JP6365979B2 - How to prevent ground liquefaction - Google Patents
How to prevent ground liquefaction Download PDFInfo
- Publication number
- JP6365979B2 JP6365979B2 JP2014193640A JP2014193640A JP6365979B2 JP 6365979 B2 JP6365979 B2 JP 6365979B2 JP 2014193640 A JP2014193640 A JP 2014193640A JP 2014193640 A JP2014193640 A JP 2014193640A JP 6365979 B2 JP6365979 B2 JP 6365979B2
- Authority
- JP
- Japan
- Prior art keywords
- level
- pumping
- water level
- groundwater
- earthquake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 113
- 239000003673 groundwater Substances 0.000 claims description 110
- 238000005086 pumping Methods 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 33
- 230000002265 prevention Effects 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 description 11
- 238000007596 consolidation process Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000035939 shock Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 4
- 206010036086 Polymenorrhoea Diseases 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011178 precast concrete Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Images
Landscapes
- Foundations (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
本発明は、主に構造物下の砂質地盤等の地盤の液状化を防止するための地盤の液状化防止方法に関する。 The present invention mainly relates to a ground liquefaction prevention method for preventing liquefaction of ground such as sandy ground under a structure.
飽和状態にある砂質地盤等の地盤(以下、液状化層という)では、地震動等による衝撃で地盤中の土砂粒子間の水(間隙水)の圧力が急激に上昇することにより土砂粒子間の均衡が崩れ、土砂が液体の如き挙動を示す現象、即ち、地盤の液状化現象が問題視されている。 In the ground such as sandy ground that is saturated (hereinafter referred to as liquefaction layer), the pressure between water (pore water) in the ground suddenly increases due to the impact of earthquake motion, etc. The phenomenon that the balance is broken and the earth and sand behave like a liquid, that is, the liquefaction phenomenon of the ground is regarded as a problem.
従来、液状化が懸念される地盤には、防災上の観点から、予め地盤の液状化を防止する対策を講じる必要があり、その液状化対策としては、液状化層を遮水壁で囲み、その遮水壁内の地下水をポンプで汲み上げて液状化層の地下水位を下げ、低下した地下水位より上層を不飽和状態にすることにより地盤の液状化を防止する地下水位低下工法が知られている(例えば、特許文献1を参照)。 Conventionally, from the viewpoint of disaster prevention, it is necessary to take measures to prevent liquefaction of the ground in advance from the viewpoint of disaster prevention, and as a countermeasure against liquefaction, the liquefied layer is surrounded by a water shielding wall, There is a known groundwater level lowering method that prevents ground liquefaction by pumping the groundwater in the impermeable wall to lower the groundwater level of the liquefied layer and making the upper layer unsaturated from the lowered groundwater level. (For example, refer to Patent Document 1).
この地下水位低下工法には、下端にウェルポイントを備えた集水管を液状化層に埋め込み、この集水管を通して地上に設置されたポンプによって地下水を汲み上げるウェルポイント工法によるものと、液状化層に集水井を形成し、その集水井の底に揚水手段を設置し、この揚水手段により地下水を地上に排出するディープウェル工法によるものとがある。 In this groundwater level lowering method, a water collection pipe with a well point at the lower end is embedded in the liquefied layer, and the groundwater is pumped up by a pump installed on the ground through this water collection pipe. There is a deep well method in which a water well is formed, a pumping means is installed at the bottom of the catchment well, and groundwater is discharged to the ground by this pumping means.
一方、この種の地下水位低下工法では、地下水位を低下させるほど液状化防止効果が高くなるが、地下水位の低下に伴い有効応力が増大し、上載圧力が増加する為、液状化層下に粘土層が存在する場合、大幅に水位を低下させると圧密沈下が生じるという問題があった。 On the other hand, in this type of groundwater level lowering method, the lower the groundwater level, the higher the effect of preventing liquefaction.However, as the groundwater level decreases, the effective stress increases and the mounting pressure increases. When a clay layer is present, there is a problem that consolidation settlement occurs when the water level is greatly lowered.
そこで、従来では、低下させた地下水位より下層の地盤についても拘束圧が増すことで液状化強度が向上することを鑑み、地下水位を大幅に低下させずに地下水位を地表より所定の深度に低下させた状態で維持することにより、液状化防止効果と地盤沈下防止との両立を図っている。 Therefore, in the past, in view of the fact that the liquefaction strength is improved by increasing the confining pressure for the ground below the lowered groundwater level, the groundwater level is set to a predetermined depth from the ground without significantly lowering the groundwater level. By maintaining in a lowered state, both the effect of preventing liquefaction and the prevention of land subsidence are achieved.
