JP5541533B2 - Estimating method of water leakage position of earth retaining wall and ground excavation method - Google Patents

Estimating method of water leakage position of earth retaining wall and ground excavation method Download PDF

Info

Publication number
JP5541533B2
JP5541533B2 JP2011062426A JP2011062426A JP5541533B2 JP 5541533 B2 JP5541533 B2 JP 5541533B2 JP 2011062426 A JP2011062426 A JP 2011062426A JP 2011062426 A JP2011062426 A JP 2011062426A JP 5541533 B2 JP5541533 B2 JP 5541533B2
Authority
JP
Japan
Prior art keywords
retaining wall
excavation
location
leakage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011062426A
Other languages
Japanese (ja)
Other versions
JP2012197603A (en
Inventor
信章 高坂
正顕 久保
英実 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2011062426A priority Critical patent/JP5541533B2/en
Publication of JP2012197603A publication Critical patent/JP2012197603A/en
Application granted granted Critical
Publication of JP5541533B2 publication Critical patent/JP5541533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、地盤掘削に際して掘削域の周囲に先行施工される止水性の山留め壁を対象としてその山留め壁の掘削開始後における漏水の有無と漏水個所を事前に推定するための推定方法、およびその推定方法を利用する地盤掘削工法に関する。   The present invention relates to a water-stopping retaining wall that is pre-constructed around the excavation area during ground excavation, and an estimation method for estimating in advance the presence / absence of water leakage and the leakage location after the start of excavation of the retaining wall, and The present invention relates to a ground excavation method using an estimation method.

周知のように、透水性地盤に対する中規模以上の地下工事では、掘削時の地下水対策として止水性の山留め壁を掘削域を取り囲むように先行施工することにより、山留め壁の外側からその内側への地下水の漏水を防止しつつ掘削を行うことが一般的であるが、その場合においても山留め壁の止水性が十分ではないような場合には掘削時に無視し得ない漏水が生じてしまう場合もある。   As is well known, in medium-scale or larger underground constructions for permeable ground, as a countermeasure against groundwater during excavation, a water-stopping retaining wall is preliminarily constructed so as to surround the excavation area, so that the outside of the retaining wall is moved from the inside to the inside. In general, excavation is performed while preventing leakage of groundwater, but even in such cases, water leakage that cannot be ignored during excavation may occur if the water retaining wall of the retaining wall is not sufficient. .

そのように掘削時に漏水が生じた際には、掘削作業を中断して漏水個所に対して薬液注入工法などの追加止水対策を実施する必要があるが、漏水量が多量であるような場合には必ずしも容易に止水できない場合もあるし、山留め壁の外側(背面側)に過大な薬液注入圧をかけると山留め壁が内側に倒れ込むように変形する懸念もあるから、そのような作業は慎重を要する面倒な作業であるし多大の費用と工期を要してしまうことが通常である。   When water leakage occurs during excavation, it is necessary to interrupt the excavation work and implement additional water stoppage measures such as a chemical injection method at the water leakage location. In some cases, it is not always possible to stop the water easily, and there is a concern that if the excessive injection pressure is applied to the outside (rear side) of the retaining wall, the retaining wall may be deformed to fall inside. It is usually a cumbersome work that requires caution, and usually requires a great deal of cost and construction time.

上記のような掘削開始後の漏水事故を防止するためには、掘削に先だって山留め壁の健全性を十分に確認し、掘削時に漏水が発生することが想定される場合には掘削を開始する以前に予め適切な止水対策を施しておくことが望まれるのであるが、現時点では掘削以前に山留め壁の健全性を確認し得て漏水発生の危険性やその位置を推定し得るような有効適切な手法は確立されておらず、そのような事前対策は不可能である。   In order to prevent a water leakage accident after the start of excavation as described above, the soundness of the retaining wall should be fully confirmed prior to excavation, and if it is assumed that water leakage will occur during excavation, before the excavation starts It is desirable to take appropriate measures to prevent water leakage in advance, but at present it is effective and appropriate to be able to confirm the soundness of the retaining wall before excavation and to estimate the risk of leakage and its location. However, such a proactive measure is not possible.

なお、地盤掘削に関連するものではないが、特許文献1には廃棄物処分場における漏水個所の有無と位置を検知するために光ファイバを利用して遮水面状体の損傷を検知するという漏水検知装置が提案されており、その漏水検知装置を山留め壁の周囲に設置すればそこでの漏水の有無や位置を事前に推定することは可能と思われるが、仮設構造物である山留め壁を対象としてそのような複雑かつ高度の検知装置を適用するようなことは施工性やコストの点で現実的ではない。   Although not related to ground excavation, Patent Document 1 discloses that water leakage is detected by detecting damage to a water-impervious surface using an optical fiber in order to detect the presence and location of a water leakage location in a waste disposal site. A detection device has been proposed, and if it is installed around the retaining wall, it may be possible to estimate the presence and location of the leakage in advance, but it is intended for the retaining wall that is a temporary structure. As such, it is not practical in terms of workability and cost to apply such a complicated and advanced detection device.

特開2004−45226号公報JP 2004-45226 A

上記事情に鑑み、本発明は、地盤掘削に際して掘削域の周囲に設けられる止水性の山留め壁を対象として、その山留め壁が掘削開始後に漏水を生じる危険性の有無やその位置を事前に精度良く推定することを可能とする有効適切な推定方法を提供し、併せてその推定方法を利用する有効適切な地盤掘削工法を提供することを目的とする。   In view of the above circumstances, the present invention targets a water-stopping retaining wall provided around the excavation area when excavating the ground, and accurately determines in advance whether or not there is a risk that the retaining wall will cause water leakage after the start of excavation and its position. An object of the present invention is to provide an effective and appropriate estimation method that enables estimation, and to provide an effective and appropriate ground excavation method that uses the estimation method.

