JP6347972B2 - Groundwater level lowering method and groundwater level lowering system - Google Patents

Groundwater level lowering method and groundwater level lowering system Download PDF

Info

Publication number
JP6347972B2
JP6347972B2 JP2014061967A JP2014061967A JP6347972B2 JP 6347972 B2 JP6347972 B2 JP 6347972B2 JP 2014061967 A JP2014061967 A JP 2014061967A JP 2014061967 A JP2014061967 A JP 2014061967A JP 6347972 B2 JP6347972 B2 JP 6347972B2
Authority
JP
Japan
Prior art keywords
pumping
groundwater level
level
groundwater
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014061967A
Other languages
Japanese (ja)
Other versions
JP2015183461A5 (en
JP2015183461A (en
Inventor
林 幹朗
幹朗 林
幹雄 仲井
幹雄 仲井
崇寛 山内
崇寛 山内
麻穂 田中
麻穂 田中
光貴 太田
光貴 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2014061967A priority Critical patent/JP6347972B2/en
Publication of JP2015183461A publication Critical patent/JP2015183461A/en
Publication of JP2015183461A5 publication Critical patent/JP2015183461A5/ja
Application granted granted Critical
Publication of JP6347972B2 publication Critical patent/JP6347972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、地下水位低下工法及び地下水位低下システムに関するものであり、詳しくは、液状化対策等のために地下水位を低下させる際に好適に用いることが可能な地下水位低下工法及び地下水位低下システムに関するものである。   The present invention relates to a groundwater level lowering method and a groundwater level lowering system, and more specifically, a groundwater level lowering method and a groundwater level lowering that can be suitably used for lowering the groundwater level for liquefaction countermeasures and the like. It is about the system.

埋め立て地をはじめとして、地下水位が高い砂質地盤では、地震の震動により液状化現象が発生し、マンホールや下水管が押し上げられて地表面から突出したり、建造物が傾いたりする被害が発生している。このような液状化現象を未然に防止するためには、液状化が懸念される地盤に対して改良工事を行わなければならない。   In sandy ground with a high groundwater level, such as landfills, liquefaction occurs due to earthquake vibration, and manholes and sewer pipes are pushed up and protrude from the ground surface, and damage to the building can occur. ing. In order to prevent such a liquefaction phenomenon, improvement work must be performed on the ground where liquefaction is a concern.

従来から行われている液状化対策工法には、種々のものが知られているが、その中の一つとして地下水位低下工法があり、地下水位低下工法として、ディープウェル工法、ウェルポイント工法、窯場工法等が知られている。   Various conventional liquefaction countermeasure methods are known, but one of them is the groundwater level lowering method, and as the groundwater level lowering method, deep well method, well point method, The kiln method is known.

例えば、ウェルポイント工法の一例として、特許文献1に記載された地盤改良工法がある。この地盤改良工法は、地下水位を低下させて地盤を改良するための工法であり、改良対象地盤中の地下水位を低下させる際に、地表面から新鮮な空気又は清水を地中に供給するための有孔配管を地中に延設する工程と、所定の間隔をあけて地中に2本以上の井戸を設け、スーパーウェルポイント工法により地下水を揚水すると同時に当該地中の周辺域を減圧することによって、地中をほぼ真空状態にする工程と、地表面から地中に延長して設けたグラウト材供給設備の有孔配管を通じて新鮮な空気又は清水を供給することを繰り返す工程と、改良対象地盤中の地下水を自然地下水位まで戻す工程とからなる。   For example, as an example of the well point method, there is a ground improvement method described in Patent Document 1. This ground improvement method is a method for improving the ground by lowering the groundwater level. When the groundwater level in the ground to be improved is lowered, fresh air or fresh water is supplied from the ground surface into the ground. The process of extending the perforated pipe into the ground, and providing two or more wells in the ground at a predetermined interval, and pumping up the groundwater by the superwell point method, and simultaneously depressurizing the surrounding area in the ground The process of making the underground almost vacuum state, the process of repeatedly supplying fresh air or fresh water through the perforated piping of the grout material supply equipment provided extending from the ground surface to the ground, and the object of improvement It consists of the process of returning groundwater in the ground to the natural groundwater level.

特開2012−180738号公報JP 2012-180738 A

改良対象地盤から揚水を行って地下水位を低下させる工法では、改良対象地盤の不等沈下が問題となる。すなわち、改良対象地盤が広範囲にわたっている場合には、改良対象地盤の全域にわたって同一の土質であるとは限らず、透水係数の異なる地盤が混在していることがある。このような改良対象地盤において、画一的に揚水を行うと、透水係数の相違に基づいて地下水位の変位が生じてしまい、不等沈下を生じることがある。   In the construction method of lowering the groundwater level by pumping water from the improvement target ground, uneven settlement of the improvement target ground becomes a problem. That is, when the improvement target ground covers a wide area, the soil is not necessarily the same soil throughout the improvement target ground, and grounds having different hydraulic conductivity may be mixed. In such an improvement target ground, when pumping up uniformly, the displacement of the groundwater level occurs based on the difference in the hydraulic conductivity, which may cause uneven settlement.

また、改良対象地盤中に複数の揚水井戸を構築し、各揚水井戸からそれぞれ地下水を揚水する場合に、土質の相違だけではなく、揚水井戸の構築位置や、揚水装置(ポンプ)の駆動状況に応じて、改良対象地盤の全域にわたって同一の地下水位を保つことができずに、不等沈下を生じることがある。   In addition, when multiple pumping wells are constructed in the ground to be improved, and groundwater is pumped from each pumping well, not only the difference in soil quality, Accordingly, the same groundwater level cannot be maintained over the entire area of the improvement target ground, resulting in uneven settlement.

この点、上述した特許文献1に記載の技術は、改良対象地盤が不等沈下することを許容しており、その対策として、永久グラウト材を用いて地上構造物をリフトアップすることにより不等沈下を解消するとしている。   In this regard, the technique described in Patent Document 1 described above allows the ground to be improved to be unevenly subsidized, and as a countermeasure, the ground structure is lifted up using a permanent grout material. The settlement will be resolved.

本発明は、上述した事情に鑑み提案されたもので、地盤改良工事等で地下水位を低下させる際に、揚水パターンの最適化を行って、効率的な揚水を行うことにより、不等沈下を生じることがない地下水位低下工法及び地下水位低下システムを提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and when lowering the groundwater level in ground improvement work or the like, by optimizing the pumping pattern and performing efficient pumping, uneven settlement is reduced. An object is to provide a groundwater level lowering method and a groundwater level lowering system that do not occur.

