JP6432785B2 - How to prevent ground liquefaction - Google Patents
How to prevent ground liquefaction Download PDFInfo
- Publication number
- JP6432785B2 JP6432785B2 JP2015129805A JP2015129805A JP6432785B2 JP 6432785 B2 JP6432785 B2 JP 6432785B2 JP 2015129805 A JP2015129805 A JP 2015129805A JP 2015129805 A JP2015129805 A JP 2015129805A JP 6432785 B2 JP6432785 B2 JP 6432785B2
- Authority
- JP
- Japan
- Prior art keywords
- saturation
- groundwater
- ground
- water
- recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Foundations (AREA)
Description
本発明は、地盤の液状化を防止するための地盤の液状化防止方法に関する。 The present invention relates to a ground liquefaction prevention method for preventing ground liquefaction.
地盤の液状化の防止対策の一つとして、構造物の直下など、対象とする地盤を囲繞するように不透水土層に達する止水壁を構築し、その内側に設けた揚水井戸(ディープウェル)から揚水し、飽和した砂地盤の地下水位を低下させ、その後、地下水位を回復させることによって不飽和状態の地盤を作り出し、液状化の発生を防止する手法がある(例えば、特許文献1参照)。 As one of the measures to prevent ground liquefaction, a water well that reaches the impervious soil layer is constructed so as to surround the target ground, such as directly under the structure, and a pumping well (deep well) provided inside ), The groundwater level of the saturated sand ground is lowered, and then the groundwater level is recovered to create an unsaturated ground, thereby preventing the occurrence of liquefaction (see, for example, Patent Document 1) ).
一方、上記の液状化対策工法においては不飽和地盤の液状化強度が飽和度に依存するため、地下水位回復後の飽和度の設計が重要になる。しかしながら,従来こうした設計法は提案されていなかった。 On the other hand, in the above liquefaction countermeasure construction method, since the liquefaction strength of unsaturated ground depends on the saturation, the design of the saturation after recovery of the groundwater level becomes important. However, no such design method has been proposed.
本発明は、上記事情に鑑み、地下水位回復後の地盤の飽和度を正確に設計し、信頼性の高い液状化対策を可能にする地盤の液状化防止方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a ground liquefaction prevention method that accurately designs the degree of saturation of the ground after recovery of the groundwater level and enables highly reliable liquefaction countermeasures.
上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.
本発明の地盤の液状化防止方法は、井戸から揚水して地下水位を低下させる地下水位低下工程と、止水壁外部からの地下水の回り込みもしくは揚水した地下水の注水により地下水位を回復させて不飽和状態の地盤を作り出す地下水位回復工程とを備える地盤の液状化防止方法において、前記地下水位回復工程は、対象となる深度の原位置土の試料をサンプリングするサンプリング工程と、前記サンプリング工程で得た試料から得た供試体の初期飽和度Sr0を測定する初期飽和度測定工程と、下記の式(1)の通水量と飽和度の関係から、水位回復後の飽和度の深度分布を推定する飽和度深度分布推定工程とを備え、
前記飽和度深度分布推定工程の結果に基づいて水位回復後の飽和度を設計することを特徴とする
The ground liquefaction prevention method according to the present invention recovers the groundwater level by recovering the groundwater level by lowering the groundwater level by pumping water from a well and wrapping the groundwater from the outside of the water blocking wall or by injecting the pumped groundwater. In the ground liquefaction prevention method comprising a groundwater level recovery step for producing a saturated ground, the groundwater level recovery step is obtained by sampling a sample of an in-situ soil at a target depth, and the sampling step. The depth distribution of the saturation after the water level recovery is estimated from the initial saturation measurement process for measuring the initial saturation S r0 of the specimen obtained from the sample and the relationship between the water flow rate and the saturation in the following equation (1) And a saturation depth distribution estimating step,
The saturation after water level recovery is designed based on the result of the saturation depth distribution estimation step.
本発明によれば、地下水位の低下回復による地盤の飽和度分布を求め、精度よく好適に飽和度の管理を行うことができる。これにより、効果的で信頼性の高い液状化対策を実現することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, the saturation distribution of the ground by the fall recovery of a groundwater level can be calculated | required, and saturation management can be performed accurately and suitably. This makes it possible to realize an effective and highly reliable liquefaction countermeasure.
