin expanded particles>
The polypropylene resin expanded particles are put into a 10 L container, and the weight (g) of the expanded particles in the container is measured. The obtained weight was divided by the container capacity (L) to obtain the bulk density (g / L).

<対金型収縮率>
対金型収縮率は、400×300×60mm厚みの板状の型内発泡成形体を成形・冷却後金型から取り出し、直ちに75℃で12時間養生した後室温で24時間放置し、縦寸法を測定し金型寸法に対する収縮率を求めた。収縮率が3.0%以上になると、型内発泡成形体の寸法精度が悪くなり、実用上問題があるとされている。
<Mold shrinkage ratio>
The mold shrinkage ratio was determined by taking a 400 × 300 × 60 mm thick plate-like in-mold foam molded product from the mold after molding and cooling, immediately curing at 75 ° C. for 12 hours, and allowing to stand at room temperature for 24 hours. Was measured to determine the shrinkage ratio relative to the mold dimensions. When the shrinkage rate is 3.0% or more, the dimensional accuracy of the in-mold foam molded article is deteriorated, and it is considered that there is a problem in practical use.

<成形体変形率>
外寸法が350mm長さ×350mm幅×180mm高さ、肉厚18mmの枡形箱形状の金型にて発泡粒子を型内成形し、室温に1時間放置後、75℃で8時間養生した後、室温で24時間放置し、箱形状成形体の開口部中央寸法と辺寸法の差/辺寸法×100(%)を算出し、成形体変形率とした。
成形体変形率が4.0%以上になると、形状変形が大きすぎて実用上問題が起こりやすい。
<Deformation rate of molded body>
After forming the foamed particles in a mold with a box-shaped box having an outer dimension of 350 mm long × 350 mm wide × 180 mm high and 18 mm thick, after standing at room temperature for 1 hour and curing at 75 ° C. for 8 hours, It was allowed to stand at room temperature for 24 hours, and the difference between the center dimension of the opening and the side dimension / side dimension × 100 (%) of the box-shaped molded body was calculated and used as the molded body deformation rate.
When the deformation ratio of the molded product is 4.0% or more, the shape deformation is too large, and problems in practice are likely to occur.

<表面性>
対金型収縮率を測定した成形体の表面状態を目視観察し、表面に「シワ」がほとんど無いものは○、表面に僅かな「しわ」があるが表面全体がフラットなものは△、表面に「しわ」が多く、表面全体が波打っているものを×とした。
<Surface property>
Visually observe the surface state of the molded body measured for mold shrinkage, ○ if there is almost no “wrinkles” on the surface, △ if there is a slight “wrinkle” on the surface but the entire surface is flat, surface In the case where there were many “wrinkles” and the entire surface was wavy, it was marked with “x”.

(製造例1)
エチレン量4.0重量%、MFR2.0g/10分のエチレン−プロピレンランダム共重合体を押出機内で有機過酸化物量を調整しながら分解し、表1の1〜5、8〜11の基材樹脂を得た。
(Production Example 1)
An ethylene-propylene random copolymer having an ethylene amount of 4.0% by weight and an MFR of 2.0 g / 10 min was decomposed while adjusting the amount of organic peroxide in the extruder, and the base materials 1 to 5 and 8 to 11 in Table 1 A resin was obtained.

(製造例2)
エチレン量3.4重量%、MFR4.0g/10分のエチレン−プロピレンランダム共重合体を押出機内で有機過酸化物量を調整しながら分解し、表1の6、7の基材樹脂を得た。
得られた基材樹脂のMFR、Mz、MZ/Mw等を表1に示す。
(Production Example 2)
An ethylene-propylene random copolymer having an ethylene amount of 3.4% by weight and an MFR of 4.0 g / 10 min was decomposed while adjusting the amount of organic peroxide in the extruder to obtain base resins 6 and 7 in Table 1. .
Table 1 shows MFR, Mz, MZ / Mw and the like of the obtained base resin.

(実施例1、2)
基材樹脂No.1に、セル造核剤としてタルク(林化成製タルカンパウダーPKS)0.01重量部をドライブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。得られた溶融混練樹脂を円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.8mg/粒のポリプロピレン系樹脂粒子を得た。
(Examples 1 and 2)
Base resin No. 1. After dry blending 0.01 parts by weight of talc (Talcan Powder PKS, Hayashi Kasei Co., Ltd.) as a cell nucleating agent, in a 50 mm single screw extruder (20VSE-50-28 type, manufactured by Osaka Seiki Co., Ltd.) Melt kneaded. The obtained melt-kneaded resin was extruded into a strand form from a circular die, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.8 mg / grain.