本発明の地下水位低下工法及び地下水位低下システムは、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明の地下水位低下工法は改良対象地盤中の地下水位を均一に低下させるための工法に関するものである。   The groundwater level lowering method and the groundwater level lowering system of the present invention have the following features in order to achieve the above-described object. That is, the groundwater level lowering method of the present invention relates to a method for uniformly reducing the groundwater level in the ground to be improved.

この地下水位低下工法では、事前準備として、改良対象地盤中に、複数の揚水井戸と、当該改良対象地盤中の地下水位を計測する複数の観測孔とを構築する。そして、各揚水井戸から揚水を行い、各揚水井戸内及び各観測孔内の地下水位を計測して、各揚水井戸の水位変化量と各観測孔の水位変化量との関係を定量的に数値化することにより、各揚水井戸の水位変化が各観測孔の水位変化に与える影響度を求める。 In this groundwater level lowering method, as a preliminary preparation, a plurality of pumping wells and a plurality of observation holes for measuring the groundwater level in the ground to be improved are constructed in the ground to be improved. Then, pumping water from each pumping well, measuring the groundwater level in each pumping well and each observation hole, and quantitatively calculating the relationship between the water level change in each pumping well and the water level change in each observation hole. The degree of influence that the water level change of each pumping well has on the water level change of each observation hole is calculated.

その後、各揚水井戸における地下水位が一様に所定の深度となるまで揚水を行い、各揚水井戸内及び各観測孔内の地下水位を計測するとともに、定量的に数値化した影響度に応じて、改良対象地盤の全域における地下水位が所定の深度を維持するように、揚水井戸による揚水を行うことを特徴とするものである。 Thereafter, pumping up groundwater level in each pumping wells is uniformly predetermined depth, with measures the groundwater level in each pumping wells in and each observation hole, depending on the quantitative numerical phased influence The pumping well is used for pumping so that the groundwater level in the entire area of the improvement target ground is maintained at a predetermined depth.

本発明の地下水位低下システムは、改良対象地盤中の地下水位を均一に低下させるためのシステムであって、改良対象地盤中に形成した複数の揚水井戸と、当該改良対象地盤中の地下水位を計測する複数の観測孔とを備えている。   The groundwater level lowering system of the present invention is a system for uniformly lowering the groundwater level in the ground to be improved, and a plurality of pumping wells formed in the ground to be improved, and the groundwater level in the ground to be improved. And a plurality of observation holes for measurement.

そして、揚水井戸内に設けられ、当該揚水井戸の地下水位を計測するための揚水井戸水位計測手段と、観測孔内に設けられ、当該観測孔の地下水位を計測するための観測孔水位計測手段と、各揚水井戸に設けられ、各揚水井戸中から地下水を揚水するための揚水手段と、各揚水手段により揚水を行い、揚水井戸水位計測手段により各揚水井戸内の地下水位を計測するとともに、前記観測孔水位計測手段により前記各観測孔内の地下水位を計測して、各揚水井戸の水位変化量と各観測孔の水位変化量との関係を定量的に数値化することにより、各揚水井戸の水位変化が各観測孔の水位変化に与える影響度を求める揚水影響度定量化手段と、各揚水手段により揚水を行って、各揚水井戸における地下水位を一様に所定の深度とした後、揚水井戸水位計測手段により各揚水井戸内の地下水位を計測するとともに、観測孔水位計測手段により各観測孔内の地下水位を計測し、定量的に数値化した影響度に応じて、各揚水井戸における地下水位が所定の深度を維持するように、各揚水手段による揚水を制御する揚水制御手段とを備えたことを特徴とするものである。 And a pumping well water level measuring means for measuring the groundwater level of the pumping well provided in the pumping well, and an observation hole water level measuring means for measuring the groundwater level of the monitoring hole provided in the observation hole And each pumping well, pumping means for pumping groundwater from each pumping well, pumping by each pumping means, measuring the groundwater level in each pumping well by pumping well water level measuring means, By measuring the groundwater level in each observation hole by the observation hole water level measuring means and quantitatively quantifying the relationship between the water level change amount of each pumping well and the water level change amount of each observation hole, After quantifying the pumping influence degree to determine the degree of influence that the water level change of each well has on the water level change of each observation hole, and pumping by each pumping means, the groundwater level in each pumping well is uniformly set to a predetermined depth , Pumping well water With measuring the groundwater level in each pumping wells by measuring means, the groundwater level in each observation holes is measured by observing hole level measuring means, depending on the quantitative numerical phased impact, groundwater level in each pumping wells Is provided with pumping control means for controlling pumping by each pumping means so as to maintain a predetermined depth.

また、本発明の地下水位低下システムは、上述した構成に加えて、揚水井戸水位計測手段により計測した各揚水井戸内の地下水位と、観測孔水位計測手段により計測した各観測孔の地下水位とに基づき、改良対象地盤全体の地下水位を可視化表示する可視化表示手段を備えることが好ましい。地下水位の可視表示は、例えば、コンター図を作成して表示することにより実施する。   In addition to the above-described configuration, the groundwater level lowering system of the present invention includes the groundwater level in each pumping well measured by the pumping well water level measuring means, and the groundwater level of each observation hole measured by the monitoring hole water level measuring means. Based on the above, it is preferable to provide a visualization display means for visualizing and displaying the groundwater level of the entire improvement target ground. Visible display of the groundwater level is implemented, for example, by creating and displaying a contour map.

また、本発明の地下水位低下システムは、上述した構成に加えて、定量的に数値化した各観測井戸に対する各揚水井戸の影響度、現在の各揚水井戸の地下水位及び観測孔の地下水位に基づいて、今後の地下水位を予測する地下水位予測手段を備えることが好ましい。 In addition to the above-described configuration, the groundwater level lowering system of the present invention includes the impact level of each pumping well for each observation well, which is quantitatively quantified , and the current groundwater level of each pumping well and the groundwater level of the observation hole. based on the bets, it is preferable to provide a ground water level prediction means for predicting the groundwater level in the future.