この種の地下水位低下工法における地下水位の低下量(自然地下水位より何メートル低下させるか)については、地盤調査の結果に基づき地表から所定の深さ毎にある各層の液状化に対する安全率(液状化抵抗率;以下、FL値という)を算出し、このFL値に基づき地盤各層の液状化に対する安全性を評価すること(以下、FL法)により決定することが原則となっている。 Regarding the amount of groundwater level reduction (how many meters below natural groundwater level) in this type of groundwater level lowering method, the safety factor against liquefaction of each layer at a given depth from the ground surface based on the ground survey results ( liquefaction resistance; hereinafter, to calculate the F L value hereinafter), to evaluate the safety against ground liquefaction layers on the basis of the F L value (hereinafter, taken in principle be determined by F L method) Yes.
具体的には、FL値が1以下の層を液状化の可能性がある層と判断し、液状化の可能性があると判断された層が地下水位低下工法の適用範囲に含まれるように地下水位の低下量を決定する。 Specifically, a layer of F L value is 1 or less is determined that the layer of potential liquefaction, so that the layer is determined that there is a possibility of liquefaction is included in the scope of groundwater drawdown method Determine the amount of groundwater level drop.
しかしながら、FL値の大小、深度、層厚等によって各層での液状化の程度や地上構造物へ及ぼす影響が異なるにも関わらず、FL法のみに基づきFL値が1以下の全ての層が改良されるように地下水位の低下量を設定すれば、地下水位を大幅に低下させざるを得ず、上記した圧密沈下の問題が生じることから、FL法のみに基づき地下水位の低下量を決定することは運用上困難であった。 However, the magnitude of F L value, the depth, even though the different effects the degree and ground structures liquefaction in each by a layer thickness and the like, F L value based only on the F L method all of 1 or less by setting the amount of decrease in groundwater level as the layer is improved, it is inevitable to reduce significantly the groundwater level, since the consolidation settlement of the problems described above can occur, lowering of groundwater level based only on F L Law It was difficult to determine the amount.
そこで、一般的には、液状化による影響度を示す指数(液状化指数;以下、PL値という)を導入し、FL値の大小、深度、層厚等による各層での液状化の程度や地上の構造物へ及ぼす影響を総合的に評価するようにし(以下、PL法という)、PL値が5以下となるように地下水位の低下量を設定しつつ、当該地下水位の低下量を地表から所望の深度に抑えることにより、液状化防止効果と地盤沈下防止との両立が図られている。 Therefore, in general, index indicating the degree of impact of liquefaction (liquefaction index; hereinafter, P L value of) introduced, the magnitude of F L values, depth, degree of liquefaction in each by layer thickness, etc. and ground the influence the structure so as to comprehensively evaluate (hereinafter, referred to as P L method), while setting the amount of decrease in groundwater level as P L value is 5 or less, lowering of the groundwater level By suppressing the amount from the ground surface to a desired depth, both the effect of preventing liquefaction and the prevention of land subsidence are achieved.
しかしながら、大地震(以下、本震という)により間隙水圧が上昇し液状化或いは液状化する危険性が増した液状化層では、本震の衝撃による液状化現象が停止又は回避された後も間隙水圧が高い状態にあるため、その後に頻発する余震の小さな衝撃で液状化するおそれがあり、この余震による液状化が被害の拡大を招く大きな問題になっている。 However, in a liquefied layer where the pore water pressure has increased due to a large earthquake (hereinafter referred to as the main shock) and the risk of liquefaction or liquefaction has increased, the pore water pressure remains even after the liquefaction phenomenon due to the shock of the main shock is stopped or avoided. Since it is in a high state, there is a risk of liquefaction due to small aftershocks that occur frequently thereafter, and liquefaction due to this aftershock has become a major problem that causes damage to spread.
従って、上述したPL法に基づき地下水位の低下量を決定する従来の地下水位低下工法では、低下させた地下水位より下層にFL値が1以下の液状化層が残存し、その液状化層が本震後に頻発する余震によって想定した地震規模よりも小さな衝撃で液状化するおそれがあった。 Therefore, in the conventional groundwater drawdown method for determining the amount of decrease in the groundwater level on the basis of the above-mentioned P L method, F L value is 1 or less liquid layer is left in a lower layer than the groundwater level was lowered, its liquefaction There was a risk that the stratum would be liquefied by an impact smaller than that assumed by the aftershocks that occur frequently after the main shock.
そこで、本発明は、このような従来の問題に鑑み、液状化防止効果と地盤沈下防止との両立を図りつつ、余震による再液状化の被害を最小に抑えることができる地盤の液状化防止方法の提供を目的としてなされたものである。 Therefore, in view of such conventional problems, the present invention provides a ground liquefaction prevention method capable of minimizing the damage of reliquefaction due to aftershocks while achieving both a liquefaction prevention effect and ground subsidence prevention. It was made for the purpose of providing.