ポリプロピレン系樹脂粒子100重量部(670g)、水300重量部、分散剤として第三リン酸カルシウム(太平化学産業社製)2.0重量部、分散助剤としてアルキルスルホン酸ナトリウム0.04重量部を容量4.5Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤としてイソブタンを10重量部添加した。オートクレーブ内容物を昇温し、134℃の発泡温度まで加熱した。その後、30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出して、嵩密度38g/L(実施例1)、嵩密度26.5g/L(実施例2)の発泡粒子を得た。なお、DSC比が25±1%となるよう温度、イソブタン量を調節した。   Capacity: 100 parts by weight of polypropylene resin particles (670 g), 300 parts by weight of water, 2.0 parts by weight of calcium triphosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) as a dispersing agent, and 0.04 parts by weight of sodium alkyl sulfonate as a dispersing aid Into a 4.5 L pressure-resistant autoclave, 10 parts by weight of isobutane was added as a blowing agent under stirring. The autoclave contents were heated to a foaming temperature of 134 ° C. Thereafter, after holding for 30 minutes, the valve at the bottom of the autoclave is opened, and the contents of the autoclave are discharged to atmospheric pressure through an opening orifice having a diameter of 4.0 mm. The bulk density is 38 g / L (Example 1), and the bulk density is 26. Expanded particles of 0.5 g / L (Example 2) were obtained. The temperature and the amount of isobutane were adjusted so that the DSC ratio was 25 ± 1%.

発泡粒子の成形条件は、発泡粒子を耐圧容器内に入れて空気で加圧処理して粒子内圧を付与し、0.30MPa(ゲージ圧)の蒸気圧で型内発泡成形をおこない冷却後金型から取り出し、所定の温度、時間で養生した後、室温に取り出した。結果を表2に示す。   Molding conditions of the foamed particles are as follows: the foamed particles are placed in a pressure-resistant container and pressurized with air to give the internal pressure of the particles, in-mold foam molding is performed with a vapor pressure of 0.30 MPa (gauge pressure), and the mold after cooling After being cured at a predetermined temperature and time, it was taken out to room temperature. The results are shown in Table 2.

(実施例3)
実施例1において、ポリプロピレン系樹脂粒子の一粒の重量を1.3mg/粒とし、得られる発泡粒子の嵩密度を17.0g/Lに調整した以外は、実施例1と同様にして成形体評価を行った。結果を表2に示す。
(Example 3)
A molded body in the same manner as in Example 1 except that the weight of one polypropylene resin particle was 1.3 mg / grain and the bulk density of the obtained foamed particles was adjusted to 17.0 g / L in Example 1. Evaluation was performed. The results are shown in Table 2.

(実施例4、5)
基材樹脂No.1に、セル造核剤としてホウ酸亜鉛0.1重量部をドライブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。得られた溶融混練樹脂を円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.8mg/粒のポリプロピレン系樹脂粒子(ミニペレット)を得た。
(Examples 4 and 5)
Base resin No. 1, 0.1 parts by weight of zinc borate as a cell nucleating agent was dry blended, and then melt-kneaded in a 50 mm single screw extruder (20VSE-50-28 type, manufactured by Osaka Seiki Co., Ltd.). The obtained melt-kneaded resin was extruded into a strand shape from a circular die, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles (mini-pellets) having a weight of 1.8 mg / particle.

