JP6727947B2 - Groundwater level lowering method - Google Patents

Groundwater level lowering method Download PDF

Info

Publication number
JP6727947B2
JP6727947B2 JP2016122220A JP2016122220A JP6727947B2 JP 6727947 B2 JP6727947 B2 JP 6727947B2 JP 2016122220 A JP2016122220 A JP 2016122220A JP 2016122220 A JP2016122220 A JP 2016122220A JP 6727947 B2 JP6727947 B2 JP 6727947B2
Authority
JP
Japan
Prior art keywords
pumping
groundwater level
well
lowering
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016122220A
Other languages
Japanese (ja)
Other versions
JP2017226983A (en
Inventor
林 幹朗
幹朗 林
幹雄 仲井
幹雄 仲井
直仁 岡田
直仁 岡田
勇太 坂藤
勇太 坂藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2016122220A priority Critical patent/JP6727947B2/en
Publication of JP2017226983A publication Critical patent/JP2017226983A/en
Application granted granted Critical
Publication of JP6727947B2 publication Critical patent/JP6727947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、地下水位低下工法に関するものであり、地下水位分布の可視化(所謂、見える化)及び揚水ポンプの自動制御を実現することにより、適切かつ効率的に地下水位を管理できるようにした技術である。 TECHNICAL FIELD The present invention relates to a groundwater level lowering method, and is a technology that enables appropriate and efficient management of groundwater level by realizing visualization (so-called visualization) of groundwater level distribution and automatic control of a pumping pump. Is.

埋め立て地をはじめとして、地下水位が高い砂質地盤では、地震の震動により液状化現象が発生し、マンホールや下水管が押し上げられて地表面から突出したり、建造物が傾いたりする被害が発生している。このような液状化現象を未然に防止するためには、液状化が懸念される地盤に対して改良工事を行わなければならない。 Liquefaction occurs in the sandy ground with a high groundwater level, such as in a landfill, due to the shaking of the earthquake, which pushes up manholes and sewer pipes, causing them to project from the ground surface and incline buildings. ing. In order to prevent such a liquefaction phenomenon, improvement work must be performed on the ground where liquefaction is a concern.

従来から行われている液状化対策工法には、種々のものが知られているが、その中の一つとして地下水位低下工法があり、地下水位低下工法として、ディープウェル工法、ウェルポイント工法等が知られている。 There are various known liquefaction countermeasure methods that have been conventionally performed, and one of them is the groundwater level lowering method.As the groundwater level lowering method, deep well method, well point method, etc. It has been known.

例えば、ウェルポイント工法の一例として、特許文献1に記載された地盤改良工法がある。この地盤改良工法は、地下水位を低下させて地盤を改良するための工法であり、改良対象地盤中の地下水位を低下させる際に、地表面から新鮮な空気又は清水を地中に供給するための有孔配管を地中に延設する工程と、所定の間隔をあけて地中に2本以上の井戸を設け、スーパーウェルポイント工法により地下水を揚水すると同時に当該地中の周辺域を減圧することによって、地中をほぼ真空状態にする工程と、地表面から地中に延長して設けたグラウト材供給設備の有孔配管を通じて新鮮な空気又は清水を供給することを繰り返す工程と、改良対象地盤中の地下水を自然地下水位まで戻す工程とからなる。 For example, as an example of the well point method, there is a ground improvement method described in Patent Document 1. This ground improvement method is a method for improving the ground by lowering the groundwater level, and in order to supply fresh air or fresh water from the ground surface to the ground when lowering the groundwater level in the ground to be improved. The process of extending the perforated pipe to the ground, and establishing two or more wells in the ground at a predetermined interval, and pumping groundwater by the Superwell Point method while decompressing the surrounding area of the ground. By doing so, the process of bringing the ground to a substantially vacuum state, the process of repeatedly supplying fresh air or fresh water through the perforated pipe of the grout material supply facility extended from the ground surface into the ground, and the improvement target The process consists of returning groundwater in the ground to the natural groundwater level.

特開2012−180738号公報JP2012-180738A

ところで、地下水位低下工法では、対策範囲全域を目標低下水位以下まで水位低下させ、所要期間中はその水位を維持する必要がある。しかし、従来の地下水位低下方向では、種々の課題が残っていた。 By the way, in the groundwater level lowering method, it is necessary to lower the water level over the entire range of countermeasures to below the target lowering water level and maintain that water level for the required period. However, various problems remain in the conventional direction of lowering groundwater level.