請求項1記載の発明は、地盤掘削に際して掘削域への地下水の流入を防止するべくその周囲を取り囲むように先行施工される山留め壁を対象として、該山留め壁の外側からその内側の掘削域への漏水の有無と漏水個所を掘削前に推定するための推定方法であって、掘削域の周辺地盤に対して初期揚水試験を実施して透水量係数Tと影響圏半径Rを算出し、前記山留め壁の外側に少なくとも3個所の観測孔を設置するとともに該山留め壁の内側に揚水井を設けて確認揚水試験を実施することにより揚水量Qと前記各観測孔での地下水位低下量sとを計測し、前記透水量係数T、前記影響圏半径R、揚水量Q、地下水位低下量sに基づいて各観測孔から仮定湧水地点までの距離rを算出し、前記各観測孔に対応する仮定湧水地点までの距離rに基づいて各観測孔を中心とする湧水位置想定円を描き、前記各湧水位置想定円の交点範囲内もしくは交点範囲近傍の山留め壁個所を漏水個所と推定することを特徴とする。   The invention according to claim 1 is directed to a retaining wall that is preliminarily constructed so as to surround the periphery thereof in order to prevent inflow of groundwater into the excavation area during ground excavation, from the outside of the retaining wall to the excavation area inside the retaining wall. Is an estimation method for estimating the presence or absence of water leakage and the location of water leakage before excavation, performing an initial pumping test on the surrounding ground of the excavation area, calculating a water permeability coefficient T and an affected area radius R, By installing at least three observation holes on the outside of the retaining wall and providing a pumping well on the inner side of the retaining wall and conducting a confirmation pumping test, the amount of pumped water Q and the amount of decrease in groundwater level at each observation hole s And calculate the distance r from each observation hole to the assumed spring point on the basis of the water permeability coefficient T, the radius of influence R, the pumping amount Q, and the groundwater level reduction amount s, and correspond to each observation hole. Based on the distance r to the assumed spring point Draw springs positions assumed circle around the each observation holes have, wherein the estimating the leakage point to earth retaining walls point of the intersection range or intersection range near each spring water position assumed circle.

請求項2記載の発明は、請求項1記載の山留め壁の漏水位置推定方法であって、前記各観測孔から仮定湧水地点までの距離rを、Thiemの定常井戸理論式に基づく次式
r=R/exp(2πTs/Q)
により算出することを特徴とする。
The invention according to claim 2 is the method for estimating the leakage position of the retaining wall according to claim 1, wherein the distance r from each observation hole to the assumed spring point is expressed by the following equation based on Thiem's steady well theoretical formula: = R / exp (2πTs / Q)
It is characterized by calculating by.

請求項3記載の発明は、地盤掘削に際し、掘削域への地下水の流入を防止するべくその周囲を取り囲むように山留め壁を先行施工した後、該山留め壁の内側を掘削する地盤掘削工法であって、前記山留め壁の内側を掘削するに先立ち、該山留め壁の外側からその内側の掘削域への漏水の有無と漏水個所を推定するための確認揚水試験を実施して請求項1または2記載の推定方法により漏水の有無と漏水個所を推定し、漏水が生じると推定された際にはその漏水個所への補修工事を実施した後、前記山留め壁の内側を掘削することを特徴とする。   The invention according to claim 3 is a ground excavation method in which, when excavating the ground, the retaining wall is preliminarily constructed so as to surround the periphery of the retaining wall so as to prevent inflow of groundwater into the excavation area, and then the inside of the retaining wall is excavated. Then, prior to excavation of the inside of the retaining wall, a confirmation pumping test is performed to estimate the presence and location of water leakage from the outside of the retaining wall to the inner excavation area. According to the estimation method, the presence / absence of water leakage and the location of water leakage are estimated. When it is estimated that water leakage will occur, repair work is performed on the water leakage location and then the inside of the retaining wall is excavated.

請求項4記載の発明は、請求項3記載の地盤掘削工法であって、漏水個所への補修工事を実施した後、前記確認揚水試験を再度実施して前記推定方法により漏水の有無と漏水個所を再度推定することにより、漏水が生じると推定された際には漏水個所への補修工事を繰り返し、漏水が生じないと推定された後に掘削を開始することを特徴とする。   Invention of Claim 4 is the ground excavation method of Claim 3, Comprising: After performing the repair work to a water leak location, the confirmation pumping test is performed again and the presence or absence of a water leak and a water leak location by the said estimation method By estimating again, when it is estimated that water leakage will occur, repair work will be repeated at the water leakage location, and excavation will be started after it is estimated that water leakage will not occur.

本発明の推定方法によれば、初期揚水試験により透水量係数Tと影響圏半径Rを算出し、掘削開始以前に確認揚水試験を実施して揚水量Qと各観測孔での地下水位低下量sとを計測することのみで、それらのデータからたとえばThiemの定常井戸理論式に基づいて漏水個所を的確に推定することができる。   According to the estimation method of the present invention, the water permeability coefficient T and the radius of influence radius R are calculated by the initial pumping test, the pumping test is performed before the excavation is started, and the pumping volume Q and the groundwater level drop at each observation hole are calculated. Only by measuring s, the location of water leakage can be accurately estimated from these data, for example, based on Thiem's steady well theory.

