JP6330779B2 - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP6330779B2
JP6330779B2 JP2015205062A JP2015205062A JP6330779B2 JP 6330779 B2 JP6330779 B2 JP 6330779B2 JP 2015205062 A JP2015205062 A JP 2015205062A JP 2015205062 A JP2015205062 A JP 2015205062A JP 6330779 B2 JP6330779 B2 JP 6330779B2
Authority
JP
Japan
Prior art keywords
heat exchanger
current value
compressor
heating
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205062A
Other languages
Japanese (ja)
Other versions
JP2017075767A (en
Inventor
幸雄 松坂
幸雄 松坂
小林 健一
健一 小林
晋司 吉川
晋司 吉川
照男 西田
照男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015205062A priority Critical patent/JP6330779B2/en
Publication of JP2017075767A publication Critical patent/JP2017075767A/en
Application granted granted Critical
Publication of JP6330779B2 publication Critical patent/JP6330779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯用熱交換器および暖房用熱交換器を備えるヒートポンプ式加熱装置に関
する。
The present invention relates to a heat pump heating device including a heat exchanger for hot water supply and a heat exchanger for heating.

従来、例えば特許文献1には、通常運転時と逆方向に冷媒を流動させる逆サイクルでの
除霜運転中に、圧縮機の電流値を一定にする空気調和機が記載されている。この空気調和
機では、上限値付近の電流値で除霜運転を行う場合、圧縮機の周波数が大きくなって電装
品の温度が上昇し、耐熱温度を超過するという問題がある。一方、通常運転時と同じ方向
に冷媒を流動させる正サイクルで除霜運転を行う空気調和機も提案されている。
Conventionally, for example, Patent Document 1 describes an air conditioner that keeps the current value of a compressor constant during a defrosting operation in a reverse cycle in which a refrigerant flows in a direction opposite to that during normal operation. In this air conditioner, when the defrosting operation is performed at a current value near the upper limit value, there is a problem that the frequency of the compressor increases, the temperature of the electrical component rises, and the heat resistance temperature is exceeded. On the other hand, an air conditioner that performs a defrosting operation in a positive cycle in which the refrigerant flows in the same direction as in normal operation has also been proposed.

特開2011―052849号公報JP 2011-052849 A

しかし、正サイクル除霜運転では逆サイクル除霜運転と比べて運転時間が長くなる。こ
のため、正サイクル除霜運転時に上限電流値で除霜運転を行うと、逆サイクル除霜運転を
採用した場合以上に電装品の温度が上昇するという問題がある。これを防止するため、上
限電流値を下げると、通常の過熱運転時に周波数が低下して加熱能力が低下する。
However, the operation time is longer in the forward cycle defrosting operation than in the reverse cycle defrosting operation. For this reason, if the defrosting operation is performed at the upper limit current value during the forward cycle defrosting operation, there is a problem that the temperature of the electrical component rises more than when the reverse cycle defrosting operation is employed. In order to prevent this, when the upper limit current value is lowered, the frequency is lowered during normal overheating operation and the heating capacity is lowered.

そこで、この発明は上記のような課題を解決するためになされたもので、正サイクルで
の除霜運転時に電装品の温度上昇を抑制し、かつ、加熱能力を確保できるヒートポンプ式
加熱装置を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-described problems, and provides a heat pump type heating device that can suppress a temperature rise of electrical components during a defrosting operation in a positive cycle and can secure a heating capacity. The purpose is to do.

第1の発明に係るヒートポンプ式加熱装置は、圧縮機と、熱源側熱交換器と、電動弁と
、利用側熱交換器とを有する冷媒回路を備え、
前記利用側熱交換器を凝縮器、前記熱源側熱交換器を蒸発器として作用させる加熱運転
と、
前記熱源側熱交換器の着霜を検知した場合に、前記電動弁の開度を加熱運転より大きく
し、加熱運転と同方向に冷媒を流動させて前記熱源側熱交換器に高温冷媒を供給する除霜
運転と、を行い、
前記除霜運転時の前記圧縮機の上限電流値または上限電力値を、前記加熱運転時の前記圧縮機の上限電流値または上限電力値より低くする。
A heat pump heating device according to a first invention includes a refrigerant circuit having a compressor, a heat source side heat exchanger, an electric valve, and a use side heat exchanger,
A heating operation in which the use side heat exchanger acts as a condenser and the heat source side heat exchanger as an evaporator; and
When the frost formation of the heat source side heat exchanger is detected, the opening degree of the motor-operated valve is made larger than that of the heating operation, and the refrigerant flows in the same direction as the heating operation to supply the high temperature refrigerant to the heat source side heat exchanger. And performing a defrosting operation,
The upper limit current value or upper limit power value of the compressor during the defrosting operation is set lower than the upper limit current value or upper limit power value of the compressor during the heating operation.

このヒートポンプ式加熱装置では、加熱運転時と同方向に冷媒を流動させる正サイクルで
除霜運転する際の圧縮機の上限電流値または上限電力値を、加熱運転時の上限電流値また
は上限電力値から変更する。具体的には、除霜運転時の圧縮機の上限電流値または上限電
力値を加熱運転時より下げることで、圧縮機の周波数を下げて電装品の温度上昇を抑制で
きる。また加熱運転時の上限電流値は高いまま維持されるので、加熱能力を確保できる。
In this heat pump type heating device, the upper limit current value or upper limit power value of the compressor when performing the defrosting operation in the positive cycle in which the refrigerant flows in the same direction as in the heating operation is set as the upper limit current value or upper limit power value during the heating operation. Change from. Specifically, by lowering the upper limit current value or upper limit power value of the compressor during the defrosting operation from that during the heating operation, it is possible to reduce the frequency of the compressor and suppress the temperature rise of the electrical components. Moreover, since the upper limit electric current value at the time of a heating operation is maintained high, a heating capability can be ensured.

第2の発明に係るヒートポンプ式加熱装置は、前記除霜運転時の前記圧縮機の電流値が
上限電流値以上の場合、上限電流値未満になるまで前記圧縮機の周波数を低下させる。
When the current value of the compressor during the defrosting operation is equal to or higher than the upper limit current value, the heat pump heating device according to the second aspect of the invention reduces the frequency of the compressor until the current value becomes less than the upper limit current value.

このヒートポンプ式加熱装置では、電流値が上限電流値以上の場合、上限電流値未満に
なるまで圧縮機の周波数を低下させる。これにより、電装品の温度上昇を抑制できる。
In this heat pump type heating device, when the current value is equal to or higher than the upper limit current value, the frequency of the compressor is decreased until the current value becomes less than the upper limit current value. Thereby, the temperature rise of an electrical component can be suppressed.

第3の発明に係るヒートポンプ式加熱装置は、前記圧縮機の周波数を所定値ずつ低下さ
せることを、前記圧縮機の電流値が上限電流値未満になるまで繰り返す。
The heat pump heating device according to a third aspect of the invention repeats decreasing the frequency of the compressor by a predetermined value until the current value of the compressor becomes less than the upper limit current value.

このヒートポンプ式加熱装置では、上限電流値未満になるまで圧縮機の周波数を確実に
低下できる。
In this heat pump type heating device, the frequency of the compressor can be surely lowered until it becomes less than the upper limit current value.