例えば、観測井戸を用いて計測した地下水位は点の情報であり、面的に地下水位分布を把握することができないという問題があった。したがって、地下水位を低下させても、その効果を確実に発揮できないことがあり、また、不同沈下による地上構造物の傾斜が生じるリスクがあった。 For example, the groundwater level measured using an observation well is point information, and there is a problem that the groundwater level distribution cannot be grasped in a plane. Therefore, even if the groundwater level is lowered, the effect may not be surely exhibited, and there is a risk that the above-ground structure may be inclined due to the uneven settlement.

また、揚水ポンプのオン・オフを手動で制御しているため、オペレーターの勘に頼った制御や維持管理を行わなければならないという問題があった。このため、オペレーターによる制御ミス等の人的リスクが存在するだけではなく、半永久的に維持管理を行うことから継続的な負担が大きいという問題があった。 In addition, since the pumping pump is manually controlled to be turned on and off, there is a problem in that control and maintenance must be performed depending on the intuition of the operator. Therefore, there is a problem that not only there is a human risk such as a control error by the operator, but also a continuous burden is large because the maintenance is performed semipermanently.

本発明は、上述した事情に鑑み提案されたもので、地下水位分布を面的に把握することにより最適な揚水ポンプの制御を実施して、適切かつ効率的に地下水位を管理することが可能な地下水位低下工法を提供することを目的とする。 The present invention has been proposed in view of the above circumstances, and it is possible to appropriately and efficiently manage the groundwater level by performing optimal control of the pumping pump by grasping the groundwater level distribution two-dimensionally. The purpose is to provide a simple groundwater level lowering method.

本発明に係る地下水位低下工法は、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明に係る地下水位低下工法は、複数の揚水井戸で揚水を行って、改良対象地盤中の地下水位を適切かつ効率的に管理するための地下水位低下工法であって、各揚水井戸における揚水ポンプのオン・オフの組み合わせによる揚水パターンを決定する工程と、各揚水井戸について、収束計算(シンプレックス法)により揚水量のパラメータセットを求め、当該揚水量のパラメータセットを用いて、現状の地下水位分布を算定する工程と、各揚水井戸における揚水試験から求めた各揚水井戸の揚水感度値を用いて、決定した各揚水パターンを適用した場合の予測地下水位分布を算定する工程と、現状の地下水位分布から算定した予測地下水位分布を減算した値を評価ポイントとして、当該評価ポイントの合計値を算定する工程と、算定した評価ポイントの合計値が最大となる揚水パターンを適用して、各揚水井戸の揚水量を制御する工程とを含むことを特徴とするものである。 The groundwater level lowering construction method according to the present invention has the following features in order to achieve the above-mentioned object. That is, the groundwater level lowering method according to the present invention is a groundwater level lowering method for appropriately and efficiently managing the groundwater level in the ground to be improved by pumping water in a plurality of pumping wells. In the process of determining the pumping pattern by the combination of ON/OFF of the pumping pump in step 1, and for each pumping well, the parameter set of the pumping volume is obtained by the convergence calculation (simplex method), and the parameter set of the pumping volume is used to calculate the current The process of calculating the groundwater level distribution and the process of calculating the predicted groundwater level distribution when each determined pumping pattern is applied using the pumping sensitivity value of each pumping well obtained from the pumping test in each pumping well, and the current situation Using the value obtained by subtracting the predicted groundwater level distribution calculated from the above groundwater level distribution as the evaluation point, applying the process of calculating the total value of the evaluation points and the pumping pattern that maximizes the total value of the calculated evaluation points, And a step of controlling the pumping amount of each pumping well.

また、算定した各揚水井戸における現状の地下水位分布を可視的に表現する工程を含むことが好ましい。さらに、各揚水井戸の揚水量を制御する工程では、各揚水井戸に対して設定した上限水位及び下限水位の範囲内で揚水量の制御を行うことが好ましい。 Further, it is preferable to include a step of visually expressing the current groundwater level distribution in each calculated pumping well. Further, in the step of controlling the pumping amount of each pumping well, it is preferable to control the pumping amount within the range of the upper limit water level and the lower limit water level set for each pumping well.

本発明に係る地下水位低下工法によれば、シンプレックス法を用いた収束計算により、各揚水井戸の揚水量を決定して、各揚水井戸の揚水量を制御することにより、最適な揚水ポンプの制御を実施して、適切かつ効率的に地下水位を管理することが可能となる。 According to the groundwater level lowering method according to the present invention, it is possible to control the optimum pumping pump by determining the pumping amount of each pumping well by the convergence calculation using the simplex method and controlling the pumping amount of each pumping well. It will be possible to manage the groundwater level appropriately and efficiently by implementing.

また、決定した揚水量に基づき、群井戸の井戸公式を用いて、改良対象地盤における地下水位分布を可視的に表現することにより、観測井戸毎の点的な情報ではなく、改良対象地盤全体における地下水位分布を面的に把握することができる。 In addition, by visually expressing the groundwater level distribution in the improvement target ground using the well formula of the group well based on the determined pumping volume, it is not point information for each observation well, but the entire improvement target ground. The groundwater level distribution can be grasped in a plane.

また、各揚水井戸に対して設定した上限水位及び下限水位の範囲内で揚水量の制御を行うことにより、極端な地下水位の差違を無くして、改良対象地盤全体として適切に地下水位を管理することができる。 In addition, by controlling the amount of pumped water within the range of the upper limit water level and the lower limit water level set for each pumping well, the extreme difference in ground water level will be eliminated and the ground water level will be appropriately managed for the entire ground to be improved. be able to.

本発明の実施形態に係る地下水位低下工法における揚水自動制御のフローチャート。The flowchart of automatic pumping control in the groundwater level lowering construction method which concerns on embodiment of this invention. 水位分布の重ね合わせのイメージ図。Image diagram of superposition of water level distribution. シンプレックス法の概念を示す説明図。Explanatory drawing which shows the concept of the simplex method. 地下水位分布の一例を示すコンター図。A contour map showing an example of groundwater level distribution. 各揚水井戸における揚水自動制御のイメージを示す説明図。Explanatory drawing which shows the image of automatic pumping control in each pumping well.

以下、図面を参照して、本発明の実施形態に係る地下水位低下工法を説明する。図1〜図5は本発明の実施形態に係る地下水位低下工法を説明するもので、図1は地下水位低下工法における揚水自動制御のフローチャート、図2は水位分布の重ね合わせのイメージ図、図3はシンプレックス法の概念を示す説明図、図4は地下水位分布の一例を示すコンター図、図5は各揚水井戸における揚水自動制御のイメージを示す説明図である。 Hereinafter, a groundwater level lowering method according to an embodiment of the present invention will be described with reference to the drawings. 1 to 5 are for explaining a groundwater level lowering method according to an embodiment of the present invention, FIG. 1 is a flowchart of automatic pumping control in the groundwater level lowering method, FIG. 2 is an image diagram of superposition of water level distributions, and FIG. Is an explanatory diagram showing the concept of the simplex method, FIG. 4 is a contour diagram showing an example of groundwater level distribution, and FIG. 5 is an explanatory diagram showing an image of automatic pumping control in each pumping well.

<地下水位低下工法の概要>
本発明の実施形態に係る地下水位低下工法は、地下水位分布の可視化(見える化)及び揚水ポンプの自動制御を実現することにより、適切かつ効率的に地下水位を管理できるようにした技術である。本発明は、収束計算(シンプレックス法)により、各揚水井戸における現状の地下水位分布を算定し、次ステップである揚水パターン(複数の揚水井戸のオン・オフの組合せ)を適用した場合の予測地下水位と目標地下水位との差違に基づいて評価ポイントを算定し、全揚水パターンの中から評価ポイントの合計値が最大となる揚水パターンを適用して各揚水井戸の揚水量を制御する点に特徴がある。
<Outline of groundwater level lowering method>
The groundwater level lowering method according to the embodiment of the present invention is a technology that enables appropriate and efficient management of the groundwater level by visualizing (visualizing) the groundwater level distribution and automatically controlling the pumping pump. .. INDUSTRIAL APPLICABILITY The present invention calculates the current groundwater level distribution in each pumping well by a convergence calculation (simplex method), and predicts the groundwater when applying the pumping pattern (combination of ON/OFF of multiple pumping wells), which is the next step The evaluation point is calculated based on the difference between the water level and the target groundwater level, and the pumping pattern that maximizes the total value of the evaluation points among all the pumping patterns is applied to control the pumping volume of each pumping well. There is.

<地下水位分布の可視化>
図2に示すように、任意地点における任意時刻の地下水位分布は、定常水位に移行するまでの過渡的な状態にあり、各揚水井戸を中心とした水位分布(井戸公式)の重ね合わせにより表現できる。任意地点における群井戸の井戸公式は下記式(1)で表されるため、各揚水井戸の揚水量Q(i=1〜n)を決定すれば、面的な地下水位分布を一意的に表現することができる。
<Visualization of groundwater level distribution>
As shown in Fig. 2, the groundwater level distribution at any time at any point is in a transitional state until it shifts to a steady water level, and is expressed by superimposing the water level distribution (well formula) centered on each pumping well. it can. Since the well formula for group wells at arbitrary points is expressed by the following equation (1), the surface groundwater level distribution can be uniquely determined by determining the pumping volume Q i (i=1 to n) of each pumping well. Can be expressed.

Figure 0006727947
Figure 0006727947

なお、式(1)において、
:任意点jにおける水位(m)
H:揚水開始前の地下水位(m)
:揚水井戸iの揚水量(m3/s)
k:透水係数(m/s)
R:影響半径(m)
:揚水井戸iからの距離(m)
を表す。
In the formula (1),
h j : water level (m) at arbitrary point j
H: Groundwater level before pumping starts (m)
Q i : Pumping volume of pumping well i (m 3 /s)
k: Permeability coefficient (m/s)
R: radius of influence (m)
r i : Distance from pumping well i (m)
Represents.

<収束計算>
現状の水位分布を最もよく近似できる上記式(1)のパラメータセットQ(i=1〜n:n=揚水井戸本数)を算定するため、シンプレックス法による収束計算を適用した。すなわち、各観測井戸における観測水位と計算水位の誤差を最小化するQを下記手順に基づき算定する(図3参照)。なお、現状の水位分布を近似することができれば、シンプレックス法以外の収束計算を行ってもよい。
<Convergence calculation>
In order to calculate the parameter set Q i (i=1 to n: n=number of pumping wells) of the above equation (1) that can best approximate the current water level distribution, the convergence calculation by the simplex method was applied. That is, Q i that minimizes the error between the observed water level and the calculated water level in each observation well is calculated based on the following procedure (see Fig. 3). Note that convergence calculations other than the simplex method may be performed as long as the current water level distribution can be approximated.

(a)n本の各揚水井戸の揚水量(Q〜Q)のパラメータセットをn+1個設定する(初期値の設定)。
(b)上記n+1個のパラメータセットに対して、式(1)より各観測井戸地点の地下水位を算定する。
(c)各観測井戸の観測水位と計算水位の差の合計ΣΔhを算定し、n次元空間上にプロットする。ここで、これらn+1個の点を頂点とする幾何学的図形をシンプレックスと呼ぶ。
(d)シンプレックスの頂点の内、最大点(誤差の総和が最大となる点)と、第2最大点と、最小点を抽出する。
(e)鏡映・伸張・収縮・縮小などの修正動作を実施し、シンプレックスを更新する。
(f)更新されたシンプレックスについて、ΣΔhに対する収束判定を実施し、収束するまで上記(e)の動作を繰り返す。
(g)収束したシンプレックスの頂点のパラメータセット(Q〜Q)を最適解と評価する。
(A) Set n+1 parameter sets of the pumping amount (Q 1 to Q n ) of each n pumping wells (setting of initial value).
(B) Calculate the groundwater level at each observation well point using equation (1) for the above n+1 parameter sets.
(C) The sum ΣΔh j of the difference between the observed water level of each observation well and the calculated water level is calculated and plotted on the n-dimensional space. Here, a geometrical figure having these n+1 points as vertices is called a simplex.
(D) Of the vertices of the simplex, the maximum point (the point at which the sum of errors is maximum), the second maximum point, and the minimum point are extracted.
(E) Corrective actions such as mirroring/expansion/contraction/reduction are performed to update the simplex.
(F) Convergence determination is performed on ΣΔh j for the updated simplex, and the above operation (e) is repeated until convergence is achieved.
(G) Evaluate the converged simplex vertex parameter set (Q 1 to Q n ) as the optimum solution.

<適用例>
上述した手法を実工事に適用すると、例えば、図4に示すような地下水位分布のコンター図を得ることができた。このように、本発明の実施形態に係る地下水位低下工法によれば、地下水位分布をコンター図として可視化することができるので、現場において、管理者や作業者が地下水位分布を的確に把握することができる。
<Application example>
When the above method was applied to actual construction, for example, a contour map of the groundwater level distribution as shown in Fig. 4 could be obtained. As described above, according to the groundwater level lowering construction method according to the embodiment of the present invention, the groundwater level distribution can be visualized as a contour diagram, so that the manager or the worker accurately grasps the groundwater level distribution at the site. be able to.

<揚水ポンプの自動制御>
改良対象範囲の計算水位を算定した後、改良対象範囲において、図1に示す手順に基づいて、最適な揚水ポンプの制御を実施する。また、図5に揚水自動制御のイメージを示す。
<Automatic control of pumping pump>
After calculating the calculated water level in the improvement target range, optimal pumping pump control is performed in the improvement target range based on the procedure shown in FIG. Fig. 5 shows an image of automatic pumping control.

(a)各揚水井戸のポンプON/OFFの組合せによる揚水パターンk(k=1〜2:n=揚水井戸本数)を設定する(S1)。
(b)シンプレックス法を用いた収束計算により、現状水位分布を算定する(S2)。
(c)単独井戸の揚水試験から求めた感度(揚水試験にて揚水井戸の水位を1.0m低下及び上昇させた際の各節点の水位変化量)を用いて、各揚水パターンを適用した場合の予測水位分布を算定する(S3)。
(d)各揚水パターンにて、評価ポイントの合計ΣΔhを算定する(S4)。
(e)評価ポイントの合計ΣΔhが最大となる揚水パターンを、次ステップの制御に適用する(S5)。
そして、設定した時間サイクルにて、上述した手順(S3(c)〜S5(e))を繰り返して、各揚水ポンプの自動制御を実施する。
(A) A pumping pattern k (k=1 to 2 n : n=the number of pumping wells) is set by a combination of pump ON/OFF of each pumping well (S1).
(B) The current water level distribution is calculated by the convergence calculation using the simplex method (S2).
(C) When each pumping pattern is applied using the sensitivity obtained from the pumping test of a single well (the change in the water level at each node when the water level of the pumping well is lowered or raised by 1.0 m in the pumping test) The predicted water level distribution of is calculated (S3).
(D) The sum ΣΔh k of evaluation points is calculated for each pumping pattern (S4).
(E) The pumping pattern that maximizes the total ΣΔh k of evaluation points is applied to the control of the next step (S5).
Then, the procedure (S3(c) to S5(e)) described above is repeated in the set time cycle to automatically control each pump.

なお、揚水ポンプにより地下水位を低下させる際に、上下限水位を設けて各揚水井戸における揚水制御を行うことにより、不同沈下の原因となる極端な地下水位勾配の発生を抑制することができる。 In addition, when lowering the groundwater level by the pumping pump, by setting the upper and lower limit water levels and controlling the pumping in each pumping well, it is possible to suppress the occurrence of an extreme groundwater level gradient that causes differential settlement.

S1〜S5 揚水自動制御の工程(ステップ) S1-S5 Automatic pumping control process (step)

Claims (4)

複数の揚水井戸で揚水を行って、改良対象地盤中の地下水位を適切かつ効率的に管理するための地下水位低下工法であって、
前記各揚水井戸における揚水ポンプのオン・オフの組み合わせによる揚水パターンを決定する工程と、
前記各揚水井戸について、収束計算により揚水量のパラメータセットを求め、当該揚水量のパラメータセットを用いて、現状の地下水位分布を算定する工程と、
前記各揚水井戸における揚水試験から求めた各揚水井戸の揚水感度値を用いて、前記決定した各揚水パターンを適用した場合の予測地下水位分布を算定する工程と、
前記算定した現状の地下水位分布から前記算定した予測地下水位分布を減算した値を評価ポイントとして、当該評価ポイントの合計値を算定する工程と、
前記算定した評価ポイントの合計値が最大となる揚水パターンを適用して、各揚水井戸の揚水量を制御する工程と、
を含むことを特徴とする地下水位低下工法。
A groundwater level lowering method for appropriately and efficiently managing the groundwater level in the ground to be improved by pumping water at multiple pumping wells.
Determining a pumping pattern by a combination of on/off of pumps in each pumping well;
For each of the pumping wells, a step of calculating a parameter set of the pumping amount by a convergence calculation, and using the parameter set of the pumping amount, calculating the current groundwater level distribution,
Using the pumping sensitivity value of each pumping well obtained from the pumping test in each pumping well, a step of calculating a predicted groundwater level distribution when applying each pumping pattern determined above,
A step of calculating a total value of the evaluation points, with a value obtained by subtracting the calculated predicted groundwater level distribution from the calculated current groundwater level distribution as an evaluation point.
Applying a pumping pattern in which the total value of the calculated evaluation points is maximum, and controlling the pumping amount of each pumping well,
A method of lowering groundwater level, which includes:
前記収束計算は、シンプレックス法を用いることを特徴とする請求項1に記載の地下水位低下工法。 The groundwater level lowering method according to claim 1, wherein the convergence calculation uses a simplex method. 前記算定した各揚水井戸における現状の地下水位分布を可視的に表現する工程を含むことを特徴とする請求項1又は2に記載の地下水位低下工法。 The groundwater level lowering method according to claim 1 or 2, further comprising a step of visually expressing a current groundwater level distribution in each of the calculated pumping wells. 前記各揚水井戸の揚水量を制御する工程では、各揚水井戸に対して設定した上限水位及び下限水位の範囲内で揚水量の制御を行うことを特徴とする請求項1〜3のいずれか1項に記載の地下水位低下工法。 In the process of controlling the pumping amount of each pumping well, the pumping amount is controlled within a range of an upper limit water level and a lower limit water level set for each pumping well. Groundwater level lowering construction method described in paragraph.
JP2016122220A 2016-06-21 2016-06-21 Groundwater level lowering method Active JP6727947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122220A JP6727947B2 (en) 2016-06-21 2016-06-21 Groundwater level lowering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122220A JP6727947B2 (en) 2016-06-21 2016-06-21 Groundwater level lowering method

Publications (2)

Publication Number Publication Date
JP2017226983A JP2017226983A (en) 2017-12-28
JP6727947B2 true JP6727947B2 (en) 2020-07-22

Family

ID=60891123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122220A Active JP6727947B2 (en) 2016-06-21 2016-06-21 Groundwater level lowering method

Country Status (1)

Country Link
JP (1) JP6727947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108345736A (en) * 2018-02-02 2018-07-31 中国石油天然气股份有限公司 The determination method of rod-pumped well pump efficiency sensibility

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020902A (en) * 1975-07-03 1977-05-03 R. L. Gould Well point system
JP4824435B2 (en) * 2006-03-08 2011-11-30 鹿島建設株式会社 Groundwater level lowering method
JP6347972B2 (en) * 2014-03-25 2018-06-27 前田建設工業株式会社 Groundwater level lowering method and groundwater level lowering system
JP6365979B2 (en) * 2014-09-24 2018-08-01 五洋建設株式会社 How to prevent ground liquefaction

Also Published As

Publication number Publication date
JP2017226983A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Qi et al. Scour effects on p–y curves for shallowly embedded piles in sand
JP6589224B2 (en) Tube evaluation method, measuring apparatus, and tube evaluation system
EP2831804B1 (en) System and method for automatic local grid refinement in reservoir simulation systems
JP7153330B2 (en) Sediment disaster prediction device, computer program, sediment disaster prediction method and map information
JP6727947B2 (en) Groundwater level lowering method
CN102979102B (en) Open-excavation sequential-operation deformation-control design method for deep and large circular foundation ditch in soft soil areas
JP6347972B2 (en) Groundwater level lowering method and groundwater level lowering system
JP2008297870A (en) Underground construction management system and underground construction management method
KR101881822B1 (en) Method of measuring capacity of reservoir using aerial photograph
KR102135026B1 (en) Time-specific simulation method for surface water stream
CN107313430A (en) The deep big foundation pit subregion construction method of three face Nearby Structures
Pudasaini et al. Identifying critical links in water supply systems subject to various earthquakes to support inspection and renewal decision making
JP5786644B2 (en) Steel pipe erection error measurement system, steel pipe erection error measurement method, and reverse strut erection method
Kang et al. IoT (Internet of Things)-based underground risk assessment system surrounding water pipes in Korea
JP7155489B2 (en) Pumping control device and pumping control model learning device
JP2021008729A (en) Ground subsidence prediction system
CN202989933U (en) Structure for controlling deformation of cylindrical foundation pit subjected to open excavation and sequential construction in soft soil area
CN112945198B (en) Automatic detection method for inclination of power transmission line iron tower based on laser LIDAR point cloud
CN111928817B (en) Deep pit foundation engineering monitoring system and method adopting multi-ring-support settlement horizontal monitoring points
CN115130724A (en) Dynamic adjustment method and system for urban underground water mining planning
Jelušič et al. An adaptive network fuzzy inference system approach for site investigation
CN105822907A (en) Control method for pipe-to-soil potential of buried metal pipeline
JP5728879B2 (en) Method for constructing structure, repose angle calculation system for backfill soil, repose angle calculation method for backfill soil, formwork system, and structure
Tang Probability-based serviceability evaluation of buildings adjacent to an excavation using random finite element method
JP6638312B2 (en) Caisson laying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6727947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150