上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、液状化層に集水体を設置し、該集水体に流入した水を揚水手段により揚水し、前記液状化層の地下水位を下げることにより地盤の液状化を防止する地盤の液状化防止方法において、前記揚水手段の揚水量を制御する揚水制御手段と、地震動を検知する地震動検知手段とを使用し、前記揚水手段により前記液状化層の地下水を揚水し、所定の平常時水位まで地下水位を下げた後、前記揚水手段の揚水量を制御して前記平常時水位を維持しつつ、前記地震動検知手段により地震動を検知した際には、前記揚水手段の揚水量を増して地下水位を予め低下している前記平常時水位より低い地震時水位まで低下させ、該地震時水位を一定期間維持した後、地下水位を前記地震時水位より前記平常時水位に復帰させる地盤の液状化防止方法にある。
The feature of the invention according to
請求項2に記載の発明の特徴は、請求項1の構成に加え、前記液状化層の周囲に遮水壁を設置することにある。
A feature of the invention described in
請求項3に記載の発明の特徴は、請求項1又は2の構成に加え、地下水位を逐次計測しつつ、前記揚水手段を構成するポンプの稼動と停止を適宜繰り返すことにより前記平常時水位を維持し、地震動を検地した際には、前記ポンプの稼動を一定期間継続して予め低下している前記平常時水位より更に低い前記地震時水位まで地下水位を低下させ、前記一定期間経過後は、地下水位が前記平常時水位に復帰するまで前記ポンプを停止させ、然る後、前記ポンプの稼動と停止を適宜繰り返すことにより前記平常時水位を維持することにある。
The feature of the invention described in
請求項4に記載の発明の特徴は、請求項1〜3の何れか一項の構成に加え、前記地震時水位を維持する期間を余震頻発期とすることにある。
The feature of the invention described in claim 4 is that, in addition to the structure of any one of
本発明に係る地盤の液状化防止方法は、上述したように、液状化層に集水体を設置し、該集水体に流入した水を揚水手段により揚水し、前記液状化層の地下水位を下げることにより地盤の液状化を防止する地盤の液状化防止方法において、前記揚水手段の揚水量を制御する揚水制御手段と、地震動を検知する地震動検知手段とを使用し、前記揚水手段により前記液状化層の地下水を揚水し、所定の平常時水位まで地下水位を下げた後、前記揚水手段の揚水量を制御して前記平常時水位を維持しつつ、前記地震動検知手段により地震動を検知した際には、前記揚水手段の揚水量を増して地下水位を予め低下している前記平常時水位より低い地震時水位まで低下させ、該地震時水位を一定期間維持した後、地下水位を前記地震時水位より前記平常時水位に復帰させることにより、平常時には、地下水位低下による液状化防止効果と圧密沈下防止効果とを両立することができ、地震発生時には、地下水位低下による液状化防止効果の向上を迅速に図ることができる。また、地震時水位を維持する期間を限定することにより長期的な圧密沈下を防止することができる。 In the ground liquefaction prevention method according to the present invention, as described above, a water collecting body is installed in the liquefied layer, the water flowing into the water collecting body is pumped by the pumping means, and the groundwater level of the liquefied layer is lowered. In the ground liquefaction prevention method for preventing ground liquefaction, a pumping control means for controlling the pumping amount of the pumping means and a seismic motion detecting means for detecting earthquake motion are used, and the liquefaction by the pumping means is used. After pumping up the groundwater of the stratum and lowering the groundwater level to a predetermined normal water level, while controlling the pumping amount of the pumping means and maintaining the normal water level, when detecting the ground motion by the ground motion detection means Increases the pumping amount of the pumping means and lowers the groundwater level to an earthquake level lower than the normal water level that has been lowered in advance, and maintains the water level during the earthquake for a certain period of time, and then changes the groundwater level to the water level during the earthquake. More normal By returning to the water level, it is possible to achieve both the liquefaction prevention effect due to the groundwater level drop and the consolidation settlement prevention effect at normal times, and at the time of an earthquake, quickly improve the liquefaction prevention effect due to the groundwater level drop. Can do. Moreover, long-term consolidation settlement can be prevented by limiting the period during which the water level during an earthquake is maintained.
また、本発明において、前記液状化層の周囲に遮水壁を設置することにより、揚水による地下水位の低下を効率よく行うことができる。 Moreover, in this invention, the fall of the groundwater level by pumping can be efficiently performed by installing a water-impervious wall around the said liquefied layer.
更に、本発明において、地下水位を逐次計測しつつ、前記揚水手段を構成するポンプの稼動と停止を適宜繰り返すことにより前記平常時水位を維持し、地震動を検地した際には、前記ポンプの稼動を一定期間継続して予め低下している前記平常時水位より更に低い前記地震時水位まで地下水位を低下させ、前記一定期間経過後は、地下水位が前記平常時水位に復帰するまで前記ポンプを停止させ、然る後、前記ポンプの稼動と停止を適宜繰り返すことにより前記平常時水位を維持することにより、複雑な制御を必要とせず、地震発生時には好適に予め低下している水位を更に低い位置に下げることができる。 Furthermore, in the present invention, while continuously measuring the groundwater level, maintaining the normal water level by repeating the operation and stopping of the pump constituting the pumping means as appropriate, and detecting the ground motion, the operation of the pump The groundwater level is lowered to the level at the time of the earthquake that is lower than the normal water level that has been lowered in advance for a certain period of time, and after the certain period of time, the pump is turned on until the groundwater level returns to the normal water level. By stopping and then maintaining the normal water level by repeating the operation and stop of the pump as appropriate, complicated control is not required, and the water level that has been lowered in advance is preferably lower when an earthquake occurs Can be lowered into position.