ポリプロピレン系樹脂粒子100重量部(2400g)、水200重量部、分散剤としてカオリン(エンゲルハード社製ASP−170)0.75重量部、分散助剤としてドデシルベンゼンスルホン酸ナトリウム0.018重量部を容量10Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤として炭酸ガスを9重量部添加した。オートクレーブ内容物を昇温し、144℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.0MPa(ゲージ圧)とした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出して発泡粒子を得た。得られた発泡粒子の発泡倍率は嵩密度38g/Lであった。DSC比は25±1%となるよう温度、炭酸ガス量を調節した。   100 parts by weight of polypropylene resin particles (2400 g), 200 parts by weight of water, 0.75 parts by weight of kaolin (ASP-170 manufactured by Engelhard) as a dispersant, 0.018 parts by weight of sodium dodecylbenzenesulfonate as a dispersion aid Into a pressure-resistant autoclave having a capacity of 10 L, 9 parts by weight of carbon dioxide gas was added as a foaming agent under stirring. The temperature of the autoclave was raised and heated to a foaming temperature of 144 ° C., and then carbon dioxide was added to adjust the internal pressure of the autoclave to 3.0 MPa (gauge pressure). Then, after holding for 30 minutes, the valve | bulb of the autoclave lower part was opened, the autoclave content was discharge | released under atmospheric pressure through the opening orifice of diameter 4.0mm, and the expanded particle was obtained. The expansion ratio of the obtained expanded particles was a bulk density of 38 g / L. The temperature and the amount of carbon dioxide gas were adjusted so that the DSC ratio was 25 ± 1%.

発泡粒子の成形条件は、発泡粒子を耐圧容器内に入れて空気で加圧処理して粒子内圧を付与し、0.30MPa(ゲージ圧)の蒸気圧で型内発泡成形をおこない冷却後金型から取り出し、所定の温度、時間で養生した後室温に取り出した。成形体評価の結果を表2に示す。   Molding conditions of the foamed particles are as follows: the foamed particles are placed in a pressure-resistant container and pressurized with air to give the internal pressure of the particles, in-mold foam molding is performed with a vapor pressure of 0.30 MPa (gauge pressure), and the mold after cooling And then cured at a predetermined temperature and time, and then taken out to room temperature. The results of the molded body evaluation are shown in Table 2.

(実施例5)
実施例4で得られた嵩密度38g/Lの発泡粒子を耐圧容器に入れて空気で加圧処理し0.4MPa(絶対圧)の内圧を付与し、0.1MPa(ゲージ圧)の水蒸気により加熱し、30倍(嵩密度17g/L)発泡粒子を得、該発泡粒子について評価をした。
発泡粒子の成形条件は、発泡粒子を耐圧容器内に入れて空気で加圧処理して粒子内圧を付与し、0.3MPa(ゲージ圧)の蒸気圧で型内発泡成形をおこない冷却後金型から取り出し、所定の温度、時間で養生した後室温に取り出した。成形体評価の結果を表2に示す。
(Example 5)
The foamed particles having a bulk density of 38 g / L obtained in Example 4 were put in a pressure vessel and pressurized with air to give an internal pressure of 0.4 MPa (absolute pressure), and water vapor of 0.1 MPa (gauge pressure) was used. Heating was performed to obtain 30 times (bulk density 17 g / L) expanded particles, and the expanded particles were evaluated.
Molding conditions for the foamed particles are as follows: The foamed particles are placed in a pressure-resistant container and pressurized with air to give the internal pressure of the particles, and in-mold foam molding is performed with a vapor pressure of 0.3 MPa (gauge pressure). And then cured at a predetermined temperature and time, and then taken out to room temperature. The results of the molded body evaluation are shown in Table 2.

(実施例6)
使用する基材樹脂を表1記載のNo.2にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 6)
The base resin used is No. 1 in Table 1. Except for setting to 2, foamed particles were obtained in the same manner as in Example 1, and molding evaluation was performed. The results are shown in Table 2.

(実施例7)
使用する基材樹脂を表1記載のNo.2にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 7)
The base resin used is No. 1 in Table 1. Except for setting to 2, foamed particles were obtained in the same manner as in Example 2, and molding evaluation was performed. The results are shown in Table 2.

(実施例8)
使用する基材樹脂を表1記載のNo.2にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 8)
The base resin used is No. 1 in Table 1. Except for setting to 2, foamed particles were obtained in the same manner as in Example 3, and molding evaluation was performed. The results are shown in Table 2.

(実施例9)
使用する基材樹脂を表1記載のNo.3にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
Example 9
The base resin used is No. 1 in Table 1. Except for setting to 3, foamed particles were obtained and evaluated for molding in the same manner as in Example 1. The results are shown in Table 2.

(実施例10)
使用する基材樹脂を表1記載のNo.3にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 10)
The base resin used is No. 1 in Table 1. Except for setting to 3, in the same manner as in Example 2, foamed particles were obtained and evaluated for molding. The results are shown in Table 2.