本発明の地下水位低下工法及び地下水位低下システムによれば、各揚水井戸内及び各観測孔内の地下水位を計測して、各揚水井戸の水位変化量と各観測孔の水位変化量との関係を定量的に数値化することにより、各揚水井戸の水位変化が各観測孔の水位変化に与える影響度を求める。そして、定量的に数値化した影響度に応じて、改良対象地盤の全域における地下水位が略同一となるように、揚水井戸による揚水を行うことができる。したがって、揚水パターンが最適化されて、効率的な揚水を行うことができ、改良対象地盤の全域にわたって不等沈下を生じることがない。 According to the groundwater level lowering method and the groundwater level lowering system of the present invention, the groundwater level in each pumping well and each observation hole is measured, and the change in the water level in each pumping well and the change in the water level in each observation hole are calculated. By quantitatively quantifying the relationship, the degree of influence that the water level change of each pumping well has on the water level change of each observation hole is obtained. Then, depending on the quantitative numerical phased influence, as the groundwater level in the entire region of improved target ground is substantially the same, it is possible to perform pumping by pumping wells. Therefore, the pumping pattern is optimized, efficient pumping can be performed, and uneven settlement does not occur over the entire area of the improvement target ground.

本発明の実施形態に係る地下水位低下システムの全体構成を示す説明図。Explanatory drawing which shows the whole structure of the groundwater level fall system which concerns on embodiment of this invention. 本発明の実施形態に係る地下水位低下システムの要部構成を示す説明図。Explanatory drawing which shows the principal part structure of the groundwater level fall system which concerns on embodiment of this invention. 本発明の実施形態に係る地下水位低下工法における事前準備を示す説明図。Explanatory drawing which shows the prior preparation in the groundwater level fall construction method which concerns on embodiment of this invention. 本発明の実施形態に係る地下水位低下工法における揚水制御(地下水位の低下)を示す説明図。Explanatory drawing which shows the pumping control (decrease in a groundwater level) in the groundwater level fall construction method which concerns on embodiment of this invention. 本発明の実施形態に係る地下水位低下工法における揚水制御(揚水パターンの変更)を示す説明図。Explanatory drawing which shows the pumping control (change of pumping pattern) in the groundwater level fall construction method which concerns on embodiment of this invention.

以下、図面を参照して、本発明に係る地下水位低下工法及び地下水位低下システムの実施形態を説明する。図1〜図5は本発明の実施形態に係る地下水位低下工法を説明するもので、図1は地下水位低下システムの全体構成を示す説明図、図2は地下水位低下システムの要部構成を示す説明図、図3は地下水位低下工法における事前準備を示す説明図、図4及び図5は地下水位低下工法における揚水制御を示す説明図である。   Hereinafter, embodiments of a groundwater level lowering method and a groundwater level lowering system according to the present invention will be described with reference to the drawings. FIGS. 1 to 5 illustrate a groundwater level lowering method according to an embodiment of the present invention. FIG. 1 is an explanatory diagram showing the overall configuration of the groundwater level lowering system. FIG. FIG. 3 is an explanatory diagram showing preliminary preparation in the groundwater level lowering construction method, and FIGS. 4 and 5 are explanatory diagrams showing pumping control in the groundwater level lowering construction method.

<地下水位低下工法の概要>
本発明の地下水位低下工法は、図1に示すように、改良対象地盤中に、複数の揚水井戸50と、当該改良対象地盤中の地下水位を計測する複数の観測孔60とを構築し、改良対象地盤中の地下水位を均一に低下させるための工法である。揚水井戸50と観測孔60の構築位置は特に限定されるものではないが、改良対象地盤の全域にわたって不等沈下を防止するために、改良対象地盤の広さ、土質、周辺環境等に応じて、適宜位置(適宜な間隔)で構築する。
<Outline of groundwater level lowering method>
In the groundwater level lowering method of the present invention, as shown in FIG. 1, a plurality of pumping wells 50 and a plurality of observation holes 60 for measuring the groundwater level in the ground to be improved are constructed in the ground to be improved, This is a method for reducing the groundwater level in the ground to be improved uniformly. The construction positions of the pumping well 50 and the observation hole 60 are not particularly limited. In order to prevent uneven settlement over the entire area of the improvement target ground, depending on the area of the improvement target ground, soil quality, surrounding environment, etc. Then, construct at appropriate positions (appropriate intervals).

<地下水位低下システム>
本発明の地下水位低下システムは、地下水位低下工法を実施するためのシステムであり、図2に示すように、揚水井戸水位計測手段(揚水水位計20)と、観測孔水位計測手段(観測水位計300)と、揚水手段(揚水ポンプ200)と、揚水影響度定量化手段110と、揚水制御手段120とを主要な構成要素とする。また、可視化表示手段130と、地下水位予測手段140とを備えることが可能である。
<Groundwater level lowering system>
The groundwater level lowering system of the present invention is a system for carrying out the groundwater level lowering method. As shown in FIG. 2, the pumping well water level measuring means (pumped water level gauge 20) and the observation hole water level measuring means (observed water level). 300), pumping means (pumping pump 200), pumping effect quantification means 110, and pumping control means 120 are the main components. Moreover, it is possible to provide a visualization display means 130 and a groundwater level prediction means 140.

揚水井戸水位計測手段(揚水水位計20)及び観測孔水位計測手段(観測水位計300)は、例えば、汎用されている水位計からなり、揚水手段(揚水ポンプ200)は、例えば、汎用されている水中ポンプからなる。また、揚水影響度定量化手段110、揚水制御手段120、可視化表示手段130、地下水位予測手段140は、図2に示すように、マイクロコンピュータ及びその周辺機器を含む制御装置100により構成される手段であり、詳細には図示しないが、CPU等がROMやRAM等に記憶したプログラムに従って動作することにより、各手段としての機能を発揮する。   The pumping well water level measuring means (pumped water level gauge 20) and the observation hole water level measuring means (observed water level gauge 300) are, for example, a commonly used water level gauge, and the pumping means (pumping pump 200) is, for example, generally used. It consists of a submersible pump. Further, the pumping influence degree quantifying means 110, the pumping control means 120, the visualization display means 130, and the groundwater level prediction means 140 are means constituted by a control device 100 including a microcomputer and its peripheral devices as shown in FIG. Although not shown in detail, the CPU or the like operates according to a program stored in a ROM, a RAM, or the like, and thereby functions as each means.

<揚水井戸>
揚水井戸50は、改良対象地盤中から揚水を行うための井戸で、図1に示すように、揚水井戸50内には、揚水手段として機能する揚水ポンプ200と、揚水井戸水位計測手段として機能する揚水水位計20と、電極18が設置されている。本実施形態では、揚水ポンプ200に連通接続した揚水パイプ19に、圧力計21と流量計22とを取り付けてある。
<Pumping well>
The pumping well 50 is a well for pumping water from the ground to be improved. As shown in FIG. 1, the pumping well 50 functions as a pumping pump 200 that functions as a pumping means and a pumping well water level measuring unit. A pumped water level meter 20 and an electrode 18 are installed. In the present embodiment, a pressure gauge 21 and a flow meter 22 are attached to a pumping pipe 19 that is connected to the pumping pump 200.