以下、図1から図10を参照し、本発明の一実施形態に係る地盤の液状化防止方法について説明する。 Hereinafter, a ground liquefaction prevention method according to an embodiment of the present invention will be described with reference to FIGS.
はじめに、本実施形態では、例えば、図1に示すように、構造物の直下など、対象とする地盤Gを囲繞するように不透水土層G1に達する止水壁1を構築し、その内側に設けた井戸(ディープウェル)2から揚水し、飽和した砂地盤の地下水位Wを低下させ(地下水位低下工程)、さらに井戸2から注水して地下水位を回復させることにより不飽和状態の地盤Gを作り出し(地下水位回復工程)、このように地盤Gの飽和度を変えることで液状化の発生を防止する。
First, in the present embodiment, as shown in FIG. 1, for example, a
ここで、既往の実験事実等により、液状化強度は、地盤の飽和度Srが90%になると飽和地盤(Sr=100%)の2倍、飽和度Srが70%になると飽和地盤の3倍になることが知られている(例えば図2:Yoshimi.Y,Tanaka.K and Tokimatsu.K:Liquefaction resistance of a partially saturated sand,Soils and Foundations,Vol.29,No.3,pp.157-162,Sep.1989.参照)。 Here, according to past experimental facts, the liquefaction strength is twice that of the saturated ground (Sr = 100%) when the ground saturation Sr is 90%, and three times that of the saturated ground when the saturation Sr is 70%. (Eg, Yoshimi.Y, Tanaka.K and Tokimatsu.K: Liquefaction resistance of a partially saturated sand, Soils and Foundations, Vol.29, No.3, pp.157-162 , Sep. 1989).
一方、飽和した砂地盤の液状化強度τ1/σv’は非排水の繰返し三軸試験や、一般社団法人日本建築学会の基礎構造設計指針に記されている補正N値=Naから図3を用いて算出される。また、Naは、次の式(2)、式(3)のように深度によって異なる。このため、飽和した砂地盤の液状化強度τ1/σv’は 深度別に算出されることになる。
なお、N1は検討深度における鉛直有効応力σv’で補正したN値、ΔNfは細粒分含有率FCに応じた補正N値の増分である。
On the other hand, the liquefaction strength τ 1 / σ v ′ of the saturated sand ground is a figure from the corrected N value = N a described in the unstructured cyclic triaxial test and the basic structure design guidelines of the Architectural Institute of Japan. 3 is calculated. Further, N a varies depending on the depth as in the following formulas (2) and (3). For this reason, the liquefaction strength τ 1 / σ v ′ of the saturated sand ground is calculated according to the depth.
N 1 is an N value corrected by the vertical effective stress σ v ′ at the examination depth, and ΔN f is an increment of the corrected N value corresponding to the fine particle content FC.
一方、深度別に作用する外力(等価な繰返しせん断応力比τd/σv’)は次の式(4)によって求められる。 On the other hand, the external force acting on each depth (equivalent cyclic shear stress ratio τd / σv ′) is obtained by the following equation (4).
次に、求めたτ1、τdから、液状化安全率FLを式(5)で算出できる。また、通常の液状化抑止の設計では各深度でFLが1を下回らないように設計する。 Next, the liquefaction safety factor FL can be calculated by Equation (5) from the obtained τ 1 and τ d . Moreover, in the design of normal liquefaction suppression, it designs so that FL may not go below 1 in each depth.
また、不飽和地盤の液状化強度τ1u/σv’は、次の式(6)の通り、飽和地盤の液状化強度に飽和度Srに応じた係数β をかけることで求められる。 Further, the liquefaction strength τ 1u / σ v ′ of the unsaturated ground can be obtained by multiplying the liquefaction strength of the saturated ground by a coefficient β corresponding to the degree of saturation S r as shown in the following equation (6).
βは図2に示すような既往の実験結果に基づいて例えばSr=90%でβ=2、Sr=70%でβ=3などとして設定すればよい。 beta may be set as such on the basis of the history of the experimental result shown in FIG. 2 for example S r = 90% at β = 2, S r = 70 % at beta = 3.