本発明の地盤掘削工法によれば、山留め壁の内側の掘削を開始する以前に上記の推定結果に基づいて山留め壁の健全性を確認し、掘削開始後に漏水が生じることが想定される場合には漏水個所を特定して事前に補修を行ったうえで掘削を開始することにより、掘削開始後に予期し得ない揚水が生じることを防止することができ、したがって掘削開始後に漏水が生じた場合のように掘削工程を中断して漏水補修を行うような事態を未然に回避でき、全体として効率的な掘削作業が可能となって工費削減、工費短縮に寄与し得る。
しかも、事前の補修工事に際しては山留め壁の内側地盤は未だ掘削されていないのであるから、掘削開始後に同様の補修作業を行う場合に比べれば漏水量は遙かに少なく、したがって補修作業を確実かつ容易に実施することが可能であるし、補修工事を薬液注入により行う際にその注入圧が仮に過大であったとしても内側地盤からの支圧反力により山留め壁が内側に大きく変形してしまうような懸念もない。
また、補修工事が終了した後に再度の試験を行って補修が十分になされたか否かを確認し、不十分である場合には同様の手順で確認揚水試験による漏水個所の推定と補修工事を繰り返すことにより、掘削開始以前に万全の止水対策を必要最小限の手間と費用で実施することができる。
According to the ground excavation method of the present invention, when the excavation inside the retaining wall is started, the soundness of the retaining wall is confirmed based on the above estimation result, and water leakage is assumed to occur after the excavation starts. By starting excavation after identifying the location of the water leak and repairing it in advance, it is possible to prevent unpredictable pumping after the start of excavation. As described above, it is possible to avoid the situation where the excavation process is interrupted to repair the water leakage, and efficient excavation work is possible as a whole, which can contribute to the reduction of the construction cost and the construction cost.
Moreover, since the ground inside the retaining wall has not yet been excavated at the time of prior repair work, the amount of water leakage is much smaller than when similar repair work is performed after the excavation is started, so the repair work can be performed reliably and reliably. It is possible to carry out easily, and even if the injection pressure is excessive when the repair work is performed by chemical injection, the retaining wall is greatly deformed inward due to the reaction force from the inner ground. There is no such concern.
In addition, after the repair work is completed, a second test is performed to confirm whether the repair has been sufficiently performed. If the repair work is not sufficient, the leakage location is confirmed by the same procedure and the repair work is repeated. By doing this, it is possible to implement thorough water stoppage measures with the minimum amount of effort and cost before starting excavation.

本発明の地盤掘削工法の実施形態を示すもので、掘削に先立って実施する確認揚水試験と漏水個所への補修工程の概要を示す図である。The embodiment of the ground excavation method of this invention is shown, and is a figure which shows the outline | summary of the confirmation pumping test implemented before excavation, and the repair process to a water leak location. 本発明の推定方法の実施形態を示すもので、漏水個所の推定手法の概要を示す図である。The embodiment of the estimation method of the present invention is shown, and is a diagram showing an outline of a water leak location estimation method. 同、数値解析手法の概要を示す図である。It is a figure which shows the outline | summary of a numerical analysis method similarly.

図1〜図3を参照して本発明の実施形態を説明する。
まず、図1を参照して本発明の地盤掘削工法の実施形態を説明する。本実施形態の地盤掘削工法は、透水性地盤に対する地盤掘削に際して通常のように止水性の山留め壁1を掘削域2を取り囲むように先行施工して、その山留め壁1の外側から掘削域2内への漏水を防止しつつその内側を掘削することを基本とするものであるが、本実施形態では掘削に先立って山留め壁1の健全性を確認するための試験を実施して掘削時に十分な止水性能を発揮し得るか否かを評価し、仮に漏水が生じることが想定される場合には後述する推定方法によって漏水位置5を特定したうえでその漏水位置5に対して止水性を確保するための補修工事を先行実施することにより、山留め壁1の健全性を確保したうえで掘削を開始することを主眼とする。
An embodiment of the present invention will be described with reference to FIGS.
First, an embodiment of the ground excavation method of the present invention will be described with reference to FIG. In the ground excavation method according to the present embodiment, a water-stopping retaining wall 1 is preliminarily constructed so as to surround the excavating area 2 when excavating the ground to the permeable ground, and the inside of the excavating area 2 is formed from the outside of the retaining wall 1. However, in this embodiment, a test for confirming the soundness of the retaining wall 1 is performed prior to excavation to ensure sufficient excavation. Evaluate whether or not the water stop performance can be exhibited, and if it is assumed that water leakage occurs, the water leakage position 5 is specified by the estimation method described later, and the water stoppage is secured for the water leakage position 5 The main purpose is to start excavation after ensuring the soundness of the retaining wall 1 by carrying out the repair work in advance.

具体的には、図1(a)に示すように掘削域2の周囲に山留め壁1を施工した後、その内側に1本の揚水井3を設けるとともに、山留め壁1の外側に水位変動を観測するための観測孔4を複数設置する。
図示例の場合には、図2(a)に示すように掘削域2の周囲に4面の山留め壁1を連続的に設けてそれらの全体で掘削域2を取り囲み、その内側ほぼ中心位置に揚水井3を設け、各山留め壁1の外側中央部の直近位置にそれぞれ上記の観測孔4を設置しているが、本発明においては観測孔4は少なくとも3個所に設置すれば良く、揚水井3や各観測孔4の位置も特に限定されることなく任意である。
Specifically, as shown in FIG. 1 (a), after the retaining wall 1 is constructed around the excavation area 2, one pumping well 3 is provided on the inner side, and the water level fluctuation is generated on the outer side of the retaining wall 1. A plurality of observation holes 4 for observation are installed.
In the case of the illustrated example, as shown in FIG. 2 (a), four retaining walls 1 are continuously provided around the excavation area 2 so as to surround the excavation area 2 as a whole, and at the substantially central position inside thereof. The pumping wells 3 are provided, and the observation holes 4 are installed at positions closest to the center of the outside of each retaining wall 1. In the present invention, the observation holes 4 may be installed at at least three locations. 3 and the position of each observation hole 4 are not particularly limited and are arbitrary.

そして、図1(a)に示すように揚水井3から揚水を行って山留め壁1の内側の水位を低下させ、それに伴う山留め壁1の外側の地下水位の変動を各観測孔4により観測する。
この試験により、山留め壁1が健全であって外側から内側への漏水がなければ、山留め壁1の内側からの揚水の影響が外側にまで大きく影響することはないから、外側での地下水位は大きく変動することなく自然地下水位がほぼ維持され、そのことが各観測孔4に対する水位観測から検知し得る。つまり、その場合は山留め壁1が健全であって掘削開始後に漏水が生じる危険性はないと評価し得る。
Then, as shown in FIG. 1 (a), water is pumped from the pumping well 3 to reduce the water level inside the retaining wall 1, and the fluctuation of the groundwater level outside the retaining wall 1 is observed through each observation hole 4. .
As a result of this test, if the retaining wall 1 is healthy and there is no water leakage from the outside to the inside, the effect of pumping from the inside of the retaining wall 1 will not greatly affect the outside. The natural groundwater level is substantially maintained without significant fluctuation, and this can be detected from the water level observation for each observation hole 4. That is, in that case, it can be evaluated that the retaining wall 1 is healthy and there is no risk of water leakage after the start of excavation.

しかし、仮に(a)に示しているように山留め壁1に漏水個所5となる止水性不良個所があるような場合には、内側での地下水位の低下に伴ってその漏水個所5から内側への漏水が生じ、それに伴って山留め壁1の外側でも無視し得ない地下水位低下が生じる。この場合、漏水個所5に近い観測孔4ほど地下水位が早期にかつ顕著に生じるから、各観測孔4での地下水位観測により漏水が生じていること、およびその概略位置を定性的に検知し得る。   However, as shown in (a), in the case where there is a poor water-stopping location that becomes the water leakage location 5 on the mountain retaining wall 1, the water leakage location 5 moves inward as the groundwater level falls on the inside. As a result, a groundwater level drop that cannot be ignored even outside the retaining wall 1 occurs. In this case, the observation hole 4 closer to the water leakage point 5 has a groundwater level that appears earlier and more prominently. Therefore, it is qualitatively detected that water leakage has occurred due to groundwater level observation at each observation hole 4 and its approximate position. obtain.

そこで、本実施形態の地盤掘削工法では、後述する本発明の推定方法によって漏水個所5を精度良く特定したうえでその漏水個所5を塞ぐための補修工事を実施する。
その補修工事としては、漏水個所5の直上部からたとえば薬液注入工法等による追加止水対策を実施することにより、(b)に示すように漏水個所5の外側にそれを塞ぐような追加止水壁6を形成すると良い。
この際、山留め壁1の内側地盤は未だ掘削されていないのであるから、通常のように掘削開始後に同様の補修作業を行う場合に比べれば漏水量は遙かに少なく、したがって補修作業を確実かつ容易に実施することが可能であるし、補修工事を薬液注入により行う際にその注入圧が仮に過大であったとしても内側地盤からの支圧反力を受けて山留め壁1が内側に大きく変形してしまうような懸念もない。
Therefore, in the ground excavation method according to the present embodiment, the leak location 5 is specified with high accuracy by the estimation method of the present invention, which will be described later, and then repair work for closing the leak location 5 is performed.
As the repair work, additional water stoppage that covers the outside of the water leak point 5 as shown in (b) by implementing an additional water stoppage measure, for example, by a chemical injection method from directly above the water leak point 5 A wall 6 may be formed.
At this time, since the inner ground of the retaining wall 1 has not been excavated yet, the amount of water leakage is much smaller than in the case where the same repair work is performed after the start of excavation as usual, and therefore the repair work is surely performed. It is possible to carry out easily, and even if the injection pressure is excessive when the repair work is performed by injection of the chemical solution, the retaining wall 1 is greatly deformed inward due to the reaction force from the inner ground. There is no concern about this.

以上のようにして漏水個所5への補修を行った後、(c)に示すように再度の試験を行う。すなわち、(a)と同様に揚水井3から揚水し、それに伴う各観測孔4での水位変動をさらに観測することで漏水の有無を評価する。
この再度の試験によっても観測孔4での地下水位低下が観測された場合には補修工事による効果が十分ではない(補修が完全ではない)か、あるいは他の個所で新たな漏水が生じたと推定されるから、その場合は同様の手順により補修および試験を繰り返し、最終的に漏水を防止し得たことを確認してから掘削を開始すれば良い。
After repairing to the leaking point 5 as described above, the test is performed again as shown in (c). That is, as in (a), the presence or absence of water leakage is evaluated by pumping water from the pumping well 3 and further observing the water level fluctuation in each observation hole 4 associated therewith.
If the groundwater level drop in observation hole 4 is also observed in this second test, it is estimated that the effect of the repair work is not sufficient (the repair is not complete) or that new leaks have occurred elsewhere. Therefore, in that case, it is only necessary to start excavation after confirming that repair and testing are repeated by the same procedure, and finally water leakage can be prevented.

以上のように本実施形態の地盤掘削工法では、掘削開始前に山留め壁1の健全性を確認して、掘削開始後に漏水が生じることが想定される場合には漏水個所5を特定して事前に補修を行ったうえで掘削を開始するので、掘削開始後に予期し得ない漏水が生じることを防止することができ、したがって掘削開始後に漏水が生じた場合のように掘削工程を中断して漏水補修を行うような事態を未然に回避でき、全体として効率的な掘削作業が可能となって工費削減、工費短縮に寄与し得る。   As described above, in the ground excavation method according to the present embodiment, the soundness of the retaining wall 1 is confirmed before the start of excavation. Since excavation is started after repairs are made, it is possible to prevent unexpected water leakage after the start of excavation.Therefore, the excavation process is interrupted as if water leaks after the start of excavation. The situation where repair is performed can be avoided in advance, and efficient excavation work can be performed as a whole, which can contribute to reduction of construction cost and construction cost.

なお、複数の帯水層があるような条件で上記の試験を行うためには、各帯水層に対応する複数の揚水井3と観測孔4を個別に設けておいて各帯水層に対する試験を順次行うか、あるいは揚水井3と観測孔4を最下層の帯水層に達するように設けたうえでたとえば特許第2788954号公報に示される部分揚水試験法や特許第2847127号公報に示される多段式間隙水圧測定方法に準じて各帯水層から順次揚水を行って各帯水層の水位を個別に順次測定することも可能である。   In addition, in order to perform the above test under a condition where there are a plurality of aquifers, a plurality of pumping wells 3 and observation holes 4 corresponding to each aquifer are provided separately, and each aquifer is For example, the partial pumping test method disclosed in Japanese Patent No. 2788954 and the Japanese Patent No. 2847127 are shown after the tests are sequentially performed or the pumping well 3 and the observation hole 4 are provided so as to reach the lowermost aquifer. It is also possible to measure the water level of each aquifer individually by sequentially pumping water from each aquifer according to the multistage pore water pressure measurement method.