また、各揚水井戸50には、揚水ポンプ200の駆動を制御するための機器として、手動制御装置11と、自動制御マイコン12と、AD変換器13及びドライ接点14と、リレー15及びアンプ16と、ポンプ起動盤17とが設けてある。各装置は、HUB70を介して、制御室等に設けたトータル制御マイコン32にLAN接続されている。トータル制御マイコン32は、各揚水井戸50及び観測孔60に設けた機器を統合して制御するための統合コンピュータ30を構成する機器である。統合コンピュータ30は、トータル制御マイコン32の他に、UPS・バックアップHDD31と、HUB33を備えている。さらに、統合コンピュータ30は、HUB33を介して分散制御システムの統括コンピュータ40にLAN接続されている。本実施形態では、これらの装置を総称して制御装置100という。   Each pumping well 50 includes a manual control device 11, an automatic control microcomputer 12, an AD converter 13 and a dry contact 14, a relay 15 and an amplifier 16 as devices for controlling the drive of the pumping pump 200. A pump activation board 17 is provided. Each device is LAN-connected via a HUB 70 to a total control microcomputer 32 provided in a control room or the like. The total control microcomputer 32 is a device that constitutes an integrated computer 30 for integrating and controlling devices provided in each pumping well 50 and the observation hole 60. The integrated computer 30 includes a UPS / backup HDD 31 and a HUB 33 in addition to the total control microcomputer 32. Further, the integrated computer 30 is LAN-connected to the central computer 40 of the distributed control system via the HUB 33. In the present embodiment, these devices are collectively referred to as a control device 100.

<揚水井戸水位計測手段(揚水水位計)>
揚水井戸水位計測手段として機能する揚水水位計20は、揚水井戸50内の水位を計測するための機器であり、液体の圧力(水頭圧)を検知して検出信号を出力するセンサ、水面に浮上するフロートを有するとともに、フロート内に設けたマグネットによりリードスイッチが作動して検出信号を出力するセンサ、超音波を発信して、地下水面で反射した超音波を受信し、送受信の時間差を計測信号に変換するセンサ、地下水の固有の誘電率と空気の誘電率との差を検知・計測して検出・計測信号を出力するセンサ等、公知の水位センサを用いることができる。
<Pumping well water level measuring means (pumped water level meter)>
The pumping water level meter 20 that functions as a pumping well water level measuring means is a device for measuring the water level in the pumping well 50, a sensor that detects a liquid pressure (water head pressure) and outputs a detection signal, and floats on the water surface. A sensor that outputs a detection signal when a reed switch is activated by a magnet provided in the float, receives ultrasonic waves reflected from the groundwater surface, and measures the time difference between transmission and reception A known water level sensor, such as a sensor that converts the difference between the dielectric constant of groundwater and the dielectric constant of air and outputs a detection / measurement signal, can be used.

<揚水手段>
揚水手段は、例えば、揚水ポンプ200からなり、揚水パイプ19を連通接続してある。揚水ポンプ200を揚水井戸50内の地下水中に設置し、揚水パイプ19を介して、揚水井戸50中の地下水を放流タンク80に送水する。
<Pumping means>
The pumping means comprises, for example, a pumping pump 200, and a pumping pipe 19 is connected in communication. The pumping pump 200 is installed in the groundwater in the pumping well 50, and the groundwater in the pumping well 50 is sent to the discharge tank 80 through the pumping pipe 19.

<観測孔/観測孔水位計測手段(観測水位計)>
観測孔60は、図1に示すように、改良対象地盤中に設置した縦孔からなり、観測孔60内には、地下水位を計測するための観測水位計300を設置してある。観測水位計300は、上述した揚水水位計20とほぼ同様の計測機器である。この観測水位計300が、観測孔水位計測手段として機能する。
<Observation hole / Measurement means for observation hole level (observation water level meter)>
As shown in FIG. 1, the observation hole 60 is a vertical hole installed in the ground to be improved, and an observation water level meter 300 for measuring the groundwater level is installed in the observation hole 60. The observation water level meter 300 is a measuring device substantially the same as the pumped water level meter 20 described above. This observation water level meter 300 functions as observation hole water level measurement means.

<制御装置>
制御装置100は、上述したように、各揚水井戸50に設けた、手動制御装置11、自動制御マイコン12、AD変換器13及びドライ接点14、リレー15及びアンプ16、ポンプ起動盤17、これらの電子機器にLAN接続されたトータル制御マイコン32、トータル制御マイコン32にLAN接続された分散制御システムの統括コンピュータ40からなる(図1参照)。そして、図2に示すように、この制御装置100により、揚水影響度定量化手段110、揚水制御手段120を構成する。
<Control device>
As described above, the control device 100 includes the manual control device 11, the automatic control microcomputer 12, the AD converter 13 and the dry contact 14, the relay 15 and the amplifier 16, the pump starter 17, and the like provided in each pumping well 50. A total control microcomputer 32 connected to the electronic device by LAN and a centralized computer 40 of the distributed control system connected to the total control microcomputer 32 by LAN (see FIG. 1). As shown in FIG. 2, the control device 100 constitutes a pumping effect degree quantifying unit 110 and a pumping control unit 120.

<揚水影響度定量化手段>
揚水影響度定量化手段110は、各揚水手段(揚水ポンプ200)により揚水を行い、揚水井戸水位計測手段(揚水水位計20)により各揚水井戸50内の地下水位を計測するとともに、観測孔水位計測手段(観測水位計300)により各観測孔60内の地下水位を計測し、各揚水井戸50の水位変化量と各観測孔60の水位変化量との関係を定量的に数値化することにより、各揚水井戸50の水位変化が各観測孔60の水位変化に与える影響度を求めるためのプログラムからなる。揚水影響度定量化手段110による定量的な数値化は、改良対象地盤において揚水を行う際に事前に行うキャリブレーションであり、この定量的な数値化により各揚水井戸50に設けた揚水ポンプ200による地下水位低下の傾向を数値化して把握することができる。
<Measures for quantifying the impact of pumping>
The pumping influence degree quantifying means 110 pumps water by each pumping means (pumping pump 200), measures the groundwater level in each pumping well 50 by the pumping well water level measuring means (pumped water level gauge 20), and also observes the water level of the observation hole. By measuring the groundwater level in each observation hole 60 by the measuring means (observation water level meter 300), and quantitatively quantifying the relationship between the water level change amount of each pumping well 50 and the water level change amount of each observation hole 60. The program includes a program for determining the degree of influence that the water level change of each pumping well 50 has on the water level change of each observation hole 60 . The quantitative quantification by the pumping influence degree quantifying means 110 is a calibration that is performed in advance when pumping water in the improvement target ground, and by this quantitative quantification , the pumping pump 200 provided in each pumping well 50 is used. The tendency of groundwater level decline can be quantified and grasped.

