JP6324915B2 - 帯域割当方法および通信装置 - Google Patents

帯域割当方法および通信装置 Download PDF

Info

Publication number
JP6324915B2
JP6324915B2 JP2015031358A JP2015031358A JP6324915B2 JP 6324915 B2 JP6324915 B2 JP 6324915B2 JP 2015031358 A JP2015031358 A JP 2015031358A JP 2015031358 A JP2015031358 A JP 2015031358A JP 6324915 B2 JP6324915 B2 JP 6324915B2
Authority
JP
Japan
Prior art keywords
bandwidth
connection establishment
communication
link
surplus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015031358A
Other languages
English (en)
Other versions
JP2016154280A (ja
Inventor
彩希 八田
彩希 八田
田中 伸幸
伸幸 田中
重松 智志
智志 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015031358A priority Critical patent/JP6324915B2/ja
Publication of JP2016154280A publication Critical patent/JP2016154280A/ja
Application granted granted Critical
Publication of JP6324915B2 publication Critical patent/JP6324915B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)

Description

本発明は、親局と複数の子局がポイント・マルチポイント接続されている通信システムにおいて、子局から親局へと出力する上りデータに対する帯域割当技術に関する。
親局と複数の子局とで構成する通信システムの1つにPON(Passive Optical Network)システムがある。本システムは、局舎に設置されるOLT(Optical Line Terminal:局側装置)を親局、各ユーザー宅に設置されるONU(Optical Network Unit:加入者側装置)を子局として通信を行う。
図11は、PONシステムの構成例である。図11において、PONシステムは、外部ネットワークNWと接続されたOLT、複数個のONU、OLTと各ONUを1:多に接続する光ファイバFおよび光スプリッタSPにより構成されている。
PONシステムでは、複数のONUから送信される上りフレームが、光スプリッタSPで束ねられてOLTに届く。そのため、上りフレームが衝突しないように、各ONUは、OLTと接続確立している1つまたは複数の接続確立リンクを介して、時分割多重方式でOLTへ上りフレームを送信する。
このような時分割多重方式では、OLTが各ONUに対して周期的に、各接続確立リンクに関する上りフレームの送信開始時刻と送信許可量をGATEフレームにより指示する。この指示の周期を帯域割当周期と呼ぶ。また、ONUはOLTに対し、自身のバッファに蓄積されている個々の接続確立リンクのデータ量を要求帯域として、REPORTフレームによりOLTへと伝える。これにより、OLTは各ONUの通信状況を知ることが可能であり、各ONUからの送信要求帯域を考慮して、各接続確立リンクの送信開始時刻と送信量を動的に決定することができる。一般に、このような送信許可量を動的に更新する帯域割当方式を、動的帯域割り当て(DBA:Dynamic Bandwidth Allocation)と呼ぶ。
従来から、PONシステムにおいて、OLTが複数のONUに対して上りデータの送信許可量を割り当てる動的帯域割り当てに関する技術が提案されている。例えば、非特許文献1の動的帯域割当アルゴリズムでは、ONUからOLTへの通知量を複数種類持つことにより、1接続確立リンクあたりの割当てロスを低減して高い帯域利用効率を実現している。また、帯域割当周期を固定値にし、各OLTに予め設定されている最低保証帯域に基づいて各OLTへの割当て帯域を算出することにより、高TCPスループットと最低帯域保証を実現している。
吉原ほか、「GE−PONに適した動的帯域制御割当アルゴリズム」、信学技報 TECHONICAL REPORT OF IEICE NS2002-17 (2002―04)、社団法人電子情報通信学会
しかしながら、このような従来技術では、帯域割当周期を各接続確立リンクに対して時分割で割り当てることになるが、帯域割当周期として固定値を用いているため、OLTと接続確立している通信リンクの数であるリンクアップ数の増大に応じて、各接続確立リンクに割り当て可能な帯域が小さくなり、各接続確立リンクに設定できる最低保証帯域も制限されるという問題点があった。
例えば、各接続確立リンクに設定できる最低保証帯域の上限値は、全ての接続確立リンクに与える最低保証帯域が同一とした場合、帯域割当周期に相当する帯域をリンクアップ数で等分した値となり、リンクアップ数の増加に伴って最低保証帯域の上限値は減少する。したがって、各接続確立リンクの最低保証帯域の上限値は、帯域割当周期とリンクアップ数とによって制限されることになる。特に、1OLTあたり1接続確立リンクとした場合、リンクアップ数の最大値は、PONシステムの光スプリッタSPでの経路分岐数と一致し、各接続確立リンクの最低保証帯域は最も小さくなるワーストケースとなる。
また、接続確立リンク数が極端に少ない場合には、帯域割当周期が固定値であるため、帯域割当周期のうちに、いずれの接続確立リンクに割り当てられていない余剰帯域が発生することになる。したがって、各ONUは余剰帯域を利用して上りフレームをOLTに送信できないため、次の帯域割当周期の到来を待って送信することになる。そのため、上りフレーム送信遅延が増加するという問題点があった。また、帯域割当周期全体が効率よく利用されないので、帯域利用効率が低くなるという問題点があった。
本発明はこのような課題を解決するためのものであり、各接続確立リンクの最低保証帯域をより柔軟に設定可能とし、かつ、高い帯域利用効率を得ることができる帯域割当技術を提供することを目的としている。
このような目的を達成するために、本発明にかかる帯域割当方法は、通信ネットワークを介して複数の下位装置を収容し、帯域割当周期に基づいて、これら下位装置ごとに設定されている1つまたは複数の通信リンクに対して、当該通信リンクを介した前記下位装置から自装置へのデータ送信に利用可能な通信帯域を算出し、これら通信帯域をそれぞれの通信リンクに対して動的に割り当てる通信装置が実行する帯域割当方法であって、前記通信リンクのうち装置と接続確立している接続確立リンクごとに予め設定されている最低保証帯域を合計し、得られた総最低保証帯域に応じた帯域割当周期を新たに設定する帯域割当周期設定ステップと、前記接続確立リンクごとに、当該接続確立リンクの最低保証帯域または当該接続確立リンクに対して要求されている要求帯域のうち、いずれか小さい値を当該接続確立リンクの通信帯域として取得し、これら通信帯域の総和である総通信帯域に基づいて前記帯域割当周期設定ステップで設定した前記帯域割当周期に含まれる余剰帯域を算出する余剰帯域算出ステップと、前記各接続確立リンクのうち、前記最低保証帯域が前記要求帯域に比べて不足している帯域不足リンクに対して、当該不足による未割当分を前記余剰帯域から充当する帯域充当ステップと、前記余剰帯域算出ステップおよび前記帯域充当ステップで特定された前記各通信帯域を、それぞれの接続確立リンクに対して新たに割り当てる帯域割当ステップとを備え、前記余剰帯域算出ステップでは、前記各接続確立リンクの要求帯域の総和からなる総要求帯域が前記総最低保証帯域より小さい場合、前記帯域割当周期を当該総要求帯域に応じた帯域割当周期に変更した後、当該帯域割当周期に含まれる前記余剰帯域を算出するようにしたものである。
また、本発明にかかる上記帯域割当方法の一構成例は、前記帯域充当ステップが、前記未割当分を充当する際、前記帯域不足リンクのうち優先度の高いものから順に、前記余剰帯域がなくなるまで、当該未割当分を当該余剰帯域から充当するようにしたものである。
また、本発明にかかる上記帯域割当方法の一構成例は、前記各接続確立リンクに対して、前記未割当分を前記余剰帯域から充当する順序の決定に用いる優先度を予め設定する優先度設定ステップをさらに備えるものである。
また、本発明にかかる通信装置は、通信ネットワークを介して複数の下位装置を収容し、帯域割当周期に基づいて、これら下位装置ごとに設定されている1つまたは複数の通信リンクに対して、当該通信リンクを介した前記下位装置から自装置へのデータ送信に利用可能な通信帯域を算出し、これら通信帯域をそれぞれの通信リンクに対して動的に割り当てる通信装置であって、前記通信リンクのうち装置と接続確立している接続確立リンクごとに予め設定されている最低保証帯域を合計し、得られた総最低保証帯域に応じた帯域割当周期を新たに設定する帯域割当周期設定部と、前記接続確立リンクごとに、当該接続確立リンクの最低保証帯域または当該接続確立リンクに対して要求されている要求帯域のうち、いずれか小さい値を当該接続確立リンクの通信帯域として取得し、これら通信帯域の総和である総通信帯域に基づいて前記帯域割当周期設定部で設定した前記帯域割当周期に含まれる余剰帯域を算出する余剰帯域算出部と、前記各接続確立リンクのうち、前記最低保証帯域が前記要求帯域に比べて不足している帯域不足リンクに対して、当該不足による未割当分を前記余剰帯域から充当する帯域充当部と、前記余剰帯域算出部および前記帯域充当部で特定された前記各通信帯域を、それぞれの接続確立リンクに対して新たに割り当てる帯域割当部とを備え、前記余剰帯域算出部は、前記各接続確立リンクの要求帯域の総和からなる総要求帯域が前記総最低保証帯域より小さい場合、前記帯域割当周期を当該総要求帯域に応じた帯域割当周期に変更した後、当該帯域割当周期に含まれる前記余剰帯域を算出するようにしたものである。
本発明によれば、通信装置の最大スループットを超えない範囲において、接続確立リンク数に左右されることなく、各接続確立リンクの最低保証帯域を柔軟に設定することが可能となるとともに、高い帯域利用効率を得ることが可能となる。
第1の実施の形態にかかる通信装置(OLT)の構成を示すブロック図である。 第1の実施の形態にかかる帯域割当動作を示す概略図である。 第1の実施の形態にかかる帯域割当周期設定処理を示すフローチャートである。 第1の実施の形態にかかる帯域割当処理を示すフローチャートである。 第2の実施の形態にかかる通信装置(OLT)の構成を示すブロック図である。 第2の実施の形態にかかる帯域割当動作を示す概略図である。 第2の実施の形態にかかる帯域割当周期設定処理を示すフローチャートである。 第2の実施の形態にかかる帯域割当処理を示すフローチャートである。 第3の実施の形態にかかる帯域割当動作を示す概略図である。 第3の実施の形態にかかる帯域割当処理を示すフローチャートである。 PONシステムの構成例である。
次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
まず、図1を参照して、本発明の第1の実施の形態にかかる通信装置(OLT)10について説明する。図1は、第1の実施の形態にかかる通信装置(OLT)の構成を示すブロック図である。
この通信装置10は、通信ネットワークを介して通信装置が複数の下位装置を収容する通信システムで用いられ、帯域割当周期に基づいて、これら下位装置ごとに設定されている1つまたは複数の通信リンクに対して、当該通信リンクを介した当該通信装置10へのデータ送信に利用可能な通信帯域を算出し、これら通信帯域をそれぞれの通信リンクに対して動的に割り当てる機能を有している。
通信装置10が用いられる通信システムとしては、前述の図11に示したPONシステムがある。図11において、PONシステムは、外部ネットワークNWと接続されたOLTと、複数個のONUと、OLTと各ONUを1:多に接続する光ファイバFおよび光スプリッタSPとにより構成されている。
本発明では、通信装置10がOLTとして用いられ、下位装置がONUとして用いられるPONシステムを例として説明するが、これに限定されるものではなく、通信ネットワークを介して通信装置が複数の下位装置を収容する通信システムであれば、いずれの通信システムの通信装置に本発明を適用することができる。例えば、データセンターにおける管理サーバーとして通信装置10を用い、各データサーバーとして下位装置を用いてもよい。また、構内LANシステムにおいて、各スイッチやユーザー端末として下位装置を用い、LANシステムを管理するサーバーとして通信装置10を用いてもよい。
本実施の形態は、通信リンクのうちOLT(通信装置)10と接続確立している接続確立リンクごとに、当該接続確立リンクに対して予め設定されている最低保証帯域または当該接続確立リンクに対して要求されている要求帯域のうち、いずれか小さい値を当該接続確立リンクの通信帯域として取得し、これら通信帯域の総和である総割当帯域に応じた帯域割当周期を新たに設定し、得られた各接続確立リンクの通信帯域を、それぞれの接続確立リンクに対して新たに割り当てるようにしたものである。
また、本発明では、PONシステムに代表されるように、各ONUに1つまたは複数の通信リンクが設定されており、これに通信リンクに対して個別の通信帯域を割り当てる場合を例として説明するが、各ONUに1つの通信リンクのみ設定されている場合についても、同様にして本発明を適用することができる。
次に、図1を参照して、本実施の形態にかかるOLT10の構成について説明する。
OLT10には、主な機能部として、受信回路11、送信回路12、送受信回路13、転送処理部14、および帯域管理部15が設けられている。なお、OLT10が用いられる通信システムとしては、前述した図11のPONシステムを例に説明する。
受信回路11は、一般的な光受信回路からなり、各ONUから光ファイバFおよび光スプリッタSPを介して送信された光信号を電気信号に変換し、電気信号から外部ネットワークNW宛ての各種フレームやOLT10宛ての制御用フレームなどの上りフレームを再生する機能を有している。
送信回路12は、一般的な光送信回路からなり、外部ネットワークNWから受信した各種フレームやOLT10からONUへの制御用フレームなどの下りフレームを光信号に変換し、光ファイバFおよび光スプリッタSPを介して各ONUへ送信する機能を有している。
送受信回路13は、一般的なデータ通信回路からなり、外部ネットワークNWとの間でデータフレームを送受信する機能を有している。
転送処理部14は、受信回路11で受信した外部ネットワークNW宛の上りフレームを送受信回路13へ転送する機能と、送受信回路13で受信したONU宛の下りフレームを送信回路12へ転送する機能とを有している。
帯域管理部15は、受信回路11で受信したONUからの制御フレームで通知された、当該ONUに設定されている通信リンクで利用したい上り通信帯域に関する要求帯域、および、これら通信リンクに対して予め設定されている最低保証帯域に基づいて、各通信リンクのうちOLT10との間で接続確立している接続確立リンクごとに、当該通信リンクで使用可能な通信帯域を算出して各通信リンクへ割り当てる機能と、これら通信帯域に基づき帯域割当を行う周期である帯域割当周期Tを新たに設定する機能とを有している。
帯域管理部15には、主な処理部として、帯域割当周期設定部15Aと帯域割当部15Bが設けられている。これら処理部については、記憶部(図示せず)に格納されているプログラムをCPUで実行することにより実現してもよく、プログラムは、通信回線を介して接続された外部装置や記録媒体から記憶部に予め格納しておけばよい。なお、これら処理部を論理回路で実現してもよい。
帯域割当周期設定部15Aは、通信リンクのうちOLT10と接続確立しているN(Nは2以上の整数)個の接続確立リンクごとに、当該接続確立リンクn(nは1〜Nの整数)に対して予め設定されている最低保証帯域Mnまたは当該接続確立リンクnに対して要求されている要求帯域Dnのうち、いずれか小さい値を当該接続確立リンクの通信帯域BWnとして取得する機能と、これら通信帯域BWnの総和である総通信帯域BWSに相当する帯域割当周期Tを新たに設定する機能とを有している。
実際に、接続確立リンクnに対してOLT10へのデータ送信に利用可能な通信帯域を割り当てる場合、割当値としては、通信帯域BWnではなく、通信帯域BWnに相当する送信許可量Gnが用いられ、これら送信許可量Gnの総和である総送信許可量GSが、総割当帯域BWSに応じた帯域割当周期Tとして設定される。
PONシステム設計者が任意で決定できる最大帯域割当周期をTmax[sec]とした場合、接続確立リンクnの送信許可量Gn[sec]は、次の式(1)に示すように、最大帯域割当周期Tmax[sec]を、全ての接続確立リンクにより使用可能な最大スループットRmax[bit/sec]と通信帯域BWn[bit/sec]の比に基づき按分することにより求められる。
Figure 0006324915
この際、要求帯域Dn[bit/sec]は、接続確立リンクnと対応するONUから制御(REPORT)フレームにより通知される帯域量であり、例えば、当該ONUに蓄積されている上りデータ量をもとに求められた値からなる。最低保証帯域Mn[bit/sec]は、接続確立リンクnと対応するONUからの要求やOLT10に対する設定指示に応じて、通信リンクごとにOLT10の内部メモリ(図示せず)に予め設定された、当該通信リンクでの使用が最低限保証されている帯域量である。
なお、実際には、各接続確立リンクを介してONUからOLT10へ上りフレームを送信する際、送信タイミングのずれなどへの対応を考慮してオーバーヘッド期間OHが設けられている。このため、オーバーヘッド期間OH[sec]を考慮する場合には、各接続確立リンクに対して実際に割当可能な割当可能帯域は、最大帯域割当周期Tmaxから各接続確立リンクN個分のオーバーヘッド期間OHを除いた帯域となり、この割当可能帯域を、最大スループットRmaxと通信帯域BWnの比に基づき按分すればよい。したがって、接続確立リンクnの送信許可量Gnは、次の式(2)により求められる。
Figure 0006324915
帯域割当部15Bは、帯域割当周期設定部15Aで算出した各接続確立リンクnの通信帯域BWnに基づいて、当該通信帯域BWnに相当する送信許可量Gnを算出する機能と、それぞれの接続確立リンクと対応するONUに対して、制御(GATE)フレームにより通知することにより、各接続確立リンクnにそれぞれの送信許可量Gnを割り当てる機能とを有している。この際、送信許可量Gnについては、前述した式(1)または式(2)に基づき算出すればよいが、帯域割当周期設定部15Aで算出した送信許可量Gnを流用してもよい。
[第1の実施の形態の動作]
次に、本実施の形態にかかるOLT10の帯域割当動作について説明する。
まず、図2を参照して、本実施の形態にかかるOLT10での帯域割当動作の概略について説明する。図2は、第1の実施の形態にかかる帯域割当動作を示す概略図である。
本実施の形態では、接続確立リンクnごとに、当該接続確立リンクnの要求帯域Dnと最低保証帯域Mnのうち、いずれか小さい値が通信帯域BWnとして取得され、帯域割当周期Tがこれら通信帯域BWnに相当する送信許可量Gnの合計からなる帯域割当周期に変更される。
図2では、時刻t1における接続確立リンク数N=12の場合の帯域割当例として、すべての接続確立リンク#1〜#12において、当該接続確立リンクn(n=1〜12の整数)の要求帯域Dnがその最低保証帯域Mnと等しい場合が示されている。この場合、各接続確立リンクnの送信許可量Gnとしてそれぞれの最低保証帯域Mn(=要求帯域Dn)が割り当てられることになり、帯域割当周期T1は、最低保証帯域Mnの総和に相当するものとなる。
時刻t1から帯域割当周期T1だけ経過した時刻t2において、再び帯域割り当てを行う際に、接続確立リンク#3〜#6,#11,#12の切断に伴って接続確立リンクが#1,#2,#7〜#10となってN=6に半減するとともに、接続確立リンク#1,#2の要求帯域Dnとして最低保証帯域Mnより小さい値が要求された場合が示されている。この場合、接続確立リンク#1,#2の送信許可量Gnはそれぞれの要求帯域Dnからなる通信帯域BWnに相当する値となり、接続確立リンク#7〜#10の送信許可量Gnはそれぞれの最低保証帯域Mnからなる通信帯域BWnに相当する値となる。
したがって、帯域割当周期T2は、接続確立リンクが#1,#2,#7〜#10に関する送信許可量Gnの総和となるとともに、接続確立リンク#1,#2の送信許可量Gnが最低保証帯域Mnより小さい要求帯域Dnに相当する値となるため、時刻t1における帯域割当周期T1より縮小される。
次に、図3および図4を参照して、本実施の形態にかかるOLT10での帯域割当動作の詳細について説明する。図3は、第1の実施の形態にかかる帯域割当周期設定処理を示すフローチャートである。図4は、第1の実施の形態にかかる帯域割当処理を示すフローチャートである。
帯域管理部15は、帯域割当周期Tが経過するごとに、図3の帯域割当周期設定処理を実行した後、図4の帯域割当処理を実行する。
まず、図3の帯域割当周期設定処理において、帯域割当周期設定部15Aは、受信回路11で受信した上りフレームを監視し、接続確立リンク数Nの変更有無を確認し(ステップ100)、Nが前回の帯域割当処理と比較して増減した場合(ステップ100:YES)、接続確立リンク数Nを更新した後(ステップ101)、更新後の各接続確立リンクに関する最低保証帯域MnをOLT10の内部メモリからそれぞれ取得し(ステップ102)、ステップ110のループ処理へ移行する。なお、Nが前回の帯域割当処理と比較して変化していない場合(ステップ100:NO)、帯域割当周期設定部15Aは、ステップ101,102を省いてステップ110のループ処理へ移行する。
一方、ステップ100〜102と並行または相前後して、帯域割当周期設定部15Aは、各接続確立リンクnに関する最低保証帯域Mnの変更有無を確認し(ステップ103)、いずれかの接続確立リンクnで最低保証帯域Mnが変更されている場合(ステップ103:YES)、変更された最低保証帯域Mnを取得してOLT10の内部メモリに保存し(ステップ104)、ステップ110へ移行する。なお、最低保証帯域Mnが変更されていない場合(ステップ103:NO)、帯域割当周期設定部15Aは、ステップ104を省いてステップ110のループ処理へ移行する。
この後、帯域割当周期設定部15Aは、接続確立リンクnを順次選択して送信許可量Gnを算出するためのループ処理を実行する(ステップ110〜113)。
このループ処理において、帯域割当周期設定部15Aは、まず選択した接続確立リンクnの最低保証帯域Mnと要求帯域Dnのうち、いずれか小さい値を通信帯域BWnとして取得し(ステップ111)、この通信帯域BWnに基づき前述した式(1)または式(2)を用いて送信許可量Gnを算出する(ステップ112)。
このループ処理により、すべての接続確立リンクnについて送信許可量Gnを算出した後(ステップ113)、帯域割当周期設定部15Aは、これら送信許可量Gnの総和を計算して新たな帯域割当周期Tとして設定し(ステップ114)、一連の帯域割当周期設定処理を終了する。これにより、新たな帯域割当周期Tが経過した後、再び帯域割当が実行される。
この後、帯域管理部15は、図4の帯域割当処理を実行する。
まず、帯域割当部15Bは、帯域割当周期設定部15Aで設定された帯域割当周期Tを割当値TSに設定した後(ステップ120)、接続確立リンクnを順次選択して送信許可量Gnを割り当てるためのループ処理を実行する(ステップ121〜124)。
このループ処理において、帯域割当部15Bは、まず選択した接続確立リンクnの通信帯域BWnに基づいて、通信帯域BWnに相当する送信許可量Gnを算出し(ステップ122)、得られた送信許可量Gnを割当値TSから減算する(ステップ123)。
このループ処理により、すべての接続確立リンクnについて送信許可量Gnを算出した後(ステップ124)、各接続確立リンクnにそれぞれの送信許可量Gnを割り当て(ステップ123)、一連の帯域割当処理を終了する。これにより、処理後の割当値TSが余剰帯域となるが、本実施の形態では、送信許可量Gnの総和が帯域割当周期Tすなわち割当値TSであるため、余剰帯域は発生しない。
[第1の実施の形態の効果]
このように、本実施の形態は、帯域割当周期設定部15Aが、通信リンクのうちOLT(通信装置)10と接続確立している接続確立リンクnごとに、当該接続確立リンクnに対して予め設定されている最低保証帯域Mnまたは当該接続確立リンクnに対して要求されている要求帯域Dnのうち、いずれか小さい値を当該接続確立リンクnの通信帯域BWnとして取得し、これら通信帯域BWnの総和である総割当帯域BWSに応じた帯域割当周期Tを新たに設定し、帯域割当部15Bが、得られた各接続確立リンクの通信帯域BWnを、それぞれの接続確立リンクに対して新たに割り当てるようにしたものである。
これにより、接続確立リンク数Nおよび各接続確立リンクnの最低保証帯域Mn、さらには各接続確立リンクnの要求帯域Dnに応じて、帯域割当周期Tが変更されることになる。したがって、OLT10の最大スループットRmaxを超えない範囲において、接続確立リンク数Nに左右されることなく、各接続確立リンクnの最低保証帯域Mnを柔軟に設定することができる。このため、接続確立リンクnごとに、異なる最低保証帯域Mnを設定でき、1つの通信システム(PONシステム)で様々なサービスを提供することが可能となる。
また、接続確立リンクnの要求帯域Dnが最低保証帯域Mnより小さい場合には、通信帯域BWnとして最低保証帯域Mnではなく要求帯域Dnが用いられる。このため、要求帯域Dnが最低保証帯域Mnより小さいにもかかわらず、要求帯域Dnより大きい最低保証帯域Mnを固定的に用いた場合に発生する余剰分を削減することができ、帯域割当周期Tは、余剰帯域が含まれないよう最適調整されることになる。したがって、帯域割当周期T全体が効率よく利用されることになり、高い帯域利用効率を得ることが可能となる。
なお、本実施の形態では、図3において、通信帯域BWnの取得および送信許可量Gnの算出を、接続確立リンクnの若番から順に処理する場合を例として示したが、これら処理順序はこれに限定されるものではない。例えば、老番から順に処理してもよいし、並列的に処理してもよく、実装方法に依存する。
また、本実施の形態では、図4において、送信許可量Gnの算出および減算を接続確立リンクnの若番から順に処理する場合を例として示したが、処理順序はこれに限定されるものではない。例えば、老番から順に処理してもよいし、ランダムな順序で処理を行ってもよく、実装方法に依存する。
また、本実施の形態では、帯域割当周期Tを算出する際、最低保証帯域Mnと要求帯域Dnの次元が同一である場合を前提として説明したが、これらの次元は必ずしも統一されていなくともよい。統一されていない場合は、各データ取得後、例えば最大スループットの次元に合わせて変換した後、帯域割当周期Tを算出すればよい。
[第2の実施の形態]
次に、図5を参照して、本発明の第2の実施の形態にかかる通信装置(OLT)10について説明する。図5は、第2の実施の形態にかかる通信装置(OLT)の構成を示すブロック図である。
第1の実施の形態で、1回の帯域割当周期Tにおいて全接続確立リンクnへ割当てられる通信帯域BWnを、最大でも最低保証帯域Mnとした場合について説明した。本実施の形態では、接続確立リンクnのうち要求帯域Dnが最低保証帯域Mn以上の帯域不足リンクに対して、要求帯域Dnが最低保証帯域Mnより少ない接続確立リンクnの余剰帯域Qを充当する場合について説明する。
本実施の形態において、OLT10の帯域管理部15には、主な処理部として、帯域割当周期設定部15A、帯域割当部15B、余剰帯域算出部15C、および帯域充当部15Dが設けられている。これら処理部については、記憶部(図示せず)に格納されているプログラムをCPUで実行することにより実現してもよく、プログラムは、通信回線を介して接続された外部装置や記録媒体から記憶部に予め格納しておけばよい。なお、これら処理部を論理回路で実現してもよい。本実施の形態にかかるOLT10に関する他の構成については、第1の実施の形態と同様である。
帯域割当周期設定部15Aは、通信リンクのうちOLT10と接続確立しているN(Nは2以上の整数)個の接続確立リンクごとに、当該接続確立リンクn(nは1〜Nの整数)に対して予め設定されている最低保証帯域Mnを当該接続確立リンクnの通信帯域BWnとして取得する機能と、これら通信帯域BWnの総和である総割当帯域BWSに応じた帯域割当周期Tを新たに設定する機能とを有している。
この際、要求帯域Dnや最低保証帯域Mnは、第1の実施の形態と同様にして取得すればよい。また、送信許可量Gnは、第1の実施の形態と同様に前述の式(1)や式(2)を用いて、通信帯域BWnをもとに算出すればよい。さらに、余剰帯域Qの算出過程や充当過程においても、これら式(1)または式(2)を用いて通信帯域BWnや未割当分Ln(=Dn−Mn)に相当する送信許可量を算出すればよい。
なお、第1の実施の形態では、BWnとしてMnとDnのいずれか小さい値を取得したが、本実施の形態では、余剰帯域Qを算出するため、BWnとしてMnを取得している。
余剰帯域算出部15Cは、接続確立リンクnごとに、当該接続確立リンクnの最低保証帯域Mnまたは当該接続確立リンクnに対して要求されている要求帯域Dnのうち、いずれか小さい値を当該接続確立リンクnの通信帯域BWnとして取得する機能と、これら通信帯域BWnの総和である総通信帯域BWSに基づいて帯域割当周期設定部15Aで設定した帯域割当周期Tに含まれる余剰帯域Qを算出する機能を有している。
この際、余剰帯域Qの具体的な算出過程については、接続確立リンクnごとに、最低保証帯域Mnと要求帯域Dnとを比較して得た余剰分を総計してもよいが、帯域割当周期設定部15Aで変更された帯域割当周期Tから、接続確立リンクnごとに、当該接続確立リンクnの要求帯域Dnまたは最低保証帯域Mnのうち、いずれか小さい値からなる通信帯域BWnに相当する送信許可量Gnを減算することにより、当該帯域割当周期Tに含まれる余剰帯域Qを算出してもよい。
帯域充当部15Dは、例えばシステム設計者による外部装置からの指示やOLT10に対する操作に基づいて、各接続確立リンクnに対して余剰帯域Qを充当する順序の決定に用いる優先度をOLT10の内部メモリに予め設定する機能と、各接続確立リンクnのうち、最低保証帯域Mnが要求帯域Dnに比べて不足している帯域不足リンクの通信帯域BWnに対して、当該不足による未割当分Ln(=Dn−Gn)を余剰帯域Qから充当する機能と、未割当分Lnを充当する際、帯域不足リンクのうちOLT10の内部メモリに設定されている優先度の高いものから順に、余剰帯域Qがなくなるまで、未割当分Lnを余剰帯域Qから充当する機能とを有している。
帯域割当部15Bは、余剰帯域算出部15Cおよび帯域充当部15Dで特定された各接続確立リンクnの通信帯域BWnに基づいて、当該通信帯域BWnに相当する送信許可量Gnを算出する機能と、それぞれの接続確立リンクと対応するONUに対して、制御(GATE)フレームにより通知することにより、各接続確立リンクnにそれぞれの送信許可量Gnを割り当てる機能とを有している。
これにより、各接続確立リンクnのうち、Gn≧Dnの接続確立リンクnに対しては帯域割当周期設定部15Aで算出された通信帯域BWnに相当する送信許可量Gnが割り当てられ、優先度の高い帯域不足リンクnに対しては帯域充当部15Dで未割当分Lnが充当された通信帯域BWnに相当する送信許可量Gnが割り当てられる。なお、余剰帯域Qが足らずに充当されなかった優先度の低い帯域不足リンクnに対しては、Gn≧Dnの接続確立リンクnと同様に、帯域割当周期設定部15Aで算出された通信帯域BWnに相当する送信許可量Gnが割り当てられることになる。
[第2の実施の形態の動作]
次に、本実施の形態にかかるOLT10の帯域割当動作について説明する。
まず、図6を参照して、本実施の形態にかかるOLT10での帯域割当動作の概略について説明する。図6は、第2の実施の形態にかかる帯域割当動作を示す概略図である。
本実施の形態では、接続確立リンクnごとに、当該接続確立リンクnの最低保証帯域Mnが通信帯域BWnの初期値として設定され、帯域割当周期Tがこれら通信帯域BWnの総和である総通信帯域BWSに相当する帯域割当周期に変更される。
次に、接続確立リンクnごとに、最低保証帯域Mnのうち要求帯域Dnと比較して余剰している余剰分Qnが余剰帯域Qとして集計される。例えば、図6の例では、接続確立リンク#2,#4,#6においてMn>Dnであり、余剰分Qn(=Mn−Dn)がMnに含まれているため、これら余剰分Qnに相当する送信許可量が余剰帯域Qとして集計される。
この後、接続確立リンクnのうち、最低保証帯域Mnが要求帯域Dnに比べて不足している帯域不足リンクnに対して、その不足による未割当分Ln(=Dn−Mn)に相当する送信許可量が余剰帯域Qから送信許可量Gnに充当される。例えば、図6の例では、接続確立リンク#1,#3,#7においてMn<Dnであり、要求帯域Dnに比べて最低保証帯域Mnが不足しているため、未割当分Lnが余剰帯域Qから充当される。
この際、これら未割当分Lnの合計が余剰帯域Qより大きく、すべての未割当分Lnについて余剰帯域Qから充当できない場合も考えられる。このため、充当する順序として、OLT10の内部メモリに設定されている各帯域不足リンクnの優先度を参照し、各帯域不足リンクnに予め設定されている優先度の順に、余剰帯域Qがゼロとなるまで充当される。
次に、図7および図8を参照して、本実施の形態にかかるOLT10での帯域割当動作の詳細について説明する。図7は、第2の実施の形態にかかる帯域割当周期設定処理を示すフローチャートである。図8は、第2の実施の形態にかかる帯域割当処理を示すフローチャートである。
帯域管理部15は、帯域割当周期Tが経過するごとに、図7の帯域割当周期設定処理を実行した後、図8の帯域割当処理を実行する。
まず、図7の帯域割当周期設定処理において、帯域割当周期設定部15Aは、受信回路11で受信した上りフレームを監視し、接続確立リンク数Nの変更有無を確認し(ステップ200)、Nが前回の帯域割当処理と比較して増減した場合(ステップ200:YES)、接続確立リンク数Nを更新した後(ステップ201)、更新後の各接続確立リンクに関する最低保証帯域MnをOLT10の内部メモリからそれぞれ取得し(ステップ202)、ステップ210のループ処理へ移行する。なお、Nが前回の帯域割当処理と比較して変化していない場合(ステップ200:NO)、帯域割当周期設定部15Aは、ステップ201,202を省いてステップ210のループ処理へ移行する。
一方、ステップ200〜202と並行または相前後して、帯域割当周期設定部15Aは、各接続確立リンクnに関する最低保証帯域Mnの変更有無を確認し(ステップ203)、いずれかの接続確立リンクnで最低保証帯域Mnが変更されている場合(ステップ203:YES)、変更された最低保証帯域Mnを取得してOLT10の内部メモリに保存し(ステップ204)、ステップ210へ移行する。なお、最低保証帯域Mnが変更されていない場合(ステップ203:NO)、帯域割当周期設定部15Aは、ステップ204を省いてステップ210のループ処理へ移行する。
この後、帯域割当周期設定部15Aは、接続確立リンクnを順次選択して送信許可量Gnを算出するためのループ処理を実行する(ステップ210〜213)。
このループ処理において、帯域割当周期設定部15Aは、まず選択した接続確立リンクnの最低保証帯域Mnを通信帯域BWnとして取得し(ステップ211)、前述した式(1)または式(2)を用いて、この通信帯域BWnに相当する送信許可量Gnを算出する(ステップ212)。
このループ処理により、すべての接続確立リンクnについて送信許可量Gnを算出した後(ステップ213)、帯域割当周期設定部15Aは、これら送信許可量Gnの総和を計算して新たな帯域割当周期Tとして設定し(ステップ214)、一連の帯域割当周期設定処理を終了する。これにより、新たな帯域割当周期Tが経過した後、再び帯域割当が実行される。
この後、帯域管理部15は、図8の帯域割当処理を実行する。
まず、余剰帯域算出部15Cは、各接続確立リンクnのうち、要求帯域Dnが最低保証帯域Mnより小さい接続確立リンクnが存在するか確認し(ステップ220)、存在しない場合(ステップ220:NO)、ステップ240へ移行して、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後、図8の帯域割当処理を終了する。これにより、各接続確立リンクnには、帯域割当周期設定部15Aで算出した通信帯域BWn、すなわち最低保証帯域Mnに相当する送信許可量Gnが割り当てられることになる。
一方、要求帯域Dnが最低保証帯域Mnより小さい接続確立リンクnが存在する場合(ステップ220:YES)、余剰帯域算出部15Cは、余剰帯域Qの初期値として帯域割当周期Tを設定し(ステップ221)、接続確立リンクnを順次選択して余剰帯域Qを算出するためのループ処理を実行する(ステップ222〜225)。
このループ処理において、余剰帯域算出部15Cは、選択した接続確立リンクnの最低保証帯域Mnと要求帯域Dnのうち、いずれか小さい値を通信帯域BWnとして取得し(ステップ223)、前述した式(1)または式(2)を用いて、この通信帯域BWnに相当する送信許可量Gnを算出し、余剰帯域Qから減算することにより、当該接続確立リンクnの余剰分Qnを集計する(ステップ224)。
このループ処理により、余剰帯域Qを算出した後(ステップ225)、帯域充当部15Dは、余剰帯域Qがゼロより大きいか確認し(ステップ230)、余剰帯域Qがゼロで充当が不可能な場合(ステップ230:NO)、ステップ240へ移行して、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後、図8の帯域割当処理を終了する。これにより、各接続確立リンクnには、余剰帯域算出部15Cで算出した通信帯域BWn、すなわち最低保証帯域Mnに相当する送信許可量Gnが割り当てられることになる。
一方、余剰帯域Qがゼロより大きく充当が可能な場合(ステップ230:YES)、帯域充当部15Dは、要求帯域Dnが最低保証帯域Mnに比べて不足している帯域不足リンクnに対して余剰帯域Qから充当するため、OLT10の内部メモリに設定されている各帯域不足リンクnの優先度を参照し、帯域不足リンクnをそれぞれの優先度にしたがって順次選択してループ処理を実行する(ステップ231〜235)。
なお、同一優先度を持つ複数の帯域不足リンクnが存在する場合には、例えばラウンドロビンアルゴリズムなどを用いて、同一優先度の帯域不足リンクnのうちから、順序を変えながら選択すればよい。この際、同一優先度の帯域不足リンクnのうちから、未割当分Ln(=Dn−Mn)の大きい帯域不足リンクnから順に選択し、あるいは、前回の周期までにMnを超えるDnを要求した回数が多い順に選択するようにしてもよい。
このループ処理において、帯域充当部15Dは、未割当分Ln(=Dn−Mn)を余剰帯域Qから減算するとともに(ステップ232)、前述した式(1)または式(2)を用いて、未割当分Lnに相当する送信許可量を算出して送信許可量Gnに充当し(ステップ233)、残りの余剰帯域Qがゼロより大きいか確認する(ステップ234)。
ここで、余剰帯域Qがゼロより大きい場合には(ステップ234:YES)、ステップ234へ移行して、ループ処理を継続する。
一方、余剰帯域Qがゼロで充当が不可能な場合(ステップ234:NO)、ループ処理を中断してステップ240へ移行し、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後、図8の帯域割当処理を終了する。
これにより、各接続確立リンクnのうち、Mn≧Dnの接続確立リンクnに対しては余剰帯域算出部15Cで算出された送信許可量Gnが割り当てられ、Mn<Dnの帯域不足リンクnに対しては、それぞれの優先度に応じた順序で帯域充当部15Dにより未割当分Lnが充当された送信許可量Gnが割り当てられる。
このループ処理により、余剰帯域Qの充当が完了した場合は(ステップ235)、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後、図8の帯域割当処理を終了する。
これにより、各接続確立リンクnのうち、Mn≧Dnの接続確立リンクnに対しては余剰帯域算出部15Cで算出された送信許可量Gnが割り当てられ、Mn<Dnの帯域不足リンクnに対しては、それぞれの優先度に応じた順序で帯域充当部15Dにより未割当分Lnが充当された送信許可量Gnが割り当てられる。
[第2の実施の形態の効果]
このように、本実施の形態は、帯域割当周期設定部15Aが、通信リンクのうちOLT10と接続確立している接続確立リンクnごとに予め設定されている最低保証帯域Mnを合計し、得られた総最低保証帯域に応じた帯域割当周期を新たに設定し、余剰帯域算出部15Cが、接続確立リンクnごとに、当該接続確立リンクnの最低保証帯域Mnまたは当該接続確立リンクnに対して要求されている要求帯域Dnのうち、いずれか小さい値を当該接続確立リンクの通信帯域BWnとして取得し、これら通信帯域BWnの総和である総通信帯域BWSに基づいて帯域割当周期設定部15Aで設定した帯域割当周期Tに含まれる余剰帯域Qを算出し、帯域充当部15Dが、各接続確立リンクnのうち、最低保証帯域Mnが要求帯域Dnに比べて不足している帯域不足リンクnに対して、当該不足による未割当分Lnを余剰帯域Qから充当し、帯域割当部15Bが、余剰帯域算出部15Cおよび帯域充当部15Dで特定された各接続確立リンクnの通信帯域BWnを、それぞれの接続確立リンクに対して新たに割り当てるようにしたものである。
これにより、接続確立リンク数Nおよび各接続確立リンクnの最低保証帯域Mnに応じて、帯域割当周期Tが変更されることになる。したがって、OLT10の最大スループットRmaxを超えない範囲において、接続確立リンク数Nに左右されることなく、各接続確立リンクnの最低保証帯域Mnを柔軟に設定することが可能となる。
また、本実施の形態は、接続確立リンクnのうち要求帯域Dnが最低保証帯域Mn以上の帯域不足リンクnを選択して、要求帯域Dnが最低保証帯域Mnより少ない接続確立リンクnの余剰帯域Qを充当している。したがって、高い帯域利用効率を維持しながら、最低保証帯域Mn以上の要求帯域Dnを有する帯域不足リンクnに対しても、可能な限り帯域を割当てることができ、結果としてより良い通信品質を提供することが可能となる。
また、これにより、通信帯域BWnが不足している帯域不足リンクnに対して、適切に余剰帯域Qが充当されるため、例えば通信帯域BWnが不足していない接続確立リンクnを含むすべての接続確立リンクnに対して余剰帯域Qを一律あるいは比例配分で充当する場合と比較して、極めて効果的に余剰帯域Qを活用することができる。
また、本実施の形態では、帯域充当部15Dが、未割当分Lnを充当する際、帯域不足リンクnのうち優先度の高いものから順に、余剰帯域Qがなくなるまで、当該未割当分Lnを当該余剰帯域Qから充当するようにしたので、接続確立リンク数N、さらには各接続確立リンクnの通信帯域BWn、要求帯域Dn,最低保証帯域Mnに左右されることなく、最低保証帯域Mnが小さい接続確立リンクnであっても、十分な余剰帯域Qを充当することが可能となる。したがって、LAN(Local Area Network)で用いられているような、予め設定された優先度に基づきトラヒックを制御するスイッチなどと同様の優先制御を、PONシステムなどの光通信システムでも提供することが可能となる。
なお、帯域不足リンクnに対して余剰帯域Qを充当する方法としては、接続確立リンクnの優先度に応じた順序ではなく、余剰帯域Qを帯域不足リンク数で除算した帯域分を各帯域不足リンクnに対して均等に充当してもよい。あるいは、未割当分Lnの小さい接続確立リンクnから順番に余剰帯域Qを充当してもよい。これら充当方法については、通信システム(PONシステム)に要請されるサービスに応じて、任意の充当方法を適時選択すればよい。
なお、本実施の形態では、図7において、通信帯域BWnの取得および送信許可量Gnの算出を、接続確立リンクnの若番から順に処理する場合を例として示したが、これら処理順序はこれに限定されるものではない。例えば、老番から順に処理してもよいし、並列的に処理してもよく、実装方法に依存する。
また、本実施の形態では、図8において、通信帯域BWnの取得および送信許可量Gnの減算を接続確立リンクnの若番から順に処理する場合を例として示したが、処理順序はこれに限定されるものではない。例えば、老番から順に処理してもよいし、ランダムな順序で処理を行ってもよく、実装方法に依存する。
また、本実施の形態では、帯域割当周期Tを算出する際、最低保証帯域Mnと要求帯域Dnの次元が同一である場合を前提として説明したが、これらの次元は必ずしも統一されていなくともよい。統一されていない場合は、各データ取得後、例えば最大スループットの次元に合わせて変換した後、帯域割当周期Tを算出すればよい。
[第3の実施の形態]
次に、本発明の第3の実施の形態にかかる通信装置(OLT)10について説明する。
第2の実施の形態では、帯域割当周期Tが各接続確立リンクnの最低保証帯域Mnの合計である総最低保証帯域に応じた固定値である場合を例として説明した。本実施の形態では、第2の実施の形態において、帯域割当周期Tを各接続確立リンクnの最低保証帯域Mnおよび要求帯域Dnに応じて変更するようにした場合を例として説明する。
本実施の形態において、余剰帯域算出部15Cは、各接続確立リンクnの要求帯域Dnの総和からなる総要求帯域DSが、各接続確立リンクnの最低保証帯域Mnの総最低保証帯域MSより小さい場合、帯域割当周期Tを小さいほうの総要求帯域DSに応じた帯域割当周期に変更した後、当該帯域割当周期Tに含まれる余剰帯域Qを算出する機能を有している。
なお、本実施の形態にかかるOLT10に関する他の構成については、第2の実施の形態と同様である。
[第3の実施の形態の動作]
次に、本実施の形態にかかるOLT10の帯域割当動作について説明する。
まず、図9を参照して、本実施の形態にかかるOLT10での帯域割当動作の概略について説明する。図9は、第3の実施の形態にかかる帯域割当動作を示す概略図である。
本実施の形態では、接続確立リンクnごとに、当該接続確立リンクnの最低保証帯域Mnが通信帯域BWnの初期値として設定され、帯域割当周期Tがこれら通信帯域BWnの総和である総通信帯域BWSに相当する帯域割当周期に設定される。
この際、要求帯域Dnの総和である総要求帯域DSが、最低保証帯域Mnの総和である総最低保証帯域MSより小さい場合、帯域割当周期Tが小さいほうの総要求帯域DSに相当する帯域割当周期に変更される。
次に、接続確立リンクnごとに、最低保証帯域Mnのうち要求帯域Dnと比較して余剰している余剰分Qnが余剰帯域Qとして集計される。例えば、図9の例では、接続確立リンク#2,#4,#6においてMn>Dnであり、余剰分Qn(=Mn−Dn)がMnに含まれているため、これら余剰分Qnに相当する送信許可量が余剰帯域Qとして集計される。
この後、接続確立リンクnのうち、最低保証帯域Mnが要求帯域Dnに比べて不足している帯域不足リンクnに対して、その不足による未割当分Ln(=Dn−Mn)に相当する送信許可量が余剰帯域Qから送信許可量Gnに充当される。例えば、図9の例では、接続確立リンク#1においてMn<Dnであり、要求帯域Dnに比べて最低保証帯域Mnが不足しているため、未割当分Lnが余剰帯域Qから充当される。
この際、これら未割当分Lnの合計が余剰帯域Qより大きく、すべての未割当分Lnについて余剰帯域Qから充当できない場合も考えられる。このため、充当する順序として、OLT10の内部メモリに設定されている各帯域不足リンクnの優先度を参照し、帯域不足リンクnに予め設定されている優先度の順に、余剰帯域Qがゼロとなるまで充当される。
次に、図10を参照して、本実施の形態にかかるOLT10での帯域割当周期設定処理について説明する。図10は、第3の実施の形態にかかる帯域割当処理を示すフローチャートである。なお、本実施の形態にかかる帯域割当周期設定処理については、第2の実施の形態と同様である。
まず、余剰帯域算出部15Cは、各接続確立リンクnのうち、要求帯域Dnが最低保証帯域Mnより小さい接続確立リンクnが存在するか確認し(ステップ300)、存在しない場合(ステップ300:NO)、ステップ320へ移行して、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後、図10の帯域割当処理を終了する。これにより、各接続確立リンクnには、帯域割当周期設定部15Aで算出した通信帯域BWn、すなわち最低保証帯域Mnに相当する送信許可量Gnが割り当てられることになる。
一方、要求帯域Dnが最低保証帯域Mnより小さい接続確立リンクnが存在する場合(ステップ300:YES)、余剰帯域算出部15Cは、総要求帯域DSが総最低保証帯域MSより小さいか確認し(ステップ301)、総要求帯域DSが総最低保証帯域MSより小さい場合には(ステップ301:YES)、帯域割当周期Tを小さいほうの総要求帯域DSに相当する帯域割当周期に変更し(ステップ302)、ステップ303へ移行する。一方、総要求帯域DSが総最低保証帯域MS以上の場合には(ステップ301:NO)、ステップ302を省いてステップ303へ移行する。
この後、余剰帯域算出部15Cは、余剰帯域Qの初期値として帯域割当周期Tを設定し(ステップ303)、接続確立リンクnを順次選択して余剰帯域Qを算出するためのループ処理を実行する(ステップ304〜307)。
このループ処理において、余剰帯域算出部15Cは、選択した接続確立リンクnの最低保証帯域Mnと要求帯域Dnのうち、いずれか小さい値を通信帯域BWnとして取得し(ステップ305)、この通信帯域BWnに相当する送信許可量Gnを余剰帯域Qから減算することにより、当該接続確立リンクnの余剰分Qnを集計する(ステップ306)。
このループ処理により、余剰帯域Qを算出した後(ステップ307)、帯域充当部15Dは、余剰帯域Qがゼロより大きいか確認する(ステップ310)。
ここで、余剰帯域Qがゼロで充当が不可能な場合(ステップ310:NO)、ステップ320へ移行して、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後、図8の帯域割当処理を終了する。これにより、各接続確立リンクnには、余剰帯域算出部15Cで算出した通信帯域BWn、すなわち最低保証帯域Mnまたは要求帯域Dnのいずれか小さい値に相当する送信許可量Gnが割り当てられることになる。
一方、余剰帯域Qがゼロより大きく充当が可能な場合(ステップ310:YES)、帯域充当部15Dは、要求帯域Dnが最低保証帯域Mnに比べて不足している帯域不足リンクnに対して余剰帯域Qから充当するため、前述した図8のステップ231〜234に示した帯域充当処理を実行し(ステップ311)、帯域割当部15Bにより、前述した図4の帯域割当処理を実行した後(ステップ320)、図8の帯域割当処理を終了する。
これにより、各接続確立リンクnのうち、Mn≧Dnの接続確立リンクnに対しては余剰帯域算出部15Cで算出された送信許可量Gnが割り当てられ、Mn<Dnの帯域不足リンクnに対しては、それぞれの優先度に応じた順序で帯域充当部15Dにより未割当分Lnが充当された送信許可量Gnが割り当てられる。
[第3の実施の形態の効果]
このように、本実施の形態は、帯域割当周期設定部15Aが、各接続確立リンクnの要求帯域Dnの総和からなる総要求帯域DSが総最低保証帯域MSより小さい場合、帯域割当周期Tを当該総要求帯域DSに応じた帯域割当周期に変更した後、当該帯域割当周期Tに含まれる余剰帯域Qを算出するようにしたものである。
これにより、総要求帯域DSが総最低保証帯域MSより小さく、余剰帯域Qがすべて未割当分Lnに充当されない場合には、帯域割当周期Tが総要求帯域DSに相当する周期まで削減されることになる。したがって、第2の実施の形態のような、帯域割当周期Tが各接続確立リンクnの最低保証帯域Mnの合計である総最低保証帯域MSに応じた固定値である場合と比較して、帯域割当周期Tに発生する余剰帯域を削除することができ、高い帯域利用効率を得ることが可能となる。
[実施の形態の拡張]
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
10…通信装置(OLT)、11…受信回路、12…送信回路、13…送受信回路、14…転送処理部、15…帯域管理部、15A…帯域割当周期設定部、15B…帯域割当部、15C…余剰帯域算出部、15D…帯域充当部、T…帯域割当周期、Mn…最低保証帯域、MS…総最低保証帯域、Dn…要求帯域、DS…総要求帯域、BWn…通信帯域、BWS…総割当帯域、Gn…送信許可量、GS…総送信許可量、Q…余剰帯域、Qn…余剰分、Ln…未割当分、Tmax…最大帯域割当周期、Rmax…最大スループット、OH…オーバーヘッド期間。

Claims (4)

  1. 通信ネットワークを介して複数の下位装置を収容し、帯域割当周期に基づいて、これら下位装置ごとに設定されている1つまたは複数の通信リンクに対して、当該通信リンクを介した前記下位装置から自装置へのデータ送信に利用可能な通信帯域を算出し、これら通信帯域をそれぞれの通信リンクに対して動的に割り当てる通信装置が実行する帯域割当方法であって、
    前記通信リンクのうち装置と接続確立している接続確立リンクごとに予め設定されている最低保証帯域を合計し、得られた総最低保証帯域に応じた帯域割当周期を新たに設定する帯域割当周期設定ステップと、
    前記接続確立リンクごとに、当該接続確立リンクの最低保証帯域または当該接続確立リンクに対して要求されている要求帯域のうち、いずれか小さい値を当該接続確立リンクの通信帯域として取得し、これら通信帯域の総和である総通信帯域に基づいて前記帯域割当周期設定ステップで設定した前記帯域割当周期に含まれる余剰帯域を算出する余剰帯域算出ステップと、
    前記各接続確立リンクのうち、前記最低保証帯域が前記要求帯域に比べて不足している帯域不足リンクに対して、当該不足による未割当分を前記余剰帯域から充当する帯域充当ステップと、
    前記余剰帯域算出ステップおよび前記帯域充当ステップで特定された前記各通信帯域を、それぞれの接続確立リンクに対して新たに割り当てる帯域割当ステップとを備え
    前記余剰帯域算出ステップでは、前記各接続確立リンクの要求帯域の総和からなる総要求帯域が前記総最低保証帯域より小さい場合、前記帯域割当周期を当該総要求帯域に応じた帯域割当周期に変更した後、当該帯域割当周期に含まれる前記余剰帯域を算出する
    ことを特徴とする帯域割当方法。
  2. 請求項に記載の帯域割当方法において、
    前記帯域充当ステップは、前記未割当分を充当する際、前記帯域不足リンクのうち優先度の高いものから順に、前記余剰帯域がなくなるまで、当該未割当分を当該余剰帯域から充当することを特徴とする帯域割当方法。
  3. 請求項1または請求項2に記載の帯域割当方法において、
    前記各接続確立リンクに対して、前記未割当分を前記余剰帯域から充当する順序の決定に用いる優先度を予め設定する優先度設定ステップをさらに備えることを特徴とする帯域割当方法。
  4. 通信ネットワークを介して複数の下位装置を収容し、帯域割当周期に基づいて、これら下位装置ごとに設定されている1つまたは複数の通信リンクに対して、当該通信リンクを介した前記下位装置から自装置へのデータ送信に利用可能な通信帯域を算出し、これら通信帯域をそれぞれの通信リンクに対して動的に割り当てる通信装置であって、
    前記通信リンクのうち装置と接続確立している接続確立リンクごとに予め設定されている最低保証帯域を合計し、得られた総最低保証帯域に応じた帯域割当周期を新たに設定する帯域割当周期設定部と、
    前記接続確立リンクごとに、当該接続確立リンクの最低保証帯域または当該接続確立リンクに対して要求されている要求帯域のうち、いずれか小さい値を当該接続確立リンクの通信帯域として取得し、これら通信帯域の総和である総通信帯域に基づいて前記帯域割当周期設定部で設定した前記帯域割当周期に含まれる余剰帯域を算出する余剰帯域算出部と、
    前記各接続確立リンクのうち、前記最低保証帯域が前記要求帯域に比べて不足している帯域不足リンクに対して、当該不足による未割当分を前記余剰帯域から充当する帯域充当部と、
    前記余剰帯域算出部および前記帯域充当部で特定された前記各通信帯域を、それぞれの接続確立リンクに対して新たに割り当てる帯域割当部とを備え
    前記余剰帯域算出部は、前記各接続確立リンクの要求帯域の総和からなる総要求帯域が前記総最低保証帯域より小さい場合、前記帯域割当周期を当該総要求帯域に応じた帯域割当周期に変更した後、当該帯域割当周期に含まれる前記余剰帯域を算出する
    ことを特徴とする通信装置。
JP2015031358A 2015-02-20 2015-02-20 帯域割当方法および通信装置 Active JP6324915B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015031358A JP6324915B2 (ja) 2015-02-20 2015-02-20 帯域割当方法および通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015031358A JP6324915B2 (ja) 2015-02-20 2015-02-20 帯域割当方法および通信装置

Publications (2)

Publication Number Publication Date
JP2016154280A JP2016154280A (ja) 2016-08-25
JP6324915B2 true JP6324915B2 (ja) 2018-05-16

Family

ID=56761316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015031358A Active JP6324915B2 (ja) 2015-02-20 2015-02-20 帯域割当方法および通信装置

Country Status (1)

Country Link
JP (1) JP6324915B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069360B2 (ja) * 2002-05-31 2008-04-02 日本電気株式会社 Ponシステムにおける動的帯域割り当て制御方法
KR100737523B1 (ko) * 2005-12-05 2007-07-10 한국전자통신연구원 이더넷 수동 광 가입자망에서 QoS보장을 위한 대역 할당장치 및 방법
JP5669613B2 (ja) * 2011-02-18 2015-02-12 沖電気工業株式会社 動的帯域割当方法、光通信ネットワーク及び局側装置
JP5548634B2 (ja) * 2011-02-23 2014-07-16 株式会社日立製作所 Oltの間欠起動を実現する動的帯域制御、光加入者装置、システム
JP5728274B2 (ja) * 2011-04-05 2015-06-03 沖電気工業株式会社 動的通信帯域割当方法、動的通信帯域割当プログラム、ponシステム及び局側終端装置

Also Published As

Publication number Publication date
JP2016154280A (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
KR100490901B1 (ko) 이더넷 수동 광통신망에서 서비스 등급별 동적대역 할당방법 및 대역할당장치
JP4964349B2 (ja) 通信装置、通信システムおよび帯域割当方法
KR100950337B1 (ko) Tdma 기반 수동 광가입자망을 위한 효율적인 동적대역폭 할당 장치 및 방법
JP5404936B2 (ja) 通信装置
CN101984777B (zh) Pon系统、pon系统中的站侧装置及其控制方法
EP2466769B1 (en) Bandwidth allocation method and optical line terminal
JP6765572B1 (ja) ネットワーク制御装置、通信リソース割り当て方法および通信システム
KR20030055696A (ko) 비동기 전송 모드 수동 광통신망(atm-pon)상에서의동적 대역 할당 방법
JP5419994B2 (ja) 通信装置、加入者側通信装置、ポイントトゥマルチポイント通信システムおよび帯域制御方法
JP5723632B2 (ja) 動的帯域割当方法及び受動光ネットワーク通信システム
KR102088922B1 (ko) 광 가입자 망에서 저지연 서비스 제공을 위한 대역 할당 장치 및 방법
JP5728274B2 (ja) 動的通信帯域割当方法、動的通信帯域割当プログラム、ponシステム及び局側終端装置
CN109428827B (zh) 一种流量自适应的缓存分配装置及方法、onu设备
JP6475648B2 (ja) 通信システム及び通信装置の動作方法並びにプログラム
JP7017300B2 (ja) 通信装置、設定方法及び通信プログラム
CN116634313A (zh) 光前传网络中单帧多突发的分配方法及突发帧上行方法
JP5304184B2 (ja) 動的帯域割当方法及び局側装置
JP6324915B2 (ja) 帯域割当方法および通信装置
KR100503417B1 (ko) 이더넷 수동형 광 네트워크에서의 QoS 보장형 스케쥴링시스템 및 방법
JP2007288629A (ja) 送信割当て方法及び装置
JP5276143B2 (ja) 光通信システム
JP6863426B2 (ja) リソース割当装置、リソース割当プログラム、リソース割当方法、及び局側装置
JP3588100B2 (ja) アクセス制御方法および装置
CN116896697A (zh) 区分信息流类型的上行带宽的分配方法及pon系统
JPH118599A (ja) アクセス制御方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180411

R150 Certificate of patent or registration of utility model

Ref document number: 6324915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150