したがって、地下水低下回復による飽和度の深度分布がわかれば、式(3)、式(5)によって深度別の不飽和地盤の液状化安全率を算出することができる。 Therefore, if the depth distribution of the saturation due to the recovery of groundwater drop is known, the liquefaction safety factor of unsaturated ground by depth can be calculated by Equation (3) and Equation (5).
次に、地下水の低下回復時の深度別の飽和度分布の算出方法について説明する。 Next, the calculation method of the saturation distribution according to depth at the time of the fall recovery of groundwater is demonstrated.
既往の実験事実より、飽和状態の土(砂)の供試体を排水させた場合と、その状態から再冠水させた場合とでは土の水分特性曲線(=飽和度Sr−マトリックスポテンシャ ル(サクション)Pcの関係)が異なることが知られている。図3はその概念図を示したものである。 From the past experimental facts, the soil moisture characteristic curve (= saturation degree S r -matrix potential (suction) when the saturated soil (sand) specimen was drained and when it was reflooded from that state. ) It is known that the relationship of Pc) is different. FIG. 3 shows a conceptual diagram thereof.
飽和度Sr=100%(A点)の状態から間隙水を排水した場合、供試体内の水分は図3中の排水曲線をたどって排出される。そして、十分に飽和度が低下したD点で再び冠水(水位回復)した場合、点線に示した走査曲線を通ってE点の湿潤曲線に達し、湿潤曲線をたどってF点に達する。このF点が水位低下・回復させた場合の供試体の初期飽和度Sr0となる 。 When pore water is drained from the state of saturation S r = 100% (point A), the moisture in the test body is discharged along the drainage curve in FIG. Then, when submergence (water level recovery) is performed again at point D where the degree of saturation is sufficiently lowered, the wet curve at point E is reached through the scanning curve indicated by the dotted line, and the point F is reached through the wet curve. The point F is the initial saturation S r0 specimens when allowed to drawdown and recovery.
この地盤内の初期飽和度Sr0は以下の式(7)に示す設計式によって計算できる。 The initial saturation S r0 in the ground can be calculated by the design formula shown in the following formula (7).
そして、式(7)は、土G2の飽和度は地下水Wが回復した直後の初期飽和度Sr0から単位面積あたりの地下水通水量と地下水W中の溶存空気量で決まることを示している。すなわち 、飽和度は気泡に接する地下水量が多いほど、あるいは地下水W中の溶存空気量が少ない ほど、水中に空気が溶けやすいために上昇しやすいことを設計式として表現している。また、気泡は浮力などにより上方(地表)へ移動しないことも示している(図4参照)。 Expression (7) indicates that the saturation of the soil G2 is determined by the amount of groundwater flow per unit area and the amount of dissolved air in the groundwater W from the initial saturation Sr0 immediately after the groundwater W is recovered. That is, the degree of saturation is expressed as a design equation that the more groundwater in contact with the bubbles, or the smaller the amount of dissolved air in the groundwater W, the easier it is to rise because the air is more soluble. It also shows that the bubbles do not move upward (ground surface) due to buoyancy or the like (see FIG. 4).
より具体的に、まず、地下水位回復工程では、サンプリング工程でボーリング孔から所定深度の原位置土をサンプリングする。そして、初期飽和度測定工程で、地盤工学会基準「土の保水性試験方法(JSG 0151−2000)」に規定された水分特性曲線を求める方法、あるいは飽和した供試体を排水、再冠水させた後に飽和度を求める方法により初期飽和度Sr0を測定する。 More specifically, first, in the groundwater level recovery step, the in-situ soil at a predetermined depth is sampled from the borehole in the sampling step. Then, in the initial saturation measurement step, a method for obtaining a moisture characteristic curve defined in the Geotechnical Society standard “Soil water retention test method (JSG 0151-2000)”, or a saturated specimen was drained and reflooded. The initial saturation S r0 is measured later by a method for obtaining the saturation.