<揚水制御手段>
揚水制御手段120は、各揚水手段(揚水ポンプ200)により揚水を行って、各揚水井戸50における地下水位を一様に所定の深度とした後、揚水井戸水位計測手段(揚水水位計20)により各揚水井戸50内の地下水位を計測するとともに、観測孔水位計測手段(観測水位計300)により各観測孔60内の地下水位を計測し、定量的に数値化した影響度に応じて、各揚水井戸50における地下水位が所定の深度を維持するように、揚水井戸50による揚水を制御するためのプログラムからなる。揚水制御手段120を用いて、各揚水井戸50に設けた揚水手段(揚水ポンプ200)を統括して制御することにより、改良対象地盤の全域にわたって、地下水位を略同一とした状態で揚水を行って、不等沈下を防止することができる。
<Pumping control means>
The pumping control means 120 performs pumping by each pumping means (pumping pump 200) and sets the groundwater level in each pumping well 50 uniformly to a predetermined depth, and then by the pumping well water level measuring means (pumped water level gauge 20). with measuring the groundwater level in each pumping wells 50, the groundwater level in each observation hole 60 is measured by observing hole level measuring means (observed water level indicator 300), depending on the quantitative numerical phased influence, each It consists of a program for controlling pumping by the pumping well 50 so that the groundwater level in the pumping well 50 maintains a predetermined depth. By controlling the pumping means (pumping pump 200) provided in each pumping well 50 using the pumping control means 120, the pumping is performed with the groundwater level substantially the same over the entire ground to be improved. Thus, uneven settlement can be prevented.

<放流タンク>
放流タンク80は、揚水手段(揚水ポンプ200)により揚水した地下水を一時的に貯留し、放流基準を満たすように調整を行い、河川等に放流するための装置である。この放流タンク80には、放流水の貯留及び放流を制御するための機器として、制御盤81、レベル計82、AD変換器83、リレー85及びアンプ86、ポンプ起動盤87、電極88、放流水パイプ89、放流水ポンプ90、放流水位計91、緊急遮断弁92(電磁開閉/手動併用)を備えている。なお、放流基準を満たすような調整とは、濁水処理、pH処理等のことである。
<Discharge tank>
The discharge tank 80 is a device for temporarily storing the groundwater pumped by the pumping means (pumping pump 200), adjusting so as to satisfy the discharge standard, and discharging it to a river or the like. The discharge tank 80 includes a control panel 81, a level meter 82, an AD converter 83, a relay 85 and an amplifier 86, a pump activation panel 87, an electrode 88, and discharge water as devices for controlling the storage and discharge of the discharged water. A pipe 89, a discharge water pump 90, a discharge water level meter 91, and an emergency shut-off valve 92 (combined electromagnetic opening / closing / manual use) are provided. The adjustment that satisfies the discharge standard is muddy water treatment, pH treatment, and the like.

<地下水位低下の手順>
次に、図3〜図5を参照して、本発明の地下水位低下システムを用いた地下水位低下工法の手順について説明する。地下水位低下の手順は、事前準備工程と、実際の地下水位低下工程とに大別することができる。
<Procedure for lowering groundwater level>
Next, with reference to FIGS. 3-5, the procedure of the groundwater level fall construction method using the groundwater level fall system of this invention is demonstrated. The procedure for lowering the groundwater level can be roughly divided into a preliminary preparation process and an actual groundwater level lowering process.

<事前準備工程>
事前準備工程は、図3に示すように、改良対象地盤中に構築した複数の揚水井戸50において揚水ポンプ200を用いて揚水を行う。この際、改良対象地盤中に削孔した複数の揚水井戸50において、揚水水位計20を用いて地下水位を計測するとともに、複数の観測孔60において観測水位計300を用いて地下水位を計測する。そして、各揚水井戸50の水位変化量と各観測孔60の水位変化量との関係を定量的に数値化することにより、各揚水井戸50の水位変化が各観測孔60の水位変化に与える影響度を求めて定量的に数値化する。定量的に数値化した影響度は、キャリブレーション値として、制御装置100の記憶装置(HDD等)に記憶しておく。
<Preliminary preparation process>
As shown in FIG. 3, in the preliminary preparation process, pumping is performed using a pumping pump 200 in a plurality of pumping wells 50 constructed in the ground to be improved. At this time, in the plurality of pumping wells 50 drilled in the ground to be improved, the groundwater level is measured using the pumped water level gauge 20, and the groundwater level is measured using the observed water level gauge 300 in the plurality of observation holes 60. . Then, by quantitatively quantifying the relationship between the water level change amount of each pumping well 50 and the water level change amount of each observation hole 60, the effect of the water level change of each pumping well 50 on the water level change of each observation hole 60 is shown. Find the degree and quantify it quantitatively. The degree of influence quantitatively digitized is stored in a storage device (HDD or the like) of the control device 100 as a calibration value.

<揚水を制御した地下水位低下工程>
地下水位低下工程は、図4に示すように、各揚水手段50の揚水ポンプ200を駆動して、各揚水井戸50における地下水位が一様に所定の深度となるように揚水を行う。観測孔60の地下水位を確認しながら、すべての観測孔60において地下水位が一様に所定の深度を維持するように、各揚水井戸50の揚水ポンプ200の駆動を制御する。すなわち、地下水位が目標値よりも高い場合には、揚水ポンプ200を駆動して地下水を目標値まで揚水し、地下水位が目標値よりも低い場合には、揚水ポンプ200の駆動を停止する。目標地下水位は、改良対象地盤の状況等に応じて適宜設定するが、例えば、地表面からマイナス5m程度に設定する。
<Groundwater level lowering process with controlled pumping>
In the groundwater level lowering step, as shown in FIG. 4, the pumping pump 200 of each pumping means 50 is driven to pump water so that the groundwater level in each pumping well 50 is uniformly at a predetermined depth. While confirming the groundwater level of the observation hole 60, the drive of the pumping pump 200 of each pumping well 50 is controlled so that the groundwater level is uniformly maintained at a predetermined depth in all the observation holes 60. That is, when the groundwater level is higher than the target value, the pumping pump 200 is driven to pump the groundwater to the target value, and when the groundwater level is lower than the target value, the driving of the pumping pump 200 is stopped. The target groundwater level is appropriately set according to the condition of the ground to be improved, but is set to about minus 5 m from the ground surface, for example.