(実施例11)
使用する基材樹脂を表1記載のNo.3にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 11)
The base resin used is No. 1 in Table 1. Except for setting to 3, in the same manner as in Example 3, foamed particles were obtained and evaluated for molding. The results are shown in Table 2.

(実施例12)
使用する基材樹脂を表1記載のNo.4にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 12)
The base resin used is No. 1 in Table 1. Except for setting to 4, foamed particles were obtained and evaluated for molding in the same manner as in Example 1. The results are shown in Table 2.

(実施例13)
使用する基材樹脂を表1記載のNo.4にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 13)
The base resin used is No. 1 in Table 1. Except for setting to 4, in the same manner as in Example 2, foamed particles were obtained and evaluated for molding. The results are shown in Table 2.

(実施例14)
使用する基材樹脂を表1記載のNo.4にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 14)
The base resin used is No. 1 in Table 1. Except for setting to 4, foamed particles were obtained and evaluated for molding in the same manner as in Example 3. The results are shown in Table 2.

(実施例15)
使用する基材樹脂を表1記載のNo.5にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 15)
The base resin used is No. 1 in Table 1. Except for setting to 5, foamed particles were obtained and evaluated for molding in the same manner as in Example 1. The results are shown in Table 2.

(実施例16)
使用する基材樹脂を表1記載のNo.5にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 16)
The base resin used is No. 1 in Table 1. Except for setting to 5, in the same manner as in Example 2, foamed particles were obtained and evaluated for molding. The results are shown in Table 2.

(実施例17)
使用する基材樹脂を表1記載のNo.5にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表2に示す。
(Example 17)
The base resin used is No. 1 in Table 1. Except for setting to 5, foamed particles were obtained and evaluated for molding in the same manner as in Example 3. The results are shown in Table 2.

(比較例1)
使用する基材樹脂を表1記載のNo.6にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 1)
The base resin used is No. 1 in Table 1. Except for setting to 6, foamed particles were obtained in the same manner as in Example 1, and molding evaluation was performed. The results are shown in Table 3.

(比較例2)
使用する基材樹脂を表1記載のNo.6にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 2)
The base resin used is No. 1 in Table 1. Except for setting to 6, foamed particles were obtained and evaluated for molding in the same manner as in Example 2. The results are shown in Table 3.

(比較例3)
使用する基材樹脂を表1記載のNo.6にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 3)
The base resin used is No. 1 in Table 1. Except for setting to 6, foamed particles were obtained in the same manner as in Example 3, and molding evaluation was performed. The results are shown in Table 3.

(比較例4)
使用する基材樹脂を表1記載のNo.7にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 4)
The base resin used is No. 1 in Table 1. Except for setting to 7, foamed particles were obtained and evaluated for molding in the same manner as in Example 1. The results are shown in Table 3.

(比較例5)
使用する基材樹脂を表1記載のNo.7にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 5)
The base resin used is No. 1 in Table 1. Except for setting to 7, foamed particles were obtained and evaluated for molding in the same manner as in Example 2. The results are shown in Table 3.

(比較例6)
使用する基材樹脂を表1記載のNo.7にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 6)
The base resin used is No. 1 in Table 1. Except for setting to 7, foamed particles were obtained and evaluated for molding in the same manner as in Example 3. The results are shown in Table 3.

(比較例7)
使用する基材樹脂を表1記載のNo.8にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 7)
The base resin used is No. 1 in Table 1. Except for setting to 8, foamed particles were obtained and evaluated for molding in the same manner as in Example 1. The results are shown in Table 3.

(比較例8)
使用する基材樹脂を表1記載のNo.8にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 8)
The base resin used is No. 1 in Table 1. Except for setting to 8, foamed particles were obtained and evaluated for molding in the same manner as in Example 2. The results are shown in Table 3.

(比較例9)
使用する基材樹脂を表1記載のNo.8にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 9)
The base resin used is No. 1 in Table 1. Except for setting to 8, foamed particles were obtained and evaluated for molding in the same manner as in Example 3. The results are shown in Table 3.

(比較例10)
使用する基材樹脂を表1記載のNo.9にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 10)
The base resin used is No. 1 in Table 1. Except that it was set to 9, in the same manner as in Example 1, foamed particles were obtained and evaluated for molding. The results are shown in Table 3.