更にまた、本発明において、前記地震時水位を維持する期間を余震頻発期とすることにより、余震による液状化を効率よく防止することができる。 Furthermore, in the present invention, liquefaction due to aftershocks can be efficiently prevented by setting the period during which the water level during the earthquake is maintained as a frequent aftershock period.
次に、本発明に係る地盤の液状化防止方法の実施態様を図1〜図3に示した実施例に基づいて説明する。 Next, an embodiment of the ground liquefaction prevention method according to the present invention will be described based on the examples shown in FIGS.
尚、図中符号1は石油タンク等の構造物、符号2は地盤の液状化層、符号3は液状化層2下の粘土層、符号NLは自然地下水位である。また、本実施例において液状化層2とは、含水した砂質地盤等のように飽和状態にあって液状化現象の発生が懸念される層をいう。
In the figure,
構造物1下の地盤には、砂質地盤等からなる液状化層2が存在し、本発明に係る地盤の液状化防止方法では、液状化層2に鉛直方向に向けて複数の集水体4,4を設置し、その集水体4,4に流入した水を揚水手段5により揚水し、液状化層2の地下水位を下げることにより地下水位より上層を不飽和状態とし、地盤の液状化を防止するようになっている。
The ground below the
また、この地盤の液状化防止方法では、揚水手段5の揚水量を制御する揚水制御手段6と、地震動を検知する地震動検知手段7とを使用し、平常時においては、地下水位を大幅に低下させずに地下水位を地表より所定の深度(平常時水位WL1)に低下させた状態で維持することにより、液状化防止効果と地盤沈下防止との両立を図りつつ地震発生に備え、地震発生後は、地下水位を迅速且つ大幅に地震時水位WL2まで下げることにより本震による液状化及び余震による再液状化を防止するようになっている。 Further, in this ground liquefaction prevention method, the pumping control means 6 for controlling the pumping amount of the pumping means 5 and the seismic motion detecting means 7 for detecting the seismic motion are used, and the groundwater level is greatly reduced in normal times. By maintaining the groundwater level at a predetermined depth (normal water level WL1) from the ground without causing the earthquake to occur, both earthquake prevention and ground subsidence can be achieved while preparing for an earthquake. Has been designed to prevent liquefaction due to the mainshock and reliquefaction due to aftershocks by rapidly and significantly lowering the groundwater level to the water level WL2 during an earthquake.
集水体4,4は、液状化層2の下端部に至る深さの井戸であって、揚水手段5により集水体4,4内に流入した地下水が地上に排出されるようになっている。
The water collectors 4, 4 are wells having a depth reaching the lower end of the
集水体4,4には、ストレーナー部(図示せず)が設けられ、ストレーナー部を通して地下水が集水体4,4内に流入するようになっている。 The water collectors 4, 4 are provided with strainer portions (not shown), and groundwater flows into the water collectors 4, 4 through the strainer portions.
揚水手段5は、集水体4,4の底部に設置される1又は複数の水中ポンプ等のポンプ5aと、集水体4,4内に挿入された揚水管5bとを備え、揚水管5bの下端がポンプ5aに連通接続され、ポンプ5aを動作させることにより揚水管5bを通して集水体4,4内に流入した水を地上まで揚水するようになっている。
The pumping means 5 includes a
尚、ポンプ5aの設置位置は、ポンプ性能や地盤条件等に基づき適宜決定し、例えば、1000L/分程度の揚水が可能なポンプ5aを使用する場合には、通常、2000〜4000m2に1箇所の割合で設置する。
In addition, the installation position of the
また、この揚水手段5は、揚水制御手段6によりポンプ動作を制御することにより揚水量を制御できるようになっている。 In addition, the pumping means 5 can control the pumping amount by controlling the pump operation by the pumping control means 6.
揚水制御手段6は、演算装置を含むコンピュータ機器等により構成され、地震動検知手段7及び地下水位計測手段8が有線又は無線で接続されており、地震動検知手段7及び地下水位計測手段8から送信された計測データに基づき揚水手段5を制御できるようになっている。 The pumping control means 6 is composed of computer equipment including an arithmetic unit, and the seismic motion detection means 7 and the groundwater level measurement means 8 are connected by wire or wirelessly, and transmitted from the seismic motion detection means 7 and the groundwater level measurement means 8. The pumping means 5 can be controlled based on the measured data.
地下水位計測手段8は、地下水位計を使用し、計測した地下水位データを揚水制御手段6に随時送信するようになっている。 The groundwater level measuring means 8 uses a groundwater level gauge and transmits the measured groundwater level data to the pumping control means 6 as needed.