さて、上記の地盤掘削工法においては、掘削開始以前に補修すべき個所、すなわち掘削開始後に漏水が生じると想定される漏水個所5を事前に精度良く推定可能であることが前提であるから、漏水個所5を特定するために本発明の推定方法を利用する必要がある。
以下、本発明の推定方法の実施形態について図2を参照して説明する。
The above ground excavation method is based on the premise that the location to be repaired before the start of excavation, that is, the location 5 where water leakage is assumed to occur after the start of excavation can be accurately estimated in advance. In order to specify the location 5, it is necessary to use the estimation method of the present invention.
Hereinafter, an embodiment of the estimation method of the present invention will be described with reference to FIG.

本実施形態の推定方法では、予め掘削域2およびその周辺地盤に対する初期揚水試験を実施して透水量係数Tと影響圏半径Rを算出しておく。
その算出は公知のs−log(r)プロットによる直線勾配法を利用して容易に求めることができる。すなわち、揚水井3から各観測孔4までの距離と各観測孔4での水位低下量の関係を片対数グラフにプロットして直線近似し、その傾きと切片から透水量係数Tと影響圏半径Rを求めれば良い。
In the estimation method of the present embodiment, an initial pumping test is performed on the excavation area 2 and its surrounding ground in advance to calculate the water permeability coefficient T and the influence area radius R.
The calculation can be easily obtained using a linear gradient method based on a known s-log (r) plot. In other words, the relationship between the distance from the pumping well 3 to each observation hole 4 and the water level drop at each observation hole 4 is plotted on a semilogarithmic graph and linearly approximated, and the permeability coefficient T and the influence radius are calculated from the slope and intercept. What is necessary is just to obtain | require R.

また、上記の初期揚水試験により得られたデータである透水量係数Tと影響圏半径R、および上記の確認揚水試験により得られるデータである揚水量Qと各観測孔4での地下水位低下量sとから、各観測孔4から仮定湧水地点までの距離rを公知の理論式に基づいて算出する。
すなわち、上記の各データ間には、Thiemの定常井戸理論式として公知の
s=(Q/2πT)ln(R/r)
なる関係があるから、その式を変形して
r=R/exp(2πTs/Q)
なる関係式から、各観測孔から仮定湧水地点までの距離rを求めることができる。
Moreover, the water permeability coefficient T and the influence radius R which are data obtained by the above-mentioned initial pumping test, the pumping volume Q which is the data obtained by the above-described pumping test, and the groundwater level lowering amount at each observation hole 4 From s, the distance r from each observation hole 4 to the assumed spring point is calculated based on a known theoretical formula.
That is, between each of the above data, it is known as Thiem's steady well theoretical formula
s = (Q / 2πT) ln (R / r)
Since there is a relationship, r = R / exp (2πTs / Q)
From this relational expression, the distance r from each observation hole to the assumed spring point can be obtained.

そして、上記の距離rを半径として各観測孔4を中心とする湧水位置想定円を描くことにより、各湧水位置想定円の交点を漏水個所5と推定することができる。
たとえば、図2(a)に示すように4個所の観測孔4(図中にNo.1〜No.4として示す)での水位低下量sがそれぞれs=1.65m、1.28m、1.04m、1.23mであり、上式から各観測孔4に対応する距離rが(b)に示すようにそれぞれr=10m、35m、70m、40mとして求められたすると、各観測孔4を中心としてそれぞれの距離rの値を半径とする湧水位置想定円を描く。
これら4つの円の交点が1つの交点になることはまずないから、2つの円同士の交点で形成される4つの交点から4つの円の交点範囲が推定される。この交点範囲内に山留め壁があればこの山留め壁個所を漏水個所5として推定し、交点範囲内に山留め壁が入ってなければ交点範囲近傍(最も近い個所)の山留め壁個所を漏水個所5として推定する。
And the intersection of each spring position assumption circle | round | yen can be estimated as the water leak location 5 by drawing the spring position assumption circle | round | yen centering on each observation hole 4 by making said distance r into a radius.
For example, as shown in FIG. 2 (a), the water level drop amounts s at four observation holes 4 (shown as No. 1 to No. 4 in the figure) are s = 1.65m, 1.28m, 1.04m, When the distance r corresponding to each observation hole 4 is calculated as r = 10 m, 35 m, 70 m, and 40 m as shown in (b) from the above formula, Draw an assumed spring position circle whose radius is the value of the distance r.
Since the intersection of these four circles is unlikely to be one intersection, the intersection range of the four circles is estimated from the four intersections formed by the intersections of the two circles. If there is a mountain retaining wall within this intersection range, this mountain retaining wall location is estimated as a water leakage location 5, and if there is no mountain retaining wall within the intersection range, the mountain retaining wall location near the intersection range (closest location) is designated as the water leakage location 5. presume.

上記の推定方法によれば、山留め壁1の施工以前に初期揚水試験を実施して透水量係数Tと影響圏半径Rを算出しておき、また山留め壁1施工後に掘削開始以前に確認揚水試験を実施して揚水量Qと各観測孔での地下水位低下量sとを計測することのみで、それらのデータから漏水個所5を的確に推定することができ、したがってその推定結果に基づいて特定した漏水個所の5の周囲の必要最小限の範囲に対してのみ追加止水工事を実施すれば十分であり、事前の漏水補修工事を合理的かつ効率的に実施することが可能となる。
勿論、上述したように補修工事が終了した後に再度の試験を行って補修が十分になされたか否かを確認し、不十分である場合には同様の手順で確認揚水試験による漏水個所の推定と補修工事を繰り返すことにより、掘削開始以前に万全の止水対策を必要最小限の手間と費用で実施することができる。
According to the estimation method described above, the initial pumping test is performed before the construction of the retaining wall 1 to calculate the water permeability coefficient T and the radius of influence radius R, and the pumping test confirmed before the start of excavation after the construction of the retaining wall 1 The leakage point 5 can be accurately estimated from these data only by measuring the pumping amount Q and the groundwater level drop s at each observation hole. It is sufficient to perform the additional water stop work only for the minimum necessary area around 5 of the leaked water location, and it becomes possible to carry out the prior water leak repair work reasonably and efficiently.
Of course, as described above, after the repair work is completed, a second test is performed to confirm whether the repair has been sufficiently performed. By repeating the repair work, it is possible to implement thorough water stoppage measures with the minimum amount of effort and cost before starting excavation.

なお、本発明においては、上記の確認揚水試験による漏水個所の推定に併せて、漏水個所を特定するための数値解析を併用することも好ましく、そのために採用して好適な数値解析手法について図3を参照して説明する。
これは、漏水が生じると想定される範囲内において多数の漏水個所を仮設定して予備解析を事前に実施しておくものである。
具体的には、たとえば図3(a)に示す場合での予備解析を説明する。1辺が150mの平面視矩形の山留め壁外部の当該1辺に平行で一直線に3個所の観測井(No.1〜No.3)を設置し、山留め壁内部に揚水井を設置して地下水位を低下させる事例である。観測井の設置ラインは山留め壁から10m離れた位置である。No.2の観測井は当該山留め壁の中央位置であり、No.1とNo.3の観測井はその両側で150m離れた位置である。帯水層の厚さは8mであり、透水係数はk=1.4×10−3cm/sである。そして、山留め壁内の地下水位を3.9m低下させた場合で、山留め壁の当該1辺において5mピッチで漏水個所を仮設定した場合に想定される各観測井での水位低下量を有限要素法による平面二次元浸透流解析で解析して(b)に示すようなグラフを作成する。また、そのグラフに基づき、最大水位低下量に対する他の観測井での水位低下量比を求めて(c)に示すグラフを作成する。
In the present invention, it is also preferable to use a numerical analysis for specifying the water leakage location in combination with the estimation of the water leakage location by the above-mentioned confirmation pumping test. Will be described with reference to FIG.
In this case, preliminary analysis is performed in advance by temporarily setting a large number of water leakage points within a range where water leakage is expected to occur.
Specifically, for example, a preliminary analysis in the case shown in FIG. Three observation wells (No. 1 to No. 3) are installed in a straight line parallel to the one side of the rectangular retaining wall with a side of 150m in a rectangular view, and a pumping well is installed inside the retaining wall. This is an example of lowering the position. The observation well installation line is 10m away from the retaining wall. The No.2 observation well is the central position of the retaining wall, and the No.1 and No.3 observation wells are 150m away on both sides. The thickness of the aquifer is 8m and the hydraulic conductivity is k = 1.4 × 10 −3 cm / s. And, when the groundwater level in the retaining wall is lowered by 3.9m, the amount of lowered water level at each observation well assumed when the leak point is temporarily set at 5m pitch on the one side of the retaining wall is calculated by the finite element method. A graph as shown in (b) is created by analyzing by plane two-dimensional osmotic flow analysis. Moreover, based on the graph, the ratio shown in (c) is created by determining the ratio of the water level drop at other observation wells with respect to the maximum water level drop.

そして、山留め壁内部の揚水井による確認揚水試験により得られた各観測井4での実際の水位低下量から、最大水位低下量に対する水位低下量比を計算し、上記のグラフ(c)により漏水地点を想定する。
具体的には、図3(a)に示すように3本の観測井での水位低下量がそれぞれs1=0.65m、s2=0.91m、s3=0.57mであった場合、最大水位低下量smax=s2=0.91mであり、水位低下量比はs1/smax=0.71、s3/smax=0.63であるから、それらの値から(c)のグラフにより複数の観測井のデータが重複するポイントであるy=-30mの位置を漏水個所として求めることができる。
Then, from the actual water level drop amount in each observation well 4 obtained by the pumping test by the pumping well inside the retaining wall, the ratio of the water level drop amount to the maximum water level drop amount is calculated, and the water leakage by the above graph (c) Assume a point.
Specifically, as shown in Fig. 3 (a), when the water level drop in the three observation wells is s 1 = 0.65m, s 2 = 0.91m, s 3 = 0.57m, Since the drop amount s max = s 2 = 0.91 m and the water level drop amount ratio is s 1 / s max = 0.71 and s 3 / s max = 0.63, a plurality of observations can be made from these values by the graph (c). The position of y = -30m, which is the point where well data overlaps, can be obtained as the water leak location.

以上、定常井戸理論式に基づいて各観測孔から仮定湧水地点までの距離rで描かれる円(仮定湧水円)の交点範囲から漏水箇所を推定する方法(交点法と称する)と、山留め壁内部の揚水による山留め壁外部の各観測井の実際の水位低下状況を、想定の地下水位低下に基づく浸透流解析グラフを変形したものに当てはめて漏水ヵ所を推定する方法(解析法と称する)とを説明した。ただ、水位低下曲線が単純な井戸理論式(Thiem式)で表わせない場合は交点法が使えないし、山留め壁の設置延長が平面視で比較的長い場合は解析法が適用できる等、これら二つの方法は山留め壁の形状や工事場所の土質条件等により基本的に使い分けされるものであるが、解析法を適用可能な事例において交点法を適用できる場合は、双方の推定方法を適用してより推定精度を高めるができる。   As described above, the method of estimating the location of water leakage from the intersection range of circles (assumed spring water circles) drawn at the distance r from each observation hole to the assumed spring water point based on the steady well theoretical formula (referred to as the intersection point method), Method of estimating leakage location by applying the actual water level drop of each observation well outside the retaining wall due to pumping inside the wall to a modified osmotic flow analysis graph based on the assumed groundwater level drop (called analysis method) Explained. However, if the water level drop curve cannot be expressed by a simple well theory formula (Thiem formula), the intersection method cannot be used, and if the installation length of the retaining wall is relatively long in plan view, the analysis method can be applied. The method is basically used properly depending on the shape of the retaining wall, the soil condition of the construction site, etc., but if the intersection method can be applied in cases where the analysis method can be applied, it is more appropriate to apply both estimation methods. The estimation accuracy can be increased.