(比較例11)
使用する基材樹脂を表1記載のNo.9にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 11)
The base resin used is No. 1 in Table 1. Except that it was set to 9, in the same manner as in Example 2, foamed particles were obtained and evaluated for molding. The results are shown in Table 3.

(比較例12)
使用する基材樹脂を表1記載のNo.9にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 12)
The base resin used is No. 1 in Table 1. Except for setting to 9, in the same manner as in Example 3, foamed particles were obtained and evaluated for molding. The results are shown in Table 3.

(比較例13)
使用する基材樹脂を表1記載のNo.10にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 13)
The base resin used is No. 1 in Table 1. Except for using 10, foamed particles were obtained and evaluated for molding in the same manner as in Example 1. The results are shown in Table 3.

(比較例14)
使用する基材樹脂を表1記載のNo.10にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 14)
The base resin used is No. 1 in Table 1. Except for using 10, foamed particles were obtained and evaluated for molding in the same manner as in Example 2. The results are shown in Table 3.

(比較例15)
使用する基材樹脂を表1記載のNo.10にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 15)
The base resin used is No. 1 in Table 1. Except for using 10, foamed particles were obtained and evaluated for molding in the same manner as in Example 3. The results are shown in Table 3.

(比較例16)
使用する基材樹脂を表1記載のNo.11にした以外は、実施例1と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 16)
The base resin used is No. 1 in Table 1. Except that it was set to 11, foamed particles were obtained in the same manner as in Example 1, and molding evaluation was performed. The results are shown in Table 3.

(比較例17)
使用する基材樹脂を表1記載のNo.11にした以外は、実施例2と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 17)
The base resin used is No. 1 in Table 1. Except that, the foamed particles were obtained and evaluated for molding in the same manner as in Example 2. The results are shown in Table 3.

(比較例18)
使用する基材樹脂を表1記載のNo.11にした以外は、実施例3と同様にして、発泡粒子を得、成形評価を行った。結果を表3に示す。
(Comparative Example 18)
The base resin used is No. 1 in Table 1. Except that it was set to 11, foamed particles were obtained and evaluated for molding in the same manner as in Example 3. The results are shown in Table 3.

型内発泡成形体の表面性は、Mzは70万以下、Mz/Mwは2.5以下になると見栄えが悪くなり実用的では無い。   As for the surface properties of the in-mold foamed molded product, when Mz is 700,000 or less and Mz / Mw is 2.5 or less, it looks bad and is not practical.

実施例では、成形体変形率、対金型収縮率いずれも良好な成形体が得られた。比較例では、成形体変形率が4%以上であったり、対金型収縮率が3%以上であったり、表面にシワが発生して表面性が劣るものであったりした。   In Examples, a molded article having a good molded article deformation rate and mold shrinkage ratio was obtained. In the comparative examples, the deformation ratio of the molded product was 4% or more, the mold shrinkage ratio was 3% or more, and wrinkles were generated on the surface, resulting in poor surface properties.

本発明のポリプロピレン系共重合体樹脂発泡粒子を型内成形した成形体は、比較的高倍率で緩衝包装材用途等の変形しやすい形状においても短時間の養生時間で成形体変形が少なく、寸法安定性に優れており、工業的に経済的に製造することができる。   The molded body in which the polypropylene copolymer resin foamed particles of the present invention are molded in a mold has a relatively high magnification and is less likely to be deformed with a short curing time even in a shape that is easily deformed, such as for buffer packaging materials. It has excellent stability and can be produced economically industrially.

本発明のポリプロピレン系樹脂発泡粒子のDSC曲線の一例である。低温側融解ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量が低温側の融解ピーク熱量Qであり、DSC曲線の高温側の融解ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量が高温側融解ピーク熱量Qである。It is an example of the DSC curve of the polypropylene resin expanded particle of this invention. The amount of heat enclosed by the tangent to the melting start baseline from the maximum point between the low-temperature side melting peak and the low-temperature side peak and the high-temperature side peak is the low-temperature side melting peak calorie Q L , and the high-temperature side melting peak of the DSC curve a heat surrounded by tangents to the melting completion baseline from the maximum point between the low-temperature side peak and the high temperature side peak is high-side melting peak heat quantity Q H.