地震動検知手段7は、例えば、地上に設置した加速度計を備え、地震動等によって生じる加速度を計測し、揚水制御手段6に随時送信するようになっている。 The seismic motion detection means 7 includes, for example, an accelerometer installed on the ground, measures acceleration caused by seismic motion and the like, and transmits it to the pumping control means 6 as needed.
遮水壁9は、液状化層2の底より深い位置まで埋め込まれた壁体が液状化層2を囲むように連続した形状に形成され、壁内外の地盤間で水の流通が遮断されている。
The water-
壁体の態様は、特に限定されないが、例えば、液状化層2の底より深く打ち込まれた鋼矢板や鋼管矢板等の矢板を互いに連結し、各矢板間の継手部を止水材で止水することにより構築してもよく、プレキャストコンクリート又は現場打ちによるコンクリート構造であってもよい。
Although the aspect of the wall body is not particularly limited, for example, sheet piles such as steel sheet piles and steel pipe sheet piles driven deeper than the bottom of the liquefied
次に、上述した構成を用いた具体的な地盤の液状化防止方法について説明する。 Next, a specific ground liquefaction prevention method using the above-described configuration will be described.
先ず、本発明方法の前段階として、液状化層2の状態を揚水試験等によって調査し、その地盤調査の結果、想定される地震規模、液状化による地表への影響等の諸条件に基づき液状化指数による評価法(以下、PL法という)を用いて平常時水位WL1を設定する。
First, as a pre-stage of the method of the present invention, the state of the liquefied
具体的には、地表から所定の深さ毎にある各層の液状化に対する安全率(液状化抵抗率;以下、FL値という)及びFL値に基づく液状化による影響度を示す指数(液状化指数;以下、PL値という)を用いて検討し、地下水位を低下させた際にPL値5以下を確保でき、且つ、自然地下水位NLより低く、地表変位に与える影響を鑑みて地表から一定の深さ(距離)を隔てた深度にあって、地下水位低下に伴う有効圧力の増加が大幅な圧密沈下に至らない程度に抑えられる深度に平常時水位WL1を設定する。 Specifically, the safety factor for the liquefaction of each layer from the surface to a predetermined depth (liquefaction resistivity; hereinafter, F L value hereinafter) and F L index indicating the degree of influence by liquefaction based on value (liquid exponent; hereinafter investigated using P L value of), when lowering the groundwater level can be secured below P L value of 5, and lower than the natural groundwater level NL, in view of the effect on surface displacements The normal water level WL1 is set to a depth that is a certain depth (distance) away from the ground surface and is suppressed to such a level that an increase in effective pressure due to a decrease in groundwater level does not lead to significant consolidation settlement.
尚、FL値は、次式に示すように、液状化抵抗比Rと検討地点の地盤内の各深さに発生する等価な繰り返しせん断応力比Lとの比によって定義され、FL値は、その値が小さいほど液状化に対する抵抗力が小さく、FL値が1以下の場合には、液状化の可能性があると判断する。 Incidentally, F L value, as shown in the following equation is defined by the ratio of the equivalent cyclic shear stress ratio L generated in each depth in the soil examination point and liquefaction resistance ratio R, F L value If the value is smaller, the resistance to liquefaction is smaller, and if the FL value is 1 or less, it is determined that there is a possibility of liquefaction.
ここで、τlは動的せん断強度(kN/m2)、τdは水平面に生じる等価な一定繰り返しせん断応力振り幅(kN/m2)、σ´zは有効土被り圧(kN/m2)である。 Here, τ l is the dynamic shear strength (kN / m 2 ), τ d is the equivalent constant repeated shear stress amplitude (kN / m 2 ) generated on the horizontal plane, and σ ′ z is the effective earth cover pressure (kN / m). 2 ).
一方、PL値は、次式に示すように、各層におけるFL値に地表面からの深さに関する重み関数w(z)を乗じ、それを所望の深さ範囲において積分することで定義され、過去の被害事例との比較からPL値が5以下の場合には、液状化の危険度が低いと判断する。 On the other hand, P L value, as shown in the following equation, multiplied by the weight function w (z) relating to the depth from the ground surface to F L value in each layer, which it is defined by integrating in a desired depth range , if the comparison with the past damage case P L value is 5 or less, it is determined that a low risk of liquefaction.
但し、F =1−FL(FL<1.0)、F =0(FL≧1.0)、Dは深さ(m)であり、重み関数には、w(z)=10−0.5zを用いる。 Where F = 1−F L (F L <1.0), F = 0 (F L ≧ 1.0), D is the depth (m), and w (z) = 10 for the weight function. -0.5z is used.
尚、平常時水位WL1は、深さ方向において上限と下限とが設定され、この上限と下限との間の一定範囲内で上下動が許容されている。 The normal water level WL1 has an upper limit and a lower limit in the depth direction, and vertical movement is allowed within a certain range between the upper limit and the lower limit.
次に、実際に平常時の地下水位低下工程(S1)を開始する。 Next, the normal groundwater level lowering step (S1) is actually started.
先ず、揚水手段5、即ち、全ポンプ5aをフル稼働させ(S11)、集水体4,4内に流入した地下水の揚水を開始し、図2に示すように、自然地下水位NLから平常時水位WL1まで低下させる。 First, the pumping means 5, that is, all pumps 5 a are fully operated (S 11), and the pumping of groundwater flowing into the water collectors 4 and 4 is started. As shown in FIG. 2, the normal water level from the natural groundwater level NL is started. Reduce to WL1.
その際、地下水位計測手段8により逐次地下水位を計測し(S12)、地下水位が平常時水位WL1に到達するまでは全ポンプの稼働を継続し(L11)、平常時水位WL1まで低下したら(S13)、揚水制御手段6は、地下水位計測手段8からの計測データに基づき、揚水手段5による揚水量を制御し(S14)、地下水位を平常時水位WL1に維持する。 At that time, the groundwater level is sequentially measured by the groundwater level measuring means 8 (S12), and the operation of all the pumps is continued until the groundwater level reaches the normal water level WL1 (L11). S13), the pumping control means 6 controls the amount of pumping by the pumping means 5 based on the measurement data from the groundwater level measuring means 8 (S14), and maintains the groundwater level at the normal water level WL1.
地下水位を平常時水位WL1に維持するには、例えば、図1(b)に示すように、地下水位が平常時水位WL1より低下した場合にポンプ5aを停止する工程(S14)と、地下水位が平常時水位WL1より上昇した場合にポンプ5aを稼働させる工程(S11)とを繰り返すようにする。尚、地下水位を平常時水位WL1に維持するには、ポンプ5aの出力を調節することにより制御してもよい。
In order to maintain the groundwater level at the normal water level WL1, for example, as shown in FIG. 1B, the step of stopping the
そして、地震動が検知されるまでこの平常時の地下水位低下工程を繰り返し(L1)、図2に示すように、地下水位を平常時水位WL1に維持する。 Then, the normal groundwater level lowering process is repeated until an earthquake motion is detected (L1), and the groundwater level is maintained at the normal water level WL1 as shown in FIG.
この地下水位が平常時水位WL1に維持された状態においては、自然地下水位NLより所望の深度だけ地下水位が低下した状態が維持されているので、平常時水位WL1より上層の地盤2aは、水が除かれた不飽和状態にあり、平常時水位WL1より下層2bは、拘束圧が増すことで液状化強度が向上しているので、一定規模の地震(以下、本震という)が発生しても液状化を好適に防止できる。
In the state where the groundwater level is maintained at the normal water level WL1, since the groundwater level is maintained lower than the natural groundwater level NL by a desired depth, the
また、この状態において、本震が発生すると、その地震動が地震動検知手段7によって検知され(S2)、その検知信号が揚水制御手段6に送信され、揚水制御手段6は、揚水手段5の出力を上昇、即ち、全ポンプ5aをフル稼働させて揚水量を増加させ(S3)、図3に示すように、地下水位を平常時水位WL1より更に低い地震時水位WL2まで低下させる。
In this state, when a mainshock occurs, the ground motion is detected by the ground motion detection means 7 (S2), the detection signal is transmitted to the pumping control means 6, and the pumping control means 6 increases the output of the pumping means 5. That is, all
尚、地震時水位WL2は、FL値に基づく評価法(以下、FL法という)を用い、平常時水位WL1より大幅に低下させた深度にあって、平常時水位WL1より下層に残存するFL値が1以下である全ての層が地下水位の低下により非飽和状態になるように(改良範囲に含まれるように)設定されることが好ましく、更には、液状化層2の下端部に至る深度であることが好ましい。
Incidentally, seismic water level WL2, the evaluation method based on F L value (hereinafter, referred to as F L method) using, in the depth was significantly reduced from normal time water level WL1, remaining lower than normal time water level WL1 It is preferable that all layers having a FL value of 1 or less are set so as to become unsaturated due to a decrease in groundwater level (so as to be included in the improved range), and further, the lower end of the liquefied
その際、地下水位が自然地下水位NLより低い平常時水位WL1に予め下げられているので、本震発生から短時間で地震時水位WL2まで低下させることができ、地下水位の低下により間隙水圧が上昇する液状化層2の水が除かれ、飽和状態になるので、余震の衝撃による液状化を防止できる。
At that time, since the groundwater level is lowered to the normal water level WL1 which is lower than the natural groundwater level NL in advance, it can be lowered from the occurrence of the main shock to the water level WL2 during the earthquake in a short time, and the pore water pressure increases due to the groundwater level drop Since the water in the liquefied
具体的には、空隙率n=40%の砂地盤において、1000L/分の揚水性能を備えるポンプ5aを使用した場合、そのポンプ5aを地震発生から24時間フル稼働すれば1日で1440m3の地下水を排除することができるので、地下水位の低下量は、地下水位低下量=1440/(ポンプ1台当たりの稼働範囲面積×空隙率n)で求められ、2000m2に一箇所ポンプを設置した場合では、1日で平常時水位WL1から1.8m(=1440/(2000×0.4)地下水位を下げることができ、4000m2に1箇所ポンプを設置した場合では、1日で平常時水位WL1より0.9m(=1440/(4000×0.4)の地下水位を下げることができる。
Specifically, when a
そして、一定期間、例えば、余震頻発期の間は、揚水量を増した状態、即ち、全ポンプ5aのフル稼働を継続し(L2)、地下水位を自然地下水位NLより大幅に低下させた地震時水位WL2を維持し、液状化層2の地震時水位WL2より上層を水が除かれて不飽和な状態とし、余震動による液状化を防止する。
And, for a certain period, for example, during the aftershock frequent period, the pumping amount is increased, that is, the full operation of all
余震頻発期は、特に限定されないが、一般的に比較的規模の大きな余震の発生が予想される24時間程度に設定する。また、地震規模によって余震頻発期を変更し、適宜選択するようにしてもよい。 Although the aftershock frequent occurrence period is not particularly limited, it is generally set to about 24 hours when a relatively large aftershock is expected to occur. Further, the aftershock frequent occurrence period may be changed depending on the magnitude of the earthquake, and may be appropriately selected.
次に、一定期間、即ち、余震頻発期が経過したら(S4)、一旦、全ポンプ5aを停止し(S5)、地下水位を平常時水位WL1に復帰させ(L3)、然る後、 図1(a)の平常時の地下水位低下工程S1、即ち、地下水位が平常時水位WL1に維持された状態に戻る(L4)。
Next, after a certain period, that is, aftershock frequent period (S4), all the
このように構成された本発明方法では、平常時に地下水位を平常時水位WL1まで低下させた状態を維持し、大幅に地下水位を低下させることがないので、有効応力増加を抑えることによって圧密沈下が防止され、この圧密沈下防止効果と地下水位低下による液状化防止効果とが両立されている。 In the method of the present invention configured as described above, the groundwater level is normally lowered to the normal water level WL1, and the groundwater level is not significantly lowered. Therefore, the consolidation settlement is suppressed by suppressing an increase in effective stress. This prevents both the consolidation settlement effect and the liquefaction prevention effect due to lowering of the groundwater level.
一方、地震発生時には、地震動を検知して揚水量を増加させ、地下水位を平常時水位WL1から地震時水位WL2に低下させるので、小さな衝撃で液状化が生じ易い状態にある余震頻発期の液状化を強固に防止できる。 On the other hand, when an earthquake occurs, the groundwater level is decreased from the normal water level WL1 to the water level WL2 during the earthquake by detecting the ground motion and increasing the pumped water level. Can be firmly prevented.
また、地震時水位WL2まで地下水位を下げる際には、予め地下水位が平常時水位WL1まで低下させてあるので短期間で地震時水位WL2まで低下させることができ、地震動及び余震に迅速に対応することができる。 In addition, when the groundwater level is lowered to the water level WL2 at the time of the earthquake, the groundwater level is lowered to the normal water level WL1 in advance, so it can be lowered to the water level WL2 at the time of the earthquake in a short period of time, and it can respond quickly to earthquake motion and aftershocks. can do.
更に、地下水位を大幅に下げる期間を一定期間、例えば、余震頻発期に限定し、一定期間経過後に平常時水位WL1に復帰させるので、構造物1に多大な問題が生じる長期的な圧密沈下を防止することができる。 Furthermore, the period during which the groundwater level is significantly lowered is limited to a certain period, for example, the frequent aftershock period, and after a certain period, the normal water level WL1 is restored. Can be prevented.