第1の発明では、加熱運転時と同方向に冷媒を流動させる正サイクルで除霜運転する際の
圧縮機の上限電流値または上限電力値を、加熱運転時の上限電流値または上限電力値から
変更する。具体的には、除霜運転時の圧縮機の上限電流値または上限電力値を加熱運転時
より下げることで、圧縮機の周波数を下げて電装品の温度上昇を抑制できる。また加熱運
転時の上限電流値は高いまま維持されるので、加熱能力を確保できる。
In 1st invention, the upper limit electric current value or upper limit electric power value of the compressor at the time of defrosting operation by the forward cycle which flows a refrigerant | coolant to the same direction as the heating operation is calculated from the upper limit electric current value or upper limit electric power value at the time of heating operation. change. Specifically, by lowering the upper limit current value or upper limit power value of the compressor during the defrosting operation from that during the heating operation, it is possible to reduce the frequency of the compressor and suppress the temperature rise of the electrical components. Moreover, since the upper limit electric current value at the time of heating operation is maintained high, a heating capability can be ensured.

第2の発明では、電流値が上限電流値以上の場合、上限電流値未満になるまで圧縮機の
周波数を低下させる。これにより、電装品の温度上昇を抑制できる。
In 2nd invention, when a current value is more than an upper limit electric current value, the frequency of a compressor is reduced until it becomes less than an upper limit electric current value. Thereby, the temperature rise of an electrical component can be suppressed.

第3の発明では、上限電流値未満になるまで圧縮機の周波数を確実に低下できる。   In the third aspect of the invention, the frequency of the compressor can be reliably lowered until it becomes less than the upper limit current value.

本発明の第1実施形態の室外機を示す構成図である。It is a block diagram which shows the outdoor unit of 1st Embodiment of this invention. 図1の室外機の正面図である。It is a front view of the outdoor unit of FIG. 図3(a)は、室外機を正面から見たときのヒートポンプ部および水ユニッ トの内部構成を説明する部分破断図であり、図3(b)は、室外機を上方から見たと きの水ユニットの内部構成を説明する部分破断図であり、図3(c)は、室外機を右 側面から見たときの給湯用水配管接続部および暖房用水配管接続部の配置を説明する 部分破断図である。Fig. 3 (a) is a partial cutaway view illustrating the internal configuration of the heat pump unit and the water unit when the outdoor unit is viewed from the front, and Fig. 3 (b) is a view when the outdoor unit is viewed from above. FIG. 3C is a partially cutaway view illustrating the internal configuration of the water unit, and FIG. 3C is a partially cutaway view illustrating the arrangement of the hot water supply water pipe connection portion and the heating water pipe connection portion when the outdoor unit is viewed from the right side surface. It is. 図4(a)および図4(b)は、給湯用熱交換器および暖房用熱交換器の斜 視図および側面図である。FIG. 4A and FIG. 4B are a perspective view and a side view of a hot water supply heat exchanger and a heating heat exchanger, respectively. 圧縮機を保護制御する制御部のブロック図。The block diagram of the control part which carries out protection control of the compressor. 圧縮機を保護制御するフローチャート。The flowchart which carries out protection control of the compressor. (a)は、電流検知センサにより検知された電流値を示すグラフ、(b)は 保護制御が実行されることにより垂下された圧縮機の周波数を示すグラフ。(A) is a graph which shows the electric current value detected by the electric current detection sensor, (b) is a graph which shows the frequency of the compressor drooped by protection control being performed.

以下、本発明の実施形態を添付図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

ヒートポンプ式加熱装置(室外機)1は、図1および図2に示すように、ヒートポンプ
部2と、ヒートポンプ部2の上方に配置された水ユニット部3とを有している。ヒートポ
ンプ部2には、圧縮機10と、室外熱交換器(熱源側熱交換器)11と、電動弁12と、
室外ファン13とが収容されている。水ユニット部3には、給湯用熱交換器(利用側第1
熱交換器)16Aと、暖房用熱交換器(利用側第2熱交換器)16Bと、給水ポンプ17
とが収容されている。この室外機1の加熱運転では、給湯用温水および暖房用温水のいず
れか一方を加熱可能である。
As shown in FIGS. 1 and 2, the heat pump heating device (outdoor unit) 1 includes a heat pump unit 2 and a water unit unit 3 disposed above the heat pump unit 2. The heat pump unit 2 includes a compressor 10, an outdoor heat exchanger (heat source side heat exchanger) 11, an electric valve 12,
An outdoor fan 13 is accommodated. The water unit 3 includes a hot water supply heat exchanger (first use side).
Heat exchanger) 16A, heating heat exchanger (use side second heat exchanger) 16B, and feed water pump 17
And is housed. In the heating operation of the outdoor unit 1, either one of hot water for hot water supply or hot water for heating can be heated.

室外機1の内部において、冷媒が循環する冷媒回路(ヒートポンプ)が構成されている
。この冷媒回路は、主流路23と第1流路24と第2流路25と低圧流路26とを有する
Inside the outdoor unit 1, a refrigerant circuit (heat pump) in which refrigerant circulates is configured. This refrigerant circuit has a main flow path 23, a first flow path 24, a second flow path 25, and a low pressure flow path 26.

主流路23には、圧縮機10、室外熱交換器11、および電動弁12が順に設けられて
いる。室外熱交換器11の一端側に配置された圧縮機10の吐出側には、後述する四路切
換弁18が配置されている。圧縮機10の吸入側には、室外熱交換器11の一端が接続さ
れ、室外熱交換器11の他端には、電動弁12の一端が接続されている。また圧縮機10
には、圧縮機10の入力電流を検知する電流検知センサ40が配置されている。室外熱交
換器11には、室外熱交換器11の温度を検知する温度センサ43が配置されている。
In the main flow path 23, the compressor 10, the outdoor heat exchanger 11, and the motor operated valve 12 are provided in order. On the discharge side of the compressor 10 disposed on one end side of the outdoor heat exchanger 11, a four-way switching valve 18 described later is disposed. One end of the outdoor heat exchanger 11 is connected to the suction side of the compressor 10, and one end of the motor-operated valve 12 is connected to the other end of the outdoor heat exchanger 11. The compressor 10
Is provided with a current detection sensor 40 for detecting the input current of the compressor 10. The outdoor heat exchanger 11 is provided with a temperature sensor 43 that detects the temperature of the outdoor heat exchanger 11.

圧縮機10は、後述する電装品50の基板によってインバータ制御されている。電装品
50は、交流電源から供給される交流電圧を直流電圧に変換するコンバータ(図示せず)
と、コンバータにより変換された直流電圧を交流電圧に変換して圧縮機10を駆動するイ
ンバータ(図示せず)と、を有する電力変換回路を備える(例として、特開2004-116920
に記載の回路)。電流検知センサ40はインバータへの入力電流値(DC電流値)を検出
し、これに基づいてコンバータの入力電流値(AC電流値)を算出する。圧縮機10の電
流値としては、インバータのへの入力電流値(DC電流値)を用いてもよいし、この算出
されたAC電流値を用いてもよい。あるいは、電流検知センサ40がコンバータの入力電
流値(AC電流値)を直接検出できるように構成してその検出値を用いてもよいし、この
検出値に基づいて算出されるインバータの入力電流値(DC電流値)を用いてもよい。
The compressor 10 is inverter-controlled by a substrate of an electrical component 50 described later. The electrical component 50 is a converter (not shown) that converts an AC voltage supplied from an AC power source into a DC voltage.
And an inverter (not shown) that drives the compressor 10 by converting the DC voltage converted by the converter into an AC voltage (for example, JP 2004-116920 A).
Circuit). The current detection sensor 40 detects an input current value (DC current value) to the inverter, and calculates an input current value (AC current value) of the converter based on this value. As the current value of the compressor 10, an input current value (DC current value) to the inverter may be used, or this calculated AC current value may be used. Alternatively, the current detection sensor 40 may be configured to directly detect the input current value (AC current value) of the converter, and the detected value may be used, or the input current value of the inverter calculated based on the detected value (DC current value) may be used.