なお、本発明の推定方法では漏水個所5の平面的位置は精度良く推定し得るものの、帯水層が複数あるような場合においては深さ方向の漏水位置は必ずしも高精度で推定し得ない場合も生じるが、その場合は水位低下が顕著に生じた帯水層の位置で漏水が生じていると見なすことができるから、その帯水層の深度周辺に対して補修を行うことで通常は十分である。   In the estimation method of the present invention, the planar position of the water leakage location 5 can be estimated with high accuracy, but in the case where there are a plurality of aquifers, the water leakage position in the depth direction cannot always be estimated with high accuracy. However, in that case, it can be considered that water leakage has occurred at the location of the aquifer where the water level drop has occurred remarkably, so it is usually sufficient to repair around the depth of the aquifer. It is.

また、帯水層が複数ある場合において特定の帯水層が厚く、その帯水層中における漏水個所を特定する必要がある場合には、図3に示した数値解析手法と同様に漏水個所を上下方向に多数仮設定した場合の予備解析を事前に実施しておくことにより、その解析結果と観測孔での観測結果とのマッチングにより上下方向の漏水個所も精度良く特定することが可能である。   Also, when there are multiple aquifers and the specific aquifer is thick and it is necessary to identify the leak location in the aquifer, the leak location is determined in the same way as the numerical analysis method shown in FIG. Preliminary analysis in the case of a large number of temporary settings in the vertical direction can be performed in advance, so that the location of water leakage in the vertical direction can be accurately identified by matching the analysis results with the observation results at the observation hole. .

以上で本発明の推定方法および地盤掘削工法の実施形態について説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で適宜の設計的変更や応用が可能である。
たとえば、上記実施形態では透水量係数T、影響圏半径R、揚水量Q、地下水位低下量sのデータに基づいて各観測孔から仮定湧水地点までの距離rをThiemの定常井戸理論式に基づいて算出したが、必ずしもThiemの定常井戸理論式によることはなく、それら各要素の関係から距離rを求め得るものであれば他の理論式に基づいて推定を行うことも可能であるし、予め実験的にそれら各要素の相互関係を求めておいてその関係との対照により推定を行うことも妨げるものではない。
The embodiments of the estimation method and the ground excavation method of the present invention have been described above. However, the above embodiments are merely preferred examples, and the present invention is not limited to the above embodiments, and departs from the gist of the present invention. Appropriate design changes and applications can be made without departing from the scope.
For example, in the above embodiment, the distance r from each observation hole to the hypothetical spring point is expressed in Thiem's steady well theoretical formula based on the data of the water permeability coefficient T, the radius of influence R, the pumping amount Q, and the groundwater level drop s. Although it is not necessarily based on Thiem's steady well theoretical formula, it can be estimated based on other theoretical formulas as long as the distance r can be obtained from the relationship between these elements, It does not preclude obtaining an interrelation between these elements experimentally in advance and performing the estimation by contrast with the relationship.

1 山留め壁
2 掘削域
3 揚水井
4 観測孔
5 漏水個所
6 追加止水壁
1 Mountain retaining wall 2 Excavation area 3 Pumping well 4 Observation hole 5 Leakage location 6 Additional retaining wall

Claims (4)

地盤掘削に際して掘削域への地下水の流入を防止するべくその周囲を取り囲むように先行施工される山留め壁を対象として、該山留め壁の外側からその内側の掘削域への漏水の有無と漏水個所を掘削前に推定するための推定方法であって、
掘削域の周辺地盤に対して初期揚水試験を実施して透水量係数Tと影響圏半径Rを算出し、
前記山留め壁の外側に少なくとも3個所の観測孔を設置するとともに該山留め壁の内側に揚水井を設けて確認揚水試験を実施することにより揚水量Qと前記各観測孔での地下水位低下量sとを計測し、
前記透水量係数T、前記影響圏半径R、揚水量Q、地下水位低下量sに基づいて各観測孔から仮定湧水地点までの距離rを算出し、
前記各観測孔に対応する仮定湧水地点までの距離rに基づいて各観測孔を中心とする湧水位置想定円を描き、
前記各湧水位置想定円の交点範囲内もしくは交点範囲近傍の山留め壁個所を漏水個所と推定することを特徴とする山留め壁の漏水位置推定方法。
In order to prevent the inflow of groundwater to the excavation area when excavating the ground, the presence of leakage from the outside of the retaining wall to the inner excavation area and the location of the leakage are determined. An estimation method for estimating before excavation,
An initial pumping test is conducted on the ground around the excavation area to calculate the permeability coefficient T and the radius of influence radius R,
At least three observation holes are installed outside the retaining wall, and a pumping well is provided inside the retaining wall, and a confirmed pumping test is performed, whereby the pumping amount Q and the groundwater level drop s at each observation hole are measured. And measure
Calculate the distance r from each observation hole to the assumed spring point based on the water permeability coefficient T, the radius of influence radius R, the pumping amount Q, and the groundwater level drop amount s.
Based on the distance r to the assumed spring point corresponding to each observation hole, draw an assumed spring position circle around each observation hole,
A method for estimating a water leakage position of a mountain retaining wall, wherein a mountain retaining wall location within or near the intersection range of each of the estimated spring position circles is estimated as a water leakage location.
請求項1記載の山留め壁の漏水位置推定方法であって、
前記各観測孔から仮定湧水地点までの距離rを、Thiemの定常井戸理論式に基づく次式
r=R/exp(2πTs/Q)
により算出することを特徴とする山留め壁の漏水位置推定方法。
A method for estimating a leakage position of a retaining wall according to claim 1,
The distance r from each observation hole to the assumed spring point is expressed by the following equation based on Thiem's steady well theoretical formula: r = R / exp (2πTs / Q)
The leakage position estimation method of a mountain retaining wall characterized by calculating by this.
地盤掘削に際し、掘削域への地下水の流入を防止するべくその周囲を取り囲むように山留め壁を先行施工した後、該山留め壁の内側を掘削する地盤掘削工法であって、
前記山留め壁の内側を掘削するに先立ち、該山留め壁の外側からその内側の掘削域への漏水の有無と漏水個所を推定するための確認揚水試験を実施して請求項1または2記載の推定方法により漏水の有無と漏水個所を推定し、漏水が生じると推定された際にはその漏水個所への補修工事を実施した後、前記山留め壁の内側を掘削することを特徴とする地盤掘削工法。
A ground excavation method for excavating the inside of the retaining wall after pre-constructing the retaining wall so as to surround the surrounding area in order to prevent the inflow of groundwater to the excavation area when excavating the ground,
The estimation according to claim 1 or 2, wherein prior to excavation of the inside of the retaining wall, a confirmation pumping test is performed to estimate the presence or absence of water leakage from the outside of the retaining wall to the inner excavation area and the location of the leakage. The ground excavation method is characterized by estimating the presence and location of water leakage and the location of leakage by the method, and excavating the inside of the retaining wall after carrying out repair work to the leakage location when water leakage is estimated to occur. .
請求項3記載の地盤掘削工法であって、
漏水個所への補修工事を実施した後、前記確認揚水試験を再度実施して前記推定方法により漏水の有無と漏水個所を再度推定することにより、漏水が生じると推定された際には漏水個所への補修工事を繰り返し、漏水が生じないと推定された後に掘削を開始することを特徴とする地盤掘削工法。
The ground excavation method according to claim 3,
After carrying out repair work to the leak location, perform the confirmation pumping test again and re-estimate the presence of the leak and the leak location using the estimation method. A ground excavation method characterized in that excavation is started after it is estimated that no water leakage will occur after repeated repair work.
JP2011062426A 2011-03-22 2011-03-22 Estimating method of water leakage position of earth retaining wall and ground excavation method Expired - Fee Related JP5541533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062426A JP5541533B2 (en) 2011-03-22 2011-03-22 Estimating method of water leakage position of earth retaining wall and ground excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062426A JP5541533B2 (en) 2011-03-22 2011-03-22 Estimating method of water leakage position of earth retaining wall and ground excavation method