Claims (2)

コモノマー成分として、エチレンおよび/またはブテン−1を1〜10重量%含んでなり、Z平均分子量(Mz)が7.2×10以上1.2×10未満、かつ、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.5を超えて3.0以下であり、メルトフローレートが3〜7.5g/10分であるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂粒子を、
耐圧容器内に発泡剤存在下、分散剤等と共に水中に分散させ、加圧下で所定の発泡温度まで加熱した後、耐圧容器内の分散物を低圧域に放出することにより得られる、ポリプロピレン系樹脂発泡粒子であって、
示差走査熱量計(DSC)にて、発泡粒子3〜6mgを40℃〜220℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、低温側と高温側に2つの融解ピークを有していることを特徴とするポリプロピレン系樹脂発泡粒子。
As a comonomer component, ethylene and / or butene-1 is contained in an amount of 1 to 10% by weight, the Z average molecular weight (Mz) is 7.2 × 10 5 or more and less than 1.2 × 10 6 , and the Z average molecular weight (Mz ) and Ri ratio (Mz / Mw) is der 3.0 or less than 2.5 of the weight average molecular weight (Mw), the substrate to melt flow rate polypropylene resin is 3~7.5g / 10 min Polypropylene resin particles used as resin
Polypropylene resin obtained by dispersing in water together with a dispersant in the presence of a foaming agent in a pressure vessel, heating to a predetermined foaming temperature under pressure, and then releasing the dispersion in the pressure vessel to a low pressure region Expanded particles,
In a DSC curve obtained when 3-6 mg of expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter (DSC), two melting peaks are shown on the low temperature side and the high temperature side. characterized in that it comprises a polypropylene resin foamed beads.
請求項1記載のポリプロピレン系樹脂発泡粒子を型内成形してなる、発泡倍率20〜50倍である型内発泡成形体。
An in-mold foam-molded article having an expansion ratio of 20 to 50, which is formed by molding the polypropylene-based resin expanded particles according to claim 1 in a mold.
JP2007280666A 2007-10-29 2007-10-29 Polypropylene resin foam particles Active JP5154194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280666A JP5154194B2 (en) 2007-10-29 2007-10-29 Polypropylene resin foam particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280666A JP5154194B2 (en) 2007-10-29 2007-10-29 Polypropylene resin foam particles

Publications (2)

Publication Number Publication Date
JP2009108161A JP2009108161A (en) 2009-05-21
JP5154194B2 true JP5154194B2 (en) 2013-02-27

Family

ID=40777009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280666A Active JP5154194B2 (en) 2007-10-29 2007-10-29 Polypropylene resin foam particles

Country Status (1)

Country Link
JP (1) JP5154194B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY170283A (en) * 2012-09-12 2019-07-16 Kaneka Corp Polyethylene-based resin foamed particles, polyethylene-based resin in-mold-foam-molded body, and method for producing polyethylene-based resin foamed particles
TW201729732A (en) 2016-02-08 2017-09-01 Sekisui Plastics Co Ltd Vehicle seat member, vehicle seat, and production method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116881A (en) * 1990-03-14 1992-05-26 James River Corporation Of Virginia Polypropylene foam sheets
JP3453647B2 (en) * 1997-05-06 2003-10-06 積水化成品工業株式会社 Propylene resin particles for foam molding, expandable propylene resin particles, propylene resin pre-expanded particles, and propylene resin foam molded article
JP4157206B2 (en) * 1998-10-29 2008-10-01 株式会社ジェイエスピー Polypropylene resin foamed particles and molded polypropylene resin foam particles

Also Published As

Publication number Publication date
JP2009108161A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP4747650B2 (en) Modified polyethylene resin pre-expanded particles and method for producing the same
JP6357310B2 (en) Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
JP2014098161A (en) Pre-expanded particle of polyolefinic resin and method for producing the same
US6027806A (en) Expanded resin beads
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP5154194B2 (en) Polypropylene resin foam particles
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP5080842B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5749039B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDED PRODUCT, AND METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
JP5536357B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam
JP2011068776A (en) Foam-molded article
JP5364289B2 (en) Method for producing expanded polypropylene resin particles
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP5346571B2 (en) Method for producing pre-expanded particles
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP5216353B2 (en) Method for producing expanded polypropylene resin particles
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
JP2009256410A (en) Method for producing polypropylene-based resin foam particle
JP5095451B2 (en) Method for producing expanded polypropylene resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250