第1流路24と第2流路25とは、圧縮機10の吐出側に配置された四路切換弁18に
おいて分岐し、室外熱交換器11の他端側に配置された合流部19において合流する。主
流路23の合流部19と電動弁12との間には、冷媒回路と連通するサービスポート41
が配設されている。サービスポート41は、例えばメンテナンス時に外部から冷媒回路に
冷媒を注入したり、冷媒回路から外部に冷媒を排出するために使用される。
The first flow path 24 and the second flow path 25 branch at the four-way switching valve 18 disposed on the discharge side of the compressor 10, and in the junction 19 disposed on the other end side of the outdoor heat exchanger 11. Join. A service port 41 communicating with the refrigerant circuit is provided between the junction 19 of the main flow path 23 and the motor-operated valve 12.
Is arranged. The service port 41 is used, for example, for injecting refrigerant from the outside into the refrigerant circuit during maintenance or discharging the refrigerant from the refrigerant circuit to the outside.

第1流路24は加熱運転時、主流路23の圧縮機10の下流側に設けられた四路切換弁
18と、電動弁12の上流側に設けられた合流部19とを接続する。また第1流路24に
は、給湯用熱交換器16Aと、給湯用熱交換器16Aと合流部19との間に配置された第
1逆止弁44とが設けられている。第1逆止弁44は、給湯用熱交換器16Aから合流部
19への冷媒の流れを許容するが、合流部19から給湯用熱交換器16A(第1流路24
)への冷媒の流れを遮断する。
During the heating operation, the first flow path 24 connects the four-way switching valve 18 provided on the downstream side of the compressor 10 in the main flow path 23 and the merging portion 19 provided on the upstream side of the motor operated valve 12. The first flow path 24 is provided with a hot water supply heat exchanger 16A, and a first check valve 44 disposed between the hot water supply heat exchanger 16A and the merging portion 19. The first check valve 44 allows the refrigerant to flow from the hot water supply heat exchanger 16A to the merging portion 19, but from the merging portion 19 to the hot water supply heat exchanger 16A (first flow path 24).
) Block the refrigerant flow to.

第2流路25は、四路切換弁18と合流部19とを第1流路24と並列に接続する。ま
た第2流路25には、暖房用熱交換器16Bと、レシーバ46と、第2逆止弁48とが設
けられている。第2逆止弁48は、暖房用熱交換器16Bから合流部19への冷媒の流れ
を許容するが、合流部19から暖房用熱交換器16B(第2流路25)への冷媒の流れを
遮断する。
The second flow path 25 connects the four-way switching valve 18 and the junction 19 in parallel with the first flow path 24. The second flow path 25 is provided with a heating heat exchanger 16B, a receiver 46, and a second check valve 48. The second check valve 48 allows the refrigerant to flow from the heating heat exchanger 16B to the merging section 19, but the refrigerant flows from the merging section 19 to the heating heat exchanger 16B (second flow path 25). Shut off.

レシーバ46は冷媒を貯留する容器であり、第1流路24および第2流路25のうち、
冷媒容量の小さい第2流路25の暖房用熱交換器16Bと第2逆止弁48との間に設けら
れている。
The receiver 46 is a container for storing a refrigerant, and among the first flow path 24 and the second flow path 25,
It is provided between the heating heat exchanger 16B and the second check valve 48 in the second flow path 25 having a small refrigerant capacity.

第2逆止弁48は、暖房用熱交換器16Bと合流部19との間(暖房用熱交換器16B
の下流側かつ合流部19の上流側)に配置されている。
The second check valve 48 is provided between the heating heat exchanger 16B and the junction 19 (heating heat exchanger 16B).
And downstream of the merging portion 19).

低圧流路26は、四路切換弁18と、圧縮機10の吸入側とを接続している。圧縮機1
0の吸入側とは電動弁12と圧縮機10との間を指すが、低圧流路26は特に、圧縮機1
0と室外熱交換器11との間に接続されている。
The low-pressure channel 26 connects the four-way switching valve 18 and the suction side of the compressor 10. Compressor 1
The suction side of 0 refers to between the motor-operated valve 12 and the compressor 10, but the low-pressure flow path 26 is not limited to the compressor 1.
0 and the outdoor heat exchanger 11 are connected.

給水ポンプ17は、給湯タンク5から流出した給湯用温水を給湯用熱交換器16Aに供
給し、給湯タンク5に供給される給湯用温水を循環させる。
The hot water supply pump 17 supplies the hot water for hot water flowing out of the hot water supply tank 5 to the hot water supply heat exchanger 16 </ b> A and circulates the hot water for hot water supplied to the hot water supply tank 5.

上述した冷媒回路では、圧縮機10から吐出された冷媒が第1流路24および第2流路
25のいずれか一方の流路に流れて他方の流路には流れないように、四路切換弁18によ
り後述する第1状態と第2状態とに切り換えられる。
In the refrigerant circuit described above, the four-way switching is performed so that the refrigerant discharged from the compressor 10 flows in one of the first flow path 24 and the second flow path 25 and does not flow in the other flow path. The valve 18 is switched between a first state and a second state described later.

第1状態では、圧縮機10から吐出された冷媒が第1流路24に流れて第2流路25に
流れず、第2流路25が主流路23の低圧側に接続される。具体的には冷媒が流れる給湯
用熱交換器16Aに関し、第1流路24の冷媒流入口には、四路切換弁18を介して圧縮
機10の吐出側が接続され、第1流路24の冷媒流出口には、電動弁12が接続されてい
る。冷媒が流れない第2流路25に関しては、一端部が四路切換弁18を介して低圧流路
26に接続され、他方の端部が合流部19に接続されている。
In the first state, the refrigerant discharged from the compressor 10 flows to the first flow path 24 and does not flow to the second flow path 25, and the second flow path 25 is connected to the low pressure side of the main flow path 23. Specifically, regarding the hot water supply heat exchanger 16A through which the refrigerant flows, the discharge side of the compressor 10 is connected to the refrigerant inlet of the first flow path 24 via the four-way switching valve 18. An electric valve 12 is connected to the refrigerant outlet. Regarding the second flow path 25 through which the refrigerant does not flow, one end is connected to the low pressure flow path 26 via the four-way switching valve 18, and the other end is connected to the junction 19.

第1状態では図1中、実線で示すように、圧縮機10から吐出された冷媒が、四路切換
弁18を介して第1流路24に流入する。そして、給湯用熱交換器16Aで水と熱交換を
した後、合流部19を介して電動弁12に到達する。一方、第2流路25内の冷媒は四路
切換弁18を介して低圧流路26に流入し、圧縮機10に吸入される。しかし第2流路2
5内の冷媒が圧縮機10に吸入された後は、第2逆止弁48があるため、第2逆止弁48
より合流部側19にある冷媒が圧縮機10に吸入されることはない。
In the first state, as shown by a solid line in FIG. 1, the refrigerant discharged from the compressor 10 flows into the first flow path 24 via the four-way switching valve 18. And after exchanging heat with water in the hot water heat exchanger 16 </ b> A, the electric valve 12 is reached via the junction 19. On the other hand, the refrigerant in the second flow path 25 flows into the low pressure flow path 26 via the four-way switching valve 18 and is sucked into the compressor 10. However, the second flow path 2
Since the second check valve 48 is provided after the refrigerant in the refrigerant 5 is sucked into the compressor 10, the second check valve 48 is provided.
In addition, the refrigerant on the merging portion side 19 is not sucked into the compressor 10.

第2状態では、圧縮機10から吐出された冷媒が第2流路25に流れて第1流路24に
流れず、第1流路24が主流路23の低圧側に接続される。具体的には冷媒が流れる暖房
用熱交換器16Bに関し、第2流路25の冷媒流入口には、四路切換弁18を介して圧縮
機10の吐出側が接続され、第2流路25の冷媒流出口には、電動弁12が接続されてい
る。冷媒が流れない第1流路24に関しては、一端部が四路切換弁18を介して低圧流路
26に接続され、他方の端部が合流部19に接続されている。
In the second state, the refrigerant discharged from the compressor 10 flows into the second flow path 25 and does not flow into the first flow path 24, and the first flow path 24 is connected to the low pressure side of the main flow path 23. Specifically, with respect to the heating heat exchanger 16B through which the refrigerant flows, the refrigerant inlet of the second flow path 25 is connected to the discharge side of the compressor 10 via the four-way switching valve 18, and the second flow path 25 An electric valve 12 is connected to the refrigerant outlet. Regarding the first flow path 24 through which the refrigerant does not flow, one end is connected to the low pressure flow path 26 via the four-way switching valve 18, and the other end is connected to the junction 19.

第2状態では図1中、点線で示すように、圧縮機10から吐出された冷媒が、四路切換
弁18を介して第2流路25に流入する。そして、暖房用熱交換器16Bで水と熱交換を
した後、合流部19を介して電動弁12に到達する。一方、第1流路24内の冷媒は四路
切換弁18を介して低圧流路26に流入し、圧縮機10に吸入される。しかし第1流路2
4内の冷媒が圧縮機10に吸入された後は、第1逆止弁44があるため、第1逆止弁44
より合流部側19にある冷媒が圧縮機10に吸入されることはない。
In the second state, as shown by the dotted line in FIG. 1, the refrigerant discharged from the compressor 10 flows into the second flow path 25 via the four-way switching valve 18. And after exchanging heat with water with the heat exchanger 16B for heating, it arrives at the motor operated valve 12 through the junction part 19. FIG. On the other hand, the refrigerant in the first flow path 24 flows into the low pressure flow path 26 via the four-way switching valve 18 and is sucked into the compressor 10. However, the first flow path 2
After the refrigerant in 4 is sucked into the compressor 10, the first check valve 44 is provided because the first check valve 44 is provided.
In addition, the refrigerant on the merging portion side 19 is not sucked into the compressor 10.

水ユニット部3は、給湯用水配管接続部20と、暖房用水配管接続部21とを有してい
る。給湯用水配管接続部20は、往き接続部20aと、戻り接続部20bとを有しており
、暖房用水配管接続部21は、往き接続部21aと、戻り接続部21bとを有している。
The water unit 3 has a hot water supply water pipe connection part 20 and a heating water pipe connection part 21. The hot water supply water pipe connection portion 20 has an outward connection portion 20a and a return connection portion 20b, and the heating water pipe connection portion 21 has an outward connection portion 21a and a return connection portion 21b.

水ユニット部3の内部において、給湯用水配管接続部20の往き接続部20aは第1状
態で、給湯用熱交換器16Aの水流出口に接続され、給湯用水配管接続部20の戻り接続
部20bは、給湯用熱交換器16Aの水流入口に接続されている。
Inside the water unit 3, the forward connection 20a of the hot water supply water pipe connection 20 is connected to the water outlet of the hot water supply heat exchanger 16A in the first state, and the return connection 20b of the hot water supply water pipe connection 20 is The hot water supply heat exchanger 16A is connected to the water inlet.

給湯用熱交換器16Aでは、第1状態において圧縮機10の吐出側の四路切換弁18か
ら流入した冷媒と、給湯用水配管接続部20の戻り接続部20bから流入した給湯用温水
との間で熱交換されることによって、給湯用温水が加熱されて、その加熱された給湯用温
水が、給湯用水配管接続部20の往き接続部20aに向かって流出する。
In the hot water supply heat exchanger 16A, between the refrigerant flowing in from the four-way switching valve 18 on the discharge side of the compressor 10 and the hot water supply hot water flowing in from the return connection portion 20b of the hot water supply water pipe connection portion 20 in the first state. As a result of the heat exchange, the hot water for hot water supply is heated, and the heated hot water for hot water supply flows out toward the forward connection portion 20 a of the hot water supply water pipe connection portion 20.

水ユニット部3の内部において、暖房用水配管接続部21の往き接続部21aは第2状
態で、暖房用熱交換器16Bの水流出口に接続され、暖房用水配管接続部21の戻り接続
部21bは、暖房用熱交換器16Bの水流入口に接続されている。
Inside the water unit 3, the forward connection 21 a of the heating water pipe connection 21 is connected to the water outlet of the heating heat exchanger 16 B in the second state, and the return connection 21 b of the heating water pipe connection 21 is , Connected to the water inlet of the heat exchanger 16B for heating.

暖房用熱交換器16Bでは、第2状態において圧縮機10の吐出側の四路切換弁18か
ら流入した冷媒と、暖房用水配管接続部21の戻り接続部21bから流入した暖房用温水
との間で熱交換されることによって、暖房用温水が加熱されて、その加熱された暖房用温
水が、暖房用水配管接続部21の往き接続部21aに向かって流出する。
In the heating heat exchanger 16B, in the second state, between the refrigerant that has flowed in from the four-way switching valve 18 on the discharge side of the compressor 10 and the hot water for heating that has flowed in from the return connection portion 21b of the heating water pipe connection portion 21. The hot water for heating is heated by the heat exchange at, and the heated hot water flows out toward the forward connection portion 21a of the heating water pipe connection portion 21.

本実施形態の室外機1は、利用側装置4に接続されている。利用側装置4は、給湯タン
ク5と、ガスボイラ6と、床暖房パネル7と、ポンプ8とを有している。ガスボイラ6は
、加熱器6aを有しており、床暖房パネル7と給湯端末9に接続されている。したがって
、ガスボイラ6は、給湯タンク5から供給された給湯用温水を給湯端末9に供給される前
に加熱したり、室外機1から供給された暖房用温水を床暖房パネル7に供給される前に加
熱できる。ポンプ8は、床暖房パネル7から流出した暖房用温水を暖房用熱交換器16B
に供給し、床暖房パネル7に供給される暖房用温水を循環させるものである。
The outdoor unit 1 of the present embodiment is connected to the use side device 4. The use side device 4 includes a hot water supply tank 5, a gas boiler 6, a floor heating panel 7, and a pump 8. The gas boiler 6 has a heater 6 a and is connected to a floor heating panel 7 and a hot water supply terminal 9. Accordingly, the gas boiler 6 heats the hot water for hot water supplied from the hot water tank 5 before being supplied to the hot water supply terminal 9 or before the hot water for heating supplied from the outdoor unit 1 is supplied to the floor heating panel 7. Can be heated. The pump 8 uses the heating hot water flowing out from the floor heating panel 7 as a heating heat exchanger 16B.
The hot water for heating supplied to the floor heating panel 7 is circulated.

図3(a)は、室外機1を正面から見たときのヒートポンプ部2および水ユニット部3
の内部構成を説明する部分破断図であり、図3(b)は、室外機1を上方から見たときの
水ユニット部3の内部構成を説明する部分破断図であり、図3(c)は、室外機1を右側
面から見たときの給湯用水配管接続部20および暖房用水配管接続部21の配置を説明す
る部分破断図である。図3(a)に示すように、四路切換弁18はヒートポンプ部2に配
置されている。またヒートポンプ部2には電装品50が配置されている。電装品50は、
圧縮機10、電動弁12、室外ファン13および四路切換弁18などを制御する制御基板
を有する。
FIG. 3A shows the heat pump unit 2 and the water unit unit 3 when the outdoor unit 1 is viewed from the front.
FIG. 3B is a partially cutaway view illustrating the internal structure of the water unit 3 when the outdoor unit 1 is viewed from above, and FIG. These are partial fracture | rupture figures explaining arrangement | positioning of the hot water supply water piping connection part 20 and the heating water piping connection part 21 when the outdoor unit 1 is seen from the right side surface. As shown in FIG. 3A, the four-way switching valve 18 is disposed in the heat pump unit 2. An electrical component 50 is disposed in the heat pump unit 2. The electrical component 50 is
It has a control board that controls the compressor 10, the motor operated valve 12, the outdoor fan 13, the four-way switching valve 18, and the like.

図4(a)および図4(b)は、給湯用熱交換器16Aおよび暖房用熱交換器16Bの
斜視図および側面図である。室外機1の水ユニット部3の内部において、給湯用熱交換器
16Aおよび暖房用熱交換器16Bは、図4(a)に示すように、上下方向に積層された
状態で配置されている。
FIG. 4A and FIG. 4B are a perspective view and a side view of a hot water supply heat exchanger 16A and a heating heat exchanger 16B, respectively. Inside the water unit 3 of the outdoor unit 1, the hot water supply heat exchanger 16A and the heating heat exchanger 16B are arranged in a vertically stacked state, as shown in FIG.

暖房用熱交換器16Bは、上下方向に2段に積層されるように巻回される暖房用水配管
32を有しており、給湯用熱交換器16Aは、上下方向に2段に積層されるように巻回さ
れる給湯用水配管31を有している。この給湯用水配管31および暖房用水配管32は、
平面視において、それぞれの段において略渦巻き状に巻回されている。
The heating heat exchanger 16B has a heating water pipe 32 wound so as to be stacked in two stages in the vertical direction, and the hot water heat exchanger 16A is stacked in two stages in the vertical direction. It has the hot water supply water piping 31 wound like this. The hot water supply water pipe 31 and the heating water pipe 32 are
In a plan view, each stage is wound in a substantially spiral shape.

給湯用熱交換器16Aの水流入口には、給水ポンプ17(給湯用水配管接続部20の戻
り接続部20b)から延在する給湯用戻り連絡配管31aが接続され、給湯用熱交換器1
6Aの水流出口には、給湯用水配管接続部20の往き接続部20aから延在する給湯用往
き連絡配管31bが接続されている。また、暖房用熱交換器16Bの水流入口には、暖房
用水配管接続部21の戻り接続部21bから延在する暖房用戻り連絡配管32aが接続さ
れ、暖房用熱交換器16Bの水流出口には、暖房用水配管接続部21の往き接続部21a
から延在する暖房用往き連絡配管32bが接続されている。
A hot water supply return connection pipe 31a extending from the water supply pump 17 (return connection part 20b of the hot water supply water pipe connection part 20) is connected to the water inlet of the hot water supply heat exchanger 16A.
A hot water supply outgoing communication pipe 31b extending from the outgoing connection part 20a of the hot water supply water pipe connection part 20 is connected to the water outlet of 6A. A heating return communication pipe 32a extending from the return connection part 21b of the heating water pipe connection part 21 is connected to the water inlet of the heating heat exchanger 16B, and the water outlet of the heating heat exchanger 16B is connected to the water outlet of the heating heat exchanger 16B. , Outward connection portion 21a of heating water pipe connection portion 21
An outgoing communication pipe 32b for heating extending from is connected.

給湯用熱交換器16Aにおいて、給湯用水配管31の外周には、給湯用冷媒配管33が
螺旋状に巻回され、暖房用熱交換器16Bにおいて、暖房用水配管32の外周には、暖房
用冷媒配管34が螺旋状に巻回されている。給湯用熱交換器16Aの冷媒流入口には、圧
縮機10の吐出側の分岐部18から延在する給湯用連絡配管33aが接続され、給湯用熱
交換器16Aの冷媒流出口には、電動弁12から延在する給湯用連絡配管33bが接続さ
れている。また、暖房用熱交換器16Bの冷媒流入口には、圧縮機10の吐出側の分岐部
18から延在する暖房用連絡配管34aが接続され、暖房用熱交換器16Bの冷媒流出口
には、電動弁12から延在する暖房用連絡配管34bが接続されている。
In the hot water supply heat exchanger 16A, a hot water supply refrigerant pipe 33 is spirally wound around the outer periphery of the hot water supply water pipe 31, and in the heating heat exchanger 16B, a heating refrigerant is provided around the outer periphery of the heating water pipe 32. The pipe 34 is wound spirally. The hot water supply heat exchanger 16A has a refrigerant inlet connected to a hot water supply connection pipe 33a extending from the discharge-side branching portion 18 of the compressor 10, and a hot water supply heat exchanger 16A has an electric outlet connected to the refrigerant outlet. A hot water supply connecting pipe 33b extending from the valve 12 is connected. Further, a heating communication pipe 34a extending from the branch portion 18 on the discharge side of the compressor 10 is connected to the refrigerant inlet of the heating heat exchanger 16B, and the refrigerant outlet of the heating heat exchanger 16B is connected to the refrigerant inlet of the heating heat exchanger 16B. The heating communication pipe 34b extending from the motor-operated valve 12 is connected.

本実施形態において、給湯用熱交換器16Aは、給湯用水配管31の外周に給湯用冷媒
配管33が螺旋状に巻回された部分とし、暖房用熱交換器16Bは、暖房用水配管32の
外周に暖房用冷媒配管34が螺旋状に巻回された部分とする。
In the present embodiment, the hot water supply heat exchanger 16A is a portion in which the hot water supply refrigerant pipe 33 is spirally wound around the outer periphery of the hot water supply water pipe 31, and the heating heat exchanger 16B is the outer periphery of the heating water pipe 32. It is assumed that the heating refrigerant pipe 34 is spirally wound.

給湯用熱交換器16Aの給湯用水配管31は、上下方向に2段に積層されるように巻回
されたものであって、給湯用戻り連絡配管31aから、下側に配置された段にある配管に
給湯用温水が流入するとともに、上側に配置された段にある配管から、給湯用往き連絡配
管31bに給湯用温水が流出するように構成されている。暖房用熱交換器16Bの暖房用
水配管32は、上下方向に2段に積層されるように巻回されたものであって、暖房用戻り
連絡配管32aから、下側に配置された段にある配管に暖房用温水が流入するとともに、
上側に配置された段にある配管から、暖房用往き連絡配管32bに暖房用温水が流出する
ように構成されている。
The hot water supply water pipe 31 of the hot water supply heat exchanger 16A is wound so as to be stacked in two stages in the vertical direction, and is located at a lower stage from the hot water return communication pipe 31a. Hot water for hot water supply flows into the pipe, and hot water for hot water supply flows out from the pipe located at the upper stage to the hot water supply connecting pipe 31b. The heating water pipe 32 of the heating heat exchanger 16B is wound so as to be stacked in two stages in the vertical direction, and is in a stage disposed on the lower side from the heating return communication pipe 32a. While warm water for heating flows into the piping,
The hot water for heating flows out from the pipe in the step disposed on the upper side to the outgoing communication pipe 32b for heating.

このように構成された給湯用熱交換器16Aの給湯用水配管31と、暖房用熱交換器1
6Bの暖房用水配管32とは、水ユニット3の内部において積層されている。詳しくは、
給湯用熱交換器16Aは、2段に積層されるように巻回され、最も上側に配置された段に
ある配管(外側配管)から給湯用温水が流出するように構成されており、暖房用熱交換器
16Bは、給湯用熱交換器16Aの上方に積層されている(給湯用水配管31において最
も上側に配置された段にある配管(外側配管)に近接するように、給湯用熱交換器16A
に積層されている。)
The hot water supply water pipe 31 of the hot water supply heat exchanger 16A thus configured and the heating heat exchanger 1 are as follows.
The 6B heating water pipe 32 is stacked inside the water unit 3. For more information,
The hot water supply heat exchanger 16A is wound so as to be stacked in two stages, and is configured such that hot water for hot water supply flows out from a pipe (outer pipe) in the uppermost stage. The heat exchanger 16B is stacked above the hot water supply heat exchanger 16A (a hot water supply heat exchanger so as to be close to a pipe (outer pipe) at the uppermost stage in the hot water supply water pipe 31). 16A
Are stacked. )

給湯用熱交換器16Aには、水連絡配管(給湯用戻り連絡配管31aおよび給湯用往き
連絡配管31b)と、冷媒連絡配管(給湯用連絡配管33aおよび給湯用連絡配管33b
)とが接続されており、暖房用熱交換器16Bには、水連絡配管(暖房用戻り連絡配管3
2aおよび暖房用往き連絡配管32b)と、冷媒連絡配管(暖房用連絡配管34aおよび
暖房用連絡配管34b)とが接続されている。
The hot water supply heat exchanger 16A includes a water communication pipe (a hot water supply return communication pipe 31a and a hot water supply forward communication pipe 31b) and a refrigerant communication pipe (a hot water supply communication pipe 33a and a hot water supply communication pipe 33b).
) And the heating heat exchanger 16B is connected to the water communication pipe (heating return communication pipe 3).
2a and the heating communication pipe 32b) are connected to the refrigerant communication pipe (the heating communication pipe 34a and the heating communication pipe 34b).

図5に示すように、制御部56は、入力側が電流検知センサ40と温度センサ43とに
接続されている。制御部56の出力側は、圧縮機10と電動弁12とに接続されている。
As shown in FIG. 5, the control unit 56 is connected to the current detection sensor 40 and the temperature sensor 43 on the input side. The output side of the control unit 56 is connected to the compressor 10 and the motor operated valve 12.

上記構成を備えたヒートポンプ式加熱装置1では、加熱運転と正サイクル除霜運転とが
行われる。加熱運転では、給湯用熱交換器16Aと暖房用熱交換器16Bとを凝縮器、室
外熱交換器11を蒸発器として作用させる。正サイクル除霜運転では、室外熱交換器11
の着霜を検知した場合に、電動弁12の開度を加熱運転より大きくし、加熱運転と同方向
に冷媒を流動させて室外熱交換器11に高温冷媒を供給する。
In the heat pump heating device 1 having the above configuration, a heating operation and a normal cycle defrosting operation are performed. In the heating operation, the hot water supply heat exchanger 16A and the heating heat exchanger 16B act as a condenser, and the outdoor heat exchanger 11 acts as an evaporator. In the normal cycle defrosting operation, the outdoor heat exchanger 11
When the frost formation is detected, the opening degree of the motor-operated valve 12 is made larger than that of the heating operation, and the refrigerant flows in the same direction as the heating operation to supply the high-temperature refrigerant to the outdoor heat exchanger 11.

正サイクル除霜運転時には、四路切替弁18を第1状態または第2状態に維持したまま
圧縮機10を運転する。正サイクル除霜運転では、加熱運転時と同方向に冷媒回路内を冷
媒が流れるため、圧縮機10を停止させずに除霜を行うことが可能である。
During the forward cycle defrosting operation, the compressor 10 is operated while the four-way switching valve 18 is maintained in the first state or the second state. In the forward cycle defrosting operation, the refrigerant flows in the refrigerant circuit in the same direction as in the heating operation, and therefore it is possible to perform the defrosting without stopping the compressor 10.

正サイクル除霜運転では、圧縮機10は、所定の周波数、好ましくは最大周波数で運転
される。このように、圧縮機10ができるだけ大きな周波数で運転されることで、除霜の
ための熱量を確保することが容易になる。また、正サイクル除霜運転中には、室外ファン
13の駆動は停止される。
In the normal cycle defrosting operation, the compressor 10 is operated at a predetermined frequency, preferably the maximum frequency. Thus, it becomes easy to ensure the calorie | heat amount for a defrost because the compressor 10 is drive | operated by the largest possible frequency. Further, during the forward cycle defrosting operation, the driving of the outdoor fan 13 is stopped.

電装品50は室外ファン13からの送風によって冷却されているが、除霜運転中は室外
ファン13が停止するので冷却手段が失われる。このため、高い電流値で長時間の除霜運
転を行うと、電装品50の温度が高温になってしまう。また正サイクル除霜運転は、例え
ばルームエアコンなどで一般的に行われている逆サイクル除霜運転(暖房、冷房モードを
逆転する)と比べて高い電流値で長時間の除霜運転が必要になる。
Although the electrical component 50 is cooled by the ventilation from the outdoor fan 13, the outdoor fan 13 stops during the defrosting operation, so that the cooling means is lost. For this reason, when the defrosting operation is performed for a long time at a high current value, the temperature of the electrical component 50 becomes high. Also, the forward cycle defrosting operation requires a longer defrosting operation at a higher current value than the reverse cycle defrosting operation (reversing the heating and cooling modes) generally performed in, for example, room air conditioners. Become.

図6は、本発明の正サイクル除霜運転が実行されるフローチャートを示す。図7(a)
は、電流検知センサ40により検知された圧縮機10の電流値を示す。図7(b)は、圧
縮機10の周波数を示す。なお図7(a)中、A1は加熱運転時の上限電流値を示し、A
2は正サイクル除霜運転時の上限電流値を示す。
FIG. 6 shows a flowchart in which the normal cycle defrosting operation of the present invention is executed. FIG. 7 (a)
Indicates the current value of the compressor 10 detected by the current detection sensor 40. FIG. 7B shows the frequency of the compressor 10. In FIG. 7A, A1 indicates the upper limit current value during the heating operation, and A
2 shows the upper limit current value during the positive cycle defrosting operation.

図6に示すように、ステップS1で制御部56が加熱運転を開始する。ステップS2で
制御部56が、温度センサ43により検知された室外熱交換器11の温度が第1閾値以下
であるか否かを判定する。第1閾値は例えば−5度であるが、これに限定されない。第1
閾値以下であれば、室外熱交換器11に着霜したと判断してステップS3に進む。第1閾
値よりも大きければステップS2を繰り返す。
As shown in FIG. 6, the control unit 56 starts the heating operation in step S1. In step S <b> 2, the control unit 56 determines whether or not the temperature of the outdoor heat exchanger 11 detected by the temperature sensor 43 is equal to or lower than the first threshold value. The first threshold is, for example, −5 degrees, but is not limited to this. First
If it is below the threshold, it is determined that the outdoor heat exchanger 11 has been frosted, and the process proceeds to step S3. If it is greater than the first threshold, step S2 is repeated.

ステップS3では制御部56が、圧縮機10の上限電流値を下げる。具体的には、加熱
運転時に例えば14.25アンペアであった上限電流値を12.5アンペアまで下げる。
これにより、除霜運転開始時など電流値が低い場合には、上限電流値を気にせず、任意の
周波数で除霜運転を実行できる。一方、除霜運転の終了前など電流値が高い場合には、後
述するように上限電流値未満になるまで圧縮機の周波数を下げ、電装品50の温度上昇の
抑制を図ることができる。なお、上限電流値の具体的な数値は特に限定されず、上限電流
値はDC電流値およびAC電流値のいずれであってもよい。
In step S <b> 3, the control unit 56 decreases the upper limit current value of the compressor 10. Specifically, the upper limit current value, which was, for example, 14.25 amperes during the heating operation is lowered to 12.5 amperes.
Thereby, when the current value is low such as at the start of the defrosting operation, the defrosting operation can be executed at an arbitrary frequency without worrying about the upper limit current value. On the other hand, when the current value is high, such as before the end of the defrosting operation, the frequency of the compressor can be lowered until the current value becomes less than the upper limit current value, as will be described later, and the temperature rise of the electrical component 50 can be suppressed. In addition, the specific numerical value of the upper limit current value is not particularly limited, and the upper limit current value may be either a DC current value or an AC current value.

ステップS4では制御部56が、加熱運転から正サイクル除霜運転に切り換える。正サ
イクル除霜運転では、圧縮機10を最大周波数で駆動し、電動弁12の弁開度を大きくし
て室外ファン13の駆動を停止する。
In step S4, the control unit 56 switches from the heating operation to the normal cycle defrosting operation. In the normal cycle defrosting operation, the compressor 10 is driven at the maximum frequency, the valve opening of the motor operated valve 12 is increased, and the driving of the outdoor fan 13 is stopped.

ステップS5では制御部56が、電流検知センサ40により検知された圧縮機10の電
流値が上限電流値以上であるか否かを判定する。図7(a)の時間t1に示すように、上
限電流値未満であればステップS6に進む。図7(a)の時間t2に示すように、上限電
流値以上であれば電装品50が高温になる恐れがあるため、ステップS7に進む。ステッ
プS7では、制御部56が圧縮機10の周波数を所定値だけ下げることで(図7(b)の
時間t2参照)、電流値も下がりステップS5に戻る。ここで、所定値とは例えば2Hz
であるが、これに限定されない。このように、上限電流値以上の場合、圧縮機10の周波
数を所定値だけ低下させることを上限電流値未満になるまで繰り返す(図7(a)の時間
t3参照)。
In step S5, the control unit 56 determines whether or not the current value of the compressor 10 detected by the current detection sensor 40 is equal to or higher than the upper limit current value. If it is less than the upper limit current value as shown at time t1 in FIG. 7A, the process proceeds to step S6. As shown at time t2 in FIG. 7A, the electrical component 50 may become hot if it is equal to or greater than the upper limit current value, and thus the process proceeds to step S7. In step S7, the control unit 56 lowers the frequency of the compressor 10 by a predetermined value (see time t2 in FIG. 7B), so that the current value also decreases and returns to step S5. Here, the predetermined value is, for example, 2 Hz
However, it is not limited to this. As described above, when the value is equal to or higher than the upper limit current value, the frequency of the compressor 10 is decreased by a predetermined value until the frequency becomes less than the upper limit current value (see time t3 in FIG. 7A).

ステップS6では制御部56が、室外熱交換器11の温度が第2閾値以上であるか否か
を判定する。第2閾値は例えば7度であるが、これに限定されない。第2閾値以上であれ
ば、室外熱交換器11に付着した霜が溶融したと判断して除霜運転を終了する。第2閾値
未満であればステップS5に戻って除霜運転を継続する。
In step S6, the control unit 56 determines whether or not the temperature of the outdoor heat exchanger 11 is equal to or higher than the second threshold value. The second threshold is, for example, 7 degrees, but is not limited to this. If it is more than a 2nd threshold value, it will judge that the frost adhering to the outdoor heat exchanger 11 was fuse | melted, and will complete | finish a defrost operation. If it is less than the second threshold value, the process returns to step S5 and the defrosting operation is continued.

[本実施形態のヒートポンプ式加熱装置の特徴]
本実施形態のヒートポンプ式加熱装置には以下の特徴がある。
[Characteristics of the heat pump type heating apparatus of this embodiment]
The heat pump type heating device of the present embodiment has the following features.

本発明のヒートポンプ式加熱装置1では、加熱運転時と同方向に冷媒を流動させる正サ
イクルで除霜運転する際の圧縮機10の上限電流値を、加熱運転時の上限電流値から変更
する。具体的には、除霜運転時の圧縮機10の上限電流値を加熱運転時より下げることで
、圧縮機10の周波数を下げて電装品50の温度上昇を抑制できる。また加熱運転時の上
限電流値は高いまま維持されるので、加熱能力を確保できる。
In the heat pump type heating device 1 of the present invention, the upper limit current value of the compressor 10 at the time of performing the defrosting operation in the forward cycle in which the refrigerant flows in the same direction as that during the heating operation is changed from the upper limit current value during the heating operation. Specifically, by lowering the upper limit current value of the compressor 10 during the defrosting operation from that during the heating operation, the frequency of the compressor 10 can be lowered and the temperature rise of the electrical component 50 can be suppressed. Moreover, since the upper limit electric current value at the time of a heating operation is maintained high, a heating capability can be ensured.

本発明のヒートポンプ式加熱装置1では、電流値が上限電流値以上の場合、上限電流値
未満になるまで圧縮機10の周波数を低下させる。これにより、電装品50の温度上昇を
抑制きる。
In the heat pump type heating apparatus 1 of the present invention, when the current value is equal to or higher than the upper limit current value, the frequency of the compressor 10 is decreased until the current value becomes less than the upper limit current value. Thereby, the temperature rise of the electrical component 50 can be suppressed.

本発明のヒートポンプ式加熱装置1では、上限電流値未満になるまで圧縮機10の周波
数を確実に低下できる。
In the heat pump type heating device 1 of the present invention, the frequency of the compressor 10 can be reliably lowered until it becomes less than the upper limit current value.

本発明のヒートポンプ式加熱装置1では、AC電流とDC電流とを変換しており、いず
れか一方の上限電流値を変更すればいいので設計の自由度を高めることができる。
In the heat pump type heating apparatus 1 of the present invention, AC current and DC current are converted, and any one of the upper limit current values may be changed, so that the degree of freedom in design can be increased.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これら
の実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した
実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均
等の意味および範囲内でのすべての変更が含まれる。
As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

前記実施形態では、温度センサ43で検知された室外熱交換器11の温度に基づいて室
外熱交換器11への着霜を検知した。しかし、着霜を検知するための方法は特に限定され
ない。
In the embodiment, frost formation on the outdoor heat exchanger 11 is detected based on the temperature of the outdoor heat exchanger 11 detected by the temperature sensor 43. However, the method for detecting frost formation is not particularly limited.

前記実施形態では、圧縮機10の上限電流値を変更したが、上限電力値を変更しても同
様の効果を得ることができる。
In the embodiment, the upper limit current value of the compressor 10 is changed, but the same effect can be obtained even if the upper limit power value is changed.

1 ヒートポンプ式加熱装置
10 圧縮機
11 室外熱交換器(熱源側熱交換器)
12 電動弁
16A 給湯用熱交換器(利用側第1熱交換器)
16B 暖房用熱交換器(利用側第2熱交換器)
DESCRIPTION OF SYMBOLS 1 Heat pump type heating apparatus 10 Compressor 11 Outdoor heat exchanger (heat source side heat exchanger)
12 Motorized valve 16A Hot water supply heat exchanger (user side first heat exchanger)
16B Heat exchanger for heating (second heat exchanger on the use side)

Claims (3)

圧縮機と、熱源側熱交換器と、電動弁と、利用側熱交換器とを有する冷媒回路を備え、
前記利用側熱交換器を凝縮器、前記熱源側熱交換器を蒸発器として作用させる加熱運転
と、
前記熱源側熱交換器の着霜を検知した場合に、前記電動弁の開度を加熱運転より大きく
し、加熱運転と同方向に冷媒を流動させて前記熱源側熱交換器に高温冷媒を供給する除霜
運転と、を行い、
前記除霜運転時の前記圧縮機の上限電流値または上限電力値を、前記加熱運転時の前記圧縮機の上限電流値または上限電力値より低くすることを特徴とするヒートポンプ式加熱装置。
A refrigerant circuit having a compressor, a heat source side heat exchanger, an electric valve, and a use side heat exchanger;
A heating operation in which the use side heat exchanger acts as a condenser and the heat source side heat exchanger as an evaporator; and
When the frost formation of the heat source side heat exchanger is detected, the opening degree of the motor-operated valve is made larger than that of the heating operation, and the refrigerant flows in the same direction as the heating operation to supply the high temperature refrigerant to the heat source side heat exchanger. And performing a defrosting operation,
A heat pump heating device , wherein an upper limit current value or an upper limit power value of the compressor during the defrosting operation is set lower than an upper limit current value or an upper limit power value of the compressor during the heating operation .
前記除霜運転時の前記圧縮機の電流値が上限電流値以上の場合、上限電流値未満になる
まで前記圧縮機の周波数を低下させることを特徴とする請求項1に記載のヒートポンプ式
加熱装置。
2. The heat pump heating device according to claim 1, wherein when the current value of the compressor during the defrosting operation is equal to or higher than an upper limit current value, the frequency of the compressor is decreased until the current value becomes less than the upper limit current value. .
前記圧縮機の周波数を所定値ずつ低下させることを、前記圧縮機の電流値が上限電流値
未満になるまで繰り返すことを特徴とする請求項2に記載のヒートポンプ式加熱装置。
The heat pump heating device according to claim 2, wherein the frequency of the compressor is decreased by a predetermined value until the current value of the compressor becomes less than an upper limit current value.
JP2015205062A 2015-10-16 2015-10-16 Heat pump type heating device Active JP6330779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205062A JP6330779B2 (en) 2015-10-16 2015-10-16 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205062A JP6330779B2 (en) 2015-10-16 2015-10-16 Heat pump type heating device

Publications (2)

Publication Number Publication Date
JP2017075767A JP2017075767A (en) 2017-04-20
JP6330779B2 true JP6330779B2 (en) 2018-05-30

Family

ID=58550185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205062A Active JP6330779B2 (en) 2015-10-16 2015-10-16 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP6330779B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109386966A (en) * 2018-09-21 2019-02-26 珠海格力电器股份有限公司 Defrosting control method, device, storage medium and the heat pump unit of heat pump unit
JP2020071002A (en) * 2018-11-01 2020-05-07 株式会社長府製作所 Heat pump device
JP7474919B2 (en) 2020-03-26 2024-04-26 パナソニックIpマネジメント株式会社 Refrigeration Cycle Equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210554A (en) * 1987-02-25 1988-09-01 Daikin Ind Ltd Heat pump type hot water supplier
JP2006138578A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Air conditioner
JP4987444B2 (en) * 2006-11-24 2012-07-25 サンデン株式会社 Water heater
JP5125695B2 (en) * 2008-03-31 2013-01-23 ダイキン工業株式会社 Air conditioning system
JP2009287843A (en) * 2008-05-29 2009-12-10 Daikin Ind Ltd Outdoor unit and heat pump device
JP2010008003A (en) * 2008-06-30 2010-01-14 Hitachi Appliances Inc Air conditioner
JP4826643B2 (en) * 2009-03-19 2011-11-30 ダイキン工業株式会社 Air conditioner
JP5212330B2 (en) * 2009-10-13 2013-06-19 ダイキン工業株式会社 Air conditioner
JP2015068610A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Air conditioner
JP6313021B2 (en) * 2013-11-18 2018-04-18 東芝ライフスタイル株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2017075767A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
EP2873932B1 (en) Hot and cold water air conditioning system
US10168066B2 (en) Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
JP5802840B2 (en) Outdoor unit of multi-type air conditioner
JP5411777B2 (en) Hot water heater
WO2014102934A1 (en) Heat pump hot water heater
JP2015045479A (en) Hot-cold water air conditioning system
JP6330779B2 (en) Heat pump type heating device
WO2016059837A1 (en) Heat pump heating apparatus
JP6149912B2 (en) Heat pump type heating device
JP2013250004A (en) Hybrid air conditioning device
JP6749471B2 (en) Air conditioner
WO2015194038A1 (en) Heat pump heating system
US11739950B2 (en) Hot water supply apparatus
WO2018185938A1 (en) Heating medium circulation system
WO2017138133A1 (en) Hot water/cold water air-conditioning system
JP6332226B2 (en) Heat pump type heating device
KR101895175B1 (en) Heat source machine and heat source device
JP5455338B2 (en) Cooling tower and heat source system
JP6137016B2 (en) Heat pump water heater and control method of heat pump water heater
EP3026364B1 (en) Heat pump type heating and hot water supply apparatus
JP6359181B2 (en) Refrigeration cycle equipment
AU2020438844B2 (en) Heat pump heat source device and heat pump water heater
CN109073273B (en) Hot water supply system
JP6198796B2 (en) Heat pump type heating device
JP6840870B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151