また、水位回復に用いる水のDOは、止水壁1の外部からの地下水Wの回り込みにより自然地下水位で回復させる場合、地下水Wの溶存酸素量DOをあらかじめ測定する。もしくは、安全側として脱気水のDO(=1.5mg/L)を用いる。さらに、水位回復後の飽和度をSrをより低くしたい場合には、曝気してDOを高めた水を地盤G中に注水すればよい。
Moreover, DO of the water used for water level recovery | restoration measures the dissolved oxygen amount DO of groundwater W beforehand, when making it recover with a natural groundwater level by the wraparound of the groundwater W from the outside of the
また、単位通水量Vwは、図10に示すように、間隙に残留する保有水を除いた地下水Wが間隙から上昇すると仮定し、次の式(8)に示すように、自然水位までの回復量Δh(cm)と砂地盤の有効間隙率neの積で求める。また、有効間隙率neは飽和した供試体を重量排水させ、土中に残留した水の重量から求めることができる。簡易には既往の文献による図8よりne=0.2〜0.35と設定できる。 Further, the unit water flow rate Vw is assumed to be that the groundwater W excluding the retained water remaining in the gap rises from the gap as shown in FIG. 10, and is recovered to the natural water level as shown in the following equation (8). determined by the product of the effective porosity n e amount Delta] h (cm) and sand. The effective porosity ne can be determined from the weight of water remaining in the soil after draining the saturated specimen by weight. For simplicity, ne = 0.2 to 0.35 can be set from FIG.
また、αはサンプリングした試料の通水試験から求めるか、簡易には既往の実験結果による値α=0.05程度の値を用いる。 Further, α is obtained from a water flow test of a sampled sample, or simply a value of about α = 0.05 based on past experimental results is used.
そして、上記のSr0、DO、α、Vwを式(7)に代入して地下水回復後の飽和度分布を設計する。 Then, the saturation distribution after the groundwater recovery is designed by substituting the above S r0 , DO, α, and V w into Equation (7).
ここで、式(7)の妥当性を検証した実験について説明する。 Here, an experiment for verifying the validity of Expression (7) will be described.
この実験では、まず、空中落下法で直径5cm、高さ10cmの砂供試体を作成し、間隙をCO2で置換して脱気水を通水した。そして、有効拘束圧σc=100kPa、バックプレッシャー100kPaを与えてB値(供試体の飽和度)95%以上に飽和させ、その後、自然排水状態(水頭差で約60cmの負圧を作用)で排水して供試体を不飽和にした。次に、所定の拘束圧とバックプレッシャーを与えた状態で脱気水もしくは水道水を供試体に下部から注入して通水量と(B値)の関係を調べた。 In this experiment, first, a sand specimen having a diameter of 5 cm and a height of 10 cm was prepared by an air drop method, and the gap was replaced with CO 2 to pass deaerated water. Then, an effective restraining pressure σc = 100 kPa and a back pressure of 100 kPa are applied to saturate to a B value (saturation degree of the specimen) of 95% or more, and then the water is drained in a natural drainage state (a negative pressure of about 60 cm acts as a head differential). Thus, the specimen was made unsaturated. Next, deaerated water or tap water was injected into the specimen from the lower side with a predetermined restraint pressure and back pressure applied, and the relationship between the water flow rate and (B value) was examined.
図5は脱気水(DO=1.5%)、水道水(DO=5.5〜7.0%)を通水した場合の砂供試体の単位通水量(供試体の単位面積あたりの通水量mg/cm2)と飽和度の関係を示したものである。
この図から、飽和度はDOに応じた勾配で単位通水量に対して線形的に増加することが確認された。
Fig. 5 shows the unit water flow rate of the sand specimen (per unit area of the specimen) when deaerated water (DO = 1.5%) and tap water (DO = 5.5-7.0%) are passed. It shows the relationship between the water flow rate mg / cm 2 ) and the degree of saturation.
From this figure, it was confirmed that the saturation increased linearly with respect to the unit water flow rate with a gradient according to DO.
図6は、式(7)による結果と実験データを重ね合わせたものである。ここに、αは0.05、DOsatは9.0、DOは1.5(脱気水)、DOは6.3(水道水)とした。なお、1気圧、15℃における水の飽和溶存酸素量は9.7mg−酸素/lである。
この図から、設計式の式(7)によって、通水する水のDOの違いに応じた飽和度の変化を精度よく表せることが確認された。
FIG. 6 superimposes the result of equation (7) and the experimental data. Here, α was 0.05, DO sat was 9.0, DO was 1.5 (deaerated water), and DO was 6.3 (tap water). The saturated dissolved oxygen amount of water at 1 atm and 15 ° C. is 9.7 mg-oxygen / l.
From this figure, it was confirmed that the change of the saturation according to the difference in DO of water to be passed can be expressed with high accuracy by the equation (7) of the design formula.
図7は初期飽和度の異なる不飽和供試体のB値の経日変化を示したものである。
この図から、供試体内を水が流れなければ少なくとも80日間は飽和度が一定に保たれ、B値が変化しないことが確認された。
FIG. 7 shows the daily change in the B value of unsaturated specimens having different initial saturation levels.
From this figure, it was confirmed that the saturation level was kept constant for at least 80 days and the B value did not change if water did not flow through the specimen.
地下水低下回復による飽和度計算の具体的な一例を示すと次のようになる。 The following is a specific example of saturation calculation based on groundwater recovery.
ここでは、水位回復直後の地盤要素の初期飽和度:Sr0=68%、砂質地盤の間隙率:n=0.4、砂質地盤の有効間隙率:ne=0.2(図8参照)とした。そして、5mの水位回復時の単位通水量は5m/cm2=500cm/cm2=500ml/cm2、500ml/cm2×0.2=100ml/cm2となる。 Here, the initial saturation of the ground element immediately after the recovery of the water level: S r0 = 68%, the porosity of the sandy ground: n = 0.4, the effective porosity of the sandy ground: ne = 0.2 (FIG. 8) Reference). And the unit water flow rate at the time of water level recovery of 5 m is 5 m / cm 2 = 500 cm / cm 2 = 500 ml / cm 2 and 500 ml / cm 2 × 0.2 = 100 ml / cm 2 .
回復する地下水のDOが水道水に近いとすると(DO=5.5〜7.0)、5m水位を回復するまでの単位通水量は100ml/cm2である。そして、図9から自然水位より5m下の飽和度が約82%になることを求めることができる。そして、本実施形態の方法を用いて自然地下水位がGL−1mの地盤に対しGL−11mまで水位を低下させたと仮定した場合の地盤内の飽和度分布は図10となる。 If the recovered groundwater DO is close to tap water (DO = 5.5-7.0), the unit water flow rate until the 5 m water level is recovered is 100 ml / cm 2 . Then, it can be determined from FIG. 9 that the saturation at 5 m below the natural water level is about 82%. And the saturation distribution in the ground at the time of assuming that the water level was lowered to GL-11m with respect to the ground of natural groundwater level GL-1m using the method of this embodiment becomes FIG.
したがって、本実施形態の地盤の液状化防止方法においては、本設計法により地下水位の低下回復による地盤の飽和度分布を設計すれば、精度よく好適に飽和度の管理を行うことができ、効果的で信頼性の高い液状化対策を実現することが可能になる。 Therefore, in the ground liquefaction prevention method of the present embodiment, if the saturation degree distribution of the ground due to the recovery of lowering of the groundwater level is designed by this design method, the saturation degree can be managed accurately and suitably, and the effect And liquefaction countermeasures can be realized with high accuracy and reliability.
以上、本発明に係る地盤の液状化防止方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although one Embodiment of the ground liquefaction prevention method concerning this invention was described, this invention is not limited to said one Embodiment, In the range which does not deviate from the meaning, it can change suitably.
1 止水壁
2 井戸
G 地盤
G1 不飽和地盤
G2 土(土粒子)
W 地下水
1 Stop wall 2 Well G Ground G1 Unsaturated ground G2 Soil (soil particles)
W Groundwater
Claims (1)
前記地下水位回復工程は、対象となる深度の原位置土の試料をサンプリングするサンプリング工程と、
前記サンプリング工程で得た試料から得た供試体の初期飽和度Sr0を測定する初期飽和度測定工程と、
下記の式(1)の通水量と飽和度の関係から、水位回復後の飽和度の深度分布を推定する飽和度深度分布推定工程とを備え、
前記飽和度深度分布推定工程の結果に基づいて水位回復後の飽和度を設計することを特徴とする地盤の液状化防止方法。
The groundwater level recovery step is a sampling step of sampling a sample of the in situ soil at a target depth;
An initial saturation measuring step of measuring an initial saturation S r0 of a specimen obtained from the sample obtained in the sampling step;
A saturation depth distribution estimation step for estimating the depth distribution of the saturation after the water level recovery from the relationship between the water flow rate and the saturation of the following formula (1),
A method for preventing ground liquefaction, wherein the saturation after water level recovery is designed based on the result of the saturation depth distribution estimation step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015129805A JP6432785B2 (en) | 2015-06-29 | 2015-06-29 | How to prevent ground liquefaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015129805A JP6432785B2 (en) | 2015-06-29 | 2015-06-29 | How to prevent ground liquefaction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017014724A JP2017014724A (en) | 2017-01-19 |
JP6432785B2 true JP6432785B2 (en) | 2018-12-05 |
Family
ID=57828098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015129805A Active JP6432785B2 (en) | 2015-06-29 | 2015-06-29 | How to prevent ground liquefaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6432785B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108797655A (en) * | 2017-04-26 | 2018-11-13 | 黄河水利职业技术学院 | A kind of multi-functional soil body thixotropy and the anti-liquefaction functional simulation device of pile foundation |
CN110534005B (en) * | 2019-09-05 | 2021-09-14 | 山东建筑大学 | Simulation demonstration device for soil liquefaction disasters |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3374224B2 (en) * | 1994-06-20 | 2003-02-04 | 清水建設株式会社 | Ground liquefaction prevention method |
JP2001355228A (en) * | 2000-06-12 | 2001-12-26 | Takenaka Komuten Co Ltd | Liquefaction preventing method by unsaturation |
JP3800509B2 (en) * | 2001-11-21 | 2006-07-26 | 清水建設株式会社 | Ground saturation measurement method and liquefaction prevention method |
JP2004204573A (en) * | 2002-12-26 | 2004-07-22 | Shimizu Corp | Method of preventing liquefaction of ground |
JP5467233B1 (en) * | 2013-03-04 | 2014-04-09 | 強化土株式会社 | Ground improvement method |
-
2015
- 2015-06-29 JP JP2015129805A patent/JP6432785B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017014724A (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104831762B (en) | Deep basal pit artesian water precipitation dynamic monitoring system and monitoring method | |
Zeybek et al. | Durability of partial saturation to counteract liquefaction | |
CN105673001A (en) | Carbonate rock single-well formation pressure reduction treatment method | |
JP6432785B2 (en) | How to prevent ground liquefaction | |
Ssenyondo et al. | Effects of embedment depth on the pullout capacity of bucket foundations in sand | |
Kim et al. | Effect of leaching on the compressibility of Busan clay | |
Zhang et al. | Field Permeability Tests with Inward and Outward Flow in Confined Aquifers | |
Yang et al. | Nonlinear site effects on strong ground motion at a reclaimed island | |
Simeoni et al. | Field performance of fully grouted piezometers | |
CN106284407B (en) | A kind of Soft Soil Districts Soil Pressure Computing Method of Retaining Wall | |
Park et al. | Potential hazard classification of aged cored fill dams | |
JP6365979B2 (en) | How to prevent ground liquefaction | |
CN111950208B (en) | Method for constructing prevention and control project for horizontal-pushing type landslide model by using underground water | |
Zedan et al. | Slope Stability of an Earth Dam during Drawdown Conditions (KHASA-CHAI Dam) as a Case Study | |
Guo et al. | Suction caisson installation in shallow water: model tests and prediction | |
Lv et al. | Physical model test of land subsidence caused by groundwater withdrawal | |
Köhler et al. | Protection measures in order to increase safety of unstable clay slopes by unconventional pore pressure release techniques | |
Mele et al. | Induced Partial Saturation: From Mechanical Principles to Engineering Design of an Innovative and Eco-Friendly Countermeasure against Earthquake-Induced Soil Liquefaction | |
Gundersen et al. | Flow cone–new CPTU add-on module trialled in Halden silt | |
Cao et al. | Rock modulus from in-situ pressuremeter and laboratory tests | |
Park et al. | Effect of Relative Density of Sand on the Penetration Characteristics of Suction Pile | |
El-Daly et al. | Hydraulic conductivity: comparison between field testing and indirect techniques | |
Simon et al. | Implications for the removal of invasive species in Canyon de Chelly National Monument | |
Faizi et al. | Evaluation of Seepage Flow during Installation of Suction Caisson Foundation in Homogeneous Sand and Sand Overlaying Inclined Clay | |
Evans | Liquefaction and dynamic properties of gravelly soils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181024 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6432785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |