JP2013036072A - Coated composite material for moving contact part, moving contact part, switch, and method for production thereof - Google Patents

Coated composite material for moving contact part, moving contact part, switch, and method for production thereof Download PDF

Info

Publication number
JP2013036072A
JP2013036072A JP2011171627A JP2011171627A JP2013036072A JP 2013036072 A JP2013036072 A JP 2013036072A JP 2011171627 A JP2011171627 A JP 2011171627A JP 2011171627 A JP2011171627 A JP 2011171627A JP 2013036072 A JP2013036072 A JP 2013036072A
Authority
JP
Japan
Prior art keywords
silver
alloy
contact part
movable contact
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011171627A
Other languages
Japanese (ja)
Other versions
JP5749113B2 (en
Inventor
Satoshi Suzuki
智 鈴木
Akira Matsuda
晃 松田
Yoshiaki Kobayashi
良聡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011171627A priority Critical patent/JP5749113B2/en
Publication of JP2013036072A publication Critical patent/JP2013036072A/en
Application granted granted Critical
Publication of JP5749113B2 publication Critical patent/JP5749113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silver-coated composite material for a moving contact part, in which the adhesion of a plating film is well resistant to repeated shear stress, the contact resistance remains low and stable over a long term, and the life of a switch is improved, and to provide a moving contact part.SOLUTION: In the silver-coated composite material for a moving contact part, an undercoat comprising any one of nickel, cobalt, a nickel alloy, and a cobalt alloy is formed on at least a part of the surface of a stainless steel substrate, an intermediate layer comprising copper or a copper alloy is formed thereon, and a silver or silver alloy layer as the outermost layer is formed thereon, wherein the thickness of the intermediate layer is 0.05-0.3 μm, and the average crystal grain diameter of the silver or the silver alloy formed as the outermost layer is 0.5-5.0 μm.

Description

本発明は、電気接点部品およびその材料に関し、更に詳しくは、電子機器等に用いられる小型スイッチ内の可動接点に使用される可動接点部品用銀被覆複合材および可動接点部品ならびにその製造方法に関する。   The present invention relates to an electrical contact component and a material thereof, and more particularly to a silver-coated composite material for a movable contact component and a movable contact component used for a movable contact in a small switch used in an electronic device or the like, and a manufacturing method thereof.

コネクター、スイッチ、端子などの電気接点部には主に皿バネ接点、ブラシ接点およびクリップ接点が用いられている。これら接点部品には、銅合金やステンレス鋼などの耐食性や機械的性質などに優れた基材に、電気特性と半田付け性に優れる銀を被覆した複合接点材料が多用されている。   A disc spring contact, a brush contact, and a clip contact are mainly used for electrical contact portions such as connectors, switches, and terminals. For these contact parts, a composite contact material in which a base material excellent in corrosion resistance and mechanical properties such as copper alloy and stainless steel is coated with silver excellent in electrical characteristics and solderability is frequently used.

この複合接点材料のうち、基材にステンレス鋼を用いたものは、基材に銅合金を用いたものと比較して、機械的特性や疲労寿命などに優れるため、接点の小型化が可能であり、長寿命のタクティルプッシュスイッチや検出スイッチなどの可動接点に使用されている。近年では、携帯電話のプッシュボタンに多用されており、メール機能やインターネット機能の充実によって、スイッチの動作回数が激増しており、長寿命の可動接点部品が求められている。   Of these composite contact materials, those using stainless steel as the base material are superior in mechanical properties and fatigue life to those using a copper alloy as the base material. It is used for movable contacts such as long-acting tactile push switches and detection switches. In recent years, it has been frequently used for push buttons of mobile phones. Due to the enhancement of mail functions and Internet functions, the number of switch operations has increased dramatically, and long-life movable contact parts are required.

基材にステンレス鋼を用いた複合接点材料は、基材に銅合金を用いた複合接点材料に比べて、可動接点部品の小型化が可能なためスイッチの小型化ができ、更に動作回数を増加させることが可能であるが、スイッチの接点圧力が大きくなり、可動接点部品に被覆された銀の摩耗や、動作回数の大幅な増大による接点寿命の低下が問題になっている。   Compared to composite contact materials using copper alloy as the base material, the composite contact material using stainless steel as the base material can reduce the size of the movable contact parts, thereby miniaturizing the switch and increasing the number of operations. However, the contact pressure of the switch is increased, and there is a problem of wear of silver coated on the movable contact parts and a decrease in contact life due to a significant increase in the number of operations.

例えば、ステンレス条に銀または銀合金を被覆した複合接点材料として、下地にニッケルめっきを施したものが多用されている(例えば、特許文献1参照)。だが、これをスイッチに利用する場合、スイッチの動作回数が増加するにつれて、接点部の銀が摩耗によって削れ、下地のニッケルめっき層が露出して接触抵抗が上昇し、導通がとれなくなる不具合が顕在化している。特に、小径のドーム型可動接点部品では、この現象が起こり易く、益々小型化するスイッチには大きな技術課題になっている。   For example, as a composite contact material in which a silver strip or a silver alloy is coated on a stainless steel strip, a material obtained by applying nickel plating to a base is frequently used (for example, see Patent Document 1). However, when this is used for a switch, as the number of switch operations increases, the silver at the contact part is scraped off due to wear, the underlying nickel plating layer is exposed, the contact resistance increases, and there is a problem that conduction cannot be achieved. It has become. In particular, this phenomenon is likely to occur in small-diameter dome-shaped movable contact parts, which is a major technical problem for switches that are becoming increasingly smaller.

この問題を解決するために、基材の上にニッケルめっき層、パラジウムめっきを順に施し、その上に金めっきを施した複合接点材料がある(例えば、特許文献2参照)。しかし、パラジウムめっき皮膜は硬いために、スイッチの動作回数が増加するとクラックを生じやすい問題がある。   In order to solve this problem, there is a composite contact material in which a nickel plating layer and a palladium plating are sequentially applied on a base material, and then gold plating is applied thereon (see, for example, Patent Document 2). However, since the palladium plating film is hard, there is a problem that cracks are likely to occur when the number of switch operations increases.

また、導電性を向上させる目的で、ステンレス基材にニッケルめっき、銅めっき、ニッケルめっき、金めっきを順に施したものがある(特許文献3参照)。しかし、ニッケルめっき自体は耐食性に優れるが、硬いため曲げ加工時に銅めっき層と金めっき層との間にニッケルめっき層にクラックが発生することがあり、その結果、銅めっき層が露出して耐食性が劣化するという問題がある。   In addition, there is one in which nickel plating, copper plating, nickel plating, and gold plating are sequentially applied to a stainless steel base for the purpose of improving conductivity (see Patent Document 3). However, although nickel plating itself is excellent in corrosion resistance, since it is hard, cracks may occur in the nickel plating layer between the copper plating layer and the gold plating layer during bending, and as a result, the copper plating layer is exposed and corrosion resistance There is a problem of deterioration.

また、接点寿命を向上させる技術として、ステンレス基材にニッケルめっき、銅めっき、銀めっきを順次施すものがある(特許文献4〜6参照)。これらの技術において、接点寿命の向上を試みた。その結果、接点モジュール形成時の半田付けを模擬した熱処理(例えば温度260℃で5分間)後の初期接触抵抗値や、100万回に及ぶ打鍵テストを行った後の接触抵抗値を測定したところ、熱処理後の接触抵抗値が高いために製品として使用できない水準のものが数多く出現した。このことは、製品に組み込んだ際の不良率が多くなることを示しており、単にステンレス基材の上に下地ニッケル層、中間銅層、銀最表層の順に所定の厚さで形成するだけでは、熱履歴後および打鍵後の接点特性や接触寿命が不十分であることがわかった。特に、モジュール形成や半田付け等の工程にて、銀を透過した酸素により下地層の酸化が発生し、その後の繰り返し歪を発生させる打鍵テストで銀めっき層の剥離を誘発させていた。   In addition, as a technology for improving the contact life, there is a technique in which nickel plating, copper plating, and silver plating are sequentially applied to a stainless steel substrate (see Patent Documents 4 to 6). In these technologies, attempts were made to improve the contact life. As a result, the initial contact resistance value after heat treatment simulating soldering at the time of contact module formation (for example, at a temperature of 260 ° C. for 5 minutes) and the contact resistance value after performing a keystroke test for 1 million times were measured. Many products that cannot be used as products due to high contact resistance after heat treatment have appeared. This indicates that the defect rate when incorporated into a product increases, and simply forming a base nickel layer, an intermediate copper layer, and a silver outermost layer in a predetermined thickness on a stainless steel substrate in that order. It was found that the contact characteristics and contact life after heat history and keystroke were insufficient. In particular, in the process of module formation, soldering, and the like, oxidation of the base layer is generated by oxygen that has permeated silver, and then the peeling of the silver plating layer is induced by a key-pressing test that generates repeated strain.

また、接点寿命を向上させる技術として、銅または銅合金から成る条材の表面が銀または銀合金から成る層で被覆されている電気接点材料において、前記銀または銀合金の結晶粒径が、平均値で5μm以上であることを特徴とする電気接点材料が提供され、また、銅または銅合金から成る条材の表面に銀または銀合金のめっき層を形成し、ついで、非酸化性ガス雰囲気において、400℃以上の温度で熱処理を行うことを特徴とする電気接点材料の製造方法が開示されている(特許文献7)。しかしながら、ステンレス条に銀または銀合金を被覆した複合接点材料に対して、銀または銀合金の結晶粒径を5μm以上に制御するために400℃以上の熱処理を行うと、ステンレス条のばね特性が劣化して可動接点用材料としては適用できないことがわかった。さらに中間層にはニッケルまたはニッケル合金が使用されており、下地層の上層として中間層に銅成分が存在する構成は開示されていない。   Further, as a technique for improving the contact life, in an electrical contact material in which the surface of a strip made of copper or a copper alloy is coated with a layer made of silver or a silver alloy, the crystal grain size of the silver or the silver alloy has an average An electrical contact material characterized by having a value of 5 μm or more is provided, and a silver or silver alloy plating layer is formed on the surface of the strip made of copper or copper alloy, and then in a non-oxidizing gas atmosphere , A method for producing an electrical contact material, characterized in that heat treatment is performed at a temperature of 400 ° C. or higher (Patent Document 7). However, if a composite contact material in which silver or a silver alloy is coated on a stainless steel strip is subjected to heat treatment at 400 ° C. or higher in order to control the crystal grain size of the silver or silver alloy to 5 μm or more, the spring characteristics of the stainless steel strip are It was found that the material was deteriorated and could not be applied as a movable contact material. Furthermore, nickel or a nickel alloy is used for the intermediate layer, and a configuration in which a copper component is present in the intermediate layer as an upper layer of the underlayer is not disclosed.

特開昭59−219945号公報JP 59-219945 A 特開平11−232950号公報Japanese Patent Laid-Open No. 11-232950 特開昭63−137193号公報JP-A-63-137193 特開2004−263274号公報JP 2004-263274 A 特開2005−002400号公報JP 2005-002400 A 特開2005−133169号公報JP 2005-133169 A 特開平05−002940号公報JP 05-002940 A

本発明は可動接点部品用の複合材として、繰り返すせん断応力に対してもめっきの密着性に優れ、接触抵抗値が長期に渡って低く安定し、スイッチの寿命が改善された可動接点部品用銀被覆複合材および可動接点部品、スイッチの提供を目的とする。   As a composite material for movable contact parts, the present invention provides a silver for movable contact parts that has excellent plating adhesion even against repeated shear stress, a low and stable contact resistance value over a long period of time, and an improved switch life. An object is to provide a covering composite material, a movable contact part, and a switch.

本発明者らは上記課題に鑑み鋭意研究した結果、ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層が形成され、その上層に銅または銅合金からなる中間層が形成され、さらにその上層に銀または銀合金層が最表層として形成されている可動接点部品用銀被覆複合材において、最表層に形成された銀または銀合金の平均結晶粒径を、0.5μm以上に制御することによって、繰り返すせん断応力に対してもめっきの密着性に優れ、熱履歴後においても接触抵抗値が低く、かつ長期にわたって接触抵抗が低く安定に保つことができることを見出した。また、中間層に形成されている銅または銅合金の厚さを0.05〜0.3μmの範囲で制御することにより、上記結晶粒径制御の効果がより一層高まることを見出し、本発明に至った。   As a result of intensive studies in view of the above problems, the present inventors have formed a base layer made of nickel, cobalt, nickel alloy, or cobalt alloy on at least a part of the surface of the stainless steel substrate, and copper or copper on the upper layer. An average crystal of silver or silver alloy formed on the outermost layer in the silver-coated composite material for movable contact parts, in which an intermediate layer made of a copper alloy is formed and a silver or silver alloy layer is further formed on the upper layer. By controlling the particle size to 0.5 μm or more, it has excellent plating adhesion even against repeated shear stress, low contact resistance even after thermal history, and low and stable contact resistance over a long period of time I found out that I can. Further, the present inventors have found that the effect of controlling the crystal grain size is further enhanced by controlling the thickness of the copper or copper alloy formed in the intermediate layer in the range of 0.05 to 0.3 μm. It came.

本発明は、以下の解決手段を提供するものである。
(1)ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層が形成され、その上層に銅または銅合金からなる中間層が形成され、さらに中間層の上層に銀または銀合金層が最表層として形成されている可動接点部品用銀被覆複合材であって、前記中間層の厚さが0.05〜0.3μmであり、かつ前記最表層に形成された銀または銀合金の平均結晶粒径が0.5μm以上であることを特徴とする、可動接点部品用銀被覆複合材。
(2)前記最表層の厚さが、0.3〜2.0μmであることを特徴とする、(1)記載の可動接点部品用銀被覆複合材。
(3)(1)または(2)に記載の可動接点部品用銀被覆複合材が加工されて形成された可動接点部品であって、接点部分がドーム状または凸形状に形成されたことを特徴とする可動接点部品。
(4)(3)に記載の可動接点部品を用いたスイッチであって、前記可動接点部品および前記可動接点部品と接続される固定接点が、樹脂ケース中に組み込まれていることを特徴とするスイッチ。
(5)ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層を形成し、その上層に銅または銅合金からなる中間層を形成し、さらに中間層の上層に銀または銀合金層を最表層として形成する可動接点部品用銀被覆複合材の製造方法であって、前記最表層を形成する銀および銀合金めっきは、その陰極電流密度を許容電流密度の80%以上で行うことを特徴とする可動接点部品用銀被覆複合材の製造方法。
(6)前記銀および銀合金めっき後に通電加熱を施すことを特徴とする(5)記載の可動接点部品用銀被覆複合材の製造方法。
(7)前記通電加熱は、銀および銀合金めっき電解槽と当該電解槽の出側に配置した給電装置との間で実施することを特徴とする(6)記載の可動接点部品用銀被覆複合材の製造方法。
(8)前記の通電加熱を条材の断面積1mm当り4A以上の電流で行うことを特徴とする(6)または(7)記載の可動接点部品用銀被覆複合材の製造方法。
The present invention provides the following solutions.
(1) A base layer made of nickel, cobalt, a nickel alloy, or a cobalt alloy is formed on at least a part of the surface of the stainless steel substrate, and an intermediate layer made of copper or a copper alloy is formed thereon, and A silver-coated composite material for a movable contact part in which a silver or silver alloy layer is formed as an outermost layer on an intermediate layer, wherein the intermediate layer has a thickness of 0.05 to 0.3 μm, and A silver-coated composite material for movable contact parts, wherein an average crystal grain size of silver or a silver alloy formed on a surface layer is 0.5 μm or more.
(2) The silver-coated composite material for movable contact parts according to (1), wherein the thickness of the outermost layer is 0.3 to 2.0 μm.
(3) A movable contact part formed by processing the silver-coated composite material for a movable contact part according to (1) or (2), wherein the contact part is formed in a dome shape or a convex shape. Movable contact parts.
(4) A switch using the movable contact component according to (3), wherein the movable contact component and a fixed contact connected to the movable contact component are incorporated in a resin case. switch.
(5) forming an underlayer made of nickel, cobalt, nickel alloy or cobalt alloy on at least a part of the surface of the stainless steel substrate, and forming an intermediate layer made of copper or copper alloy on the upper layer; A method for producing a silver-coated composite material for a movable contact part, in which a silver or silver alloy layer is formed as an outermost layer on an intermediate layer, wherein the silver and silver alloy plating forming the outermost layer allows its cathode current density. A method for producing a silver-coated composite material for movable contact parts, wherein the method is performed at 80% or more of the current density.
(6) The method for producing a silver-coated composite material for a movable contact part according to (5), wherein the heating is performed after the silver and silver alloy plating.
(7) The current-carrying heating is carried out between a silver and silver alloy plating electrolytic cell and a power supply device disposed on the outlet side of the electrolytic cell. The silver-coated composite for movable contact parts according to (6) A method of manufacturing the material.
(8) The method for producing a silver-coated composite material for a movable contact part according to (6) or (7), wherein the energization heating is performed with a current of 4 A or more per 1 mm 2 of a cross-sectional area of the strip.