地下水位が目標水位となった後も観測孔60における地下水位の計測を継続し、図5に示すように、目標水位よりも地下水位が上昇した場合、あるいは、各観測孔60の地下水位の間に所定値(例えば、±50cm程度)の差が生じた場合に、揚水パターンを変更して、各揚水井戸50の揚水ポンプ200を駆動して、目標水位となるように揚水を行う。   Even after the groundwater level reaches the target water level, the measurement of the groundwater level in the observation hole 60 is continued. As shown in FIG. 5, when the groundwater level rises above the target water level, or the groundwater level of each observation hole 60 is When a difference of a predetermined value (for example, about ± 50 cm) occurs between them, the pumping pattern is changed and the pumping pump 200 of each pumping well 50 is driven to perform pumping so as to reach the target water level.

なお、揚水パターンとは、各揚水井戸50の揚水ポンプ200の駆動パターンのことであり、定量的に数値化した影響度に基づいて複数のパターンを制御装置100の記憶手段に記憶しておく。そして、実測した地下水位と、定量的に数値化した影響度とに基づいて予測した予測値とを比較し、水位差を低減できる揚水パターンであって、かつ現況との水位差が最小となる揚水パターンを選択する。 The pumping pattern is a driving pattern of the pumping pump 200 of each pumping well 50, and a plurality of patterns are stored in the storage unit of the control device 100 based on the quantitatively expressed degree of influence . And, it is a pumping pattern that can reduce the water level difference by comparing the measured groundwater level with the predicted value based on the quantitatively expressed degree of influence , and the water level difference with the current situation is minimized Select pumping pattern.

<地下水位低下の可視化>
計測した地下水位は、制御装置100に付属する表示装置400の表示画面に可視表示することが可能である。地下水位の計測値を可視化するために、制御装置100には、地下水位の計測値を可視表示するための可視化表示手段130を備えている。すなわち、可視化表示手段130は、揚水水位計20により計測した各揚水井戸50内の地下水位と、観測水位計300により計測した各観測孔60の地下水位とに基づき、改良対象地盤全体の地下水位を可視化表示する。
<Visualization of groundwater level drop>
The measured groundwater level can be visually displayed on the display screen of the display device 400 attached to the control device 100. In order to visualize the measured value of the groundwater level, the control device 100 includes a visualization display means 130 for visually displaying the measured value of the groundwater level. That is, the visualization display means 130 is based on the groundwater level in each pumping well 50 measured by the pumped water level meter 20 and the groundwater level of each observation hole 60 measured by the observed water level meter 300, and the groundwater level of the entire ground to be improved. Is visualized.

この可視化表示手段130は、地下水位に対応した複数の表示色を用いて、地下水位の分布を2次元表示し、あるいは3次元グラフとして表示するためのプログラムからなる。表示する画像は、例えば、地下水位を等値線で色分けしたコンター図である。   The visualization display means 130 includes a program for two-dimensionally displaying a groundwater level distribution or displaying it as a three-dimensional graph using a plurality of display colors corresponding to the groundwater level. The image to be displayed is, for example, a contour diagram in which the groundwater level is color-coded with isolines.

さらに、定量的に数値化した、各観測井戸60の水位変化に対して各揚水井戸50の水位変化が与える影響度と、現在の各揚水井戸50の地下水位及び観測孔60の地下水位に基づいて、今後の地下水位を予測することが可能である。今後の地下水位を予測するために、制御装置100には、地下水位を予測するための地下水位予測手段140を備えている。この地下水位予測手段140は、定量的に数値化した各観測井戸に対する影響度と、現在の各揚水井戸50の地下水位及び観測孔60の地下水位に基づいて、今後の地下水位を予測するためのプログラムからなる。予測値は、例えば、地下水位を等値線で色分けしたコンター図として、制御装置100に付属する表示装置400の表示画面に可視表示する。 Further, quantitatively quantify the degree of influence of the change in water level of each pumping wells 50 given to the water level change in each observation wells 60, to the current groundwater level groundwater level and observation hole 60 of each pumping wells 50 Based on this, it is possible to predict the future groundwater level. In order to predict the future groundwater level, the control device 100 includes a groundwater level prediction means 140 for predicting the groundwater level. The groundwater level prediction means 140, a degree of influence for each observation wells ized quantitatively numerically, based on the current groundwater level groundwater level and observation hole 60 of each pumping wells 50, to predict the groundwater level in the future For the program. The predicted value is visually displayed on the display screen of the display device 400 attached to the control device 100, for example, as a contour diagram in which the groundwater level is color-coded by isolines.

このように、地下水位の計測値や予測値を可視化することにより、管理者や作業者は、改良対象地盤における現在の地下水位をリアルタムで認識することができる。   Thus, by visualizing the measured value and the predicted value of the groundwater level, the manager and the operator can recognize the current groundwater level in the improvement target ground with real-time.

<本発明の地下水位低下工法及び地下水位低下システムの利点>
地下水位低下工法及び地下水位低下システムでは、隣り合う揚水井戸50の間に、観測孔60が存在することが好ましい。すなわち、隣り合う揚水井戸50の間に観測孔60が存在する場合には、観測孔60の地下水位に基づいて各地点の地下水位を把握することができる。
<Advantages of groundwater level lowering method and groundwater level lowering system of the present invention>
In the groundwater level lowering method and the groundwater level lowering system, it is preferable that an observation hole 60 exists between adjacent pumping wells 50. That is, when the observation hole 60 exists between adjacent pumping wells 50, the groundwater level at each point can be grasped based on the groundwater level of the observation hole 60.