尚、上述の実施例では、揚水手段5に集水体4,4の底部にポンプ5aを設置するディープウェルを使用した例について説明したが、ポンプ5aを地上に設置するウェルポイントを用いてもよい。
In addition, although the above-mentioned Example demonstrated the example which used the deep well which installs the
また、上述の実施例のように液状化層2の周囲に遮水壁9を設置することが好ましいが、必ずしも遮水壁9を設ける必要はない。
Moreover, although it is preferable to install the
NL 自然地下水位
WL1 平常時水位
WL2 地震時水位
1 構造物
2 液状化層
3 粘土層
4 集水体
5 揚水手段
5a ポンプ
5b 揚水管
6 揚水制御手段
7 地震動検知手段
8 地下水位計測手段
9 遮水壁
NL Natural groundwater level WL1 Normal water level WL2
Claims (4)
前記揚水手段の揚水量を制御する揚水制御手段と、地震動を検知する地震動検知手段とを使用し、
前記揚水手段により前記液状化層の地下水を揚水し、所定の平常時水位まで地下水位を下げた後、前記揚水手段の揚水量を制御して前記平常時水位を維持しつつ、前記地震動検知手段により地震動を検知した際には、前記揚水手段の揚水量を増して地下水位を予め低下している前記平常時水位より低い地震時水位まで低下させ、該地震時水位を一定期間維持した後、地下水位を前記地震時水位より前記平常時水位に復帰させることを特徴とする地盤の液状化防止方法。 In the ground liquefaction prevention method of installing a water collecting body in a liquefied layer, pumping water flowing into the water collecting body by a pumping means, and preventing ground liquefaction by lowering the groundwater level of the liquefied layer,
Using the pumping control means for controlling the pumping amount of the pumping means and the seismic motion detecting means for detecting the seismic motion,
After the groundwater of the liquefied layer is pumped by the pumping means, and the groundwater level is lowered to a predetermined normal water level, the amount of pumping of the pumping means is controlled to maintain the normal water level, and the seismic motion detection means When seismic motion is detected by the above, after increasing the pumping amount of the pumping means to lower the groundwater level to a lower earthquake level than the normal water level that has been lowered in advance, after maintaining the earthquake level for a certain period, A ground liquefaction prevention method, wherein the groundwater level is returned to the normal water level from the water level during the earthquake.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014193640A JP6365979B2 (en) | 2014-09-24 | 2014-09-24 | How to prevent ground liquefaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014193640A JP6365979B2 (en) | 2014-09-24 | 2014-09-24 | How to prevent ground liquefaction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016065376A JP2016065376A (en) | 2016-04-28 |
JP6365979B2 true JP6365979B2 (en) | 2018-08-01 |
Family
ID=55803960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014193640A Active JP6365979B2 (en) | 2014-09-24 | 2014-09-24 | How to prevent ground liquefaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6365979B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6727947B2 (en) * | 2016-06-21 | 2020-07-22 | 前田建設工業株式会社 | Groundwater level lowering method |
CN108374406A (en) * | 2018-02-07 | 2018-08-07 | 河海大学 | The anti-foundation liquefaction system and application method of automatic sensing P wave and Active Drainage |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4273475A (en) * | 1976-09-22 | 1981-06-16 | Raymond International Inc. | Load supporting structure |
JPH0753973B2 (en) * | 1990-06-04 | 1995-06-07 | 株式会社フジタ | Ground liquefaction prevention method |
JP2881260B2 (en) * | 1990-11-30 | 1999-04-12 | 清水建設株式会社 | Liquefaction prevention method for sand ground |
JP2003090032A (en) * | 2001-09-17 | 2003-03-28 | Kajima Corp | Liquefaction measure method by making use of a pumping type permeable pile and its device |
-
2014
- 2014-09-24 JP JP2014193640A patent/JP6365979B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016065376A (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vorogushyn et al. | Development of dike fragility curves for piping and micro-instability breach mechanisms | |
Ke et al. | Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil | |
Zhou et al. | Liquefaction mitigation mechanisms of stone column-improved ground by dynamic centrifuge model tests | |
Arulrajah et al. | Piezometer measurements of prefabricated vertical drain improvement of soft soils under land reclamation fill | |
JP6365979B2 (en) | How to prevent ground liquefaction | |
Hosseinpour et al. | VERIFICATION OF A PLANE STRAIN MODEL FOR THE ANALYSIS OF ENCASED GRANULAR COLUMNS. | |
Ramkrishnan et al. | Stabilization of seepage induced soil mass movements using sand drains | |
Agustawijaya | The stability analysis of the Lusi mud volcano embankment dams using FEM with a special reference to the dam point P10. D | |
JP6474101B2 (en) | Piping phenomenon evaluation method and piping phenomenon evaluation apparatus | |
Bo et al. | Geotechnical Instrumentation and Applications | |
Bouchelghoum et al. | Critical hydraulic head loss assessment for a circular sheet pile wall under axisymmetric seepage conditions | |
Shiau et al. | Application of pseudo-static limit analysis in geotechnical earthquake design | |
JP6277755B2 (en) | Ground improvement method and ground improvement system | |
Nguyen et al. | Proposed modification to CPT-based liquefaction method for post-vibratory ground improvement | |
CN104141294A (en) | Judgment method for soil body seepage failure caused by foundation pit supporting water stopping body defect | |
JP3678828B2 (en) | Prevention method of ground liquefaction directly under the structure | |
JP6432785B2 (en) | How to prevent ground liquefaction | |
Kevan et al. | Full-scale blast liquefaction testing in Arkansas USA to evaluate pile downdrag and neutral plane concepts | |
Bezuijen et al. | Blow-out pressures measured in a centrifuge model and in the field | |
Köhler et al. | Protection measures in order to increase safety of unstable clay slopes by unconventional pore pressure release techniques | |
Srivastava et al. | Stability analyses of 18 m deep excavation using micro piles | |
JP4331016B2 (en) | Method for obtaining depth of impermeable wall based on measured permeability anisotropy of ground | |
Shukla | Pile Settlement Induced From Soil Movement Due To Breakdown Of Retaining Wall | |
Oakes | Shaking table testing to evaluate effectiveness of prefabricated vertical drains for liquefaction mitigation | |
Mozó et al. | Evaluación de la estabilidad hidráulica de un muro pantalla en suelos granulares recargados por un acuífero no confinado |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6365979 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |