JP6638312B2 - Caisson laying method - Google Patents

Caisson laying method Download PDF

Info

Publication number
JP6638312B2
JP6638312B2 JP2015206020A JP2015206020A JP6638312B2 JP 6638312 B2 JP6638312 B2 JP 6638312B2 JP 2015206020 A JP2015206020 A JP 2015206020A JP 2015206020 A JP2015206020 A JP 2015206020A JP 6638312 B2 JP6638312 B2 JP 6638312B2
Authority
JP
Japan
Prior art keywords
caisson
ground
peripheral surface
outer peripheral
earth pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015206020A
Other languages
Japanese (ja)
Other versions
JP2017078278A (en
Inventor
嘉章 甘サ
嘉章 甘サ
拓郎 山村
拓郎 山村
茂彦 杉江
茂彦 杉江
山下 徹
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015206020A priority Critical patent/JP6638312B2/en
Publication of JP2017078278A publication Critical patent/JP2017078278A/en
Application granted granted Critical
Publication of JP6638312B2 publication Critical patent/JP6638312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、ケーソンを所定の深さまで沈下させて設置するケーソンの沈設方法に関する。   TECHNICAL FIELD The present invention relates to a caisson squatting method in which a caisson is sunk to a predetermined depth and installed.

地盤中に基礎や地下構造物を構築する工法として、ケーソン(箱状構造物)を所定の深さまで沈下させて設置するケーソン工法(ニューマチックケーソン工法やオープンケーソン工法)が用いられている。ケーソンを円滑且つ安定的に沈設させるためには、ケーソンの沈下抵抗力(ケーソン外周の周面摩擦力、刃口抵抗力、揚圧力の総和)を沈設力(躯体自重・付加貫入荷重等)より小さな値に保つ必要がある。周面摩擦力は、過去の経験や実測データに基づき、地盤の種類、N値、強度から設定する設計指針・基準が公的機関や学界から示されており、設計見積りにおいて、これに従うのが一般的である。   As a method of constructing a foundation or an underground structure in the ground, a caisson method (pneumatic caisson method or open caisson method) in which a caisson (box-like structure) is settled down to a predetermined depth and installed. In order to sink the caisson smoothly and stably, the sinking resistance of the caisson (sum of the frictional force of the outer surface of the caisson, the resistance of the blade opening, and the lifting pressure) is calculated from the sinking force (self-weight of the frame, additional penetrating load, etc.). You need to keep it small. For the surface frictional force, based on past experience and actual measurement data, design guidelines and standards to be set based on the type of ground, N value, strength are indicated by public institutions and academia, and it is necessary to follow this in design estimation. General.

設計見積りにおいて沈下抵抗力が沈設力を上回る場合には、周面摩擦力、刃口抵抗力等の低減の対策工が講じられる。沈下抵抗力の低減の対策工としては、(a)刃口形状の改良(例えば、特許文献1参照)、(b)摩擦低減シートの収納・敷設、(c)摩擦低減用基材の塗布、(d)ケーソン周面への玉砂利等(潤滑剤)の投入・充填、(e)ケーソン躯休の噴射孔から潤滑剤圧人、(f)ケーソン外周部の地盤を沈設前に改良・強度調整等が提案されている。   If the settlement resistance exceeds the settlement force in the design estimation, countermeasures will be taken to reduce the peripheral frictional force, cutting edge resistance, and the like. As countermeasures to reduce the settlement resistance, (a) improvement of the cutting edge shape (for example, see Patent Document 1), (b) storage and laying of a friction reducing sheet, (c) application of a friction reducing base material, (D) Filling and filling of caisson peripheral surface with lubricating material (lubricant), (e) Lubricant pressure from injection hole of caisson frame, (f) Improvement and strength adjustment before caving ground around caisson Etc. have been proposed.

特開平8−165665号公報JP-A-8-165665

しかしながら、従来の設計見積もりでは、地盤の種類、N値、強度に基づいて周面摩擦力を求めているが、沈設するケーソンに近接した地下構造体について考慮されていなかった。従って、密な砂(砂礫)や過圧密粘性土の地盤で、ケーソン沈設時に近接した地下構造体(地下構造物や強固な地盤)が存在する場合、地下構造体に対向するケーソンの周面に設計見積もり以上の大きな周面摩擦力が生じ、従来の対策工ではケーソンの沈下が困難になってしまうという問題点があった。なお、複数のケーソンを近接させて同時に沈設させる場合にも、一方のケーソンに対して、他方のケーソンが近接した地下構造体として作用することになる。   However, in the conventional design estimation, the peripheral friction force is obtained based on the type, N value, and strength of the ground, but no consideration is given to an underground structure close to the caisson to be laid. Therefore, if there is an underground structure (underground structure or strong ground) close to the caisson when the caisson is laid, on the ground of the caisson facing the underground structure, There is a problem that a large circumferential friction force exceeding the design estimate is generated and it becomes difficult for the caisson to sink with the conventional countermeasures. Note that, even when a plurality of caissons are placed close to each other and laid simultaneously, the other caisson acts as an adjacent underground structure with respect to one caisson.

本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消し、ケーソンの一部外周面に生じた大きな周面摩擦力を効果的に低減することができるケーソンの沈設方法を提供することにある。   The present invention has been made in view of such a situation, and solves the above-mentioned problems, and provides a caisson that can effectively reduce a large circumferential friction force generated on a part of the outer peripheral surface of the caisson. It is to provide a method.

本発明のケーソンの沈設方法は、ケーソンを所定の深さまで沈下させて設置するケーソンの沈設方法であって、ケーソンの外周面に対向する地盤の応力を低減させる応力低減工として、ケーソンの外周面に作用する周囲の地盤からの土圧の計測結果とケーソンの外周面に作用する周囲の地盤との周面摩擦力の計測結果とのいずれか若しくは両方に基づいて、応力を低減させる深度の範囲を応力低減深度範囲として特定する深度範囲特定工程と、地上から前記応力低減深度範囲の最深部まで削孔して掘削孔を形成する掘削孔形成工程と、前記掘削孔に挿入した多重管ロッドの先端から水を空気と同時に横方向に噴射させながら、前記多重管ロッドを回転させて地盤の骨格構造を破壊し、前記応力低減深度範囲に円柱状の改良地盤を造成する改良地盤造成工程とを実施することを特徴とする。
さらに、本発明のケーソンの沈設方法は、前記改良地盤造成工程では、前記水及び前記空気と共に、滑材を前記多重管ロッドの先端から横方向に噴射させても良い。
さらに、本発明のケーソンの沈設方法は、ケーソンの刃口には、外周面に作用する周囲の地盤からの土圧を計測する土圧計と、外周面に作用する周囲の地盤との周面摩擦力を計測する周面摩擦計とのいずれか若しくは両方が設けられており、前記深度範囲特定工程では、前記土圧計による土圧の計測値と前記周面摩擦計による周摩擦力を計測値とのいずれか若しくは両方に基づいて前記応力低減深度範囲を特定しても良い。
さらに、本発明のケーソンの沈設方法において、前記掘削孔形成工程では、ケーソンの外周面と対向する地下構造体との間に掘削孔を形成しても良い。
さらに、本発明のケーソンの沈設方法は、ケーソンの外周面と、対向する地下構造体との間の地盤に対して、ドラッカー・プラガー系もしくはカムクレイ系の降伏規準を用いた地盤の弾塑性モデルを適用した有限要素法による解析を行い、前記応力低減工によって造成する前記改良地盤の本数を変えてそれぞれの土圧の低減効果を検証することで、前記応力低減工によって造成する前記改良地盤の本数を設定しても良い。
さらに、本発明のケーソンの沈設方法は、ケーソンの外周面と、対向する地下構造体との間の地盤に対して、ドラッカー・プラガー系もしくはカムクレイ系の降伏規準を用いた地盤の弾塑性モデルを適用した有限要素法による解析結果に基づいて、前記応力低減工の設計見積もりを行っても良い。
The caisson squatting method of the present invention is a caisson squatting method in which a caisson is sunk down to a predetermined depth and installed, wherein the caisson's outer peripheral surface The range of the depth to reduce the stress based on one or both of the measurement result of the earth pressure from the surrounding ground acting on the ground and the measurement result of the circumferential friction force with the surrounding ground acting on the outer peripheral surface of the caisson A depth range specifying step of specifying a stress reduction depth range, a drilling hole forming step of drilling from the ground to the deepest part of the stress reduction depth range to form a drilling hole, and a multi-tube rod inserted into the drilling hole. Rotating the multiple pipe rods to break the skeletal structure of the ground while injecting water from the tip in the horizontal direction simultaneously with the air, and improving the columnar ground in the stress reduction depth range Which comprises carrying out the board reclamation process.
Further, in the caisson laying method of the present invention, in the improved ground preparation step, a sliding material may be laterally jetted from a tip of the multi-pipe rod together with the water and the air.
Furthermore, the caisson squatting method of the present invention further comprises: a caisson cutting edge; a ground pressure gauge for measuring earth pressure acting on the outer peripheral surface from the surrounding ground; and a peripheral surface friction between the surrounding ground acting on the outer peripheral surface. Either or both of the surface friction meter to measure the force is provided, in the depth range identification step, the measured value of the earth pressure by the earth pressure meter and the measured value of the circumferential friction force by the surface friction meter. The stress reduction depth range may be specified based on any one or both.
Further, in the caisson laying method of the present invention, in the excavation hole forming step, an excavation hole may be formed between the outer peripheral surface of the caisson and the facing underground structure .
Furthermore, the caisson subsidence method of the present invention provides an elasto-plastic model of the ground using the Drucker-Plager-based or Camclay-based yield criterion for the ground between the outer peripheral surface of the caisson and the opposing underground structure. By performing an analysis by the applied finite element method and verifying the effect of reducing the earth pressure by changing the number of the improved grounds formed by the stress reducing work, the number of the improved grounds formed by the stress reducing work May be set.
Furthermore, the caisson subsidence method of the present invention provides an elasto-plastic model of the ground using the Drucker-Plager-based or Camclay-based yield criterion for the ground between the outer peripheral surface of the caisson and the opposing underground structure. The design estimation of the stress reduction process may be performed based on the analysis result by the applied finite element method.

本発明によれば、大きな周面摩擦力が生じたケーソンの一部外周面に対向する地盤に対して、地上から応力低減工を実施することで、ケーソンの一部外周面に生じた大きな周面摩擦力を効果的に低減することができるという効果を奏する。   According to the present invention, by performing stress reduction work on the ground facing a part of the outer peripheral surface of the caisson where a large peripheral surface frictional force is generated, a large circumferential surface formed on the part of the outer peripheral surface of the caisson is obtained. There is an effect that the surface frictional force can be effectively reduced.

本発明に係るケーソンの沈設方法を適用するケーソン沈設工法の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the caisson laying method which applies the caisson laying method which concerns on this invention. 図1に示す刃口部分の拡大図である。FIG. 2 is an enlarged view of a cutting edge portion shown in FIG. 1. 本実施形態における地盤図である。It is a ground map in this embodiment. 図2に示す土圧計による土圧の計測値を示すグラフである。It is a graph which shows the measured value of the earth pressure by the earth pressure gauge shown in FIG. 図2に示す周面摩擦計による周面摩擦力の計測値を示すグラフである。3 is a graph showing a measured value of a peripheral friction force by the peripheral friction meter shown in FIG. 2. 本発明に係るケーソンの沈設方法における応力低減工の工程を示す工程図である。It is process drawing which shows the process of the stress reduction in the caisson squatting method which concerns on this invention. 図4に示すグラフに有限要素法による土圧の解析結果を重ね合わせたグラフである。5 is a graph obtained by superimposing an analysis result of earth pressure by a finite element method on the graph shown in FIG. 4. 本発明に係るケーソンの沈設方法の応力低減工による対策効果を検討する施行例を示す図である。It is a figure which shows the enforcement example which examines the countermeasure effect by the stress reduction construction of the caisson sinking method based on this invention. 図8に示す施行例による土圧低減効果を示すグラフである。9 is a graph showing the effect of reducing the earth pressure according to the embodiment shown in FIG. 8. 本発明に係るケーソンの沈設方法の不整形地盤への適用例を示す図である。It is a figure showing the example of application to the uneven ground of the sinking method of the caisson concerning the present invention.

次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。   Next, embodiments for implementing the present invention (hereinafter, simply referred to as “embodiments”) will be specifically described with reference to the drawings.

本実施形態は、図1に示すように、ケーソン1と、ケーソン2とを近接させて同時に沈設して地下構造物を構築するケーソン沈設工法に、本発明に係るケーソンの沈設方法を適用した場合について説明する。なお、図1は、ケーソン沈設過程の状態を示し、(a)は、平面図であり、(b)は、(a)に示すX−X断面図である。   In this embodiment, as shown in FIG. 1, the caisson laying method according to the present invention is applied to a caisson laying method in which a caisson 1 and a caisson 2 are simultaneously laid close to each other to construct an underground structure. Will be described. 1A and 1B show a state of a caisson setting process, in which FIG. 1A is a plan view, and FIG. 1B is a sectional view taken along line XX in FIG.

ケーソン1及びケーソン2の形状は、上下方向に延びる角筒形である。互いに対向するケーソン1の外周面(以下、近接対向面1aと称す)と、ケーソン2の外周面(以下、近接対向面2aと称す)とを、離隔L(例えば、L=数m)で平行に近接対向した状態で沈設する。なお、ケーソン1とケーソン2とを沈設するタイミングは、一方のみを交互に沈設しても良く、両方を同じタイミング(同じスピード)で沈設しても良い。いずれの場合も、ケーソン1とケーソン2とは、互いに他方に対する近接した地下構造体として作用する。また、ケーソン1及びケーソン2の他の外周面(以下、それぞれ無対向面1b及び無対向面2bと称す)に対向する地盤は、近接する地下構造体がない無限地盤とみなすことができる。   The shapes of the caisson 1 and the caisson 2 are rectangular cylinders extending in the up-down direction. An outer peripheral surface of the caisson 1 facing each other (hereinafter, referred to as a close opposing surface 1a) and an outer peripheral surface of the caisson 2 (hereinafter, referred to as a close opposing surface 2a) are parallel to each other at a distance L (for example, L = several meters). It sinks in a state of facing and approaching. As for the timing at which the caisson 1 and the caisson 2 are laid, only one may be laid alternately or both may be laid at the same timing (at the same speed). In each case, caisson 1 and caisson 2 act as adjacent underground structures to each other. In addition, the ground facing the other outer peripheral surfaces of the caisson 1 and the caisson 2 (hereinafter, referred to as the non-opposing surface 1b and the non-opposing surface 2b, respectively) can be regarded as an infinite ground having no adjacent underground structure.

図2を参照すると、ケーソン1及びケーソン2における刃口10には、外周面に作用する周囲の地盤からの土圧を計測する土圧計11と、外周面に作用する周囲の地盤との周面摩擦力を計測する周面摩擦計12と、刃口10に作用する地盤反力(支持力)を計測する刃口反力計13とが設けられている。なお、図2には示されていないが、無対向面1b、2bにも土圧計11及び周面摩擦計12がそれぞれ設けられている。また、ケーソン1及びケーソン2には、水圧、揚圧力、ケーソン1及びケーソン2の傾斜等のその他の情報を計測する図示しない測定器が設けられている。土圧計11によって計測された土圧と、周面摩擦計12によって計測された周面摩擦力と、刃口反力計13によって計測された地盤反力と、その他(水圧、揚圧力、ケーソン1及びケーソン2の傾斜等)の情報とは、図示しないコンピューター等の情報処理装置に入力される。そして、作業管理者は、情報処理装置に入力される土圧、周面摩擦力、地盤反力及びその他(水圧、揚圧力、ケーソン1及びケーソン2の傾斜等)の情報を参照しながら沈設作業を管理する。   Referring to FIG. 2, the cutting edge 10 of the caisson 1 and the caisson 2 has a peripheral surface of an earth pressure gauge 11 that measures the earth pressure acting on the outer peripheral surface from the surrounding ground, and a peripheral surface that acts on the outer peripheral surface. A peripheral friction meter 12 for measuring frictional force and a blade reaction force meter 13 for measuring a ground reaction force (support force) acting on the blade 10 are provided. Although not shown in FIG. 2, an earth pressure gauge 11 and a peripheral friction meter 12 are also provided on the non-opposing surfaces 1b and 2b, respectively. Further, the caisson 1 and the caisson 2 are provided with a measuring device (not shown) for measuring other information such as water pressure, lift pressure, inclination of the caisson 1 and the caisson 2. The earth pressure measured by the earth pressure gauge 11, the surface friction force measured by the surface friction meter 12, the ground reaction force measured by the blade reaction force meter 13, and other (water pressure, lifting pressure, caisson 1 And the inclination of the caisson 2) are input to an information processing device such as a computer (not shown). Then, the work manager refers to the information of the earth pressure, the peripheral frictional force, the ground reaction force, and other information (water pressure, lift pressure, inclination of the caisson 1 and the caisson 2) input to the information processing apparatus, and performs the subsidence work. Manage.

本実施形態における地盤は、図3に示すように、地表〜深度D1が上層G1、深度D1〜D2が有楽町層・低過圧密粘性土G2、深度D2〜D3が有楽町層・高過圧密粘性土G3、深度D3〜D4が東京層・シルト混じり砂G4、深度D4〜D5が東京層・砂礫G5、深度D5〜D6が東京層・シルト混じり砂G6で構成されている。なお、上層G1は、緩い砂の地盤であり、東京層・シルト混じり砂G4、東京層・砂礫G5及び東京層・シルト混じり砂G6は、密な砂(砂礫)の地盤である。   As shown in FIG. 3, the ground in the present embodiment is as follows: the ground surface to the depth D1 is the upper layer G1, the depths D1 to D2 are the Yurakucho layer / low overconsolidation soil G2, and the depths D2 to D3 are the Yurakucho layer and the high overconsolidation soil. G3, depths D3 to D4 are composed of sand G4 mixed with Tokyo layer and silt, depths D4 to D5 are composed of Tokyo layer and gravel G5, and depths D5 to D6 are composed of sand G6 mixed with Tokyo layer and silt. The upper layer G1 is a loose sand ground, and the Tokyo layer / silt sand G4, the Tokyo layer / sand gravel G5, and the Tokyo layer / silt sand G6 are dense sand (sand) ground.

図4には、ケーソン1及びケーソン2を深度D5〜D6の東京層・シルト混じり砂G6まで沈下させた際の、ケーソン1に設けられた土圧計11による土圧の計測値が示されている。図4において、実線Aは、ケーソン1の近接対向面1aに作用する周囲の地盤からの土圧であり、点線Bは、ケーソン1の無対向面1bに作用する周囲の地盤からの土圧であり、一点鎖線Cは、設計見積もりでの初期土圧である。図4によると、無対向面1bに作用する土圧は、全ての層において初期土圧とほぼ一致するのに対し、近接対向面1aに作用する土圧は、高過圧密粘性土からなるG3層と、密な砂(砂礫)からなるG4〜G6層とにおいて初期土圧よりも高くなっている。なお、ケーソン2に設けられた土圧計11による土圧の計測値もほぼ同様の計測値となった。   FIG. 4 shows measured values of earth pressure by the earth pressure gauge 11 provided in the caisson 1 when the caisson 1 and the caisson 2 are settled down to the sand G6 mixed with the Tokyo layer and silt at the depths D5 to D6. . In FIG. 4, the solid line A is the earth pressure from the surrounding ground acting on the proximity opposing surface 1 a of the caisson 1, and the dotted line B is the earth pressure from the surrounding ground acting on the non-opposing surface 1 b of the caisson 1. The dashed line C is the initial earth pressure in the design estimate. According to FIG. 4, the earth pressure acting on the non-opposite surface 1b is almost equal to the initial earth pressure in all the layers, whereas the earth pressure acting on the close opposing surface 1a is a high overconsolidation soil G3. The layer and the G4 to G6 layers made of dense sand (sand and gravel) are higher than the initial earth pressure. The measured values of the earth pressure by the earth pressure gauge 11 provided in the caisson 2 were almost the same.

図5には、ケーソン1及びケーソン2を深度D5〜D6の東京層・シルト混じり砂G6まで沈下させた際の、ケーソン1の近接対向面1aに設けられた周面摩擦計12による周面摩擦力の計測値が示されている。図5において、実線Aがケーソン1の近接対向面1aに作用する周面摩擦力である。図5によると、近接対向面1aに作用する周面摩擦力は、土圧と同様に、高過圧密粘性土からなるG3層と、密な砂(砂礫)からなるG4〜G6層とにおいて高くなっている。なお、ケーソン2に設けられた周面摩擦計12による周面摩擦力の計測値もほぼ同様の計測値となった。   FIG. 5 shows that the caisson 1 and caisson 2 are settled down to the sand G6 mixed with the Tokyo layer and silt at the depths D5 to D6, and the surface friction is measured by the surface friction meter 12 provided on the adjacent facing surface 1a of the caisson 1. Force measurements are shown. In FIG. 5, the solid line A is the peripheral frictional force acting on the proximity facing surface 1 a of the caisson 1. According to FIG. 5, the peripheral frictional force acting on the proximity opposing surface 1a is high in the G3 layer made of highly over-consolidated clay and the G4 to G6 layers made of dense sand (sand) as in the case of earth pressure. Has become. The measured values of the peripheral friction force by the peripheral friction meter 12 provided in the caisson 2 were almost the same.

図4及び図5に示すように、ケーソン1の一部外周面である近接対向面1aに作用する土圧及び周面摩擦力が、他の無対向面1bに比べて高くなると、バランスが崩れてケーソン1の沈下が困難になってしまう。そこで、近接対向面1aに作用する土圧及び周面摩擦力に低減させる対策工として、ケーソン1の近接対向面1aと、ケーソン2の近接対向面2aとの間の拘束された閉塞地盤の応力を低減させる応力低減工を実施する。この応力低減工によってケーソン2の近接対向面2aに作用する土圧及び周面摩擦力も低減されることになる。   As shown in FIGS. 4 and 5, when the earth pressure and the peripheral frictional force acting on the proximity facing surface 1a, which is a part of the outer peripheral surface of the caisson 1, are higher than those of the other non-facing surface 1b, the balance is lost. This makes caisson 1 difficult to sink. Therefore, as a countermeasure to reduce the earth pressure and the peripheral frictional force acting on the adjacent facing surface 1a, the stress of the confined ground between the adjacent facing surface 1a of the caisson 1 and the adjacent facing surface 2a of the caisson 2 is taken as a measure. Implement stress reduction to reduce the stress. This stress reduction also reduces the earth pressure and the peripheral frictional force acting on the proximity facing surface 2a of the caisson 2.

応力低減工では、まず、深度範囲特定工程として、土圧計11による土圧の計測値、もしくは周面摩擦計12による周面摩擦力の計測値に基づいて、応力を低減させる深度の範囲(以下、特定した範囲を応力低減深度範囲と称す)を特定する。例えば、本実施形態では、図4に実線Aで示すケーソン1の近接対向面1aに作用する周囲の地盤からの土圧に基づいて、G3〜G6層の初期土圧よりも高くなる深度範囲を応力低減深度範囲として特定する。   In the stress reduction work, first, as a depth range specifying step, a depth range (hereinafter referred to as a depth range) in which stress is reduced based on a measured value of earth pressure by the earth pressure gauge 11 or a measured value of circumferential friction force by the circumferential friction meter 12. , The specified range is referred to as a stress reduction depth range). For example, in the present embodiment, the depth range that is higher than the initial earth pressure of the G3 to G6 layers is determined based on the earth pressure from the surrounding ground acting on the proximity facing surface 1a of the caisson 1 shown by the solid line A in FIG. Specified as the stress reduction depth range.

次に、掘削孔形成工程として、ボーリングマシンを用い、図6(a)に示すように、ケーソン1の近接対向面1aと、近接対向面1aに対して近接した地下構造体として作用するケーソン2の近接対向面2aとの間に、地上から応力低減深度範囲の最深部まで削孔して掘削孔20を形成する。   Next, as a drilling hole forming step, using a boring machine, as shown in FIG. 6A, the caisson 1 and the caisson 2 acting as an underground structure adjacent to the proximate facing surface 1 a as shown in FIG. The hole 20 is formed by drilling from the ground to the deepest part of the stress reduction depth range.

次に、改良地盤造成工程として、図6(b)に示すように、掘削孔20に多重管ロッド21を挿入し、多重管ロッド21の先端から超高圧の水を圧縮空気と同時に横方向に噴射させながら、コラムマシンで多重管ロッド21を回転させると共に、クレーンで多重管ロッド21を引き上げる。超高圧の水と圧縮空気との噴射により、地盤の骨格構造を破壊されて円柱状の改良地盤23が造成される。地盤の骨格構造の破壊の過程で生じたスライム22は掘削孔20と多重管ロッド21との間を通って地表に排出される。   Next, as an improved ground formation step, as shown in FIG. 6B, a multi-pipe rod 21 is inserted into the excavation hole 20, and ultra-high pressure water is supplied from the tip of the multi-pipe rod 21 simultaneously with the compressed air in the lateral direction. While spraying, the multi-pipe rod 21 is rotated by the column machine, and the multi-pipe rod 21 is pulled up by the crane. The injection of the ultra-high pressure water and the compressed air destroys the skeletal structure of the ground, thereby forming the columnar improved ground 23. The slime 22 generated in the course of the destruction of the skeletal structure of the ground is discharged to the ground surface between the excavation hole 20 and the multiple pipe rod 21.

円柱状の改良地盤23は、図6(c)に示すように応力低減深度範囲に造成する。改良地盤23の半径は、近接対向面1aの損傷を防止するために、近接対向面1aと掘削孔20との距離よりも短く設定すると好適である。なお、改良地盤23の半径は、噴射する水及び空気の圧力、多重管ロッド21の回転及び引き上げ速度によって適宜設定することができる。また、ベントナイト等の滑材を噴射させて改良地盤23に混入するようにしても良い。   The columnar improved ground 23 is formed in a stress reduction depth range as shown in FIG. The radius of the improved ground 23 is preferably set to be shorter than the distance between the proximity opposing surface 1a and the excavation hole 20 in order to prevent damage to the proximity opposing surface 1a. In addition, the radius of the improved ground 23 can be appropriately set according to the pressure of the water and air to be injected, and the rotation and lifting speed of the multiple pipe rod 21. Further, a lubricant such as bentonite may be injected and mixed into the improved ground 23.

造成する改良地盤23の本数や間隔は、後述する弾塑性モデルを適用した解析によって設定する。そして、設定した本数に到達するまで、掘削孔形成工程及び改良地盤造成工程を繰り返す。改良地盤造成工程によって、地盤の骨格構造が破壊されるため、改良地盤23に隣接した地盤、すなわちケーソン1の近接対向面1aと、ケーソン2の近接対向面2aとの間の拘束された閉塞地盤の応力が低減され、ケーソン1の近接対向面1aに作用する土圧及び周面摩擦力も低減される。   The number and intervals of the improved ground 23 to be formed are set by analysis using an elasto-plastic model described later. Then, the drilling hole forming step and the improved ground formation step are repeated until the set number is reached. Since the skeletal structure of the ground is destroyed by the improved ground formation process, the ground adjacent to the improved ground 23, that is, the confined closed ground between the adjacent facing surface 1a of the caisson 1 and the adjacent facing surface 2a of the caisson 2 is restricted. Is reduced, and the earth pressure and the peripheral frictional force acting on the proximity facing surface 1a of the caisson 1 are also reduced.

図3〜図5を参照すると、密な砂(砂礫)や過圧密粘性土の地盤(G3〜G6)で、ケーソン1の沈設時に近接した地下構造体(ケーソン2)が存在する場合に、地下構造体(ケーソン2)に対向するケーソン1の近接対向面1aに設計見積もり以上の大きな土圧及び周面摩擦力が生じている。これは、ケーソン1と地下構造体(ケーソン2)との間の地盤の拘束に起因するものと考えられる。しかし、地盤の拘束のみでは説明できないため、本発明者達は、密な砂(砂礫)や過圧密粘性土の地盤(G3〜G6)が、ケーソン1及びケーソン2の沈設時のせん断による正のダイレイタンシー(体積の膨張)も起因するものと考えた。   Referring to FIG. 3 to FIG. 5, when the underground structure (caisson 2) close to the caisson 1 is laid on the ground (G3 to G6) of dense sand (gravel) or over-consolidated clay, A large earth pressure and a circumferential friction force greater than the design estimate are generated on the near-facing surface 1a of the caisson 1 facing the structure (caisson 2). This is considered to be due to the constraint of the ground between caisson 1 and the underground structure (caisson 2). However, it cannot be explained only by the constraint of the ground, and the present inventors assume that the ground (G3 to G6) of dense sand (gravel) or over-consolidated cohesive soil is positive due to shearing when the caisson 1 and caisson 2 are settled. It was considered that dilatancy (expansion of volume) was also caused.

そこで、ケーソン1と地下構造体(ケーソン2)との間の地盤に対して、ドラッカー・プラガー(Drucker-Prager)系の降伏規準を用いた地盤の弾塑性モデルを適用し、周面摩擦計12で計測された周面摩擦力を設定荷重として作用させ、有限要素法(FEM)によってケーソン1の近接対向面1aで計測された土圧の再現解析を行った。ドラッカー・プラガー系の降伏規準を用いた地盤の弾塑性モデルは、ケーソン1の沈設時の地盤の応力条件と、せん断による膨張(正のダイレイタンシーを考慮できるモデルである。なお、解析対象は、ダイレイタンシーの影響が大きいと考えられるG4〜G6の砂層・砂礫層を対象とした。また、有限要素法(FEM)による解析は、ダイレイタンシーの影響を検討するため、ドラッカー・プラガー系の降伏規準を用いた弾塑性モデルの他に、弾性体モデルでも行い、両ケースを比較した。   Therefore, an elasto-plastic model of the ground using the Drucker-Prager yield criterion is applied to the ground between caisson 1 and the underground structure (caisson 2), and the surface friction meter 12 The frictional force measured on the peripheral surface was applied as a set load, and a reproduction analysis of the earth pressure measured on the adjacent facing surface 1a of the caisson 1 by the finite element method (FEM) was performed. The elasto-plastic model of the ground using the Drucker-Plager yield criterion is a model that can take into account the stress conditions of the ground when the caisson 1 is laid and the expansion due to shearing (positive dilatancy. The analysis target is In addition, G4 to G6 sand and gravel layers, which are considered to be greatly affected by dilatancy, were analyzed by the finite element method (FEM). In addition to the elasto-plastic model using the yield criterion described above, an elastic body model was used, and the two cases were compared.

図7は、図4に土圧の解析結果を重ね合わせたグラフである。図7によると、ダイレイタンシーを考慮したドラッカー・プラガー系の降伏規準を用いた弾塑性モデルでは、初期土圧からの土圧の増加があり、ケーソン1の近接対向面1aにおいて、おおよそ実測値に近い値が得られた。一方、ダイレイタンシーを考慮していない弾性体モデルでは、土圧増加は得られず、初期土圧付近に分布する結果となった。従って、ケーソン1の近接対向面1aの土圧の増加は、ダイレイタンシー(体積膨張)の影響によるものであると考えられる。   FIG. 7 is a graph in which the analysis result of earth pressure is superimposed on FIG. According to FIG. 7, in the elasto-plastic model using the yield criterion of the Drucker-Plager system in consideration of dilatancy, there is an increase in earth pressure from the initial earth pressure. Was obtained. On the other hand, in the elastic body model without considering the dilatancy, the increase of earth pressure was not obtained, and the result was distributed near the initial earth pressure. Therefore, it is considered that the increase in the earth pressure on the proximity facing surface 1a of the caisson 1 is due to the influence of dilatancy (volume expansion).

次に、応力低減工による対策効果を検討するため、ケーソン1と地下構造体(ケーソン2)との間の地盤に対し、ドラッカー・プラガー系の降伏規準を用いた弾塑性モデルを適用した有限要素法(FEM)による解析を行い、図8に示すように、造成する改良地盤23の本数を第1ターム、第2ターム、第3タームで徐々に増やして、それぞれの土圧の低減効果を検証した。その結果、図9に示すように、第1ターム、第2ターム、第3タームと改良地盤23の本数が増えるに従い、土圧低減効果が大きくなる結果となった。   Next, in order to examine the effect of countermeasures by stress reduction, a finite element using the elasto-plastic model using the Drucker-Plager system yield criterion was applied to the ground between caisson 1 and underground structure (caisson 2). As shown in Fig. 8, the number of the improved ground 23 to be created is gradually increased in the first, second, and third terms to verify the effect of reducing the earth pressure of each of the grounds, as shown in FIG. did. As a result, as shown in FIG. 9, as the number of the first term, the second term, the third term, and the number of the improved ground 23 increased, the effect of reducing the earth pressure became large.

このように、ドラッカー・プラガー系の降伏規準を用いた弾塑性モデルを適用した有限要素法(FEM)による解析で、造成する改良地盤23の本数及び間隔を決定することができる。すなわち、図9を参照すると、近接対向面1aに作用する土圧は、第1ターム施工時では他の無対向面1bに比べてまだ高く、第2ターム施工時では他の無対向面1bに比べて低くなっている。従って、第2ターム施工時よりも少なく、第1ターム施工時よりも多い本数の改良地盤23を造成すれば良いことが分かる。これにより、ケーソン1の各外周面に作用する土圧のバランスを簡単に揃えることができる。   As described above, the number and interval of the improved ground 23 to be formed can be determined by the analysis by the finite element method (FEM) to which the elasto-plastic model using the yield criterion of the Drucker-Plager system is applied. That is, referring to FIG. 9, the earth pressure acting on the near opposing surface 1a is still higher than the other non-opposing surface 1b at the time of the first term construction, and is applied to the other non-opposing surface 1b at the time of the second term construction. It is lower than that. Therefore, it can be seen that the number of the improved grounds 23 that is smaller than that at the time of the second term construction and larger than that at the time of the first term construction should be created. Thus, the balance of the earth pressure acting on each outer peripheral surface of the caisson 1 can be easily adjusted.

また、以上の解析結果は、密な砂(砂礫)や過圧密粘性土の地盤で、ケーソン沈設時に近接した地下構造体(地下構造物や強固な地盤)が存在する場合、ケーソン外周面と地下構造体との間の地盤に対して、ドラッカー・プラガー系の降伏規準を用いた地盤の弾塑性モデルを適用し、有限要素法(FEM)によって解析することで、土圧の増加を予測できることを意味する。これにより、必要になる応力低減工を予測することができ、設計見積りにおいて、応力低減工を予算に加えることが可能になる。   In addition, the above analysis results show that when there is an underground structure (underground structure or strong ground) close to the caisson at the time of caisson subsidence, By applying the elasto-plastic model of the ground using the yield criterion of the Drucker-Plager system to the ground between structures and analyzing it by the finite element method (FEM), it is possible to predict the increase in earth pressure. means. This makes it possible to predict the required stress reduction work, and to add the stress reduction work to the budget in the design estimation.

なお、本実施形態では、ケーソン1の近接対向面1aに作用する土圧及び周面摩擦力を低減させるケーソンの沈設方法について説明したが、ケーソン1の近接対向面1aに作用する土圧及び周面摩擦力を低減させることで、ケーソン2の近接対向面2aに作用する土圧及び周面摩擦力も低減されることは言うまでもない。   In the present embodiment, the method of laying the caisson to reduce the earth pressure and the circumferential frictional force acting on the proximity facing surface 1a of the caisson 1 has been described, but the earth pressure and the circumferential force acting on the proximity facing surface 1a of the caisson 1 are described. It goes without saying that by reducing the surface frictional force, the earth pressure and the peripheral surface frictional force acting on the adjacent facing surface 2a of the caisson 2 are also reduced.

また、本実施形態では、有限要素法(FEM)による解析に、ドラッカー・プラガー系の降伏規準を用いた弾塑性モデルを用いたが、カムクレイ(Cam-Clay)系の降伏規準を用いた弾塑性モデルを用いても良い。ドラッカー・プラガー系の降伏規準を用いた弾塑性モデルは、砂地盤に適し、カムクレイ(Cam-Clay)系の降伏規準を用いた弾塑性モデルは、粘土地盤に適している。   Further, in the present embodiment, the elasto-plastic model using the yield criterion of the Drucker-Plager system is used for the analysis by the finite element method (FEM), but the elasto-plastic model using the yield criterion of the Cam-Clay system is used. A model may be used. The elasto-plastic model using the Drucker-Plager yield criterion is suitable for sand ground, and the elasto-plastic model using the Cam-Clay yield criterion is suitable for clay ground.

さらに、本実施形態の応力低減工は、図10に示すように、硬い地盤層30が斜めに横断するような不整形地盤にケーソン3を沈設する際にも活用することができる。硬い地盤層30は、例えば、高い密度の砂・砂礫、硬質粘土等で構成される。ケーソン3の外周面に対向する硬い地盤層30に対し、応力低減工として、硬い地盤層30の層厚を応力低減深度範囲として、この応力低減深度範囲に円柱状の改良地盤23を造成する。これにより、ケーソン3の外周面の土圧及び周面摩擦力の低減及び平準化を実現することができる。   Furthermore, as shown in FIG. 10, the stress reduction work of the present embodiment can also be used when laying the caisson 3 on irregular ground where the hard ground layer 30 crosses obliquely. The hard ground layer 30 is made of, for example, high-density sand / gravel, hard clay, or the like. For the hard ground layer 30 facing the outer peripheral surface of the caisson 3, as a stress reduction operation, the layer thickness of the hard ground layer 30 is set as a stress reduction depth range, and a columnar improved ground 23 is formed in this stress reduction depth range. Thereby, reduction and leveling of the earth pressure and the peripheral frictional force on the outer peripheral surface of the caisson 3 can be realized.

以上説明したように、本実施形態は、ケーソン1を所定の深さまで沈下させて設置するケーソン1の沈設方法であって、ケーソン1の外周面(近接対向面1a)に対向する地盤の応力を低減させる応力低減工として、応力を低減させる深度の範囲を応力低減深度範囲として特定する深度範囲特定工程と、地上から応力低減深度範囲の最深部まで削孔して掘削孔20を形成する掘削孔形成工程と、掘削孔20に挿入した多重管ロッド21の先端から水を空気と同時に横方向に噴射させながら、多重管ロッド21を回転させて地盤の骨格構造を破壊し、応力低減深度範囲に円柱状の改良地盤23を造成する改良地盤造成工程とを実施する。
この構成により、大きな周面摩擦力が生じたケーソン1の一部外周面(近接対向面1a)に対向する地盤に対して、地上から応力低減工を実施することで、ケーソン1の一部外周面(近接対向面1a)に生じた大きな周面摩擦力を効果的に低減することができる。また、応力低減工は、ケーソン1の構造に拘わらず、地上から実施することができるため、ケーソン1に対して周面摩擦力させる構造(ケーソン1内の配管等)を事前に施す必要がなく、コストを削減することができる。
As described above, the present embodiment is a method of laying down the caisson 1 by sinking the caisson 1 to a predetermined depth, and reducing the stress of the ground facing the outer peripheral surface (the proximity facing surface 1a) of the caisson 1. As a stress reducing step for reducing the stress, a depth range specifying step of specifying a range of the depth for reducing the stress as the stress reducing depth range, and a drilling hole for drilling from the ground to the deepest part of the stress reducing depth range to form the drilling hole 20. In the forming step, the water is jetted from the tip of the multiple pipe rod 21 inserted into the excavation hole 20 in the horizontal direction simultaneously with the air, and the multiple pipe rod 21 is rotated to destroy the skeletal structure of the ground. An improved ground formation step of forming the columnar improved ground 23 is performed.
With this configuration, the ground facing the part of the outer peripheral surface of the caisson 1 (proximal facing surface 1a) in which a large peripheral frictional force is generated is subjected to a stress reduction work from the ground, so that the outer peripheral part of the caisson 1 is partially removed. The large peripheral frictional force generated on the surface (proximal facing surface 1a) can be effectively reduced. In addition, since the stress reduction work can be performed from the ground regardless of the structure of the caisson 1, it is not necessary to previously provide a structure (piping or the like in the caisson 1) for causing a circumferential frictional force to the caisson 1. , Cost can be reduced.

さらに、本実施形態において、改良地盤造成工程では、水及び空気と共に、滑材(ベントナイト等)を多重管ロッド21の先端から横方向に噴射させる。
この構成により、滑材(ベントナイト等)の材質や噴射量によって、応力低減工によって造成する改良地盤23を適切な強度に設定することができる。
Further, in the present embodiment, in the improved ground preparation step, a lubricant (such as bentonite) is jetted laterally from the tip of the multiple pipe rod 21 together with water and air.
With this configuration, it is possible to set the improved ground 23 formed by the stress reduction work to an appropriate strength, depending on the material of the lubricating material (such as bentonite) and the injection amount.

さらに、本実施形態において、ケーソン1の刃口10には、外周面に作用する周囲の地盤からの土圧を計測する土圧計11と、外周面に作用する周囲の地盤との周面摩擦力を計測する周面摩擦計12とが設けられており、深度範囲特定工程では、土圧計11による土圧の計測値や周面摩擦計12による周面摩擦力を計測値に基づいて応力低減深度範囲を特定する。
この構成により、応力低減工によって適切な深度に改良地盤23を造成することができる。
Further, in the present embodiment, the blade 10 of the caisson 1 has an earth pressure gauge 11 for measuring earth pressure acting on the outer peripheral surface from the surrounding ground, and a peripheral friction force between the surrounding ground acting on the outer peripheral surface. And a peripheral friction meter 12 for measuring the surface pressure is measured. In the depth range specifying step, the measured value of the earth pressure by the earth pressure gauge 11 and the peripheral friction force by the peripheral friction meter 12 are used to reduce the stress reduction depth based on the measured value. Identify the range.
With this configuration, the improved ground 23 can be formed at an appropriate depth by the stress reduction work.

さらに、本実施形態において、ケーソン1の外周面(近接対向面1a)と、対向する地下構造体(ケーソン2の近接対向面2a)との間の地盤に対して、応力低減工を実施する。
この構成により、地下構造体(ケーソン2の近接対向面2a)と対向するケーソン1の一部外周面(近接対向面1a)に生じる大きな周面摩擦力を効果的に低減することができる。
Further, in the present embodiment, a stress reduction work is performed on the ground between the outer peripheral surface of the caisson 1 (proximal facing surface 1a) and the opposing underground structure (proximal facing surface 2a of the caisson 2).
With this configuration, it is possible to effectively reduce a large peripheral friction force generated on a part of the outer peripheral surface (the proximity opposing surface 1a) of the caisson 1 facing the underground structure (the proximity opposing surface 2a of the caisson 2).

さらに、本実施形態において、ケーソン1の外周面(近接対向面1a)と、対向する地下構造体(ケーソン2の近接対向面2a)との間の地盤に対して、ドラッカー・プラガー系もしくはカムクレイ系の降伏規準を用いた地盤の弾塑性モデルを適用した有限要素法による解析を行い、応力低減工によって造成する改良地盤23の本数を変えてそれぞれの土圧の低減効果を検証することで、応力低減工によって造成する改良地盤23の本数を設定する。
この構成により、事前に応力低減工の工数を把握することができる。
Further, in the present embodiment, the ground between the outer peripheral surface of the caisson 1 (proximal facing surface 1a) and the opposing underground structure (proximal facing surface 2a of the caisson 2) has a Drucker-Plager system or a camclay system. By performing the analysis by the finite element method applying the elasto-plastic model of the ground using the yield criterion, and by changing the number of the improved grounds 23 created by the stress reduction work, the effect of reducing the earth pressure of each is verified. The number of the improved grounds 23 to be created by the reduction work is set.
With this configuration, the number of man-hours for the stress reduction work can be grasped in advance.

さらに、本実施形態において、ケーソン1の外周面(近接対向面1a)と、対向する地下構造体(ケーソン2の近接対向面2a)との間の地盤に対して、ドラッカー・プラガー系もしくはカムクレイ系の降伏規準を用いた地盤の弾塑性モデルを適用した有限要素法による解析結果に基づいて、応力低減工の設計見積もりを行う。
この構成により、事前に応力低減工の必要性を把握して、応力低減工を行う機材を準備することができる。
Further, in the present embodiment, the ground between the outer peripheral surface of the caisson 1 (proximal facing surface 1a) and the opposing underground structure (proximal facing surface 2a of the caisson 2) has a Drucker-Plager system or a camclay system. Based on the analysis results by the finite element method applying the elasto-plastic model of the ground using the yield criterion, the design estimation of the stress reduction work is performed.
With this configuration, it is possible to grasp the necessity of the stress reduction work in advance and prepare equipment for performing the stress reduction work.

以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素の組み合わせ等にいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of the components, and that such modifications are also within the scope of the present invention.

1、2、3 ケーソン
1a 近接対向面
1b 無対向面
2a 近接対向面
2b 無対向面
10 刃口
11 土圧計
12 周面摩擦計
13 刃口反力計
20 掘削孔
21 多重管ロッド
22 スライム
23 改良地盤
30 硬い地盤層
1, 2, 3 Caisson 1a Proximity facing surface 1b Non-facing surface 2a Proximity facing surface 2b No-facing surface 10 Blade port 11 Earth pressure gauge 12 Surface friction meter 13 Blade port reaction force meter 20 Drilling hole 21 Multi-pipe rod 22 Slime 23 Improvement Ground 30 Hard ground layer

Claims (6)

ケーソンを所定の深さまで沈下させて設置するケーソンの沈設方法であって、
ケーソンの外周面に対向する地盤の応力を低減させる応力低減工として、
ケーソンの外周面に作用する周囲の地盤からの土圧の計測結果とケーソンの外周面に作用する周囲の地盤との周面摩擦力の計測結果とのいずれか若しくは両方に基づいて、応力を低減させる深度の範囲を応力低減深度範囲として特定する深度範囲特定工程と、
地上から前記応力低減深度範囲の最深部まで削孔して掘削孔を形成する掘削孔形成工程と、
前記掘削孔に挿入した多重管ロッドの先端から水を空気と同時に横方向に噴射させながら、前記多重管ロッドを回転させて地盤の骨格構造を破壊し、前記応力低減深度範囲に円柱状の改良地盤を造成する改良地盤造成工程と
を実施することを特徴とするケーソンの沈設方法。
A caisson squatting method in which a caisson is sunk down to a predetermined depth and installed,
As a stress reduction work to reduce the stress of the ground facing the outer peripheral surface of the caisson,
Reduces stress based on one or both of the measurement result of earth pressure from the surrounding ground acting on the outer peripheral surface of the caisson and the measurement result of the peripheral surface frictional force acting on the outer peripheral surface of the caisson A depth range specifying step of specifying a depth range to be used as a stress reduction depth range,
A drill hole forming step of drilling from the ground to the deepest part of the stress reduction depth range to form a drill hole,
While spraying water simultaneously with air from the tip of the multiple pipe rod inserted into the drilling hole and in the horizontal direction, the multiple pipe rod is rotated to destroy the skeletal structure of the ground, and the cylindrical shape is improved in the stress reduction depth range. A method for laying a caisson, comprising performing an improved ground preparation step of forming a ground.
前記改良地盤造成工程では、前記水及び前記空気と共に、滑材を前記多重管ロッドの先端から横方向に噴射させることを特徴とする請求項1記載のケーソンの沈設方法。   The caisson laying method according to claim 1, wherein in the improved ground formation step, a sliding material is jetted laterally from a tip of the multiple pipe rod together with the water and the air. ケーソンの刃口には、外周面に作用する周囲の地盤からの土圧を計測する土圧計と、外周面に作用する周囲の地盤との周面摩擦力を計測する周面摩擦計とのいずれか若しくは両方が設けられており、
前記深度範囲特定工程では、前記土圧計による土圧の計測値と前記周面摩擦計による周面摩擦力を計測値とのいずれか若しくは両方に基づいて前記応力低減深度範囲を特定することを特徴とする請求項1又は2記載のケーソンの沈設方法。
There are two types of caisson blades: a soil pressure gauge that measures the earth pressure acting on the outer peripheral surface from the surrounding ground, and a peripheral tribometer that measures the peripheral friction force between the surrounding ground acting on the outer peripheral surface. Or both are provided,
In the depth range specifying step, the stress reduction depth range is specified based on one or both of the measured value of the earth pressure by the earth pressure gauge and the measured value of the surface friction force by the surface friction meter. 3. The method of laying a caisson according to claim 1, wherein
前記掘削孔形成工程では、ケーソンの外周面と対向する地下構造体との間に掘削孔を形成することを特徴とする請求項1乃至3のいずれかに記載のケーソンの沈設方法。 4. The method according to claim 1, wherein in the excavation hole forming step, an excavation hole is formed between an outer peripheral surface of the caisson and an underground structure facing the caisson. 5. ケーソンの外周面と、対向する地下構造体との間の地盤に対して、ドラッカー・プラガー系もしくはカムクレイ系の降伏規準を用いた地盤の弾塑性モデルを適用した有限要素法による解析を行い、前記応力低減工によって造成する前記改良地盤の本数を変えてそれぞれの土圧の低減効果を検証することで、前記応力低減工によって造成する前記改良地盤の本数を設定することを特徴とする請求項1乃至4のいずれかに記載のケーソンの沈設方法。   For the ground between the outer peripheral surface of the caisson and the opposing underground structure, an analysis was performed by the finite element method applying an elasto-plastic model of the ground using the yield criterion of Drucker-Plager system or Camclay system, The number of the improved grounds formed by the stress reduction work is set by changing the number of the improved grounds formed by the stress reduction work and verifying the effect of reducing the earth pressure of each of the improved grounds. 5. The method for setting a caisson according to any one of claims 4 to 4. ケーソンの外周面と、対向する地下構造体との間の地盤に対して、ドラッカー・プラガー系もしくはカムクレイ系の降伏規準を用いた地盤の弾塑性モデルを適用した有限要素法による解析結果に基づいて、前記応力低減工の設計見積もりを行うことを特徴とする請求項1乃至5のいずれかに記載のケーソンの沈設方法。   Based on the analysis results by the finite element method applying the elasto-plastic model of the ground using the yield criterion of Drucker-Plager system or Camclay system to the ground between the outer peripheral surface of the caisson and the opposing underground structure 6. The caisson laying method according to claim 1, wherein a design estimate of the stress reducing work is performed.
JP2015206020A 2015-10-20 2015-10-20 Caisson laying method Active JP6638312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206020A JP6638312B2 (en) 2015-10-20 2015-10-20 Caisson laying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206020A JP6638312B2 (en) 2015-10-20 2015-10-20 Caisson laying method

Publications (2)

Publication Number Publication Date
JP2017078278A JP2017078278A (en) 2017-04-27
JP6638312B2 true JP6638312B2 (en) 2020-01-29

Family

ID=58665297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206020A Active JP6638312B2 (en) 2015-10-20 2015-10-20 Caisson laying method

Country Status (1)

Country Link
JP (1) JP6638312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826914B2 (en) * 2017-03-03 2021-02-10 鹿島建設株式会社 Inclination suppression method when caisson is sunk

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688560B2 (en) * 1993-06-29 1997-12-10 戸田建設株式会社 Construction method of underground structure
JP3172782B2 (en) * 1996-04-10 2001-06-04 和雄 壱岐 High pressure injection stir pile method and its equipment
JP3883266B2 (en) * 1997-09-10 2007-02-21 ライト工業株式会社 Ground improvement method
JP4902218B2 (en) * 2006-02-15 2012-03-21 大成建設株式会社 Caisson structure construction method and caisson structure
JP5030299B2 (en) * 2008-07-23 2012-09-19 株式会社淺沼組 Liquefaction resistant structure of sandy ground
JP6259271B2 (en) * 2013-12-06 2018-01-10 鹿島建設株式会社 Caisson installation method and underground column body group

Also Published As

Publication number Publication date
JP2017078278A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
Finno et al. Three-dimensional responses of a tied-back excavation through clay
JP6150311B2 (en) Suction caisson with weakened compartment and method of installing it
Godavarthi et al. Contiguous pile wall as a deep excavation supporting system
Xu et al. Shanghai center project excavation induced ground surface movements and deformations
CN105019431B (en) Crush and complete alternate steep dip stratified rock masses Large Diameter Super-long Bored Piles construction method
Lande et al. Effects of drilling for tieback anchors on surrounding ground: Results from field tests
Wang et al. Vertical tunneling in China-A case study of a hydraulic tunnel in Beihai
CN203821414U (en) Structure of protecting wall of hole-digging pile
Inazumi et al. Evaluation of effect of insertion of casing by rotation on existing piles
JP6638312B2 (en) Caisson laying method
JP6073175B2 (en) How to install drain pipe
JP3690467B2 (en) Estimation method of ground constant
Gandhi Observations on pile design and construction practices in India
Langford et al. Pore pressure reduction and settlements induced by deep supported excavations in soft clay
Tan et al. Challenges in design and construction of deep excavation for KVMRT in Kuala Lumpur limestone formation
Ganesharatnam et al. Large-diameter piles in chalk–part 2, design and construction
Charlton et al. Comprehensive Foundation Rehabilitation at Bear Creek Dam
Akl et al. Detecting piston effect on drilled shafts side resistance using instrumented pile load tests
Zhou et al. Application of deformation adjustors in piled raft foundations
Bardet et al. Failure of street pavements resulting from underground water pipeline breaks
Xu et al. Research on Spud Leg’s Driving Depth Prediction and Punch-Through Potential Analysis of Jack-up Drilling Platform
Edmonds Review of collapse events on Chalk since 2000 and the opportunities for improved engineering practice
TWI637095B (en) Construction method of collimating continuous wall
Yan et al. Difficulties and measures of driving super long piles in Bohai Gulf
Delara et al. Evaluation of Hydraulic Fracturing Models and Their Limitations to Predict No-Drill Zones for Horizontal Directional Drilling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150