しかし、実際には種々の制約があり、揚水井戸50と観測孔60とを均等に配置することは困難である場合が多く、揚水井戸50及び観測孔60の数にも制限がある。このような状況下において、本発明の地下水位低下工法及び地下水位低下システムでは、各揚水井戸50内及び各観測孔60内の地下水位を計測するとともに、各揚水井戸50の水位変化量と各観測孔60の水位変化量との関係を定量的に数値化することにより、各揚水井戸50の水位変化が各観測孔60の水位変化に与える影響度を求め、定量的に数値化した影響度に応じて、揚水井戸50における揚水を制御するため、適切な揚水管理を行うことができる。また、今後の地下水位の予測を行うことができるので、より一層、適切な揚水管理を行うことができる。 However, in practice, there are various restrictions, and it is often difficult to arrange the pumping wells 50 and the observation holes 60 equally, and the number of the pumping wells 50 and the observation holes 60 is also limited. Under such circumstances, in the groundwater level lowering method and the groundwater level lowering system of the present invention, the groundwater level in each pumping well 50 and each observation hole 60 is measured, and the amount of water level change in each pumping well 50 and each By quantitatively quantifying the relationship with the water level change amount of the observation hole 60, the degree of influence that the water level change of each pumping well 50 has on the water level change of each observation hole 60 is obtained, and the quantitatively expressed degree of influence. Accordingly, since the pumping in the pumping well 50 is controlled, appropriate pumping management can be performed. Moreover, since the future groundwater level can be predicted, more appropriate pumping management can be performed.

11 手動制御装置
12 自動制御マイコン
13 AD変換器
14 ドライ接点
15 リレー
16 アンプ
17 ポンプ起動盤
18 電極
19 揚水パイプ
20 揚水水位計
21 圧力計
22 流量計
30 統合コンピュータ
31 UPS・バックアップHDD
32 トータル制御マイコン
33 HUB
40 統括コンピュータ
50 揚水井戸
60 観測孔
70 HUB
80 放流タンク
81 制御盤
82 レベル計
83 AD変換器
85 リレー
86 アンプ
87 ポンプ起動盤
88 電極
89 放流水パイプ
90 放流水ポンプ
91 放流水位計
92 緊急遮断弁
100 制御装置
110 揚水影響度定量化手段
120 揚水制御手段
130 可視化表示手段
140 地下水位予測手段
200 揚水ポンプ
300 観測水位計
400 表示装置
DESCRIPTION OF SYMBOLS 11 Manual controller 12 Automatic control microcomputer 13 AD converter 14 Dry contact 15 Relay 16 Amplifier 17 Pump starting panel 18 Electrode 19 Pumping pipe 20 Pumping water level meter 21 Pressure gauge 22 Flow meter 30 Integrated computer 31 UPS, backup HDD
32 Total control microcomputer 33 HUB
40 General computer 50 Pumping well 60 Observation hole 70 HUB
80 Discharge tank 81 Control panel 82 Level meter 83 AD converter 85 Relay 86 Amplifier 87 Pump start panel 88 Electrode 89 Discharge water pipe 90 Discharge water pump 91 Discharge water level meter 92 Emergency shut-off valve 100 Control device 110 Pumping influence degree quantification means 120 Pumping control means 130 Visualization display means 140 Groundwater level prediction means 200 Pumping pump 300 Observation water level meter 400 Display device

Claims (4)

改良対象地盤中の地下水位を均一に低下させるための地下水位低下システムであって、
改良対象地盤中に形成した複数の揚水井戸と、当該改良対象地盤中の地下水位を計測する複数の観測孔とを備え、
前記揚水井戸内に設けられ、当該揚水井戸の地下水位を計測するための揚水井戸水位計測手段と、
前記観測孔内に設けられ、当該観測孔の地下水位を計測するための観測孔水位計測手段と、
前記各揚水井戸に設けられ、前記各揚水井戸中から地下水を揚水するための揚水手段と、
前記各揚水手段により揚水を行い、前記揚水井戸水位計測手段により各揚水井戸内の地下水位を計測するとともに、前記観測孔水位計測手段により前記各観測孔内の地下水位を計測して、前記各揚水井戸の水位変化量と前記各観測孔の水位変化量との関係を定量的に数値化することにより、前記各揚水井戸の水位変化が前記各観測孔の水位変化に与える影響度を求める揚水影響度定量化手段と、
前記各揚水手段により揚水を行って、各揚水井戸における地下水位を一様に所定の深度とした後、前記揚水井戸水位計測手段により各揚水井戸内の地下水位を計測するとともに、前記観測孔水位計測手段により各観測孔内の地下水位を計測し、定量的に数値化した前記影響度に応じて、前記各揚水井戸における地下水位が前記所定の深度を維持するように、前記各揚水手段による揚水を制御する揚水制御手段と、
を備えたことを特徴とする地下水位低下システム。
A groundwater level lowering system for uniformly lowering the groundwater level in the ground to be improved,
A plurality of pumping wells formed in the ground to be improved and a plurality of observation holes for measuring the groundwater level in the ground to be improved,
A pumping well water level measuring means provided in the pumping well for measuring the groundwater level of the pumping well;
An observation hole water level measuring means provided in the observation hole for measuring the groundwater level of the observation hole;
Pumping means provided in each pumping well, for pumping up groundwater from each pumping well;
Pumping by each pumping means, measuring the groundwater level in each pumping well by the pumping well water level measuring means, measuring the groundwater level in each observation hole by the observation hole water level measuring means , Pumping to obtain the degree of influence of the water level change of each pumping well on the water level change of each observation hole by quantitatively quantifying the relationship between the water level change amount of the pumping well and the water level change amount of each observation hole Impact quantification means,
After pumping up by each pumping means and uniformly setting the groundwater level in each pumping well to a predetermined depth, the groundwater level in each pumping well is measured by the pumping well water level measuring means, and the observation hole water level By measuring the groundwater level in each observation hole by the measuring means and according to the degree of influence quantitatively quantified , by each pumping means, the groundwater level in each pumping well maintains the predetermined depth. Pumping control means for controlling pumping,
A groundwater level lowering system characterized by comprising:
前記揚水井戸水位計測手段により計測した各揚水井戸内の地下水位と、前記観測孔水位計測手段により計測した各観測孔の地下水位とに基づき、前記改良対象地盤全体の地下水位を可視化表示する可視化表示手段を備えたことを特徴とする請求項1に記載の地下水位低下システム。   Visualization that visualizes and displays the groundwater level of the entire ground to be improved based on the groundwater level in each pumping well measured by the pumping well water level measuring means and the groundwater level of each observation hole measured by the observation hole water level measuring means The groundwater level lowering system according to claim 1, further comprising display means. 前記定量的に数値化した各観測井戸に対する各揚水井戸の影響度と、現在の各揚水井戸の地下水位及び観測孔の地下水位に基づいて、今後の地下水位を予測する地下水位予測手段を備えたことを特徴とする請求項1又は2に記載の地下水位低下システム。 And influence of the pumping wells for each observation wells turned into the quantitative numerical values based on the groundwater level of the current ground water level and the observation hole of the pumping wells, the groundwater level prediction means for predicting the groundwater level in the future The groundwater level lowering system according to claim 1, wherein the groundwater level lowering system is provided. 改良対象地盤中の地下水位を均一に低下させるための地下水位低下工法であって、
改良対象地盤中に、複数の揚水井戸と、当該改良対象地盤中の地下水位を計測する複数の観測孔とを構築し、
前記各揚水井戸から揚水を行い、前記各揚水井戸内及び各観測孔内の地下水位を計測して、前記各揚水井戸の水位変化量と前記各観測孔の水位変化量との関係を定量的に数値化することにより、前記各揚水井戸の水位変化が前記各観測孔の水位変化に与える影響度を求め、
前記各揚水井戸における地下水位が一様に所定の深度となるまで揚水を行い、
前記各揚水井戸内及び各観測孔内の地下水位を計測するとともに、定量的に数値化した前記影響度に応じて、前記改良対象地盤の全域における地下水位が所定の深度を維持するように、前記揚水井戸による揚水を行う、
ことを特徴とする地下水位低下工法。
A groundwater level lowering method for uniformly reducing the groundwater level in the ground to be improved,
In the ground to be improved, a plurality of pumping wells and a plurality of observation holes for measuring the groundwater level in the ground to be improved are constructed.
Pumping water from each pumping well, measuring the groundwater level in each pumping well and each observation hole, and quantitatively determining the relationship between the water level change in each pumping well and the water level change in each observation hole By obtaining a numerical value, the degree of influence that the water level change of each pumping well has on the water level change of each observation hole is obtained,
Pumping until the groundwater level in each pumping well is uniformly at a predetermined depth,
While measuring the groundwater level in each pumping well and in each observation hole, according to the quantitatively quantified impact, so that the groundwater level in the entire area of the ground to be improved maintains a predetermined depth, Performing pumping by the pumping well,
A groundwater level lowering method characterized by that.
JP2014061967A 2014-03-25 2014-03-25 Groundwater level lowering method and groundwater level lowering system Active JP6347972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061967A JP6347972B2 (en) 2014-03-25 2014-03-25 Groundwater level lowering method and groundwater level lowering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061967A JP6347972B2 (en) 2014-03-25 2014-03-25 Groundwater level lowering method and groundwater level lowering system

