JP6342250B2 - 電池監視回路 - Google Patents

電池監視回路 Download PDF

Info

Publication number
JP6342250B2
JP6342250B2 JP2014151859A JP2014151859A JP6342250B2 JP 6342250 B2 JP6342250 B2 JP 6342250B2 JP 2014151859 A JP2014151859 A JP 2014151859A JP 2014151859 A JP2014151859 A JP 2014151859A JP 6342250 B2 JP6342250 B2 JP 6342250B2
Authority
JP
Japan
Prior art keywords
cell
capacitors
voltage detection
battery
cell voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014151859A
Other languages
English (en)
Other versions
JP2016029349A (ja
Inventor
彰彦 工藤
彰彦 工藤
智行 有馬
智行 有馬
金井 友範
友範 金井
光 三浦
光 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014151859A priority Critical patent/JP6342250B2/ja
Publication of JP2016029349A publication Critical patent/JP2016029349A/ja
Application granted granted Critical
Publication of JP6342250B2 publication Critical patent/JP6342250B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池監視回路に関する。
ハイブリッド自動車(HEV)や電気自動車(EV)などでは、所望の高電圧を確保するため、二次電池の単電池セルを多数直列接続して構成される組電池(電池システム)が用いられている。特許文献1には、このような組電池に対して、各単電池セルのセル電圧を測定するための制御ICを備え、この制御ICによるセル電圧の測定結果に基づいて各単電池セルの充放電状態を監視および制御する電池システムが開示されている。
特開2005−318750号公報
特許文献1のような電池システムでは、各単電池セルの充放電状態を正確に推定するために、一定周期でセル電圧を正確に測定することが求められている。このようにセル電圧を一定周期で測定する場合、測定周期に対応するサンプリング周波数の半分の周波数(ナイキスト周波数)よりも高い周波数成分を含む信号がセル電圧検出回路に入力されると、エリアシングと呼ばれる現象が生じてしまい、セル電圧を正確に測定できなくなる。そのため、セル電圧検出回路への入力信号では、ナイキスト周波数に比べて高い周波数成分を十分に減衰させる必要がある。
上記のように入力信号から特定の周波数成分を減衰させるためには、抵抗とコンデンサで構成されたRCフィルタが一般的に用いられる。しかし、サンプリング周波数によっては、高誘電率系のセラミックコンデンサを使用しなければ、所望の減衰特性を有するフィルタを実現できない場合がある。その場合、高誘電率系のセラミックコンデンサは、印加電圧によって静電容量が変化するという特性と、静電容量の経年変化が大きいと言う特性がある。そのため、フィルタの時定数が変動してしまい、正確な減衰特性が得られないという課題を有している。
本発明による電池監視回路は、複数の単電池セルを直列接続したセルグループの各単電池セルの正極または負極とそれぞれ接続された複数のセル電圧検出端子を有し、前記複数のセル電圧検出端子にそれぞれ入力されるセル電圧信号を測定して前記各単電池セルの電圧を検出するセル電圧検出回路と、前記複数のセル電圧検出端子にそれぞれ接続された複数の抵抗要素および静電容量要素を有し、前記セル電圧信号において所定の周波数成分を減衰させるフィルタ回路と、前記複数のセル電圧検出端子の間に接続された端子間抵抗器と、を備え、前記フィルタ回路における前記複数の静電容量要素は、前記セルグループの各単電池セルとそれぞれ対応し、当該単電池セルの正極と前記セルグループにおいて最も低電位側の単電池セルの負極との間にそれぞれ接続されている複数のセル対応静電容量要素を含み、前記セルグループのうち特定の単電池セルを基準セルとして、前記複数のセル対応静電容量要素のうち、前記基準セルまたは前記基準セルよりも高電位側の各単電池セルに対応する高電位側セル対応静電容量要素は、複数のコンデンサを直列に接続したコンデンサ群によりそれぞれ構成されており、前記複数のセル対応静電容量要素のうち、前記基準セルよりも低電位側の各単電池セルに対応する低電位側セル対応静電容量要素は、単一のコンデンサによりそれぞれ構成されており、前記フィルタ回路は、前記高電位側セル対応静電容量要素の前記複数のコンデンサの各々に並列に接続された電圧均等化用の抵抗器をさらに備え、前記低電位側セル対応静電容量要素には、前記電圧均等化用の抵抗器が接続されておらず、前記低電位側セル対応静電容量要素に接続されているセル電圧検出端子同士の間には、前記端子間抵抗器が接続されておらず、前記セル電圧検出回路は、複数の前記単電池セルと接続されており、前記端子間抵抗器の抵抗値は、複数の前記単電池セルに流れる暗電流が略等しくなるように設定されている
本発明によれば、セル電圧検出回路への入力信号に対するフィルタの時定数の変動を抑えて、正確な減衰特性を得ることができる。
電池監視回路を備えた蓄電装置を搭載したハイブリッド自動車用電動駆動装置の構成例を示す図である。 本発明の第1の実施形態に係る電池監視回路の構成を示す図である。 従来のRCフィルタの構成を示す図である。 従来のRCフィルタにおける時定数のばらつきの様子の一例を示した図である。 本発明の第1の実施形態によるRCフィルタにおける時定数のばらつきの様子の一例を示した図である。 本発明の第2の実施形態に係る電池監視回路の構成を示す図である。 図6の回路構成において各セルを流れる暗電流の一例を示す図である。 本発明の第3の実施形態に係る電池監視回路の構成を示す図である。 図8の回路構成において各セルを流れる暗電流の一例を示す図である。
以下、図面を参照して本発明を実施するための形態について説明する。以下に説明する実施形態は、本発明に係る電池監視回路を備えた蓄電装置を、ハイブリッド自動車(HEV)などに用いられる電池システムを備えた蓄電装置に対して適用した場合の例である。なお、本発明はHEVに限らず、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)、鉄道車両などに搭載される各種蓄電装置に対して幅広く適用可能である。
以下に説明する実施形態では、制御の最小単位となる蓄電・放電デバイスとして、3.0〜4.2V(平均出力電圧:3.6V)の範囲に電圧を持つリチウムイオン電池を想定している。しかし、リチウムイオン電池以外のものでも、SOC(State of Charge)が高すぎる場合(過充電)や低すぎる場合(過放電)に使用を制限するような、電気を蓄え放電可能なデバイスであれば何でもよい。以下の説明では、それらを総称して単電池あるいは単電池セルと呼ぶ。
以下に説明する実施形態では、単電池セルを複数個(概ね数個から十数個)直列に接続したものをセルグループと呼び、このセルグループを複数個直列に接続したものを電池モジュールと呼ぶ。更にこのセルグループあるいは電池モジュールを複数個直列または直並列に接続したものを電池システムと呼称する。セルグループ、電池モジュールおよび電池システムを総称して組電池と呼んでいる。各単電池セルのセル電圧を検出し、バランシング動作等を行いながら電池状態を監視するセルコントローラICはセルグループ毎に設けられる。
(電動駆動装置の構成)
図1は、本発明に係る電池監視回路を備えた蓄電装置を搭載したハイブリッド自動車用電動駆動装置の構成例を示す図である。この電動駆動装置は、車両コントローラ400、モータコントローラ300、バッテリコントローラ200、複数のセルコントローラIC100、電池システム130、インバータ340、モータ350などを備えている。これらの内、車両コントローラ400、モータコントローラ300、バッテリコントローラ200、セルコントローラIC100およびインバータ340は、車両内に設置される通信回路を介して互いに情報の授受を行う。
電池システム130は、複数のセルグループ120を直列に接続したものである。各セルグループ120はさらに、リチウムイオン電池等の二次電池の単電池セル110が複数個直列に接続されて構成されている。
電池システム監視装置10は、バッテリコントローラ200、複数のセルコントローラIC100、各セルコントローラIC100とセルグループ120の間に設けられた抵抗やコンデンサ等を含む接続回路を備えて構成されている。蓄電装置は、この電池システム監視装置10と電池システム130から構成される。
バッテリコントローラ200と複数のセルコントローラIC100との間の通信回路はループ状に接続されている。バッテリコントローラ200から最上位のセルコントローラIC100へシグナルアイソレータ201を介して信号が伝送されると、最上位のセルコントローラIC100から最下位のセルコントローラIC100まで順に直列に信号が伝送される。最後に最下位のセルコントローラIC100からバッテリコントローラ200へシグナルアイソレータ202を介して信号が伝送される。バッテリコントローラ200は、このループ状の通信回路を介して、すべてのセルコントローラIC100との間で情報の授受を行うことができる。
なお、ここではループ状の通信回路を介してバッテリコントローラ200と各セルコントローラIC200との間で信号伝送を行う例を示しているが、双方向通信回路を用いて信号伝送を行うことも可能である。この場合、シグナルアイソレータ202は不要となる。さらに、図示はしないが、バッテリコントローラ200からすべてのセルコントローラIC100へ並列に通信回路を接続し、パラレルに信号伝送を行うことも可能である。
車両コントローラ400は、ハイブリッド自動車の運転者が操作するアクセルペダルやブレーキペダル、あるいは変速レバーなどの車両運転操作装置からの操作信号に基づいて車両の走行速度や制駆動力などを制御する。モータコントローラ300は、車両コントローラ400からの速度指令や制駆動力指令に基づいてバッテリコントローラ200およびインバータ340を制御し、車両走行駆動用モータ350の回転速度およびトルクを制御する。
