JP6324085B2 - Precious metal-coated plate material for electrical contacts and method for producing the same - Google Patents

Precious metal-coated plate material for electrical contacts and method for producing the same Download PDF

Info

Publication number
JP6324085B2
JP6324085B2 JP2014011715A JP2014011715A JP6324085B2 JP 6324085 B2 JP6324085 B2 JP 6324085B2 JP 2014011715 A JP2014011715 A JP 2014011715A JP 2014011715 A JP2014011715 A JP 2014011715A JP 6324085 B2 JP6324085 B2 JP 6324085B2
Authority
JP
Japan
Prior art keywords
underlayer
alloy
noble metal
plate material
electrical contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014011715A
Other languages
Japanese (ja)
Other versions
JP2015137421A (en
Inventor
良聡 小林
良聡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014011715A priority Critical patent/JP6324085B2/en
Publication of JP2015137421A publication Critical patent/JP2015137421A/en
Application granted granted Critical
Publication of JP6324085B2 publication Critical patent/JP6324085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

本発明は、電気接点用貴金属被覆材およびその製造方法に関する。特に、電気接点用の貴金属被覆材およびその製造方法に関する。 The present invention for electrical contacts noble metal covering plate material and a method for producing the same. In particular, the noble metal covering plate material for electrical contacts and a method for producing the same.

電気接点用貴金属被覆板材には、従来から電気伝導性に優れた銅又は銅合金が利用されてきたが、近年の接点特性の向上が進み、銅又は銅合金をそのまま用いるケースは減少している。このような従来の材料に代わって銅又は銅合金上に各種表面処理した材料が製造・利用されている。特に電気接点用貴金属被覆板材として多く利用されているものとして、電気接点部に貴金属めっきされた材がある。中でも金、銀、パラジウム、白金、イリジウム、ロジウム、ルテニウムなどの貴金属は、その材料の持つ安定性や優れた電気伝導率などから、各種電気接点用貴金属被覆板材に利用されている。 The noble metal coating plate material for electrical contacts, the electric conductivity superior copper or copper alloy have been conventionally used, progress in the recent improvements of the contact properties, used as a copper or copper alloy casing is reduced Yes. Instead of such conventional materials, various surface-treated materials on copper or copper alloys are manufactured and used. As being especially utilized many as an electrical contact for the precious metal covering plate material, there is a precious metal plated plate material to the electrical contact portion. Among them, noble metals such as gold, silver, palladium, platinum, iridium, rhodium, and ruthenium are used as precious metal-coated plates for various electrical contacts because of their stability and excellent electrical conductivity.

ところで、貴金属を電気接点用貴金属被覆板材として使用する際は、貴金属と基材成分との拡散を防止するために、例えば特許文献1のように、貴金属層の下層に下地層と呼ばれる拡散防止層を導入することが、知られている(同文献、段落[0011]参照)。この下地層として、ニッケル、ニッケル合金、コバルト、コバルト合金などを用いることが知られている。 Incidentally, when using a noble metal as the electrical contact for the precious metal cover plate is called in order to prevent the diffusion of the noble metal and the base component, for example, as in Patent Document 1, the lower layer of the noble metal layer and the underlying layer diffusion It is known to introduce a prevention layer (see the document, paragraph [0011]). It is known to use nickel, a nickel alloy, cobalt, a cobalt alloy, or the like as the underlayer.

しかし、近年の電気接点材の使用環境として、高温環境下において使用されるケースが多くなっている。例えば自動車のエンジンルーム内でのセンサー用接点材料などは、100℃〜200℃等の高温環境下で使用される可能性が高まっている。このため、従来の民生機器で想定された使用温度よりも高温における接点特性等の信頼性が求められている。特に接点特性の信頼性を左右する原因として、高温下では、基体成分の拡散および表面酸化により貴金属部の接触抵抗を増大させてしまうことが問題となっている。そのため、この基材成分の拡散抑制および酸化防止について種々検討がなされてきた。   However, in recent years, there are many cases where electrical contact materials are used in high temperature environments. For example, a sensor contact material in an engine room of an automobile is likely to be used in a high temperature environment such as 100 ° C. to 200 ° C. For this reason, reliability such as contact characteristics at a temperature higher than the operating temperature assumed in conventional consumer devices is required. In particular, as a cause that affects the reliability of the contact characteristics, there is a problem that the contact resistance of the noble metal portion is increased due to diffusion of the base component and surface oxidation at high temperatures. For this reason, various studies have been made on diffusion suppression and oxidation prevention of the base material component.

例えば、特許文献2には、表層に形成された貴金属層である銀または銀合金の結晶粒径を5μm以上とすることが記載され、これにより粒界を少なくして基体成分の拡散を抑制し、接触抵抗特性が安定化できることが開示されている(同文献、段落[0006][0008]参照)。   For example, Patent Document 2 describes that the crystal grain size of silver or a silver alloy, which is a noble metal layer formed on the surface layer, is 5 μm or more, thereby reducing the grain boundary and suppressing the diffusion of the base component. It is disclosed that the contact resistance characteristics can be stabilized (see the same document, paragraphs [0006] and [0008]).

しかし、特許文献1のように、単に貴金属層の下層に下地層を導入しただけでは、上述の高温環境下における接続信頼性が低下する場合がある。この場合、高温環境下になると基材成分の拡散速度が大きくなり、より貴金属層表層にまで拡散が進行しやすくなり、接触抵抗が増大しやすくなる。   However, the connection reliability in the above-described high-temperature environment may be lowered by simply introducing a base layer below the noble metal layer as in Patent Document 1. In this case, the diffusion rate of the base material component is increased under a high-temperature environment, the diffusion easily proceeds to the surface layer of the noble metal layer, and the contact resistance is easily increased.

さらに、特許文献2のように、銀または銀合金の皮膜の平均結晶粒径を5μm以上とすることは、銀のように再結晶化して結晶粒が大きくなりやすい金属に適用できる技術である。しかし、その他の貴金属、例えばロジウム(Rh)やパラジウム(Pd)などは、融点が高く再結晶しにくいため、平均結晶粒径を5μm以上にするのは困難であった。さらに、この技術はニッケル層を基体とし、これに適用すると、粒径が5μm以上になる前に基体の拡散が進行し、表面で酸化物を形成することで接点特性を悪化させてしまうおそれがある。   Furthermore, as in Patent Document 2, setting the average crystal grain size of a silver or silver alloy film to 5 μm or more is a technique that can be applied to a metal that tends to recrystallize and have large crystal grains, such as silver. However, other noble metals such as rhodium (Rh) and palladium (Pd) have a high melting point and are difficult to recrystallize, so it was difficult to increase the average crystal grain size to 5 μm or more. Furthermore, when this technology is applied to a nickel layer as a substrate, diffusion of the substrate proceeds before the particle size becomes 5 μm or more, and contact characteristics may be deteriorated by forming an oxide on the surface. is there.

特開2007−280945号公報JP 2007-280945 A 特開平5−002940号公報JP-A-5-002940

本発明は、上記の従来技術の問題点を克服し、高温環境下、特に100℃以上の加熱が施された後においても基体成分の拡散を抑制して表面の貴金属層への到達を抑制することができる、長期信頼性の高い電気接点用貴金属被覆板材を提供することを課題とする。 The present invention overcomes the above-mentioned problems of the prior art, and suppresses the diffusion of the base component and prevents the surface from reaching the noble metal layer even in a high-temperature environment, particularly after heating at 100 ° C. or higher. It is an object of the present invention to provide a precious metal-coated plate material for electrical contacts that can be reliable for a long time.

上記問題に鑑み鋭意検討を進めた結果、導電性金属基体上の最表面に貴金属皮膜による貴金属層が形成されている電気接点用貴金属被覆板材であって、導電性金属基体と該貴金属層との間に下地層少なくとも1層以上有しており、かつその下地層の平均結晶粒径が0.3μm以上4.5μm以下である電気接点用貴金属被覆材が、長時間にわたり高温の熱が加わった場合でも導電性金属基体成分の拡散を十分に防止できること、拡散した基体成分の酸化等による接触抵抗の増大を防止できることを見出した。そしてその結果、貴金属層の厚さを従来以上に薄く形成できることを見出した。本発明者らはこれらの知見に基づきさらに検討を重ね、本発明を為すに至った。 As a result of diligent investigation in view of the above problems, there is a noble metal coated plate material for an electrical contact in which a noble metal layer made of a noble metal film is formed on the outermost surface of the conductive metal substrate, and the conductive metal substrate and the noble metal layer It has at least one layer of the underlying layer in between and an average crystal grain size of the electrical contacts for the precious metal covering plate material is 0.3μm or more 4.5μm or less of the underlying layer, the high-temperature heat for a long time It has been found that even when added, the diffusion of the conductive metal base component can be sufficiently prevented and the increase in contact resistance due to oxidation of the diffused base component can be prevented. As a result, it has been found that the thickness of the noble metal layer can be made thinner than before. The present inventors have further studied based on these findings and have come to achieve the present invention.

本発明の上記課題は以下の手段により解決される。
(1)導電性金属基体上の最表面に貴金属層を有する電気接点用貴金属被覆板材であって、
前記貴金属層が、金、金合金、銀、銀合金、白金、白金合金、パラジウム、パラジウム合金、ロジウム又はロジウム合金のうち、いずれか1層以上からなり、
前記貴金属層の厚さが、0.001〜1.10μmであり、
前記導電性金属基体と前記貴金属層との間に、ニッケル、ニッケル合金、コバルト又はコバルト合金のうちいずれか1層以上からなる下地層を有しており、
前記下地層の厚さが、0.010〜1.10μmであり、
前記下地層の平均結晶粒径が0.3μm以上4.5μm以下であり、
250℃16時間保持後の接触抵抗が10mΩ以下である
ことを特徴とする電気接点用貴金属被覆板材。
(2)前記導電性金属基体が、銅または銅合金、鉄または鉄合金、あるいはアルミニウムまたはアルミニウム合金からなる、(1)に記載の電気接点用貴金属被覆板材
(3)(1)又は(2)に記載の電気接点用貴金属被覆板材を製造する方法であって、電気めっき法にて導電性金属基体上に下地層を形成する際、添加剤中の化合物の硫黄、炭素、窒素、塩素の元素濃度を合計で1000ppm以下とし、かつ、前記下地層を形成する際の電気めっきの電流密度を10A/dm未満として、前記下地層を形成した後、50〜150℃で0.08〜3時間の熱処理を行う、又は、加工率10%以上で圧延加工することを特徴とする、電気接点用貴金属被覆板材の製造方法。
)前記下地層を形成する際の電気めっきの電流密度を10A/dm以上とし、
前記下地層を形成した後、50〜150℃で0.08〜3時間の熱処理を行う、又は、加工率10%以上で圧延加工する、()に記載の電気接点用貴金属被覆板材の製造方法。
The above-described problems of the present invention are solved by the following means.
(1) A noble metal-coated plate material for electrical contacts having a noble metal layer on the outermost surface on a conductive metal substrate,
The noble metal layer is composed of any one or more of gold, gold alloy, silver, silver alloy, platinum, platinum alloy, palladium, palladium alloy, rhodium or rhodium alloy,
The noble metal layer has a thickness of 0.001-1.10 μm;
Between the conductive metal substrate and the noble metal layer, has an underlayer consisting of one or more of nickel, nickel alloy, cobalt or cobalt alloy ,
The underlayer has a thickness of 0.010 to 1.10 μm;
The average crystal grain size of the underlayer is Ri der than 4.5μm or less 0.3 [mu] m,
The precious metal-coated plate material for electrical contacts, wherein the contact resistance after holding at 250C for 16 hours is 10 mΩ or less .
(2) The noble metal-coated plate material for electrical contacts according to (1), wherein the conductive metal substrate is made of copper or copper alloy, iron or iron alloy, or aluminum or aluminum alloy .
(3 ) A method for producing a noble metal-coated plate material for electrical contacts according to (1) or (2) , wherein a compound in an additive is used when an underlayer is formed on a conductive metal substrate by electroplating. The total concentration of sulfur, carbon, nitrogen, and chlorine is 1000 ppm or less, and the current density of electroplating when forming the base layer is less than 10 A / dm 2. A method for producing a precious metal-coated plate material for electrical contacts, characterized by performing a heat treatment at ~ 150 ° C for 0.08 to 3 hours, or rolling at a processing rate of 10% or more.
( 4 ) The current density of electroplating when forming the underlayer is 10 A / dm 2 or more,
After forming the said base layer, the heat processing for 0.08 to 3 hours are performed at 50-150 degreeC, or it rolls with a processing rate of 10% or more, Manufacture of the noble metal covering board | plate material for electrical contacts as described in ( 3 ) Method.

本発明によれば、導電性金属基体上の最表面に貴金属層が被覆された電気接点用貴金属被覆材において、基体成分の拡散を抑制して耐熱性を向上させることができる。より詳しくは、下地層を構成する金属の平均結晶粒が所定の大きさを有しているため、下地層中の結晶粒界が従来より少なく、基材成分が貴金属層へ拡散するのを低減することができる。従って、例えば250℃−16時間という高温長時間保持後においても、基体成分の貴金属中への拡散が抑制される。よって、高温環境下で使用されても電気接点用貴金属被覆板材の最表層の導電性が劣化しにくくなり、接触抵抗の増加が小さい。また、下地層の結晶粒径を大きく制御したことにより、下地層の弾性領域が大きくなり、その結果、下地層が厚くても曲げ加工性が向上した電気接点用貴金属被覆材を提供することができる。 According to the present invention, the conductive metal substrate on the outermost surface of the noble metal layer is a noble metal coated plate material for electrical contacts which are coated, it is possible to improve the heat resistance by suppressing the diffusion of substrate components. More specifically, since the average crystal grains of the metal constituting the underlayer have a predetermined size, there are fewer crystal grain boundaries in the underlayer than before, and the diffusion of base material components to the noble metal layer is reduced. can do. Therefore, the diffusion of the base component into the noble metal is suppressed even after holding at a high temperature for a long time of 250 ° C. for 16 hours, for example. Therefore, even when used in a high temperature environment, the conductivity of the outermost layer of the precious metal-coated plate material for electrical contacts is unlikely to deteriorate, and the increase in contact resistance is small. Also, by increasing control of the crystal grain size of the underlayer, the elastic region of the underlying layer is increased, as a result, to provide an electrical contact for the noble metal coating plate material also bending workability is improved thick underlayer Can do.

本発明の電気接点用貴金属被覆材およびその製造方法の好ましい形態について説明する。なお、本発明における貴金属とは、標準電極電位が正(プラス)の値を示す金属種を指している。 It described preferred embodiment of the electrical contacts for the precious metal covering plate material and its manufacturing method of the present invention. In addition, the noble metal in this invention has shown the metal seed | species in which a standard electrode electric potential shows a positive (plus) value.

(電気接点用貴金属被覆材)
<導電性金属基体>
本発明に用いる導電性基体成分としては、銅または銅合金、鉄または鉄合金、アルミニウムまたはアルミニウム合金等が好ましく、中でも導電率の良い銅または銅合金が好ましい。例えば銅合金の一例として、CDA(Copper Development Association)掲載合金である「C14410(Cu−0.15Sn、古河電気工業(株)製、商品名:EFTEC−3)」、「C19400(Cu−Fe系合金材料、Cu−2.3Fe−0.03P−0.15Zn)」、および「C18045(Cu−0.3Cr−0.25Sn−0.5Zn、古河電気工業(株)製、商品名:EFTEC−64T)」等を用いることができる。(なお、前記銅合金の各元素の前の数字の単位は銅合金中の質量%を示す。)。これら基体はそれぞれ導電率や強度が異なるため、適宜要求特性により選定されて使用されるが、導電性や放熱性を向上させるという観点からは、導電率が5%IACS以上の銅合金の条材とすることが好ましい。なお、銅または銅合金を金属基体として取り扱う時での本発明の「基体成分」とは、合金の場合は、基金属である銅のことを示すものとする(以下他の合金の場合も同様である)。また、鉄もしくは鉄合金としては、例えば、42アロイ(Fe−42質量%Ni)やステンレスなどが用いられる。このときの基体成分とは、鉄を示すものとする。基体の厚さには特に制限はないが、通常、0.05〜2.00mmであり、好ましくは、0.1〜1.0mmである。
(Electric contacts noble metal coating plate member)
<Conductive metal substrate>
The conductive substrate component used in the present invention is preferably copper or copper alloy, iron or iron alloy, aluminum or aluminum alloy, etc. Among them, copper or copper alloy having good conductivity is preferable. For example, as an example of a copper alloy, “C14410 (Cu-0.15Sn, manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC-3)”, which is a CDA (Copper Development Association) alloy, “C19400 (Cu-Fe series) Alloy material, Cu-2.3Fe-0.03P-0.15Zn) "and" C18045 (Cu-0.3Cr-0.25Sn-0.5Zn, manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC-) 64T) "or the like. (In addition, the unit of the number before each element of the said copper alloy shows the mass% in a copper alloy.). Since these bases have different electrical conductivity and strength, they are selected and used according to the required characteristics as appropriate. From the viewpoint of improving the electrical conductivity and heat dissipation, the strip of copper alloy having an electrical conductivity of 5% IACS or more is used. It is preferable that The “base component” of the present invention when copper or a copper alloy is handled as a metal base means that it is copper as a base metal in the case of an alloy (the same applies to other alloys hereinafter). Is). As iron or iron alloy, for example, 42 alloy (Fe-42 mass% Ni), stainless steel, or the like is used. In this case, the base component indicates iron. Although there is no restriction | limiting in particular in the thickness of a base | substrate, Usually, it is 0.05-2.00 mm, Preferably, it is 0.1-1.0 mm.

<下地層>
本発明における下地層を構成する金属は、所定の厚さで基体成分の拡散を防止でき、耐熱性を付与するものであれば特に制限はない。しかし、安価で被覆の容易なニッケル、ニッケル合金、コバルト、コバルト合金のうちいずれかからなる。これらの金属又は合金からなる下地層は、密着性向上および基体成分の拡散防止に効果的である。下地層は1層以上形成されていればよく、例えば銅層形成後にニッケル層を形成したり、さらにニッケル層形成後にコバルト層を形成したりするなど、2層以上で形成されていても良い。ただし、生産性やコストを考慮すると、3層以内とするのが望ましい。なお、銅を下地層として採用する際は、銅下地層と貴金属からなる最表層の間に、別の層を形成することが好ましい。これは、基体が銅または銅合金の際の銅成分の拡散防止を目的としているため、銅が貴金属層と直接接することは避ける必要があるためである。
<Underlayer>
The metal constituting the base layer in the present invention is not particularly limited as long as it can prevent diffusion of the base component with a predetermined thickness and impart heat resistance. However, easy nickel inexpensive coating, a nickel alloy, cobalt, that such scolded one of cobalt alloy. Underlayers made of these metals or alloys are effective for improving adhesion and preventing diffusion of substrate components. It is sufficient that one or more underlayers are formed. For example, a nickel layer may be formed after forming the copper layer, or a cobalt layer may be formed after forming the nickel layer. However, in consideration of productivity and cost, it is desirable to make it within 3 layers. In addition, when employ | adopting copper as a base layer, it is preferable to form another layer between the copper base layer and the outermost layer which consists of noble metals. This is because it is necessary to prevent copper from coming into direct contact with the noble metal layer because the purpose is to prevent diffusion of the copper component when the substrate is copper or a copper alloy.

本発明における下地層の金属の平均結晶粒径は0.3μm以上4.5μm以下とする。この結晶粒径は、電気接点用貴金属被覆材の平面に対して垂直な断面を観察することで測定する。耐熱性の効果は、下地層の平均結晶粒径が0.3μm以上4.5μm以下であれば効果的であるが、さらに0.5μm以上4.5μm以下がより好ましく、0.8μm以上4.5μm以下が最も好ましい。上限についての制限はなく、平面に渡って結晶粒界の見られない、ほぼ単結晶状態が最も理想形態となる。このような平均結晶粒径を有する下地層が設けられた電気接点用貴金属被覆材では、導電性金属基体の成分の拡散を抑制することができ、貴金属層の劣化防止に寄与する。 In the present invention, the average crystal grain size of the metal in the underlayer is 0.3 μm or more and 4.5 μm or less . The grain size is measured by observing the cross section perpendicular to the plane of the electric contacts noble metal coating plate material. The heat resistance effect is effective when the average crystal grain size of the underlayer is 0.3 μm or more and 4.5 μm or less , more preferably 0.5 μm or more and 4.5 μm or less , and more preferably 0.8 μm or more and 4. Most preferably 5 μm or less . There is no limit on the upper limit, and a single crystal state in which no crystal grain boundary is seen across the plane is the most ideal form. In such an average grain electrical contacts for the precious metal covering plate material that base layer is provided with a diameter, it is possible to suppress the diffusion of the components of the conductive metal substrate, which contributes to preventing deterioration of the noble metal layer.

さらに本発明において、下地層の厚さは特に限定しないが、例えば下地層が厚さ0.001〜5.000μmで形成されていることで、密着性及び耐熱性をより効果的に改善できる。下地層は、厚みが厚くなると曲げ加工性が悪化する傾向にあるので、1層以上の下地層の合計厚さが、最大でも5.000μmまで、好ましくは3.000μm以下、さらに好ましくは1.000μm以下で形成することが好ましい。本発明品は従来品(下地層の平均結晶粒径が0.3μmより小径である場合)に比べ、下地層の結晶一つ一つの弾性域が広がるので、曲げ加工性は良好になる。よって、従来品と同じ被覆厚である場合は曲げ加工性が優れる。厚さの下限値は、耐熱性改善効果を考慮し、0.001μm以上とする。従来の下地層厚は0.200〜2.000μm程度が必要であったが、本発明では、下地層の平均結晶粒径の粗大化があるため、下地層中の結晶粒界が従来より少なく、基材成分の貴金属層への拡散が低減することができる。よって、下地層の厚さを一層薄くできる。下地層の厚さは、好ましくは0.010〜1.000μmである。この厚さであっても、基体成分の拡散が従来品と同等以上に防止できる。この下地層は、スパッタ法や蒸着法、湿式めっき法などで常法により形成することもできるが、平均結晶粒径や厚さの制御の容易性や生産性を考慮すれば、特に湿式めっき法を利用するのが好ましく、さらに電気めっき法であることがより好ましい。   Furthermore, in the present invention, the thickness of the underlayer is not particularly limited, but for example, the underlayer is formed with a thickness of 0.001 to 5.000 μm, whereby adhesion and heat resistance can be more effectively improved. Since the bendability tends to deteriorate as the thickness of the underlayer increases, the total thickness of one or more underlayers is at most 5.000 μm, preferably 3.000 μm or less, more preferably 1. It is preferable to form it with 000 micrometers or less. Compared with the conventional product (when the average crystal grain size of the underlayer is smaller than 0.3 μm), the product of the present invention has an improved elastic range for each crystal of the underlayer, so that the bending workability is improved. Therefore, when the coating thickness is the same as the conventional product, bending workability is excellent. The lower limit of the thickness is set to 0.001 μm or more in consideration of the heat resistance improvement effect. Although the conventional underlayer thickness needs to be about 0.200 to 2.000 μm, in the present invention, since the average crystal grain size of the underlayer is coarsened, there are fewer crystal grain boundaries in the underlayer than in the past. The diffusion of the base material component into the noble metal layer can be reduced. Therefore, the thickness of the underlayer can be further reduced. The thickness of the underlayer is preferably from 0.010 to 1.000 μm. Even with this thickness, the diffusion of the base component can be prevented to the same level or higher than that of the conventional product. The underlayer can be formed by a conventional method such as sputtering, vapor deposition, or wet plating. However, in consideration of ease of control of the average crystal grain size and thickness and productivity, the wet plating method is particularly preferable. Is preferably used, and more preferably an electroplating method.

<貴金属層>
また、本発明の電気接点用貴金属被覆板材の最表層となる貴金属層は、金、金合金、銀、銀合金、白金、白金合金、パラジウム、パラジウム合金、ロジウム、ロジウム合金のうち、いずれかから選ばれた金属層を用いる。この貴金属層は、低接触抵抗のため接続信頼性が良好であり、かつ生産性の良い最表層が得られる。特に金、金合金、銀、銀合金、白金、白金合金、パラジウム、パラジウム合金、ロジウム、ロジウム合金が安定した接続信頼性の観点から好ましく、金、金合金、銀、銀合金、パラジウム、パラジウム合金がより一層好ましい。さらに、貴金属層は2層以上も設けられていても良い。貴金属層は、スパッタ法や蒸着法、湿式めっき法など通常の方法で形成できるが、被覆厚の制御容易性や生産性を考慮すれば、特に湿式めっき法を利用するのが好ましく、さらに電気めっき法であることがより好ましい。
<Precious metal layer>
Further, the noble metal layer to be the outermost layer of the electrical contacts for the precious metal cover plate of the present invention include gold, gold alloy, silver, silver alloy, platinum, platinum alloys, palladium, palladium alloys, rhodium, among rhodium alloy, or A metal layer selected from is used. Since this noble metal layer has a low contact resistance, the connection reliability is good and the outermost layer with good productivity can be obtained. In particular, gold, gold alloy, silver, silver alloy, platinum, platinum alloy, palladium, palladium alloy, rhodium, rhodium alloy are preferable from the viewpoint of stable connection reliability. Gold, gold alloy, silver, silver alloy, palladium, palladium alloy Is even more preferable. Further, two or more noble metal layers may be provided. The noble metal layer can be formed by a normal method such as sputtering, vapor deposition, or wet plating. However, in consideration of controllability of the coating thickness and productivity, it is particularly preferable to use the wet plating method. More preferably, it is a method.

本発明において、耐熱性に優れた下地層を導入した効果として、従来被覆されていた貴金属層厚よりも薄く被覆しても、高温下で基体成分の表層までの拡散を抑制するように作用するため、長期信頼性に優れる。その結果、従来の被覆厚でももちろんのこと、貴金属層厚が例えば0.001〜0.500μmという従来の2/3以下程度の被覆厚でも従来製品と同等以上の信頼性が得られ、低コストで環境にやさしい電気接点用貴金属被覆材を得ることが出来る。この貴金属層の厚さは、貴金属種によっても適宜選択されるが、例えば金、金合金、白金、白金合金、パラジウム、パラジウム合金、ロジウム、ロジウム合金においては、好ましくは0.05〜1.0μm、より好ましくは0.1〜0.5μmである。銀、銀合金においては、好ましくは0.2〜1.0μm、さらに好ましくは0.5〜1.0μmである。なお、電気接点用貴金属被覆材の貴金属層とは、例えば上述の貴金属種を下地層よりも表層側に使用した層をすべて貴金属層と定義する。例えば、下地層にニッケル層、その上層にパラジウム層、さらにその上層に最表面を形成する金層が形成されている場合は、最表面を形成する金層と、金層と下地層との間にあるパラジウム層を含めて貴金属層と定義し、この場合は貴金属層が金とパラジウムの2層で構成されることになる。本発明で、貴金属層の厚さとは、特に断らない限り、貴金属層が複数で構成される場合はその合計した厚さを言う。 In the present invention, as an effect of introducing a base layer having excellent heat resistance, it acts to suppress the diffusion of the base component to the surface layer at a high temperature even if it is coated thinner than the conventionally coated noble metal layer thickness. Therefore, long-term reliability is excellent. As a result, not only the conventional coating thickness but also the precious metal layer thickness of 0.001 to 0.500 μm, for example, about 2/3 or less of the conventional coating thickness, the reliability equal to or higher than that of the conventional product is obtained, and the cost is low. in can be obtained precious metal covering plate material for electrical contacts environmentally friendly. The thickness of the noble metal layer is appropriately selected depending on the type of noble metal. For example, in gold, gold alloy, platinum, platinum alloy, palladium, palladium alloy, rhodium, rhodium alloy, preferably 0.05 to 1.0 μm. More preferably, the thickness is 0.1 to 0.5 μm. In silver and a silver alloy, it is preferably 0.2 to 1.0 μm, and more preferably 0.5 to 1.0 μm. Note that the precious metal layer for electrical contacts noble metal covering plate material, for example, all the layers of the above noble metal species used in the surface layer side than the base layer is defined as the noble metal layer. For example, when a nickel layer is formed on the underlayer, a palladium layer is formed on the upper layer, and a gold layer that forms the outermost surface is formed on the upper layer, the gold layer that forms the outermost surface is disposed between the gold layer and the underlayer. In this case, the noble metal layer is constituted by two layers of gold and palladium. In the present invention, the thickness of the noble metal layer refers to the total thickness of the noble metal layers when plural noble metal layers are formed unless otherwise specified.

なお、すでに下地層の結晶粒大径化により、常温はもちろん高温下での拡散が抑制され、耐熱性が向上されているため、従来の電気接点用貴金属被覆材と比べ、同じ被覆厚ないしはそれ以下でも表層への基体成分の拡散が長期に亘り抑制される効果が得られるが、より一層の長期信頼性効果を得るためには、電気接点用貴金属被覆材の貴金属層の平均結晶粒径も所定の大きさに制御することが好ましく、例えば貴金属層の少なくとも1層の平均結晶粒径が、0.3μm以上で形成されることが好ましく、さらに1.0μm以上であることがより好ましい。この平均結晶粒径の上限は特に制限するものではないが10μm以下が好ましい。特に、銀または銀合金においては、再結晶が比較的進行しやすいため、特に好ましい。 Incidentally, the crystal grains large diameter of the previously underlying layer, room temperature is of course suppressed diffusion at a high temperature, since the heat resistance is improved, compared to conventional electric contacts for the precious metal covering plate material, the same coating thickness or Although the effect of diffusion of the substrate components into the surface layer even less can be suppressed for a long period is obtained, in order to obtain a more long-term reliability effects, the mean crystal grain of the noble metal layer for electrical contacts noble metal coated plate material The diameter is also preferably controlled to a predetermined size. For example, the average crystal grain size of at least one noble metal layer is preferably 0.3 μm or more, and more preferably 1.0 μm or more. . The upper limit of the average crystal grain size is not particularly limited, but is preferably 10 μm or less. In particular, silver or a silver alloy is particularly preferable because recrystallization is relatively easy to proceed.

この貴金属層の平均結晶粒径を制御する一つの手法としては、例えば貴金属層形成後に熱処理を行うことで達成することができるが、基体の拡散を進めない程度の熱処理に留める必要がある。そのためには、例えば温度50〜150℃で、0.08〜3時間の熱処理を行うことが好ましい。この熱処理の温度が高すぎたり時間が長すぎたりすると熱履歴が過剰となり、基体成分の拡散が進行してしまい接続信頼性が低下してしまう可能性がある。上記の熱処理条件によって、貴金属層および下地層の再結晶化を十分に行うことができる。 One method for controlling the average crystal grain size of the noble metal layer can be achieved, for example, by performing a heat treatment after the noble metal layer is formed, but it is necessary to limit the heat treatment to a level that does not promote diffusion of the substrate. For this purpose, for example, it is preferable to perform heat treatment at a temperature of 50 to 150 ° C. for 0.08 to 3 hours. If the temperature of this heat treatment is too high or the time is too long, the thermal history becomes excessive, and diffusion of the base component may proceed, resulting in a decrease in connection reliability. Under the above heat treatment conditions, the precious metal layer and the underlayer can be sufficiently recrystallized.

電気接点用貴金属被覆材の製造方法)
<下地層の粒径制御1>
本発明者らは、下地層の平均結晶粒径は、添加剤中の硫黄・炭素・窒素・塩素成分のうちいずれか1種類以上を含有する化合物の濃度によって左右されやすいということを見出した。添加剤が含有されためっき液では析出が微細になるため、これらの成分を極力排除(添加剤中の化合物の硫黄・炭素・窒素・塩素の元素濃度として1000ppm以下)することが重要である。よって、添加剤中の化合物の硫黄・炭素・窒素・塩素の元素濃度が合計で1000ppm以下であるめっき液を使用することで、下地層の形成時点で下地層の平均結晶粒径を0.3μm以上とすることに成功した。このように、硫黄・炭素・窒素・塩素の元素濃度を1000ppm以下にすることで、下地層の平均結晶粒径を0.3μm以上4.5μm以下に制御でき、熱処理無しでも拡散防止能力に優れた下地を得ることができる。
(Method for electrical contacts noble metal coating plate member)
<Granularity control 1 of underlayer>
The present inventors have found that the average crystal grain size of the underlayer is easily influenced by the concentration of a compound containing any one or more of sulfur, carbon, nitrogen, and chlorine components in the additive. In the plating solution containing the additive, since the precipitation becomes fine, it is important to eliminate these components as much as possible (the element concentration of sulfur, carbon, nitrogen, and chlorine of the compound in the additive is 1000 ppm or less). Therefore, by using a plating solution in which the total element concentration of sulfur, carbon, nitrogen, and chlorine in the compound in the additive is 1000 ppm or less, the average crystal grain size of the underlayer is 0.3 μm at the time of formation of the underlayer. I succeeded in doing this. Thus, by setting the elemental concentration of sulfur, carbon, nitrogen, and chlorine to 1000 ppm or less, the average crystal grain size of the underlayer can be controlled to 0.3 μm or more and 4.5 μm or less, and it has excellent anti-diffusion ability without heat treatment. Can be obtained.

なお、硫黄・炭素・窒素・塩素成分は、添加剤として加えたもののみを指し、下地層を形成する金属を遊離させるための化合物の構成元素には適用しない。これは、例えばスルファミン酸ニッケルや塩化ニッケルを用いたニッケル浴の場合では、スルファミン酸に含まれるS(硫黄)や、塩化ニッケルに含まれる塩素などは除外する。よって、通常の添加剤を管理する滴定や赤外吸光分析等で検出できる添加剤濃度について示すものである。添加剤濃度は、添加剤中の化合物の硫黄・炭素・窒素・塩素の元素濃度として、好ましくは500ppm以下、さらに好ましくは100ppm以下である。そして、添加剤を使用しない不可避的不純物含有程度の0〜10ppmが最も好ましい。   The sulfur, carbon, nitrogen, and chlorine components refer only to those added as additives, and do not apply to the constituent elements of compounds for liberating the metal that forms the underlayer. For example, in the case of a nickel bath using nickel sulfamate or nickel chloride, S (sulfur) contained in sulfamic acid or chlorine contained in nickel chloride is excluded. Therefore, the additive concentration that can be detected by titration, infrared absorption analysis, or the like for managing ordinary additives is shown. The additive concentration is preferably 500 ppm or less, more preferably 100 ppm or less as the elemental concentration of sulfur, carbon, nitrogen, and chlorine of the compound in the additive. And 0-10 ppm of the inevitable impurity content grade which does not use an additive is the most preferable.

なお、下地層の電気めっき時の電流密度を10A/dm未満としてめっきを行うと、所望の下地層の平均結晶粒径を得やすい。添加剤中の化合物の硫黄・炭素・窒素・塩素の元素濃度が1000ppm以下である場合、再結晶を利用することなく初期析出から粒径が大きくなりやすい。電流密度は、初期析出から平均結晶粒径を大きくするには10A/dm未満であることが好ましいが、さらに8A/dm以下、さらに好ましくは5A/dm以下である。 In addition, when the current density at the time of electroplating the underlayer is reduced to less than 10 A / dm 2 , it is easy to obtain a desired average crystal grain size of the underlayer. When the sulfur, carbon, nitrogen, and chlorine element concentration of the compound in the additive is 1000 ppm or less, the particle size tends to increase from the initial precipitation without using recrystallization. The current density is preferably less than 10 A / dm 2 in order to increase the average crystal grain size from the initial precipitation, but is further 8 A / dm 2 or less, more preferably 5 A / dm 2 or less.

一方で、下地層の電気めっき電流密度を10A/dm以上で形成する場合は、後述する圧延加工や熱処理を施すことで、所望の下地層の平均結晶粒径を得ることができる。10A/dm以上の電流密度で析出して再結晶を利用する場合では、10A/dm以上で容易に達成することができるが、より好ましくは12A/dm以上、さらに好ましくは15A/dm以上であることがより一層好ましい。一方で電流密度の上限値は、めっき後の表面凹凸が顕著に現れないようにする必要があり、30A/dm以下とすることが好ましい。 On the other hand, when the electroplating current density of the underlayer is formed at 10 A / dm 2 or more, a desired average grain size of the underlayer can be obtained by performing a rolling process or a heat treatment described later. 10A / dm 2 or more in the case of using the precipitated recrystallized current density can be easily achieved by 10A / dm 2 or more, more preferably 12A / dm 2 or more, more preferably 15A / dm More preferably, it is 2 or more. On the other hand, the upper limit value of the current density must be such that surface unevenness after plating does not appear remarkably, and is preferably 30 A / dm 2 or less.

本発明によれば、下地層の平均結晶粒径を制御する手段として、上述した下地めっき中の添加剤の濃度管理以外にも、下記二通りの工程を更に行っても良い。   According to the present invention, as a means for controlling the average crystal grain size of the underlayer, the following two steps may be further performed in addition to the above-described concentration control of the additive in the undercoat.

<下地層の粒径制御2>
本発明によれば、下地層形成直後や下地層および貴金属層形成後に減面加工を行うことで、下地層に再結晶駆動力を導入して再結晶化しやすくすることができる。この場合の減面加工は、冷間圧延加工やプレス加工等の塑性加工で行うことが好ましい。(ここで、冷間圧延加工とプレス加工を併せて圧延加工等と略記する。)この場合、圧延加工等の塑性加工時の加工率(または減面率)が、10%以上、好ましくは30%以上、さらに好ましくは35%以上であることが好ましい。加工率が高いほど下地層に塑性加工が施されるため、塑性変形による欠陥エネルギーが蓄えられるので、これを解放することにより再結晶化が促進される。なお、再結晶は常温でも進行することがあるため、プレス加工後に必ずしも熱処理を必要とするものではない。ただし、加工率が高すぎると下地層に大きな亀裂が進展し、基体と最表層が接してしまい、逆に拡散が進行しやすくなる。なお、圧延加工等の加工率は、80%を超えると加工時の割れやクラックが生じやすくなることや、エネルギー負荷(圧延やプレスに必要な電力など)も増加するため、80%以下、好ましくは70%以下、さらに好ましくは60%以下であることが好ましい。
<Particle size control of underlayer 2>
According to the present invention, by performing surface-reducing processing immediately after forming the underlayer or after forming the underlayer and the noble metal layer, recrystallization driving force can be introduced into the underlayer to facilitate recrystallization. The surface reduction in this case is preferably performed by plastic working such as cold rolling or pressing. (Here, the cold rolling process and the pressing process are abbreviated as rolling process etc.) In this case, the processing rate (or area reduction rate) during plastic processing such as rolling processing is 10% or more, preferably 30. % Or more, more preferably 35% or more. The higher the processing rate, the more plastic processing is performed on the underlayer, so that the defect energy due to plastic deformation is stored, so that recrystallization is promoted by releasing this energy. Note that since recrystallization may proceed even at room temperature, heat treatment is not necessarily required after press working. However, if the processing rate is too high, a large crack develops in the underlayer, and the substrate and the outermost layer come into contact with each other, and conversely, diffusion easily proceeds. Note that if the processing rate of rolling or the like exceeds 80%, cracks or cracks during processing are likely to occur, and energy load (electric power necessary for rolling or pressing) increases, so 80% or less, preferably Is preferably 70% or less, more preferably 60% or less.

なお本発明で規定する「加工率」(または減面率)とは、「(加工前の板厚−加工完了後の板厚)×100/(加工前の板厚)」で示される割合(%)のことを示すものである。   The “processing rate” (or area reduction rate) defined in the present invention is a ratio represented by “(plate thickness before processing−plate thickness after processing completion) × 100 / (plate thickness before processing)” ( %).

また減面加工を施す場合は、例えば圧延加工の場合、圧延工程を何回行っても構わないが、圧延回数が増えると生産性が悪くなるため、圧延回数は少ない方が好ましい。なお圧延機に関しては、例えば冷間圧延機によって行う。圧延加工機は、通常、2段ロール、4段ロール、6段ロール、12段ロール、20段ロール等があるが、いずれの圧延加工機でも使用することができる。   In the case of surface reduction, for example, in the case of rolling, the rolling process may be performed any number of times. However, as the number of rolling increases, the productivity deteriorates. In addition, regarding a rolling mill, it carries out with a cold rolling mill, for example. The rolling machine usually has 2 rolls, 4 rolls, 6 rolls, 12 rolls, 20 rolls, etc., but any rolling machine can be used.

圧延加工に用いる圧延ロールは、ロール目の転写によって形成される電気接点用貴金属被覆材表面において、凹凸が大きいと曲げ加工性や摺動接点として使用された際の耐磨耗性が劣化することを考慮すると、表面粗度の算術平均(Ra)で0.10μm未満、好ましくは0.08μm未満であることが好ましい。ここでは、塑性加工の代表例として、冷間圧延加工について説明したが、プレス加工(例えば、コイニング)の場合には、冷間圧延加工の場合と同様にして、塑性加工を施すことができる。プレス加工法の場合は、プレス圧力を0.1N/mm以上で圧力調整によって加工率を調整して塑性変形させることで達成できる。 Rolling rolls used in the rolling process, in electrical contact for the precious metal covering plate material surface formed by the transfer roll eyes, uneven wear resistance when used as a bending workability and sliding contact with a large deteriorate In view of this, the arithmetic average (Ra) of the surface roughness is preferably less than 0.10 μm, preferably less than 0.08 μm. Here, the cold rolling process has been described as a representative example of the plastic working. However, in the case of press working (for example, coining), the plastic working can be performed in the same manner as in the cold rolling process. In the case of the press working method, it can be achieved by plastic deformation by adjusting the working rate by adjusting the pressure at a press pressure of 0.1 N / mm 2 or more.

なお、減面加工後の熱処理工程は必須ではない。加工率にもよるが、通常、圧延直後から下地層金属の再結晶が始まる。この際、熱処理はあくまでも再結晶の活性化エネルギーを超えるための手段の一つであるため、更なる熱処理は行っても行わなくても良い。   In addition, the heat treatment process after the surface-reducing process is not essential. Although depending on the processing rate, recrystallization of the underlayer metal usually starts immediately after rolling. At this time, since the heat treatment is only one means for exceeding the activation energy of recrystallization, further heat treatment may or may not be performed.

<下地層の粒径制御3>
本発明によれば、下地層の平均結晶粒径の粗大化を促進するために、下地層のめっき後に熱処理を行っても良い。バッチ型あるいは走間型などの手法によって熱処理(調質又は低温焼鈍ともいう)を施すことで、調質するとともに、下地層を再結晶化させることができる。ただし、基体の拡散を進めない程度の熱処理に留める必要がある。このような熱処理の条件は、上記の下地層の平均結晶粒径を0.3μm以上4.5μm以下とするように定められる。熱処理の温度は、好ましくは50〜150℃、より好ましくは50〜100℃である。熱処理の時間は、好ましくは0.08〜3時間、より好ましくは0.25〜1時間である。この熱処理の温度が高すぎたり時間が長すぎたりすると熱履歴が過剰となり、基体の拡散が進行して接触抵抗を増大させてしまう。上記の熱処理の条件により、目的の下地層の再結晶化を促進することができる。
<Particle size control of underlayer 3>
According to the present invention, heat treatment may be performed after plating the underlayer in order to promote the coarsening of the average crystal grain size of the underlayer. By performing heat treatment (also referred to as tempering or low-temperature annealing) by a technique such as a batch type or a running type, the tempering and the underlayer can be recrystallized. However, it is necessary to limit the heat treatment to such an extent that the diffusion of the substrate cannot proceed. The conditions for such a heat treatment are determined so that the average crystal grain size of the underlayer is 0.3 μm or more and 4.5 μm or less . The temperature of heat processing becomes like this. Preferably it is 50-150 degreeC, More preferably, it is 50-100 degreeC. The heat treatment time is preferably 0.08 to 3 hours, more preferably 0.25 to 1 hour. If the temperature of this heat treatment is too high or the time is too long, the thermal history becomes excessive, and the diffusion of the substrate proceeds to increase the contact resistance. The recrystallization of the target underlayer can be promoted by the above heat treatment conditions.

以上述べてきたように、下地層の粒径制御1〜3の製造方法によれば、めっき後の下地層の平均結晶粒径を0.3μm以上4.5μm以下に制御できる。その結果、被覆厚が薄くても、また下地層に高価な貴金属を使用しなくても、耐熱性に優れた下地層を形成でき、長期に渡って接続信頼性の高い電気接点用貴金属被覆板材を提供できるものである。 As described above, according to the manufacturing method of the grain size control 1 to 3 of the base layer, the average crystal grain size of the base layer after plating can be controlled to 0.3 μm or more and 4.5 μm or less . As a result, it is possible to form a base layer with excellent heat resistance, even if the coating thickness is thin or no expensive precious metal is used for the base layer, and the precious metal coated plate material for electrical contacts with high connection reliability over a long period of time. it is those that can offer.

<貴金属層の形成方法>
本発明における貴金属層は、導電性基材或いは下地層上の少なくとも貴金属皮膜の特性を必要とする部分(例えば、低接触抵抗、半田濡れ性、耐磨耗性、ワイヤボンディング性確保などを目的として使用される箇所)の表面に形成されていればよい。貴金属皮膜の特性を必要としない他の部分においては、貴金属層を設ける必要はなく、例えば電気めっき法であれば、片面のみのめっきや、ストライプめっき、スポットめっきなどの部分めっきで形成されていても良い。貴金属層が部分的に形成される電気接点用貴金属被覆材を製造することは、高価な貴金属層が不要となる部分の貴金属使用量を削減できるので、経済的でコストダウンに寄与する。さらには環境負荷が少ない方法で電気接点用貴金属被覆材を得ることができる。
<Method for forming noble metal layer>
The noble metal layer in the present invention is a part that requires at least the characteristics of the noble metal film on the conductive base material or the base layer (for example, to ensure low contact resistance, solder wettability, wear resistance, wire bonding property, etc.) It only has to be formed on the surface of the part used). In other parts that do not require the characteristics of the precious metal film, it is not necessary to provide a precious metal layer. For example, in the case of electroplating, it is formed by partial plating such as single-sided plating, stripe plating, spot plating, etc. Also good. The noble metal layer to produce a precious metal covering plate material for electrical contacts which are partially formed, it is possible to reduce the use of precious metals of the portion expensive noble metal layer is not required, which contributes to economical cost. Furthermore it is possible to obtain a noble metal-coated plate material for electrical contacts in low environmental impact methods.

なお、貴金属層は公知の方法で設けることができる。貴金属層の平均結晶粒径は特に制限されるものではないが、0.3μm以上になるように形成するのが好ましく、1.0μm以上となるように形成するのが耐熱性向上の観点からより好ましい。貴金属層は、スパッタ法や蒸着法、湿式めっき法などで形成することができるが、平均結晶粒径や厚さの制御の容易性や生産性を考慮すれば、特に湿式めっき法を利用するのが好ましく、さらに電気めっき法であることがより好ましい。   The noble metal layer can be provided by a known method. The average crystal grain size of the noble metal layer is not particularly limited, but it is preferably formed to be 0.3 μm or more, more preferably 1.0 μm or more from the viewpoint of improving heat resistance. preferable. The noble metal layer can be formed by sputtering, vapor deposition, wet plating, etc. However, in consideration of ease of control of the average crystal grain size and thickness and productivity, the wet plating method is particularly used. Is more preferable, and electroplating is more preferable.

(平均粒径の測定方法)
なお、本発明における平均結晶粒径の測定は、断面観察により判定する。対象となる電気接点用貴金属被覆板材において、圧延平行断面をFIBにて切断することで、断面を露出した後、倍率を8000〜15000倍としてその断面をSIM観察する。次いで、得られた画像において、形成されている下地層部分の厚さ方向の中央部から基体平面方向に5μmの長さを線引きし、その線を下地層の結晶粒界が何本交差するかを観察し、5μmをその数で割ることにより結晶粒径と定義する。これを1視野当り任意箇所を3回測定し、合計で3視野、9箇所について行い数平均する。さらに下地層が複数層ある場合は、それぞれの層について測定を行い、その平均結晶粒径がいずれかの層が満足していればよい。これは、基体成分の拡散については結晶粒界が少ないことが拡散防止に効果的であることによる。従って平均結晶粒径が粗大である層が下地層として一層以上形成されていることが必要である。
(Measuring method of average particle size)
In addition, the measurement of the average crystal grain diameter in this invention is determined by cross-sectional observation. Oite electrical contacts for the precious metal cover plate of interest, the parallel to the rolling section by cutting in FIB, after exposing the cross section, the cross-sectional magnification as 8,000 to 15,000 times to SIM observation. Next, in the obtained image, a length of 5 μm is drawn in the base plane direction from the center portion in the thickness direction of the formed underlayer portion, and how many crystal grain boundaries of the underlayer intersect the line. Is defined as the crystal grain size by dividing 5 μm by the number. This is measured three times at an arbitrary position per field of view, and the number is averaged over 3 fields and 9 positions in total. Further, when there are a plurality of underlayers, the measurement is performed for each layer, and it is only necessary that one of the layers satisfies the average crystal grain size. This is because the diffusion of the base component is effective in preventing diffusion when the crystal grain boundary is small. Therefore, it is necessary that at least one layer having a coarse average crystal grain size is formed as an underlayer.

電気接点用貴金属被覆材の用途)
本発明にて得られた電気接点用貴金属被覆板材は、特に耐熱性に優れるので、結果的に各製造工程での熱履歴経過後の表層汚染が少なく、かつ長期信頼性に優れる。このため、コネクタ、摺動接点、タクトスイッチ、シートスイッチ、摺動接点などの電気的接続を必要とする電気接点に適用することで、長期信頼性に優れた電気接点材料として活用することができる。また、表層の基体成分の拡散が抑制されるため、例えばIC用リードフレームやQFN用リードフレームなどの半導体装置向けリードフレームや、LED、フォトカプラ・フォトインタラプタ用リードフレームなど、ワイヤボンディング性や半田濡れ性、さらには輝度劣化防止が望まれる光半導体装置用リードフレームにも好適に使用することができる。
(Application of electrical contacts for the precious metal covering plate material)
Since the precious metal-coated plate material for electrical contacts obtained in the present invention is particularly excellent in heat resistance, as a result, there is little surface layer contamination after the thermal history has elapsed in each manufacturing process, and excellent long-term reliability. For this reason, it can be used as an electrical contact material with excellent long-term reliability by applying it to electrical contacts that require electrical connection such as connectors, sliding contacts, tact switches, sheet switches, and sliding contacts. . In addition, since diffusion of the surface base component is suppressed, for example, lead frames for semiconductor devices such as IC lead frames and QFN lead frames, LED, photocoupler / photointerrupter lead frames, etc. It can also be suitably used for lead frames for optical semiconductor devices where wettability and further prevention of luminance degradation are desired.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.

実施例(発明例1〜3、5〜23、27〜29)
厚さ0.2mm、幅50mmの表1に示す導電性金属基体に対して、下記に示す前処理(電解脱脂・酸洗工程)を行った。その後、表1に示す下地層および貴金属層を下記に示す条件で施して表1に示す発明例、参考例を得た。ただし、銀めっきを行うものについては、銀ストライクめっきを行った。なお、下地層の結晶粒径の制御は、下地層を設ける際のめっき液において、添加剤中の化合物の硫黄・炭素・窒素・塩素の元素濃度を合計で1000ppm以下とすることによって行った。また、加えて、一部の試料には、圧延処理や熱処理を行った。
Examples (Invention Examples 1 to 3, 5 to 23, 27 to 29)
The following pretreatment (electrolytic degreasing / pickling step) was performed on the conductive metal substrate shown in Table 1 having a thickness of 0.2 mm and a width of 50 mm. Thereafter, the underlayer and the noble metal layer shown in Table 1 were applied under the conditions shown below to obtain Invention Examples and Reference Examples shown in Table 1. However, silver strike plating was performed for those subjected to silver plating. The crystal grain size of the underlayer was controlled by setting the total element concentrations of sulfur, carbon, nitrogen, and chlorine of the compound in the additive to 1000 ppm or less in the plating solution used when the underlayer was provided. In addition, some samples were subjected to rolling treatment and heat treatment.

圧延処理を実施した例では、下地層形成後に冷間圧延加工(日立製作所製6段圧延機使用、ワークロールの算術平均粗さRa≒0.03μm)を表1記載の加工率にて作製した。なお、圧延回数は1回とし、圧延後の板厚を0.2mmになるように初期の板厚を準備して施した。また、下地層の被覆厚は、加工率分を考慮して初期の被覆厚を厚く形成して準備した。このため、表1記載の被覆厚は、圧延加工後の被覆厚(μmで示した。)を示している。また熱処理を実施したものは、窒素還元雰囲気の管状炉を使用し、表1記載の熱処理温度および時間にて処理を行った。   In the example in which the rolling process was performed, after the underlayer was formed, a cold rolling process (using a six-high rolling mill manufactured by Hitachi, Ltd., arithmetic average roughness Ra of the work roll Ra≈0.03 μm) was produced at a processing rate described in Table 1. . The number of rolling was one, and the initial plate thickness was prepared and applied so that the plate thickness after rolling was 0.2 mm. In addition, the coating thickness of the underlayer was prepared by forming the initial coating thickness thick in consideration of the processing rate. For this reason, the coating thickness described in Table 1 represents the coating thickness after rolling (shown in μm). In addition, those subjected to heat treatment were treated at a heat treatment temperature and time shown in Table 1 using a tubular furnace in a nitrogen reducing atmosphere.

比較例1および従来例1、2
比較例1では、厚さ0.2mm、幅50mmの表1に示す導電性金属基体に対して、下記に示す前処理(電解脱脂・酸洗工程)を行った。その後、表1に示す下地層および貴金属層を下記に示す条件で施して表1に示す比較例を得た。このとき、下地層の結晶粒径の制御は、下地層を設ける際のめっき液において、添加剤中の化合物の硫黄・炭素・窒素・塩素の元素濃度を合計で1000ppm以上とすることによって行った。添加剤には、上村工業社製のPCニッケルを用いた。また従来例1は、特許文献1の実施例11を模擬して形成したものであり、また従来例2は、特開2011−214066に記載の実施例3の形態に金めっきしたものを準備した。
Comparative Example 1 and Conventional Examples 1 and 2
In Comparative Example 1, the following pretreatment (electrolytic degreasing / pickling step) was performed on the conductive metal substrate shown in Table 1 having a thickness of 0.2 mm and a width of 50 mm. Thereafter, the underlayer and the noble metal layer shown in Table 1 were applied under the conditions shown below to obtain comparative examples shown in Table 1. At this time, the crystal grain size of the underlayer was controlled by setting the total element concentration of sulfur, carbon, nitrogen, and chlorine in the additive in the plating solution for providing the underlayer to 1000 ppm or more. . PC nickel manufactured by Uemura Kogyo Co., Ltd. was used as the additive. Further, Conventional Example 1 was formed by simulating Example 11 of Patent Document 1, and Conventional Example 2 was prepared by gold plating in the form of Example 3 described in Japanese Patent Application Laid-Open No. 2011-214066. .

なお、発明例、参考例、比較例、従来例ともに、各被覆厚は蛍光X線膜厚測定装置(SFT−9400:SII社製)を使用し、コリメータ径0.5mmを使用して任意の箇所10点を測定し、その平均値を算出することで被覆厚とした。さらに下地層の平均結晶粒径を判定するため、FIBにより圧延方向平行断面試料を3視野作製後、SIM像観察を行って、下地層の面方向における長さ5μmを横切る粒界の数を1視野当り3箇所について数え、それをもとに合計9箇所の粒径を算出し、その平均値を示した。
In each of the invention examples , reference examples , comparative examples, and conventional examples, each coating thickness can be arbitrarily determined using a fluorescent X-ray film thickness measuring device (SFT-9400: manufactured by SII) and a collimator diameter of 0.5 mm. Ten points were measured, and the average value was calculated as the coating thickness. Further, in order to determine the average crystal grain size of the underlayer, three views of the rolling direction parallel cross section sample were prepared by FIB, and then the SIM image was observed, and the number of grain boundaries crossing the length of 5 μm in the plane direction of the underlayer was set to 1. The number of particles per field of view was counted, and the particle diameters at a total of 9 locations were calculated based on the counted values, and the average value was shown.

(前処理条件)
[カソード電解脱脂]
脱脂液:NaOH 60g/リットル
脱脂条件:2.5A/dm、温度60℃、脱脂時間60秒
[酸洗]
酸洗液:10%硫酸
酸洗条件:30秒 浸漬、室温
[Agストライクめっき]
めっき液:KAg(CN) 4.45g/リットル、KCN 60g/リットル
めっき条件:電流密度 5A/dm、温度 25℃
(Pretreatment conditions)
[Cathode electrolytic degreasing]
Degreasing solution: NaOH 60 g / liter Degreasing conditions: 2.5 A / dm 2 , temperature 60 ° C., degreasing time 60 seconds [pickling]
Pickling solution: 10% sulfuric acid pickling condition: 30 seconds immersion, room temperature [Ag strike plating]
Plating solution: KAg (CN) 2 4.45 g / liter, KCN 60 g / liter Plating condition: current density 5 A / dm 2 , temperature 25 ° C.

(下地層めっき条件)
[Niめっき]
めっき液:Ni(SONH・4HO 500g/リットル、NiCl 30g/リットル、HBO 30g/リットル
めっき条件:温度 50℃
[Coめっき]
めっき液:Co(SONH・4HO 500g/リットル、CoCl 30g/リットル、HBO 30g/リットル
めっき条件:温度 50℃
(Underlayer plating conditions)
[Ni plating]
Plating solution: Ni (SO 3 NH 2) 2 · 4H 2 O 500g / l, NiCl 2 30 g / l, H 3 BO 3 30g / l Plating Conditions: Temperature 50 ° C.
[Co plating]
Plating solution: Co (SO 3 NH 2) 2 · 4H 2 O 500g / l, CoCl 2 30 g / l, H 3 BO 3 30g / l Plating Conditions: Temperature 50 ° C.

(最表層めっき条件)
[Auめっき]
めっき液:KAu(CN) 14.6g/リットル、C 150g/リットル、K 180g/リットル
めっき条件:温度 40℃
[Pdめっき]
めっき液:Pd(NHCl 45g/リットル、NHOH 90ミリリットル/リットル、(NHSO 50g/リットル
めっき条件:温度 30℃
[Ptめっき]
めっき液:Pt(NO)(NH 10g/リットル、NaNO 10g/リットル、NHNO 100g/リットル、NH 50ミリリットル/リットル
めっき条件:温度 80℃
[Rhめっき]
めっき液:RHODEX(商品名、日本エレクトロプレイティングエンジニヤース(株)製)
めっき条件:温度 50℃
[Agめっき]無光沢めっき浴
めっき液:AgCN 50g/リットル、KCN 100g/リットル、KCO 30g/リットル
めっき条件:温度 30℃
(Outermost layer plating conditions)
[Au plating]
Plating solution: KAu (CN) 2 14.6 g / liter, C 6 H 8 O 7 150 g / liter, K 2 C 6 H 4 O 7 180 g / liter Plating condition: temperature 40 ° C.
[Pd plating]
Plating solution: Pd (NH 3 ) 2 Cl 2 45 g / liter, NH 4 OH 90 ml / liter, (NH 4 ) 2 SO 4 50 g / liter Plating condition: temperature 30 ° C.
[Pt plating]
Plating solution: Pt (NO 2 ) (NH 3 ) 2 10 g / liter, NaNO 2 10 g / liter, NH 4 NO 3 100 g / liter, NH 3 50 ml / liter Plating condition: temperature 80 ° C.
[Rh plating]
Plating solution: RHODEX (trade name, manufactured by Nippon Electroplating Engineers Co., Ltd.)
Plating conditions: temperature 50 ° C
[Ag plating] Matte plating bath Plating solution: AgCN 50 g / liter, KCN 100 g / liter, K 2 CO 3 30 g / liter Plating condition: temperature 30 ° C.

このようにして得られた発明例、参考例、比較例、従来例の電気接点用貴金属被覆板材について下記のようにして各特性試験を行った。
(1A)接触抵抗測定:4端子法にて、最表層形成後の接触抵抗測定を実施した。測定は、最表層形成直後および250℃−16hr.の熱処理を大気雰囲気にて高温槽で処理後の2水準とし、熱処理前後の接触特性について評価を行った。評価は、半径2mmのAgプローブを使用し、10mA通電、荷重10gfで測定点10点の平均値を算出して接触抵抗を測定した。
(1B)AES(オージェ)分析:前記加熱試験後の試験片について、最表層の分析をオージェ分光分析装置(アルバック社製)を用いて測定した。測定は、最表層の定性分析を実施し、その表層に拡散して検出された基体成分量を原子%にて表示した。なお、銅または銅合金の場合は銅の濃度を、鉄または鉄合金の場合は鉄の濃度について測定している。
(1C)曲げ加工性:各試料について、曲げ加工半径0.4mmにてV曲げ試験を圧延筋に対して直角方向に実施後、その頂上部をマイクロスコープ(VHX200;キーエンス社製)にて観察倍率200倍で観察を行い、割れが認められなかったものを「優」として「○」で示し、軽微な割れが生じているものを「可」として「△」で示し、比較的大きな割れが生じたものを「不可」として「×」で表1に示した。
Each characteristic test was performed as follows for the noble metal-coated plate materials for electrical contacts of the invention examples , reference examples , comparative examples, and conventional examples thus obtained.
(1A) Contact resistance measurement: Contact resistance measurement after forming the outermost layer was carried out by a four-terminal method. The measurement was performed immediately after the formation of the outermost layer and at 250 ° C. for 16 hours. The heat treatment was performed at two levels after treatment in a high-temperature bath in an air atmosphere, and the contact characteristics before and after the heat treatment were evaluated. For the evaluation, an Ag probe having a radius of 2 mm was used, and an average value of 10 measurement points was calculated with 10 mA energization and a load of 10 gf to measure contact resistance.
(1B) AES (Auger) analysis: About the test piece after the said heating test, the analysis of the outermost layer was measured using the Auger spectroscopic analyzer (made by ULVAC). In the measurement, the qualitative analysis of the outermost layer was performed, and the amount of the substrate component detected by diffusing to the outer layer was displayed in atomic%. In the case of copper or copper alloy, the concentration of copper is measured, and in the case of iron or iron alloy, the concentration of iron is measured.
(1C) Bending workability: For each sample, a V-bending test was performed at a bending radius of 0.4 mm in a direction perpendicular to the rolling rebar, and the top of the specimen was observed with a microscope (VHX200; manufactured by Keyence Corporation). Observed at a magnification of 200 times, those with no cracks were marked as “Excellent” with “O”, those with minor cracks were marked with “Good” with “△”, and relatively large cracks were observed The result was shown as “impossible” as “x” in Table 1.

表1の結果より以下のことが明らかである。
比較例1では下地層の平均結晶粒径が0.3μm未満であるので、高温下での接触抵抗が時間の経過によって大きく上昇し、最表層中への基体成分の拡散量が著しく多い。従来例1においても下地層の平均結晶粒径が0.3μmに達せず、接触抵抗が高温下、時間の経過によって大きく上昇し、最表層中への基体成分の拡散量が多い。従来例2において従来例1と同様、接触抵抗が高温下、時間の経過によって大きく上昇した。また最表層中への基体成分の拡散量が著しく多く、加えて、曲げ加工性試験において割れが生じ実用性がない。
From the results in Table 1, the following is clear.
In Comparative Example 1, since the average crystal grain size of the underlayer is less than 0.3 μm, the contact resistance at a high temperature greatly increases with the passage of time, and the amount of diffusion of the base component into the outermost layer is extremely large. Also in Conventional Example 1, the average crystal grain size of the underlayer does not reach 0.3 μm, the contact resistance greatly increases with the passage of time at a high temperature, and the diffusion amount of the base component into the outermost layer is large. In Conventional Example 2, as in Conventional Example 1, the contact resistance greatly increased over time at high temperatures. Further, the diffusion amount of the base component into the outermost layer is remarkably large, and in addition, cracking occurs in the bending workability test, which is not practical.

これに対し、本発明例1〜3、5〜23、27〜29では最初の加熱前の接触抵抗は、高温加熱下で、時間の経過によって大きく上昇することがない。また、最表層中への基体成分の拡散量も少なく、曲げ加工性も、優れるか、実用上問題とならないという優れた性能を示した。また、本発明例15は最表層の金の被覆厚を著しく薄膜化したにもかかわらず、接触抵抗が高温加熱下で、時間の経過によって大きく上昇することがなく、最表層中への基体成分の拡散量も少なく、曲げ加工性が優れる。
On the other hand, in the inventive examples 1 to 3 , 5 to 23 , and 27 to 29, the contact resistance before the first heating does not increase greatly with the passage of time under high temperature heating. Moreover, the diffusion amount of the base component into the outermost layer was small, and the bending performance was excellent or showed an excellent performance that was not a problem in practical use. Further, in Example 15 of the present invention, the contact resistance does not increase greatly with time under high-temperature heating even though the gold coating thickness of the outermost layer is remarkably reduced. The amount of diffusion is small and bending workability is excellent.


Figure 0006324085
Figure 0006324085

Claims (4)

導電性金属基体上の最表面に貴金属層を有する電気接点用貴金属被覆板材であって、
前記貴金属層が、金、金合金、銀、銀合金、白金、白金合金、パラジウム、パラジウム合金、ロジウム又はロジウム合金のうち、いずれか1層以上からなり、
前記貴金属層の厚さが、0.001〜1.10μmであり、
前記導電性金属基体と前記貴金属層との間に、ニッケル、ニッケル合金、コバルト又はコバルト合金のうちいずれか1層以上からなる下地層を有しており、
前記下地層の厚さが、0.010〜1.10μmであり、
前記下地層の平均結晶粒径が0.3μm以上4.5μm以下であり、
250℃16時間保持後の接触抵抗が10mΩ以下である
ことを特徴とする電気接点用貴金属被覆板材。
A precious metal-coated plate material for electrical contacts having a precious metal layer on the outermost surface on a conductive metal substrate,
The noble metal layer is composed of any one or more of gold, gold alloy, silver, silver alloy, platinum, platinum alloy, palladium, palladium alloy, rhodium or rhodium alloy,
The noble metal layer has a thickness of 0.001-1.10 μm;
Between the conductive metal substrate and the noble metal layer, has an underlayer consisting of one or more of nickel, nickel alloy, cobalt or cobalt alloy ,
The underlayer has a thickness of 0.010 to 1.10 μm;
The average crystal grain size of the underlayer is Ri der than 4.5μm or less 0.3 [mu] m,
The precious metal-coated plate material for electrical contacts, wherein the contact resistance after holding at 250C for 16 hours is 10 mΩ or less .
前記導電性金属基体が、銅または銅合金、鉄または鉄合金、あるいはアルミニウムまたはアルミニウム合金からなる、請求項1に記載の電気接点用貴金属被覆板材 The noble metal covering plate material for electrical contacts according to claim 1, wherein the conductive metal substrate is made of copper or a copper alloy, iron or an iron alloy, or aluminum or an aluminum alloy . 請求項1又は2に記載の電気接点用貴金属被覆板材を製造する方法であって、
電気めっき法にて導電性金属基体上に下地層を形成する際、添加剤中の化合物の硫黄、炭素、窒素、塩素の元素濃度を合計で1000ppm以下とし、かつ、前記下地層を形成する際の電気めっきの電流密度を10A/dm未満として、前記下地層を形成した後、50〜150℃で0.08〜3時間の熱処理を行うか、又は、加工率10%以上で圧延加工することを特徴とする、電気接点用貴金属被覆板材の製造方法。
A method for producing a precious metal-coated plate material for electrical contacts according to claim 1 or 2 ,
When forming an underlayer on a conductive metal substrate by electroplating, the total element concentration of sulfur, carbon, nitrogen, and chlorine in the compound in the additive is 1000 ppm or less, and the underlayer is formed. The current density of electroplating is less than 10 A / dm 2 and, after forming the base layer, heat treatment is performed at 50 to 150 ° C. for 0.08 to 3 hours, or rolling is performed at a processing rate of 10% or more. A method for producing a precious metal-coated plate material for electrical contacts.
前記下地層を形成する際の電気めっきの電流密度を10A/dm以上とし、
前記下地層を形成した後、50〜150℃で0.08〜3時間の熱処理を行う、又は、加工率10%以上で圧延加工する、請求項に記載の電気接点用貴金属被覆板材の製造方法。
The current density of electroplating when forming the underlayer is 10 A / dm 2 or more,
After the said base layer is formed, manufacture of the noble metal coating | cover board | plate material for electrical contacts of Claim 3 which heat-processes at 50-150 degreeC for 0.08-3 hours, or is rolled with a process rate of 10% or more. Method.
JP2014011715A 2014-01-24 2014-01-24 Precious metal-coated plate material for electrical contacts and method for producing the same Active JP6324085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011715A JP6324085B2 (en) 2014-01-24 2014-01-24 Precious metal-coated plate material for electrical contacts and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011715A JP6324085B2 (en) 2014-01-24 2014-01-24 Precious metal-coated plate material for electrical contacts and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015137421A JP2015137421A (en) 2015-07-30
JP6324085B2 true JP6324085B2 (en) 2018-05-16

Family

ID=53768642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011715A Active JP6324085B2 (en) 2014-01-24 2014-01-24 Precious metal-coated plate material for electrical contacts and method for producing the same

Country Status (1)

Country Link
JP (1) JP6324085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7379642B2 (en) 2018-05-23 2023-11-14 横河電機株式会社 Measuring instrument

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150028A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Copper terminal material with plating and terminal
WO2017153392A1 (en) * 2016-03-08 2017-09-14 Roche Diagnostics Gmbh Test element analysis system
JP6738675B2 (en) * 2016-07-12 2020-08-12 古河電気工業株式会社 Surface treatment material
JP6942479B2 (en) * 2017-02-09 2021-09-29 三菱マテリアル株式会社 Copper terminal material and its manufacturing method
JP6809265B2 (en) * 2017-02-09 2021-01-06 三菱マテリアル株式会社 Manufacturing method of copper terminal material with precious metal layer
JP7121881B2 (en) 2017-08-08 2022-08-19 三菱マテリアル株式会社 Terminal material with silver film and terminal with silver film
WO2019031549A1 (en) 2017-08-08 2019-02-14 三菱マテリアル株式会社 Terminal material with silver coating film, and terminal with silver coating film
FR3074193B1 (en) * 2017-11-28 2020-07-10 Linxens Holding ELECTRICAL CIRCUIT, ELECTRONIC MODULE FOR A CHIP CARD REALIZED ON THIS ELECTRICAL CIRCUIT AND METHOD FOR THE PRODUCTION OF SUCH AN ELECTRICAL CIRCUIT.
JP7068899B2 (en) * 2018-04-03 2022-05-17 日本エレクトロプレイテイング・エンジニヤース株式会社 Rhodium phosphorus plating film and laminate material
JP2023092352A (en) * 2021-12-21 2023-07-03 Dowaメタルテック株式会社 Composite material, production method of composite material, and terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303594B2 (en) * 1995-04-11 2002-07-22 古河電気工業株式会社 Heat-resistant silver-coated composite and method for producing the same
JP3481392B2 (en) * 1996-06-13 2003-12-22 古河電気工業株式会社 Electronic component lead member and method of manufacturing the same
JP2008169408A (en) * 2007-01-09 2008-07-24 Auto Network Gijutsu Kenkyusho:Kk Silver-plated terminal for connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7379642B2 (en) 2018-05-23 2023-11-14 横河電機株式会社 Measuring instrument

Also Published As

Publication number Publication date
JP2015137421A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6324085B2 (en) Precious metal-coated plate material for electrical contacts and method for producing the same
EP3187627B1 (en) Conductive material for connection parts which has excellent fretting wear resistance
CA2849410C (en) Metal material for electronic component and method for manufacturing the same
KR102196605B1 (en) Copper alloy sheet strip with surface coating layer having superior heat resistance
EP3109347B1 (en) Copper alloy sheet strip with surface coating layer excellent in heat resistance
KR102471172B1 (en) Surface treatment material, its manufacturing method, and parts formed using the surface treatment material
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
EP2905357A1 (en) Metal material for use in electronic component, and method for producing same
EP2905356B1 (en) Metal material for use in electronic component
US10998108B2 (en) Electrical contact material, method of producing an electrical contact material, and terminal
TW201830627A (en) Lead frame member and method for manufacturing same, and semiconductor package
JP4427487B2 (en) Tin-coated electrical connector
JP7272224B2 (en) Terminal materials for connectors
JP2009215632A (en) Metallic material for electric contact component
TWI557750B (en) Electrical contact material and manufacturing method thereof
JP6134557B2 (en) Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP2013036072A (en) Coated composite material for moving contact part, moving contact part, switch, and method for production thereof
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
JP5155139B2 (en) Tin-coated electrical connector
JP6099672B2 (en) Electrode material for thermal fuse and method for manufacturing the same
JP2018129226A (en) Copper terminal material and method for manufacturing the same
JP2008202144A (en) Rolled sheet material
JP6230732B2 (en) Conductive strip and manufacturing method thereof
JP2009057581A (en) Electroconductive member and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171017

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R151 Written notification of patent or utility model registration

Ref document number: 6324085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350