本発明の可動接点部品用銀被覆複合材は、従来の可動接点材料に比べて、繰り返しせん断応力に対して銀被覆層の密着力が低下しない。そして、スイッチ形成時の熱履歴や、スイッチの開閉動作においても接触抵抗値が長期にわたって低く安定に保たれることによって、スイッチの寿命がより一層改善された可動接点部品用銀被覆複合材が提供できる。
また、本発明の可動接点部品は、前記可動接点部品用銀被覆複合材を加工したものであり、ドーム状や凸形状に加工した後の各層の割れの発生が抑制される。よって、接触抵抗値が長期にわたって低く安定に保たれ、接点寿命の長い可動接点部品となる。特に、繰り返しせん断応力がかかるドーム状接点では効果が大きい。
Compared with the conventional movable contact material, the silver-coated composite material for movable contact parts of the present invention does not reduce the adhesion of the silver coating layer against repeated shear stress. In addition, a silver-coated composite material for movable contact parts that further improves the life of the switch is provided by keeping the contact resistance value low and stable over a long period of time, even during switch formation and when the switch is opened and closed. it can.
Moreover, the movable contact part of this invention processes the said silver covering composite material for movable contact parts, and generation | occurrence | production of the crack of each layer after processing into a dome shape or convex shape is suppressed. Therefore, the contact resistance value is kept low and stable over a long period of time, and the movable contact part has a long contact life. In particular, the effect is large in a dome-shaped contact where a repeated shear stress is applied.

めっき装置の概略構成の好ましい一例を示したブロック図である。It is the block diagram which showed a preferable example of schematic structure of a plating apparatus. 打鍵試験に用いたスイッチの平面図である。It is a top view of the switch used for the keystroke test. 打鍵試験に用いたスイッチの平面図におけるA−A線断面図と押圧方向を示すもので、(a)はスイッチ動作前、(b)はスイッチ動作時である。The AA sectional view and pressing direction in the top view of the switch used for the keystroke test are shown, (a) before the switch operation, (b) at the time of the switch operation. 本発明の可動接点部品用銀被覆複合材をEBSDで観察した写真であり、平均結晶粒径が約0.6μmである例を示す。It is the photograph which observed the silver coating composite material for movable contact parts of this invention by EBSD, and shows the example whose average crystal grain diameter is about 0.6 micrometer. 従来の可動接点部品用銀被覆複合材をEBSDで観察した写真であり、平均結晶粒径が約0.2μmである例を示す。It is the photograph which observed the conventional silver covering composite material for movable contact parts by EBSD, and shows the example whose average crystal grain size is about 0.2 micrometer.

本発明の可動接点部品用銀被覆複合材および可動接点部品について、好ましい実施の態様を詳細に説明する。   Preferred embodiments of the silver-coated composite material for movable contact parts and the movable contact parts of the present invention will be described in detail.

本発明の基本的な実施態様は、ステンレス鋼基材の表面の少なくとも一部に、ニッケル、コバルト、ニッケル合金またはコバルト合金の下地層、銅または銅合金の中間層、結晶粒径が制御された銀または銀合金の最表層がこの順に形成されている可動接点部品用銀被覆複合材であり、これから形成される可動接点部品は、スイッチの動作回数が増加しても接触抵抗の上昇が起き難いものである。   In the basic embodiment of the present invention, nickel, cobalt, nickel alloy or cobalt alloy underlayer, copper or copper alloy intermediate layer, crystal grain size is controlled on at least a part of the surface of the stainless steel substrate. A silver-coated composite material for movable contact parts in which the outermost layer of silver or silver alloy is formed in this order. The movable contact parts formed from this are unlikely to increase in contact resistance even if the number of switch operations increases. Is.

本発明の実施態様において、ステンレス鋼基材は可動接点部品に用いたとき、その機械的強度を担うものである。このため、ステンレス鋼基材として応力緩和特性に優れた疲労破壊し難い材料である、SUS301、SUS304、SUS316などの圧延調質材またはテンションアニール材が用いられる。   In an embodiment of the present invention, the stainless steel substrate bears its mechanical strength when used in a movable contact part. For this reason, a rolled tempered material such as SUS301, SUS304, or SUS316, or a tension annealing material, which is a material that is excellent in stress relaxation properties and is not easily damaged by fatigue, is used as the stainless steel substrate.

前記ステンレス鋼基材上に形成される下地層は、ステンレス鋼と銅または銅合金層との密着性を高めるために配置されている。銅または銅合金の中間層は、下地層と最表層の密着性を高めることができ、かつ最表面中を拡散してきた酸素を捕捉し、下地層の成分の酸化を防止し密着性を向上させる機能を持っている公知の技術である。   The underlayer formed on the stainless steel substrate is disposed in order to improve the adhesion between the stainless steel and the copper or copper alloy layer. The intermediate layer of copper or copper alloy can enhance the adhesion between the underlayer and the outermost layer, captures oxygen diffused in the outermost surface, prevents the oxidation of the components of the underlayer and improves the adhesion This is a known technique having a function.

下地層を形成する金属は、公知のようにニッケル、コバルト、ニッケル合金、コバルト合金のいずれかが選ばれ、特にニッケルまたはコバルトが好ましい。この下地層は、ステンレス基材を陰極にして、例えば塩化ニッケルおよび遊離塩酸を含む電解液を用いて電解する、もしくは、その後にスルファミン酸ニッケル浴等との組合せで2層にすることにより、厚さを0.005〜2.0μmとするのが、プレス加工時に下地層に割れが入りにくくするために好ましく、0.01〜0.2μmであるのがより好ましい。   As the metal forming the underlayer, any of nickel, cobalt, nickel alloy, and cobalt alloy is selected as is well known, and nickel or cobalt is particularly preferable. This underlayer is formed by using a stainless steel substrate as a cathode and performing electrolysis using, for example, an electrolytic solution containing nickel chloride and free hydrochloric acid, or by subsequently forming two layers in combination with a nickel sulfamate bath or the like. The thickness is preferably 0.005 to 2.0 [mu] m in order to prevent cracking in the underlayer during press working, and more preferably 0.01 to 0.2 [mu] m.

従来の最表層の密着力低下の原因は、下地層の酸化と大きな繰り返しせん断応力によるものであり、その対策として、下地層を酸化させないこと、せん断応力が加わっても密着性が劣化しないことの2点を満足する材料の開発が必要であった。   The cause of the conventional lowering of the adhesion of the outermost layer is due to the oxidation of the underlayer and the large repeated shear stress. As a countermeasure, the underlayer is not oxidized and the adhesion does not deteriorate even if shear stress is applied. It was necessary to develop a material that satisfies these two points.

そこで、本発明では、上記課題に対し、下地層を酸化させない手段として、銅または銅合金からなる中間層を配置した構成を基本としている。下地層の酸化は、最表層中の酸素の透過によるものであり、銅または銅合金の配置によって、銀の粒界を拡散した銅成分が最表層内で酸素を捕捉し下地層の酸化を抑制することで、密着性の低下を防止する役割を果たすと考えられる。
しかしながら、本構成品を可動接点用銀被覆ステンレス部品として使用したとき、接触抵抗値が上昇してしまう問題が発生していた。本発明者らは、この問題に対して調査を行ったところ、中間層の銅成分が、最表層を形成する銀中に容易に拡散し、その拡散した銅成分が最表層の表面に到達したときに酸化されて酸化銅を形成し、接触抵抗を増大させてしまうという現象であることを明らかにした。
Therefore, the present invention is based on a configuration in which an intermediate layer made of copper or a copper alloy is disposed as a means for preventing the base layer from being oxidized in order to solve the above-mentioned problems. The oxidation of the underlayer is due to the permeation of oxygen in the outermost layer. Depending on the arrangement of copper or copper alloy, the copper component diffused through the silver grain boundaries captures oxygen in the outermost layer and suppresses the oxidation of the underlayer. By doing so, it is considered to play a role of preventing a decrease in adhesion.
However, when this component is used as a silver-coated stainless steel part for movable contacts, there has been a problem that the contact resistance value increases. When the present inventors investigated this problem, the copper component of the intermediate layer easily diffused into the silver forming the outermost layer, and the diffused copper component reached the surface of the outermost layer. It has been clarified that this phenomenon is sometimes caused by oxidation to form copper oxide and increase contact resistance.

この現象を解決すべく鋭意研究を行った結果、中間層成分である銅の最表層への拡散は、最表層を形成する銀の結晶粒径に密接な関係があることを見出した。すなわち、最表層を形成する銀の結晶粒径を大きくすることで銅の拡散経路を大幅に減少させて銅の拡散量を少なくすることができることを見出した。   As a result of diligent research to solve this phenomenon, it was found that the diffusion of copper, which is an intermediate layer component, to the outermost layer is closely related to the crystal grain size of silver forming the outermost layer. That is, it has been found that by increasing the crystal grain size of silver forming the outermost layer, the copper diffusion path can be significantly reduced and the amount of copper diffusion can be reduced.

本発明における銀または銀合金からなる最表層の結晶粒径は、0.5μm以上に制御することにより、中間層で形成された銅成分の拡散量を抑制することができ、繰り返すせん断応力に対してもめっきの密着性に優れ、熱履歴がかかっても接触抵抗を増大させず、可動接点部品として長期間使用されても接触抵抗値が上昇しないことで、接点特性の良好な可動接点部品用銀被覆複合材が提供できる。   By controlling the crystal grain size of the outermost layer made of silver or silver alloy in the present invention to 0.5 μm or more, the diffusion amount of the copper component formed in the intermediate layer can be suppressed. Even with excellent plating adhesion, the contact resistance does not increase even when heat history is applied, and the contact resistance value does not increase even when used for a long time as a movable contact part. Silver coated composites can be provided.

結晶粒径が0.5μm未満であると、結晶粒界が多くなるために中間層の銅成分の拡散経路が多いので、耐熱信頼性が不十分となって接触抵抗が上昇する可能性が高くなり、0.5μm以上に結晶粒径が大きくなるほど中間層の銅成分の拡散経路が少なくなるため好ましい。特に好ましくは、結晶粒径が0.75μm以上である。   If the crystal grain size is less than 0.5 μm, there are many diffusion paths for the copper component in the intermediate layer due to an increase in crystal grain boundaries, so there is a high possibility that the heat resistance will be insufficient and the contact resistance will increase. Thus, it is preferable that the crystal grain size is increased to 0.5 μm or more because the diffusion path of the copper component in the intermediate layer is reduced. Particularly preferably, the crystal grain size is 0.75 μm or more.

なお、従来の複合接点材料における銀および銀合金からなる最表層の結晶粒径は、平均結晶粒径が0.2μm程度であり、その結果として中間層の銅成分や酸素が拡散する経路である最表層の結晶粒界が数多く存在して、各層間の密着性低下や接触抵抗の劣化の大きな原因になっていたと考えられる。   The crystal grain size of the outermost layer made of silver and a silver alloy in the conventional composite contact material has an average crystal grain size of about 0.2 μm, and as a result, is a path through which the copper component and oxygen in the intermediate layer diffuse. It is thought that there were many crystal grain boundaries in the outermost layer, which was a major cause of lower adhesion between layers and contact resistance.

なお、最表層を形成する銀または銀合金の結晶粒径を調整する方法としては、銀および銀合金のめっき電流密度を許容電流密度の80%以上に調整してめっき被膜に大きな内部応力を与え、その後の通電加熱で再結晶させることで結晶粒径を大きくすることができる。結晶粒径の調整は、電流密度と通電加熱電流および時間で調整することができる。   As a method of adjusting the crystal grain size of silver or silver alloy forming the outermost layer, the plating current density of silver and silver alloy is adjusted to 80% or more of the allowable current density to give a large internal stress to the plating film. Then, the crystal grain size can be increased by recrystallization by subsequent heating. The crystal grain size can be adjusted by adjusting the current density, energization heating current and time.

本発明の実施態様において最適な条件で形成される中間層の厚さは、0.05〜0.3μmの範囲である。中間層の厚さが薄すぎると、最表層中を透過してきた酸素成分を捕捉するには不十分であり、逆に厚すぎると銅成分の絶対量が多くなるため、最表層を形成する銀または銀合金の結晶粒径を大きくしても、銅成分の最表層の透過を十分に抑制できないため、中間層の厚さは0.3μm以下である必要がある。上記範囲であれば特性は十分満足されるが、より効果的な範囲は0.08〜0.2μmであり、特に効果的な範囲は0.1〜0.15μmである。
なお、中間層が銅合金により形成された場合、スズ、亜鉛、ニッケルから選ばれる1種または2種以上の元素を合計で1〜10質量%含む銅合金が好ましい。銅と合金化する成分は必ずしも限定するものではないが、銀層中を透過した酸素の捕捉と下地層および最表面を形成する銀または銀合金との密着性を向上させる主成分が銅であり、他の合金元素が含まれた場合、中間層が硬くなって耐摩耗性が向上する。これらの元素の合計は、1質量%未満であれば、中間層が純銅である場合とほぼ同等の効果となり、10質量%を超えると、中間層が硬くなりすぎて、プレス性が悪くなったり、接点として使用中に割れが発生したりして、耐食性が低下するために好ましくない。
In the embodiment of the present invention, the thickness of the intermediate layer formed under optimum conditions is in the range of 0.05 to 0.3 μm. If the thickness of the intermediate layer is too thin, it is insufficient to capture the oxygen component that has permeated through the outermost layer. Conversely, if the thickness is too thick, the absolute amount of the copper component increases. Alternatively, even if the crystal grain size of the silver alloy is increased, the permeation of the outermost layer of the copper component cannot be sufficiently suppressed. Therefore, the thickness of the intermediate layer needs to be 0.3 μm or less. If it is the said range, a characteristic is fully satisfied, However, A more effective range is 0.08-0.2 micrometer, A particularly effective range is 0.1-0.15 micrometer.
In addition, when an intermediate | middle layer is formed with a copper alloy, the copper alloy which contains 1-10 mass% in total of 1 type, or 2 or more types of elements chosen from tin, zinc, and nickel is preferable. Although the component to be alloyed with copper is not necessarily limited, copper is the main component that improves the trapping of oxygen permeated through the silver layer and the adhesion with the silver or silver alloy that forms the underlayer and the outermost surface. When other alloy elements are contained, the intermediate layer becomes hard and wear resistance is improved. If the total of these elements is less than 1% by mass, the effect is almost the same as when the intermediate layer is pure copper, and if it exceeds 10% by mass, the intermediate layer becomes too hard, and the pressability may deteriorate. It is not preferable because cracking occurs during use as a contact point and corrosion resistance is lowered.

また、銀または銀合金からなる最表層の厚さは、0.3〜2.0μm、より好ましくは0.5〜2.0μm、さらに好ましくは0.8〜1.5μmとすることで、加熱後も最表層に銅成分が拡散することがほとんどなく、接触安定性に優れる。最表層の厚さが薄すぎると、最表層を形成する銀または銀合金の結晶粒径を制御しても、中間層から拡散してきた銅成分が表層に到達しやすいために接触抵抗を上昇させやすく、逆に厚すぎると効果が飽和するのと同時に銀の使用量が増加するため経済的にも環境負荷が増大する意味で好ましくない。   The thickness of the outermost layer made of silver or a silver alloy is 0.3 to 2.0 μm, more preferably 0.5 to 2.0 μm, and still more preferably 0.8 to 1.5 μm. Thereafter, the copper component hardly diffuses into the outermost layer, and the contact stability is excellent. If the thickness of the outermost layer is too thin, even if the crystal grain size of silver or silver alloy forming the outermost layer is controlled, the copper component diffused from the intermediate layer will easily reach the surface layer, increasing the contact resistance. On the contrary, if the thickness is too large, the effect is saturated, and at the same time, the amount of silver used is increased.

最表層として好適に用いられる銀または銀合金としては、例えば、銀、銀−錫合金、銀−インジウム合金、銀−ロジウム合金、銀−ルテニウム合金、銀−金合金、銀−パラジウム合金、銀−ニッケル合金、銀−セレン合金、銀−アンチモン合金、銀−亜鉛合金、銀−ビスマス合金などがあげられ、特に、銀、銀−錫合金、銀−インジウム合金、銀−ロジウム合金、銀−ルテニウム合金、銀−金合金、銀−パラジウム合金、銀−ニッケル合金、銀−セレン合金および銀−アンチモン合金からなる群から選ばれることが好ましい。   Examples of silver or silver alloy suitably used as the outermost layer include silver, silver-tin alloy, silver-indium alloy, silver-rhodium alloy, silver-ruthenium alloy, silver-gold alloy, silver-palladium alloy, silver- Nickel alloy, silver-selenium alloy, silver-antimony alloy, silver-zinc alloy, silver-bismuth alloy, etc. are mentioned, especially silver, silver-tin alloy, silver-indium alloy, silver-rhodium alloy, silver-ruthenium alloy And a silver-gold alloy, a silver-palladium alloy, a silver-nickel alloy, a silver-selenium alloy, and a silver-antimony alloy.

本発明において、下地層、中間層、最表層の各層は、電気めっき法により形成する。前記各層は、ステンレス鋼基材の全面に形成してもよいが、接点部のみに形成するのが経済的であり、環境負荷を軽減した製品が提供できるため好ましい。   In the present invention, the underlayer, intermediate layer, and outermost layer are each formed by electroplating. Each of the layers may be formed on the entire surface of the stainless steel substrate, but it is preferable to form the layers only on the contact portions because it is economical and a product with reduced environmental load can be provided.

銀および銀合金のめっき電流密度は、めっき液の組成や浴温、攪拌の条件によって最適値が変化するが、そのめっき条件における許容電流密度に対して80%以上の電流密度に調整することが必要である。
許容電流密度とは、めっきの電流密度を徐々に上昇させて、めっきが焼ける直前の電流密度のことであるが、例えば、5A/dmが許容電流密度であった場合は、その80%以上である4A/dm以上でめっきを行うことが必要である。
80%未満の場合は、銀および銀合金の内部応力が小さいために再結晶が困難で、専用の焼鈍炉を用いて高温で再結晶処理する必要がある。許容電流密度に対して85%〜98%の条件で行うのが好ましく、90%〜98%の条件で行うことがより好ましい。
The optimum plating current density of silver and silver alloy varies depending on the composition of the plating solution, bath temperature, and stirring conditions, but it can be adjusted to a current density of 80% or more with respect to the allowable current density under the plating conditions. is necessary.
The allowable current density is a current density immediately before the plating is burned by gradually increasing the plating current density. For example, when 5 A / dm 2 is the allowable current density, 80% or more It is necessary to perform plating at 4 A / dm 2 or more.
If it is less than 80%, recrystallization is difficult because the internal stress of silver and silver alloy is small, and it is necessary to recrystallize at a high temperature using a dedicated annealing furnace. It is preferable to carry out under the condition of 85% to 98% with respect to the allowable current density, and it is more preferred to carry out under the condition of 90% to 98%.

前記で得られた銀および銀合金めっき層は内部応力が極めて大きいため、僅かな加熱で銀および銀合金めっき層を再結晶させることができる。図1に示すように、銀および銀合金めっき電解槽11の入側とカソード側の給電装置12との間に設けた第1整流器13だけでめっきの全電流を供給した場合には、電解槽11の出側の加熱ゾーン14での発熱は発生しない。加熱は、銀および合金めっき電解槽11出側とカソード側の給電装置15間の第2整流器16でめっき電流を供給する場合に、ステンレス条の電気抵抗を利用した通電加熱が有効である。このときの発熱量は、加熱ゾーン14の長さによっても変わり、長くなるほど電気抵抗が高くなるので、発熱量が大きくなる。第1、第2整流器13、16の合計の電流がめっき電流となるので、第1、第2整流器13、16の電流分配によって発熱量を調整することができる。
したがってステンレス条は、比抵抗が大きいために通電によって容易に発熱させることが可能であり、その電流の大きさと時間によって銀または銀合金めっき層の結晶粒径を容易に調整することが可能である。
第2整流器16の通電電流は、条の断面積1mm当り4A以上が必要で、電流値が小さい場合には発熱が不十分で再結晶しない。より好ましくは、6A以上であり、特に好ましくは8A以上であるが、電流が大きすぎても発熱が過剰になって材料が軟化する恐れがあるため、最大でも20A以下に抑えることが必要である。
また、電解槽11の出側の加熱ゾーン14の長さは、限定するものではないが、加熱される時間が2〜30秒程度になる長さに設定するのが望ましい。
Since the silver and silver alloy plating layer obtained above have extremely large internal stress, the silver and silver alloy plating layer can be recrystallized by slight heating. As shown in FIG. 1, when the entire plating current is supplied only by the first rectifier 13 provided between the entrance side of the silver and silver alloy plating electrolytic cell 11 and the power supply device 12 on the cathode side, No heat is generated in the heating zone 14 on the outlet side 11. When the plating current is supplied by the second rectifier 16 between the power supply device 15 on the outlet side of the silver and alloy plating electrolytic cell 11 and the cathode side, the heating by using the electrical resistance of the stainless steel strip is effective. The amount of heat generated at this time also varies depending on the length of the heating zone 14, and the longer the length, the higher the electric resistance, so the amount of heat generated increases. Since the total current of the first and second rectifiers 13 and 16 becomes the plating current, the heat generation amount can be adjusted by the current distribution of the first and second rectifiers 13 and 16.
Therefore, since the stainless steel strip has a large specific resistance, it can be easily heated by energization, and the crystal grain size of the silver or silver alloy plating layer can be easily adjusted by the magnitude and time of the current. .
The energizing current of the second rectifier 16 is required to be 4 A or more per 1 mm 2 of the cross-sectional area of the strip. When the current value is small, heat generation is insufficient and recrystallization does not occur. More preferably, it is 6 A or more, and particularly preferably 8 A or more. However, even if the current is too large, heat generation may be excessive and the material may be softened, so it is necessary to suppress it to 20 A or less at the maximum. .
Further, the length of the heating zone 14 on the outlet side of the electrolytic cell 11 is not limited, but it is desirable to set the length so that the heating time is about 2 to 30 seconds.

以下に本発明の実施例に基づいてさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。   In the following, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

SUS基材を連続的に通板して巻き取るめっきラインにおいて、厚さ0.05mm、条幅100mmの基材(SUS301の条)を電解脱脂、水洗、活性化、水洗、下地層めっき、水洗、中間層めっき、水洗、銀ストライクめっき、水洗、最表層めっき、水洗、乾燥の工程で、最表層めっきの電流密度と最表層めっき出側給電装置の電流値を変化させて本発明品および比較品を得た。なお、最表層めっきと出側給電の間にある加熱ゾーンの通過時間を10秒とした。   In a plating line in which a SUS substrate is continuously passed and wound, a substrate having a thickness of 0.05 mm and a width of 100 mm (SUS301 strip) is electrolytically degreased, washed with water, activated, washed with water, underlayer plating, washed with water, In the intermediate layer plating, water washing, silver strike plating, water washing, outermost layer plating, water washing, and drying processes, the current density of the outermost layer plating and the current value of the outermost layer plating outlet power supply device are changed, and the product of the present invention and the comparative product Got. Note that the passage time of the heating zone between the outermost layer plating and the outlet-side power feeding was 10 seconds.

各処理条件は次の通りである。   Each processing condition is as follows.

1.(電解脱脂、活性化)
(電解脱脂)
処理液:オルソケイ酸ソーダ100g/リットル
処理温度:60℃
陰極電流密度:2.5A/dm
処理時間:10秒
(活性化)
処理液:10%塩酸
処理温度:30℃
浸漬処理時間:10秒
1. (Electrolytic degreasing, activation)
(Electrolytic degreasing)
Treatment liquid: sodium orthosilicate 100 g / liter Treatment temperature: 60 ° C
Cathode current density: 2.5 A / dm 2
Processing time: 10 seconds (activation)
Treatment liquid: 10% hydrochloric acid Treatment temperature: 30 ° C
Immersion treatment time: 10 seconds

2.(下地層めっき)
(ニッケルめっき)
処理液:塩化ニッケル250g/リットル、遊離塩酸50g/リットル
処理温度:40℃
電流密度:5A/dm
めっき厚:0.005〜0.3μm
処理時間:めっき厚毎に時間を調整
(コバルトめっき)
処理液:塩化コバルト250g/リットル、遊離塩酸50g/リットル
処理温度:40℃
電流密度:2A/dm
めっき厚:0.02〜0.08μm
処理時間:2秒
2. (Underlayer plating)
(Nickel plating)
Treatment liquid: Nickel chloride 250 g / liter, Free hydrochloric acid 50 g / liter Treatment temperature: 40 ° C.
Current density: 5 A / dm 2
Plating thickness: 0.005 to 0.3 μm
Processing time: Adjust the time for each plating thickness (cobalt plating)
Treatment liquid: Cobalt chloride 250g / liter, Free hydrochloric acid 50g / liter Treatment temperature: 40 ° C
Current density: 2 A / dm 2
Plating thickness: 0.02-0.08 μm
Processing time: 2 seconds

3.(中間層めっき)
(銅めっき1:表においてCu−1と表記)
処理液:硫酸銅150g/リットル、遊離硫酸100g/リットル、遊離塩酸50g/リットル
処理温度:30℃
電流密度:5A/dm
めっき厚:0.05〜0.32μm
処理時間:めっき厚毎に時間を調整
(銅めっき2:表においてCu−2と表記)
処理液:シアン化第一銅30g/リットル、遊離シアン10g/リットル
処理温度:40℃
電流密度:5A/dm
めっき厚:0.045〜0.15μm
処理時間:めっき厚毎に時間を調整
3. (Interlayer plating)
(Copper plating 1: Indicated in the table as Cu-1)
Treatment liquid: copper sulfate 150 g / liter, free sulfuric acid 100 g / liter, free hydrochloric acid 50 g / liter Treatment temperature: 30 ° C.
Current density: 5 A / dm 2
Plating thickness: 0.05 to 0.32 μm
Processing time: Adjust the time for each plating thickness (Copper plating 2: Cu-2 in the table)
Treatment liquid: cuprous cyanide 30 g / liter, free cyanide 10 g / liter Treatment temperature: 40 ° C.
Current density: 5 A / dm 2
Plating thickness: 0.045 to 0.15 μm
Processing time: Adjust time for each plating thickness

4.(銀ストライクめっき)
処理液:シアン化銀5g/リットル、シアン化カリウム50g/リットル
処理温度:30℃
電流密度:2A/dm
処理時間:10秒
4). (Silver strike plating)
Treatment liquid: silver cyanide 5 g / liter, potassium cyanide 50 g / liter Treatment temperature: 30 ° C.
Current density: 2 A / dm 2
Processing time: 10 seconds

5.(最表層めっき)
(銀めっき)
処理液:シアン化銀50g/リットル、シアン化カリウム50g/リットル、炭酸カリウム30g/リットル
処理温度:40℃
電流密度:4.9〜6.7A/dmの範囲で変化
めっき厚:0.3〜2.0μm
処理時間:めっき厚毎に時間を調整
(銀−錫合金めっき)Ag−10%Sn
処理液:シアン化カリウム100g/リットル、水酸化ナトリウム50g/リットル、シアン化銀10g/リットル、スズ酸カリウム80g/リットル
処理温度:40℃
電流密度:6A/dm
めっき厚:1.0μm
処理時間:0.3分
(銀−インジウム合金めっき)Ag−10%In
処理液:シアン化カリウム(KCN)100g/リットル、水酸化ナトリウム50g/リットル、シアン化銀100g/リットル、塩化インジウム60g/リットル
処理温度:30℃
電流密度:6A/dm
めっき厚:1.0μm
処理時間:0.3分
得られた銀被覆ステンレス条の銀および銀合金の結晶粒径は、FIBで断面切断後にEBSD(電子線後方散乱回折)で画像を写真撮影し、その写真から平均の結晶粒径を求めた。
5. (Outermost layer plating)
(Silver plating)
Treatment liquid: silver cyanide 50 g / liter, potassium cyanide 50 g / liter, potassium carbonate 30 g / liter Processing temperature: 40 ° C.
Current density: Changed in the range of 4.9 to 6.7 A / dm 2 Plating thickness: 0.3 to 2.0 μm
Processing time: Adjust time for every plating thickness (silver-tin alloy plating) Ag-10% Sn
Treatment liquid: potassium cyanide 100 g / liter, sodium hydroxide 50 g / liter, silver cyanide 10 g / liter, potassium stannate 80 g / liter Treatment temperature: 40 ° C.
Current density: 6 A / dm 2
Plating thickness: 1.0 μm
Processing time: 0.3 minutes (silver-indium alloy plating) Ag-10% In
Treatment liquid: potassium cyanide (KCN) 100 g / liter, sodium hydroxide 50 g / liter, silver cyanide 100 g / liter, indium chloride 60 g / liter Processing temperature: 30 ° C.
Current density: 6 A / dm 2
Plating thickness: 1.0 μm
Processing time: 0.3 minutes The crystal grain size of silver and silver alloy of the obtained silver-coated stainless steel strip was obtained by taking an image with EBSD (electron beam backscatter diffraction) after section cutting with FIB, The crystal grain size was determined.

得られたこれらの可動接点部品用銀被覆複合材(銀被覆ステンレス条)を直径4mmのドーム型可動接点部品に加工し、固定接点には銀を1μm厚さにめっきした黄銅条を用いて、図2、3に示す構造のスイッチで打鍵試験を行った。図2は、打鍵試験に用いたスイッチの平面図である。また、図3は、打鍵試験に用いたスイッチの図2中のA−A線断面図と押圧を示すもので、(a)はスイッチ動作前、(b)はスイッチ動作時を示す図である。図2、3に示すように、銀めっきステンレスのドーム型可動接点1および銀めっき黄銅の固定接点2が樹脂ケース4中に樹脂の充填剤3で組み込まれている。   The obtained silver-coated composite material (silver-coated stainless steel strip) for movable contact parts was processed into a dome-shaped movable contact part having a diameter of 4 mm, and the fixed contact was made of a brass strip plated with silver to a thickness of 1 μm. A keystroke test was conducted with the switch having the structure shown in FIGS. FIG. 2 is a plan view of the switch used for the key-stroke test. FIG. 3 is a cross-sectional view taken along line AA in FIG. 2 and the pressure of the switch used for the keystroke test. FIG. 3A is a diagram before the switch operation, and FIG. . As shown in FIGS. 2 and 3, a dome-shaped movable contact 1 made of silver-plated stainless steel and a fixed contact 2 made of silver-plated brass are incorporated in a resin case 4 with a resin filler 3.

打鍵試験は、接点応力:9.8N/mm、打鍵速度:5Hzで最大100万回の打鍵を行って接触抵抗の経時変化を測定し、その結果を表1〜2に示した。なお、接触抵抗は電流10mA通電で測定を行い、ばらつきを含めた接触抵抗値を4段階で評価し、表2に示した。具体的には、接触抵抗値15mΩ未満を「優」と評価して表に「◎」印を付し、15mΩ以上30mΩ未満を「良」と評価して表に「〇」印を付し、30mΩ以上50mΩ未満を「可」と評価して表に「△」印を付し、50mΩ以上のものを「不可」と評価して表に「×」印を付した。なお、可動接点として接触抵抗値が50mΩ未満である◎〜△であることが接点として実用性があると判断した。 In the keying test, a change in the contact resistance with time was measured by performing keying at a maximum of 1 million times at a contact stress of 9.8 N / mm 2 and a keying speed of 5 Hz, and the results are shown in Tables 1 and 2. The contact resistance was measured with a current of 10 mA, and the contact resistance value including variations was evaluated in four stages. Specifically, a contact resistance value of less than 15 mΩ is evaluated as “excellent” and the table is marked with “◎”, and 15 mΩ or more and less than 30 mΩ is evaluated as “good”, and the table is marked with “◯”. A value of 30 mΩ or more and less than 50 mΩ was evaluated as “possible”, and a “Δ” mark was attached to the table, and a value of 50 mΩ or more was evaluated as “impossible” and an “x” mark was attached to the table. In addition, it was judged that the contact resistance value of less than 50 mΩ as a movable contact was ◎ to Δ having practicality as a contact.

さらに、最表面に銅成分が検出されるかどうかについてオージェ電子分光分析装置で最表面の定性分析を行って、銅成分の検出量を調査した。検出されなかったものを「なし」、検出量が5%未満を「微量」、検出量が5%以上のものを「多量」とし、表2に示した。
また、打鍵試験後の可動接点側について目視検査を行い、めっきの剥離有無について観察を行って、剥離有無を調査した。
Furthermore, whether the copper component was detected on the outermost surface was subjected to a qualitative analysis of the outermost surface with an Auger electron spectroscopy analyzer, and the detected amount of the copper component was investigated. Those that were not detected were shown as “None”, the detection amount of less than 5% as “trace amount”, and the detection amount as 5% or more as “large amount”.
In addition, the movable contact side after the keystroke test was visually inspected, and the presence or absence of peeling of the plating was observed to investigate the presence or absence of peeling.

発明例1〜20の可動接点部品用銀被覆複合材は、可動接点部品として加工後に100万回の打鍵試験を行っても接触抵抗の増加はすべて30mΩ未満である一方、比較例1〜5では、100万回打鍵後に接触抵抗が50mΩ以上となり、接点寿命が短いことがわかる。   The silver-coated composite materials for movable contact parts of Invention Examples 1 to 20 are all increased in contact resistance by less than 30 mΩ even when subjected to a keystroke test of 1 million times after being processed as movable contact parts. In Comparative Examples 1 to 5, It can be seen that the contact resistance becomes 50 mΩ or more after 1 million times key pressing, and the contact life is short.

また、比較例1に関しては、従来の下地層としてニッケルめっき、中間層として銅めっき、最表層として銀めっきを施した例で、最表層の銀の結晶粒径が約0.2μmであり、1万回の打鍵で接触抵抗が上昇し始め5万回では50mΩ以上となり、実用上の問題が発生することがわかる。図4に発明例1をEBSD(電子線後方散乱回折)で観察した写真、図5に比較例1をEBSDで観察した写真をそれぞれ示す。図4の発明例1の最表層の銀の結晶粒径は約0.6μmであり、図5の比較例1の最表層の銀の結晶粒径は約0.2μmである。よって、発明例1は比較例1と比較して接触抵抗が良好な値を示していることがわかる。結晶粒径の測定方法は、図4と図5のめっき被膜の断面積を結晶粒の数で割り、更に商を平方根として求めた。   Further, Comparative Example 1 is an example in which nickel plating is used as the conventional underlayer, copper plating is used as the intermediate layer, and silver plating is applied as the outermost layer. The silver crystal grain size of the outermost layer is about 0.2 μm. It can be seen that the contact resistance starts to increase after ten thousand times of keystrokes, and it becomes 50 mΩ or more at 50,000 times, which causes a practical problem. FIG. 4 shows a photograph of Invention Example 1 observed by EBSD (electron beam backscatter diffraction), and FIG. 5 shows a photograph of Comparative Example 1 observed by EBSD. The crystal grain size of silver in the outermost layer of Invention Example 1 in FIG. 4 is about 0.6 μm, and the crystal grain size of silver in the outermost layer of Comparative Example 1 in FIG. 5 is about 0.2 μm. Therefore, it can be seen that Invention Example 1 shows a good value of contact resistance as compared with Comparative Example 1. The crystal grain size was measured by dividing the cross-sectional area of the plating film of FIGS. 4 and 5 by the number of crystal grains and further obtaining the quotient as the square root.

比較例5に関しては、銅からなる中間層が薄い状態であると、100万回打鍵後には最表層・中間層の剥離が生じており、透過した酸素の捕捉が不十分であって密着性に劣る様子が伺える。
比較例4のように、銅からなる中間層が厚いときは、結晶粒径を調整しても最表面における銅成分の拡散が多く見られ、その結果接触抵抗値が増大していることがわかる。一方、結晶粒径が0.5μmよりも小さい比較例2、3においては、中間層厚が0.05〜0.3μmで制御されていても銅成分の拡散量が多くなり、最表層の表面に銅成分の露出が多くなって接触抵抗値を増大している様子が伺えた。
Regarding Comparative Example 5, if the intermediate layer made of copper is in a thin state, peeling of the outermost layer / intermediate layer has occurred after 1 million keystrokes, and the trapping of permeated oxygen is insufficient, resulting in adhesion. I can hear that it is inferior.
As in Comparative Example 4, when the intermediate layer made of copper is thick, it can be seen that even if the crystal grain size is adjusted, diffusion of the copper component on the outermost surface is often observed, and as a result, the contact resistance value is increased. . On the other hand, in Comparative Examples 2 and 3 in which the crystal grain size is smaller than 0.5 μm, the diffusion amount of the copper component increases even if the intermediate layer thickness is controlled at 0.05 to 0.3 μm, and the surface of the outermost layer It can be seen that the exposure of the copper component increased and the contact resistance value increased.

これらの結果より、発明例のごとく中間層の厚さを0.05〜0.3μmで制御しつつ、銀または銀合金からなる最表層の結晶粒径を0.5〜5.0μmの範囲内に制御することにより、可動接点部品の接点特性としての長期信頼性が向上できることは明白であり、優れた密着性・長期信頼性を兼ね備えた可動接点部品用銀被覆複合材を工業的に安定して提供できることがわかる。   From these results, while controlling the thickness of the intermediate layer at 0.05 to 0.3 μm as in the inventive examples, the crystal grain size of the outermost layer made of silver or a silver alloy is in the range of 0.5 to 5.0 μm. It is clear that long-term reliability as a contact characteristic of movable contact parts can be improved by controlling to a stable, industrially stable silver-coated composite for movable contact parts that has excellent adhesion and long-term reliability. Can be provided.

1 ドーム型可動接点
2 可動接点
3 充填剤
4 樹脂ケース
DESCRIPTION OF SYMBOLS 1 Dome type movable contact 2 Moveable contact 3 Filler 4 Resin case

Claims (8)

ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層が形成され、その上層に銅または銅合金からなる中間層が形成され、さらに上層に銀または銀合金層が最表層として形成されている可動接点部品用銀被覆複合材であって、
前記中間層の厚さが0.05〜0.3μmであり、かつ前記最表層に形成された銀または銀合金の平均結晶粒径が0.5〜5.0μmであることを特徴とする可動接点部品用銀被覆複合材。
A base layer made of nickel, cobalt, nickel alloy or cobalt alloy is formed on at least a part of the surface of the stainless steel substrate, an intermediate layer made of copper or copper alloy is formed on the upper layer, and silver is further formed on the upper layer. Or a silver-coated composite material for a movable contact part in which a silver alloy layer is formed as an outermost layer,
The movable layer characterized in that the thickness of the intermediate layer is 0.05 to 0.3 μm, and the average crystal grain size of silver or silver alloy formed on the outermost layer is 0.5 to 5.0 μm. Silver-coated composite material for contact parts.
前記最表層の厚さが、0.3〜2.0μmであることを特徴とする請求項1に記載の可動接点部品用銀被覆複合材。   2. The silver-coated composite material for a movable contact part according to claim 1, wherein a thickness of the outermost layer is 0.3 to 2.0 μm. 請求項1または請求項2に記載の可動接点部品用銀被覆複合材が加工されて形成された可動接点部品であって、
接点部分がドーム状または凸形状に形成されたことを特徴とする可動接点部品。
A movable contact part formed by processing the silver-coated composite material for a movable contact part according to claim 1 or 2,
A movable contact part characterized in that the contact part is formed in a dome shape or a convex shape.
請求項3に記載の可動接点部品を用いたスイッチであって、
前記可動接点部品および前記可動接点部品と接続される固定接点が、樹脂ケース中に組み込まれていることを特徴とするスイッチ。
A switch using the movable contact part according to claim 3,
A switch characterized in that the movable contact part and a fixed contact connected to the movable contact part are incorporated in a resin case.
ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層を形成し、その上層に銅または銅合金からなる中間層を形成し、さらに上層に銀または銀合金層を最表層として形成する可動接点部品用銀被覆複合材の製造方法であって、
前記最表層を形成する銀および銀合金めっきは、その陰極電流密度を許容電流密度の80%以上で行うことを特徴とする可動接点部品用銀被覆複合材の製造方法。
An underlayer made of nickel, cobalt, nickel alloy or cobalt alloy is formed on at least a part of the surface of the stainless steel substrate, an intermediate layer made of copper or copper alloy is formed on the upper layer, and silver is further formed on the upper layer. Or a method for producing a silver-coated composite material for a movable contact part, wherein a silver alloy layer is formed as an outermost layer,
The method for producing a silver-coated composite material for a movable contact part, wherein the silver and silver alloy plating forming the outermost layer is performed at a cathode current density of 80% or more of an allowable current density.
前記銀および銀合金めっき後に通電加熱を施すことを特徴とする請求項5に記載の可動接点部品用銀被覆複合材の製造方法。   6. The method for producing a silver-coated composite material for a movable contact part according to claim 5, wherein an electric heating is performed after the silver and silver alloy plating. 前記通電加熱は、銀および銀合金めっき電解槽と当該電解槽の出側に配置した給電装置との間で実施することを特徴とする請求項6に記載の可動接点部品用銀被覆複合材の製造方法。   The current-carrying heating is carried out between a silver and silver alloy plating electrolytic cell and a power feeding device arranged on the outlet side of the electrolytic cell. Production method. 前記の通電加熱を条材の断面積1mm当り4A以上の電流で行うことを特徴とする請求項6または7に記載の可動接点部品用銀被覆複合材の製造方法。
The method for producing a silver-coated composite material for a movable contact part according to claim 6 or 7, wherein the energization heating is performed at a current of 4 A or more per 1 mm 2 in cross-sectional area of the strip.
JP2011171627A 2011-08-05 2011-08-05 Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof Active JP5749113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171627A JP5749113B2 (en) 2011-08-05 2011-08-05 Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171627A JP5749113B2 (en) 2011-08-05 2011-08-05 Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013036072A true JP2013036072A (en) 2013-02-21
JP5749113B2 JP5749113B2 (en) 2015-07-15

Family

ID=47885947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171627A Active JP5749113B2 (en) 2011-08-05 2011-08-05 Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5749113B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029745A1 (en) * 2013-08-29 2015-03-05 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connector, process for producing plated member, and process for producing plated terminal for connector
JP2015195382A (en) * 2013-11-12 2015-11-05 チップモス テクノロジーズ インコーポレイテッドChipmos Technologies Inc. Semiconductor structure and manufacturing method thereof
WO2015182786A1 (en) * 2014-05-30 2015-12-03 古河電気工業株式会社 Electric contact material, electric contact material manufacturing method, and terminal
JP7353928B2 (en) 2019-11-13 2023-10-02 古河電気工業株式会社 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263274A (en) * 2003-03-04 2004-09-24 Smk Corp Metal plate used for electric contact and production method of the metal plate
JP2005002400A (en) * 2003-06-11 2005-01-06 Toyo Seihaku Kk Spring material made of stainless steel foil, and its production method
JP2005133169A (en) * 2003-10-31 2005-05-26 Furukawa Electric Co Ltd:The Silver-coated stainless steel strip for movable contact, and its production method
JP2007291510A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP2007291509A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP2008088493A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Silver plated metallic member and method of manufacturing the same
JP2009099550A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP2010146926A (en) * 2008-12-19 2010-07-01 Furukawa Electric Co Ltd:The Silver coating material for movable contact component and method of manufacturing the same
JP2011529791A (en) * 2008-08-05 2011-12-15 ニューコア・コーポレーション Metal strip casting method with dynamic crown control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263274A (en) * 2003-03-04 2004-09-24 Smk Corp Metal plate used for electric contact and production method of the metal plate
JP2005002400A (en) * 2003-06-11 2005-01-06 Toyo Seihaku Kk Spring material made of stainless steel foil, and its production method
JP2005133169A (en) * 2003-10-31 2005-05-26 Furukawa Electric Co Ltd:The Silver-coated stainless steel strip for movable contact, and its production method
JP2007291510A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP2007291509A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP2008088493A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Silver plated metallic member and method of manufacturing the same
JP2009099550A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP2011529791A (en) * 2008-08-05 2011-12-15 ニューコア・コーポレーション Metal strip casting method with dynamic crown control
JP2010146926A (en) * 2008-12-19 2010-07-01 Furukawa Electric Co Ltd:The Silver coating material for movable contact component and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029745A1 (en) * 2013-08-29 2015-03-05 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connector, process for producing plated member, and process for producing plated terminal for connector
JP2015195382A (en) * 2013-11-12 2015-11-05 チップモス テクノロジーズ インコーポレイテッドChipmos Technologies Inc. Semiconductor structure and manufacturing method thereof
WO2015182786A1 (en) * 2014-05-30 2015-12-03 古河電気工業株式会社 Electric contact material, electric contact material manufacturing method, and terminal
CN106414811A (en) * 2014-05-30 2017-02-15 古河电气工业株式会社 Electric contact material, electric contact material manufacturing method, and terminal
CN106414811B (en) * 2014-05-30 2019-05-28 古河电气工业株式会社 Electric contact material, the manufacturing method of electric contact material and terminal
US10998108B2 (en) 2014-05-30 2021-05-04 Furukawa Electric Co., Ltd. Electrical contact material, method of producing an electrical contact material, and terminal
JP7353928B2 (en) 2019-11-13 2023-10-02 古河電気工業株式会社 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Also Published As

Publication number Publication date
JP5749113B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5705738B2 (en) Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
JP4279285B2 (en) Silver-coated stainless steel strip for movable contact and method for producing the same
JP4834022B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP4834023B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP4728571B2 (en) Manufacturing method of silver-coated stainless steel strip for movable contacts
JP5184328B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP6324085B2 (en) Precious metal-coated plate material for electrical contacts and method for producing the same
JP5749113B2 (en) Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof
JP2007291510A (en) Silver coated composite material for movable contact and method for producing the same
JP2009099548A (en) Silver-clad composite material for movable contact and its manufacturing method
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
TW200809012A (en) Silver-plated composite material for moving contact and method for manufacturing the same
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
JP2007291509A (en) Silver coated composite material for movable contact and method for producing the same
JP5391214B2 (en) Silver coated stainless steel strip for movable contacts and switch using the same
JP2009099550A (en) Silver-clad composite material for movable contact and its manufacturing method
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
JP6099672B2 (en) Electrode material for thermal fuse and method for manufacturing the same
WO2007116717A1 (en) Silver coated composite material for movable contact and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R151 Written notification of patent or utility model registration

Ref document number: 5749113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350