Publications (3)

Publication Number Publication Date
JP2015183461A JP2015183461A (en) 2015-10-22
JP2015183461A5 JP2015183461A5 (en) 2017-04-20
JP6347972B2 true JP6347972B2 (en) 2018-06-27

Family

ID=54350325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061967A Active JP6347972B2 (en) 2014-03-25 2014-03-25 Groundwater level lowering method and groundwater level lowering system

Country Status (1)

Country Link
JP (1) JP6347972B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727947B2 (en) * 2016-06-21 2020-07-22 前田建設工業株式会社 Groundwater level lowering method
CN110424429A (en) * 2019-07-24 2019-11-08 武汉武建机械施工有限公司 Dewatering well pump drainage automatic control system
KR102289409B1 (en) * 2019-11-27 2021-08-12 주식회사 지오그린21 System and method for optimized control of groundwater well cluster for sustainable water uses
CN114908784B (en) * 2022-05-11 2024-05-14 浙江泛海交通工程有限公司 Maintenance method of high-water-level pit after construction
CN116592973A (en) * 2023-07-17 2023-08-15 陕西瀚泰水利水电勘测设计有限公司 Groundwater level monitoring devices with safeguard function for hydrogeological exploration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013436A (en) * 2001-07-03 2003-01-15 Ohbayashi Corp System and method for controlling groundwater level
JP2006221402A (en) * 2005-02-10 2006-08-24 Shimizu Corp Underground water management system in underground water development institution
JP2006249764A (en) * 2005-03-10 2006-09-21 Shimizu Corp Calculation method of allowable pumping discharge when pumping underground water
JP4824435B2 (en) * 2006-03-08 2011-11-30 鹿島建設株式会社 Groundwater level lowering method

Also Published As

Publication number Publication date
JP2015183461A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6347972B2 (en) Groundwater level lowering method and groundwater level lowering system
JP2007239286A (en) Construction method for lowering underground water level
KR101933091B1 (en) Tunnel system for controlling the inflow and control method thereof
KR20190081245A (en) Auto cooling system using sonic pipe of cast­in place pile
CN111287951A (en) Detection device, detection method, and computer-readable non-transitory storage medium
JP5132506B2 (en) Air leakage prevention device and air leakage prevention method in pneumatic caisson method
JP5541533B2 (en) Estimating method of water leakage position of earth retaining wall and ground excavation method
JP6447046B2 (en) Groundwater pumping management system and groundwater pumping method
JP2015183461A5 (en)
US8706419B1 (en) System and method for monitoring the change in permeability of a water well
KR20200086359A (en) Pumps and how to control them
KR101809092B1 (en) Method for operating inverter booster pump to save power by a flow-rate prediction
CN116122799A (en) Real-time intelligent monitoring and alarming device and method for overflow leakage of drilling fluid
CN109556769B (en) A screen lever type force transducer device that leaks for plastic concrete
CN206638188U (en) The device of detecting shaft chamber interior drainage pipeline in the case of a kind of water level is higher
KR101201482B1 (en) Full pipe flowmeter
CN111928817B (en) Deep pit foundation engineering monitoring system and method adopting multi-ring-support settlement horizontal monitoring points
CN205426669U (en) Normal position detection device based on collapsible loess
JP6365979B2 (en) How to prevent ground liquefaction
JP2006348482A (en) System for automatically adjusting water level in workroom in pneumatic caisson construction method, method and program for managing water level in workroom in pneumatic caisson construction method, and recording medium
US8006766B2 (en) Method and apparatus for controlling the speed of a pump in a well
JP6727947B2 (en) Groundwater level lowering method
JP2022048501A (en) Recharge measurement management system
JP2003013436A (en) System and method for controlling groundwater level
JP5030518B2 (en) Drainage measurement method for advanced stand-by vertical pump

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6347972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150