バッテリコントローラ200は、電圧センサ210、電流センサ220、温度センサ230によりそれぞれ検出された電池システム130の電圧、電流、温度に基づいて、電池システム130の充放電とSOC(State of Charge)を制御する。また、各セルコントローラIC100を制御して、電池システム130を構成する複数の単電池セル(以下、単にセルともいう)110のSOCを管理し、過充電状態とならないようにSOCのばらつきを補正するための放電(以下、バランシング放電という)を行う。
なお、図1に示す実施の形態では、電池システム130として、4個のセル110が直列に接続されたセルグループ120が複数個直列に接続された例を示している。しかし、セルグループ120を構成する単電池セル110の数はこれに限らず、4個以上、または4個未満(たとえば1つ)であってもよい。すなわち、単数または複数の単電池セル110を直列接続したものが、1つのセルグループ120として扱われる。セルコントローラIC100は、セルグループ120の仕様に合わせたものを使用すればよい。ハイブリッド自動車に搭載される電池システム130は、多くのセルあるいはセルグループが直並列に接続され、両端電圧が数100Vの高圧、高容量とした電池システムが一般的である。もちろんこのような高圧、高容量の電池システムに対しても本発明を適用することができる。
セルコントローラIC100は、電池システム130を構成する複数のセル110を所定個数ごとにグループ分けした各セルグループ120ごとに設けられる。例えば、100個のセル110が直列に接続された電池システム130を、4個のセル110ごとにグループ分けし、25組のセルグループ120を電池システム130内に設けたとする。この場合は、セルグループ120の数に合わせて25個のセルコントローラIC100が用いられる。
各セルコントローラIC100は、各セルグループ120を構成するセル110それぞれの端子間電圧(セル電圧)を検出し、その検出結果をバッテリコントローラ200へ送信する。そして、バッテリコントローラ200からの指令にしたがって、各セル110のSOCのばらつきを補正するために、セル110ごとにバランシング電流の通電制御を行う。このようにして、セルコントローラIC100によりセルグループ120の監視が行われる。なお、バランシング抵抗102は、各セル110の放電(バランシング放電)の電流を制限するための抵抗であり、セル110ごとに設けられる。
電池システム130に充電された直流電力は、正極側コンタクタ310および負極側コンタクタ320を介して、平滑コンデンサ330およびインバータ340へ供給される。こうして電池システム130から供給された直流電力がインバータ340により交流電力に変換されて交流モータ350に印加されることで、交流モータ350の駆動が行われる。この直流電力から交流電力への変換は、インバータ340に備えられたスイッチング素子(不図示)のスイッチングによって行われる。一方、車両の制動時には、交流モータ350により発電された交流電力が、インバータ340に備えられたダイオード素子(不図示)と平滑コンデンサ330により直流電力に変換される。この直流電力は、正極側コンタクタ310および負極側コンタクタ320を介して電池システム130に印加され、電池システム130の充電が行われる。すなわち、電池システム130とインバータ340との間で直流電力の授受が行われる。
なお、インバータ340の動作に伴ってリプルノイズ及びスイッチングノイズが発生する。これらのノイズは、平滑コンデンサ330によってある程度低減されるが、完全には除去しきれず電池システム130に流れこむ。すると、各セル110からセルコントローラIC100に出力されるセル電圧信号において、ノイズ電流に比例したノイズ電圧が重畳する。このノイズ電圧は、セルコントローラIC100がセル電圧信号を測定して各セル110のセル電圧を検出する際に誤差を生じる。そのため、セルコントローラIC100と各セル110の間には、ノイズを抑制するためのRCフィルタ101が設けられている。このRCフィルタ101により、セル電圧信号におけるノイズが抑制された後、セルコントローラIC100に入力される。
本発明に係る電池監視回路は、図1の各セルグループ120を構成する各単電池セル110を監視および制御するものであり、セルコントローラIC100およびRCフィルタ101により構成される。なお、バランシング抵抗102やバッテリコントローラ200を含めて電池監視回路としてもよい。
次に、セルコントローラIC100と各セル110の間に設けられているRCフィルタ101の詳細について説明する。
(第1の実施形態)
図2は、本発明の第1の実施形態に係る電池監視回路の構成を示す図である。図2に示す電池監視回路において、RCフィルタ101は、フィルタの抵抗要素である抵抗器R0〜R12と、フィルタの静電容量要素であるコンデンサC0〜C6およびコンデンサ群CG7〜CG12とを有している。抵抗器R0〜R12と、コンデンサC0〜C6およびコンデンサ群CG7〜CG12とは、図2に示すように、セルコントローラIC100が有するセル電圧検出端子CV0〜CV12にそれぞれ接続されている。
コンデンサ群CG7は、直列に接続された2つのコンデンサC7−1およびC7−2により構成されている。同様に、コンデンサ群CG8〜CG12は、コンデンサC8−1〜C12−1と、これらと直列に接続されたコンデンサC8−2〜C12−2によりそれぞれ構成されている。
RCフィルタ101は、上記のような回路構成を有している。これにより、セルコントローラIC100に対応するセルグループ120の各セル110の正極および負極から電圧検出線を介してセルコントローラIC100のセル電圧検出端子CV0〜CV12にそれぞれ入力されるセル電圧信号において、RCフィルタ101の時定数に応じた特定の周波数成分が減衰される。具体的には、セルコントローラIC100がセル電圧信号を測定する際のサンプリング周波数の半分の周波数(ナイキスト周波数)よりも高い周波数成分が除去されるように、RCフィルタ101の時定数が設定されている。このようにRCフィルタ101の時定数を設定することで、セル電圧信号を測定する際のエリアシングを防止し、各セル110のセル電圧を正確に測定することができる。
なお、コンデンサC0〜C6の静電容量値と、コンデンサ群CG7〜CG12を構成するコンデンサC7−1〜C12−1およびコンデンサC7−2〜C12−2の静電容量値とは、所望の減衰特性を得られるものであれば、任意の値をそれぞれ設定することができる。たとえば、全てのコンデンサに対して同じ規格値のものを用いることで、RCフィルタ101の静電容量要素を構成する各コンデンサの静電容量値がいずれも所定の規格値に応じた範囲内となるようにしてもよい。このようにすれば、同じ部品を使用することによりコストの低減化を図ることができる。
図2の例では、直列接続された12個のセル110によりセルグループ120が構成されており、これら12個のセル110を、低電位側から高電位側の順にセル1〜セル12と表している。セル1の負極はセル電圧検出端子CV0と接続されており、セル1の正極は、一つ高電位側にあるセル2の負極と共にセル電圧検出端子CV1と接続されている。同様に、セル2〜セル11の正極は、一つ高電位側にあるセル3〜セル12の負極と共にセル電圧検出端子CV2〜CV11にそれぞれ接続されており、セル12の正極はセル電圧検出端子CV12と接続されている。
セルコントローラIC100は、セル1〜セル12からRCフィルタ101を介してセル電圧検出端子CV0〜CV12にそれぞれ入力されるセル電圧信号を所定のサンプリング周波数に応じたタイミングごとに測定し、その測定結果に基づいて各セル110の端子間電圧(セル電圧)を検出する。すなわち、セルコントローラIC100は、各セル110のセル電圧を検出するためのセル電圧検出回路として機能するものである。この機能を実現するために、セルコントローラIC100は、不図示のマルチプレクサ、差動増幅器、ADコンバータ等の回路を有している。
次に、以上説明したような本発明の第1の実施形態に係るRCフィルタ101との比較のために、本発明を適用しない場合の従来のRCフィルタについて説明する。
図3は、従来のRCフィルタ101’の構成を示す図である。この従来のRCフィルタ101’において、図2に示した本発明の第1の実施形態に係るRCフィルタ101との違いは、コンデンサ群CG7〜CG12の代わりに、コンデンサC7〜C12が設けられている点である。
上記のように、図3に示した従来のRCフィルタ101’では、セルコントローラIC100のセル電圧検出端子CV0〜CV12に対応する静電容量要素の全てを、単一のコンデンサC0〜C12でそれぞれ構成している。これに対して、図2に示した本発明の第1の実施形態に係るRCフィルタ101では、セルコントローラIC100のセル電圧検出端子CV0〜CV12に対応する静電容量要素のうち、セル電圧検出端子CV7〜CV12と接続されている静電容量要素を、従来のコンデンサC7〜C12から、2つのコンデンサを直列に接続したコンデンサ群CG7〜CG12に置き換えている。これにより、セル電圧検出端子間での時定数のばらつきを抑えるようにしている。この点について、以下に詳しく説明する。
前述のように、セル電圧信号を測定する際のエリアシングを防止するためには、セルコントローラIC100におけるサンプリング周波数の半分よりも高い周波数成分が除去されるように、図2のRCフィルタ101や図3のRCフィルタ101’の時定数を設計する必要がある。すなわち、RCフィルタ101については、サンプリング周波数に応じて定まる所定のカットオフ周波数に従って、抵抗器R0〜R12の抵抗値と、コンデンサC0〜C6およびコンデンサ群CG7〜CG12の静電容量値とを定める必要がある。しかし、抵抗器R0〜R12の抵抗値をあまり大きく設定すると、セルコントローラIC100や、コンデンサC0〜C6およびコンデンサ群CG7〜CG12でのリーク電流が抵抗器R0〜R12を流れることにより、抵抗器R0〜R12の抵抗値に応じた電圧降下が生じてしまい、正確なセル電圧の検出が困難となる。したがって、セル電圧の検出精度を確保するためには、コンデンサC0〜C6やコンデンサ群CG7〜CG12の静電容量値をなるべく大きくすることが好ましい。同様に、RCフィルタ101’についても、コンデンサC0〜C12の静電容量値をなるべく大きくすることが好ましい。
RCフィルタを構成する汎用の大容量コンデンサとしては、高誘電率系のセラミックコンデンサが広く利用されている。しかしながら、一般的に高誘電率系のセラミックコンデンサは、印加電圧によって静電容量が変化すると共に、経年劣化により静電容量が低下するという特性を有している。そのため、図3に示したような従来のRCフィルタ101’において、コンデンサC0〜C12に高誘電率系のセラミックコンデンサを用いると、これらが接続されているセル電圧検出端子CV0〜CV12の間で時定数にばらつきが生じてしまうことがある。その結果、セルによっては、セル電圧信号に対して正確な減衰特性を得られず、正しいセル電圧を検出できない場合が生じる。
図4は、図3に示した従来のRCフィルタ101’における時定数のばらつきの様子の一例を示した図である。ここでは、コンデンサC0〜C12に高誘電率系のセラミックコンデンサを使用した場合に、各セル電圧検出端子CV0〜CV12へのセル電圧信号に対するフィルタ時定数がどのように変動するかを示している。
図4は、各セル110のセル電圧が1V、2V、3.6V、4.2Vおよび4.7Vの各場合について、コンデンサC0〜C12に対する印加電圧の差や、個体差、温度特性等による静電容量の変化を考慮して、各セル電圧検出端子CV0〜CV12へのセル電圧信号に対するフィルタ時定数のばらつき具合をプロットしたものである。図4において、横軸は1セル当たりのセル電圧を表し、縦軸は静電容量の定格値に対応する時定数(定格時定数)を100%としたときのフィルタ時定数の変動量を表している。
図4において、プロット点41は時定数の最大値を表しており、これは定格時定数の189%に相当する。また、プロット点42は時定数の最小値を表しており、これは定格時定数の42%に相当する。すなわち、図3に示した従来のRCフィルタ101’では、定格時定数に対して、42%から189%の範囲で、各セル電圧検出端子CV0〜CV12へのセル電圧信号に対するフィルタ時定数が変動することが分かる。
そこで、本発明の第1の実施形態によるRCフィルタ101では、図3に示した従来のRCフィルタ101’におけるコンデンサC7〜C12を、図2に示したように、2つのコンデンサを直列に接続したコンデンサ群CG7〜CG12に置き換えている。これにより、従来のRCフィルタ101’と比べて、コンデンサ1つ当たりの印加電圧が半分となるため、印加電圧の差に応じた静電容量のばらつきを抑えることができる。また、コンデンサごとの個体差や温度特性の差による静電容量のばらつきを2つのコンデンサ間で相殺することができる。その結果、上記のような各セル電圧検出端子CV0〜CV12へのセル電圧信号に対するフィルタ時定数の変動を抑制することができる。
図5は、図2に示した本発明の第1の実施形態によるRCフィルタ101における時定数のばらつきの様子の一例を示した図である。ここでは、図4と同様に、コンデンサC0〜C6と、コンデンサ群CG7〜CG12を構成するコンデンサC7−1〜C12−1およびC7−2〜C12−2にそれぞれ高誘電率系のセラミックコンデンサを使用した場合に、各セル電圧検出端子CV0〜CV12へのセル電圧信号に対するフィルタ時定数がどのように変動するかを示している。なお、図5の各プロット点は、図4の各プロット点とそれぞれ同じ条件でプロットされたものである。
図5において、プロット点51は時定数の最大値を表しており、これは定格時定数の149%に相当する。また、プロット点52は時定数の最小値を表しており、これは定格時定数の54%に相当する。すなわち、図5に示したRCフィルタ101では、定格時定数に対して、54%から149%の範囲で、各セル電圧検出端子CV0〜CV12へのセル電圧信号に対するフィルタ時定数が変動することが分かる。したがって、図4で説明した従来のRCフィルタ101’の場合と比べて、フィルタ時定数の変動幅が抑えられていることが分かる。
以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)電池監視回路は、セルコントローラIC100と、RCフィルタ101とを備える。セルコントローラIC100は、単数または複数の単電池セル110を直列接続したセルグループ120の各単電池セル110の正極または負極とそれぞれ接続されたセル電圧検出端子CV0〜CV12を有し、セル電圧検出端子CV0〜CV12にそれぞれ入力されるセル電圧信号を測定して各単電池セル110の電圧を検出するセル電圧検出回路として機能する。RCフィルタ101は、セル電圧検出端子CV0〜CV12にそれぞれ接続された、抵抗要素である抵抗器R0〜R12と静電容量要素であるコンデンサC0〜C6およびコンデンサ群CG7〜CG12とを有し、セル電圧信号において所定の周波数成分を減衰させる。このRCフィルタ101において、コンデンサ群CG7〜CG12は、コンデンサC7−1〜C12−1とコンデンサC7−2〜C12−2とをそれぞれ直列に接続して構成される。このようにしたので、セルコントローラIC100への入力信号であるセル電圧信号に対するRCフィルタ101の時定数の変動を抑えて、正確な減衰特性を得ることができる。さらに、各コンデンサに要求される耐圧性能を低減できるため、コスト削減を図ることもできる。
(2)セル電圧検出端子CV0〜CV12にそれぞれ接続されたRCフィルタ101の静電容量要素は、コンデンサC7−1〜C12−1とコンデンサC7−2〜C12−2とをそれぞれ直列に接続して構成されるコンデンサ群CG7〜CG12と、単一のコンデンサによりそれぞれ構成されるコンデンサC1〜C6とを含む。このようにしたので、静電容量のばらつきが時定数の変動に与える影響の大きさに応じて、各静電容量要素の構成を定めることができる。
(第2の実施形態)
図6は、本発明の第2の実施形態に係る電池監視回路の構成を示す図である。図6に示す電池監視回路において、RCフィルタ101は、図2に示した本発明の第1の実施形態に係る電池監視回路のRCフィルタ101と比較して、コンデンサ群CG7〜CG12をそれぞれ構成するコンデンサC7−1〜C12−1およびコンデンサC7−2〜C12−2と並列に、電圧均等化用の抵抗器Rbがそれぞれ接続されている点が異なっている。
抵抗器Rbは、コンデンサC7−1〜C12−1およびコンデンサC7−2〜C12−2に印加される電圧を各コンデンサ群内で均等化するためのものである。これにより、各コンデンサ群内で直列に接続された2つのコンデンサの間に絶縁抵抗の個体差があったとしても、各コンデンサに均等に電圧が印加されるため、印加電圧に応じた静電容量のばらつきを抑えることができる。なお、抵抗器Rbの抵抗値は、コンデンサC7−1〜C12−1およびコンデンサC7−2〜C12−2の絶縁抵抗に比べて十分に小さい値とすればよい。
以上説明した本発明の第2の実施形態によれば、電池監視回路は、コンデンサC7−1〜C12−1およびコンデンサC7−2〜C12−2の各々に並列に接続された電圧均等化用の抵抗器Rbをさらに有する。このようにしたので、各コンデンサの印加電圧を均等化し、印加電圧に応じた静電容量のばらつきを抑えることができる。
なお、以上説明した第2の実施形態によるRCフィルタ101では、抵抗器Rbの抵抗値によっては、セルグループ120の各セル110を流れる暗電流がセルごとにばらつき、暗電流の影響が無視できない場合がある。この点について以下に説明する。
図7は、図6の回路構成において各セル110(セル1〜セル12)を流れる暗電流の一例を示す図である。図7では、コンデンサ群CG7〜CG12に対して設けられた各抵抗器Rbの抵抗値を全て同じ値としたときに、セル電圧が3V、3.6V、4.3Vおよび5Vの各場合について、セル1〜セル12をそれぞれ流れる暗電流の例を示している。図7から、セル1〜セル7については、いずれのセル電圧の場合にも暗電流がほぼ等しいのに対して、セル8〜セル12については、上位側のセルほど暗電流が低下することが分かる。また、この暗電流の低下度合いは、セル電圧が高いほど大きいことが分かる。
上記のようなセルごとの暗電流のばらつきは、セル間でのSOCのばらつきを引き起こす。これは、セルグループ120全体での充放電性能の低下につながるため、好ましくない。そこで、以下に説明する第3の実施形態では、各セルの暗電流を調整してセルごとの暗電流のばらつきを抑える例を説明する。
(第3の実施形態)
図8は、本発明の第3の実施形態に係る電池監視回路の構成を示す図である。図8に示す電池監視回路において、RCフィルタ101は、図6に示した本発明の第2の実施形態に係る電池監視回路のRCフィルタ101と比較して、コンデンサ群CG7〜CG12が接続されているセル7〜セル12と並列に、端子間抵抗器RC7〜RC12がそれぞれ接続されている点が異なっている。
端子間抵抗器RC7〜RC12は、セル7〜セル12に流れる暗電流を調整して各セル間で均等化するためのものであり、セル電圧検出端子CV6〜CV12の間にそれぞれ接続されている。これにより、セル7〜セル12に流れる暗電流のばらつきを抑えることができる。なお、端子間抵抗器RC7〜RC12の抵抗値は、セル7〜セル12に流れる暗電流が略等しくなるように設定されている。具体的には、上位のセルに接続されているものほど、端子間抵抗器RC7〜RC12の抵抗値を小さく設定すればよい。
図9は、図8の回路構成において各セル110(セル1〜セル12)を流れる暗電流の一例を示す図である。図9でも図7と同様に、コンデンサ群CG7〜CG12に対して設けられた各抵抗器Rbの抵抗値を全て同じ値としたときに、セル電圧が3V、3.6V、4.3Vおよび5Vの各場合について、セル1〜セル12をそれぞれ流れる暗電流の例を示している。図7では、セル1〜セル7と比べてセル8〜セル12で暗電流が低下していたのに対して、図9では、セル1〜セル12の全てで暗電流が略等しいことが分かる。
以上説明した本発明の第3の実施形態によれば、電池監視回路は、セル電圧検出端子CV6〜CV12の間に接続された端子間抵抗器RC7〜RC12をさらに備える。このようにしたので、各セルの暗電流を調整してセルごとの暗電流のばらつきを抑えることができる。
なお、以上説明した各実施の形態では、2つのコンデンサを直列に接続してコンデンサ群CG7〜CG12をそれぞれ構成しているが、本発明はこれに限定されず、3つ以上のコンデンサを直列に接続してもよい。また、さらに別のコンデンサを並列に接続してもよい。少なくとも複数のコンデンサを直列に接続したものであれば、コンデンサ群CG7〜CG12の構成は、図2、6、8に示したものには限定されない。
また、以上説明した各実施の形態では、セル電圧検出端子CV0〜CV6に対してはRCフィルタ101内にコンデンサC0〜C6を設け、セル電圧検出端子CV7〜CV12に対してはRCフィルタ101内にコンデンサ群CG7〜CG12を設けた例を説明したが、コンデンサ群を設けるセル電圧検出端子はこれに限定されない。セル電圧検出回路に入力されるセル電圧信号において所定の周波数成分を減衰させるためにフィルタ回路が有する複数の静電容量要素のうち、少なくとも一つの静電容量要素が複数のコンデンサを直列に接続して構成されているものであれば、本発明の適用範囲に含まれる。
以上では種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
10 電池システム監視装置
100 セルコントローラIC
101 RCフィルタ
102 バランシング抵抗
110 単電池セル
120 セルグループ
130 電池システム
200 バッテリコントローラ
210 電圧センサ
220 電流センサ
230 温度センサ
300 モータコントローラ
310 正極側コンタクタ
320 負極側コンタクタ
330 平滑コンデンサ
340 インバータ
350 モータ
400 車両コントローラ

Claims (3)

  1. 複数の単電池セルを直列接続したセルグループの各単電池セルの正極または負極とそれぞれ接続された複数のセル電圧検出端子を有し、前記複数のセル電圧検出端子にそれぞれ入力されるセル電圧信号を測定して前記各単電池セルの電圧を検出するセル電圧検出回路と、
    前記複数のセル電圧検出端子にそれぞれ接続された複数の抵抗要素および静電容量要素を有し、前記セル電圧信号において所定の周波数成分を減衰させるフィルタ回路と、
    前記複数のセル電圧検出端子の間に接続された端子間抵抗器と、を備え、
    前記フィルタ回路における前記複数の静電容量要素は、前記セルグループの各単電池セルとそれぞれ対応し、当該単電池セルの正極と前記セルグループにおいて最も低電位側の単電池セルの負極との間にそれぞれ接続されている複数のセル対応静電容量要素を含み、
    前記セルグループのうち特定の単電池セルを基準セルとして、前記複数のセル対応静電容量要素のうち、前記基準セルまたは前記基準セルよりも高電位側の各単電池セルに対応する高電位側セル対応静電容量要素は、複数のコンデンサを直列に接続したコンデンサ群によりそれぞれ構成されており、
    前記複数のセル対応静電容量要素のうち、前記基準セルよりも低電位側の各単電池セルに対応する低電位側セル対応静電容量要素は、単一のコンデンサによりそれぞれ構成されており、
    前記フィルタ回路は、前記高電位側セル対応静電容量要素の前記複数のコンデンサの各々に並列に接続された電圧均等化用の抵抗器をさらに備え、
    前記低電位側セル対応静電容量要素には、前記電圧均等化用の抵抗器が接続されておらず、
    前記低電位側セル対応静電容量要素に接続されているセル電圧検出端子同士の間には、前記端子間抵抗器が接続されておらず、
    前記セル電圧検出回路は、複数の前記単電池セルと接続されており、
    前記端子間抵抗器の抵抗値は、複数の前記単電池セルに流れる暗電流が略等しくなるように設定されている電池監視回路。
  2. 請求項に記載の電池監視回路において、
    前記複数の静電容量要素を構成する各コンデンサの静電容量値は、いずれも所定の規格値に応じた範囲内である電池監視回路。
  3. 請求項1または2に記載の電池監視回路において、
    前記高電位側セル対応静電容量要素を構成する前記コンデンサ群における前記複数のコンデンサは、隣接するコンデンサ同士の間に前記セル電圧検出端子が接続されていない電池監視回路。
JP2014151859A 2014-07-25 2014-07-25 電池監視回路 Active JP6342250B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151859A JP6342250B2 (ja) 2014-07-25 2014-07-25 電池監視回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151859A JP6342250B2 (ja) 2014-07-25 2014-07-25 電池監視回路

Publications (2)

Publication Number Publication Date
JP2016029349A JP2016029349A (ja) 2016-03-03
JP6342250B2 true JP6342250B2 (ja) 2018-06-13

Family

ID=55435293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151859A Active JP6342250B2 (ja) 2014-07-25 2014-07-25 電池監視回路

Country Status (1)

Country Link
JP (1) JP6342250B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414944A (zh) * 2018-03-09 2018-08-17 华霆(合肥)动力技术有限公司 衰减检测方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295081A (ja) * 1997-01-30 1998-11-04 Toyo Electric Mfg Co Ltd コンデンサ直列体の分圧回路
US8587318B2 (en) * 2010-07-27 2013-11-19 GM Global Technology Operations LLC Sensor arrangement for an energy storage device and a method of using the same
JP5717282B2 (ja) * 2011-02-28 2015-05-13 矢崎総業株式会社 電圧検出装置及び暗電流バラツキ低減方法
WO2013038762A1 (ja) * 2011-09-14 2013-03-21 本田技研工業株式会社 電圧測定装置
JP5753764B2 (ja) * 2011-10-27 2015-07-22 日立オートモティブシステムズ株式会社 電池システム監視装置およびこれを備えた蓄電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414944A (zh) * 2018-03-09 2018-08-17 华霆(合肥)动力技术有限公司 衰减检测方法及装置
CN108414944B (zh) * 2018-03-09 2020-02-14 华霆(合肥)动力技术有限公司 衰减检测方法及装置

Also Published As

Publication number Publication date
JP2016029349A (ja) 2016-03-03

Similar Documents

Publication Publication Date Title
US10454283B2 (en) Battery system monitoring apparatus and electric storage device including the same
JP5753764B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP6023312B2 (ja) 電池システム監視装置
JP5683710B2 (ja) 電池システム監視装置
JP5866001B2 (ja) 電池監視装置および電池システム監視装置
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP5868495B2 (ja) 電池監視装置および電池システム監視装置
US10393823B2 (en) Battery system monitoring apparatus
JP2012178953A (ja) 組電池の状態検出方法および制御装置
US10322643B2 (en) Traction battery with reference supercapacitor for charge monitoring
JP6251136B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP6787705B2 (ja) 異常検出装置、および組電池システム
JP6428197B2 (ja) 高電圧電源系を備えた車両の地絡検出回路
JP6342250B2 (ja) 電池監視回路
JP2016161357A (ja) 電源監視装置および電源監視方法
JP2021164258A (ja) 電池電圧均等化装置
JP2019169471A (ja) 電池システム監視装置
JP2020162375A (ja) 車両
US20240136826A1 (en) Equalization control device for battery
JP2013116015A (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250