Publications (2)

Publication Number Publication Date
JP2012197603A JP2012197603A (en) 2012-10-18
JP5541533B2 true JP5541533B2 (en) 2014-07-09

Family

ID=47180094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062426A Expired - Fee Related JP5541533B2 (en) 2011-03-22 2011-03-22 Estimating method of water leakage position of earth retaining wall and ground excavation method

Country Status (1)

Country Link
JP (1) JP5541533B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368014B1 (en) * 2017-08-01 2018-08-01 国立研究開発法人農業・食品産業技術総合研究機構 Evaluation method for underground wall materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112627210A (en) * 2020-12-18 2021-04-09 袁经宇 A two-layer equation cofferdam for hydraulic engineering construction
CN112746635B (en) * 2021-02-23 2024-05-07 中国民航大学 Test device for triggering stratum migration by water leakage and sand leakage of modularized foundation pit engineering
CN114108719B (en) * 2021-12-24 2023-01-06 中交上海三航科学研究院有限公司 Leakage point distinguishing method and leakage stopping method for mixing pile waterproof curtain of foundation pit
CN115288215A (en) * 2022-08-23 2022-11-04 北京地矿工程建设有限责任公司 Method for predicting water leakage of leakage point of waterproof curtain
CN117266212B (en) * 2023-11-23 2024-02-09 北京建工集团有限责任公司 Precipitation method for foundation pit located in runoff-type interlayer water-containing stratum

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223244A (en) * 1990-12-25 1992-08-13 Hazama Gumi Ltd Investigating method of water leakage of retaining wall
JP3099025B2 (en) * 1991-11-28 2000-10-16 株式会社間組 Method of detecting leakage from earth retaining wall
JP3435529B2 (en) * 1995-05-17 2003-08-11 清水建設株式会社 Pumping test method
JP5173783B2 (en) * 2008-05-26 2013-04-03 清水建設株式会社 Groundwater flow conservation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368014B1 (en) * 2017-08-01 2018-08-01 国立研究開発法人農業・食品産業技術総合研究機構 Evaluation method for underground wall materials

Also Published As

Publication number Publication date
JP2012197603A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5541533B2 (en) Estimating method of water leakage position of earth retaining wall and ground excavation method
RU2456540C2 (en) Method and device for testing of tubes
Stephens et al. Leak-before-break main failure prevention for water distribution pipes using acoustic smart water technologies: Case study in Adelaide
CN103590444B (en) Method for continuously monitoring leakage of large buried pressure water pipe and booster early warning system
CN102691286B (en) Method and device for monitoring seepage of underground diaphragm wall of foundation ditch of building
CN102094678B (en) Method for identifying water-bursting risks in karst tunnels
JP5469655B2 (en) Leakage detection device and leakage detection method for underground water pipe
KR20100124224A (en) Groundwater deep well aquifer packer device and investigation method using the same
CN108930914A (en) Gas leakage source tracing method and device
JP2016117997A (en) Method and system for evaluating water permeation characteristic in front of tunnel pit face
JP4771173B2 (en) Method for estimating rebound amount in excavation ground and ground excavation method
CN112985718A (en) Waterproof curtain evaluation system and method based on high-density resistivity method
CN110258516B (en) Equipment and method for detecting and repairing water leakage at joint of groove section of underground diaphragm wall
CN106644275A (en) Detection method of anti-leakage curtain leakage
CN115726382A (en) Method and device for determining leakage of joints of foundation pit bottom type waterproof curtain
Radzicki The thermal monitoring method–a quality change in the monitoring of seepage and erosion processes in dikes and earth dams
CN111928817B (en) Deep pit foundation engineering monitoring system and method adopting multi-ring-support settlement horizontal monitoring points
CN110849787B (en) Test auxiliary device, pit test method or single-ring method test equipment
CN211147791U (en) Multilayer groundwater water level observation device of hydrogeology hole
JP6363971B2 (en) Estimation method and estimation apparatus
CN203977472U (en) Superelevation earth and rockfill dam impervious wall infiltration detection architecture
CN208687371U (en) A kind of Gas Exploitation And Transmission station underground piping leak detection window
CN112879813A (en) Fully-distributed pipeline soil covering depth monitoring system and method suitable for sandy soil
KR101279064B1 (en) Hydraulic test method for ground
KR20090015431A (en) A section-divided leakage detection method in sanitary landfill using fence type arrangement of electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5541533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees