JP6322795B2 - Marine thermoelectric power generation system and ship - Google Patents

Marine thermoelectric power generation system and ship Download PDF

Info

Publication number
JP6322795B2
JP6322795B2 JP2017051446A JP2017051446A JP6322795B2 JP 6322795 B2 JP6322795 B2 JP 6322795B2 JP 2017051446 A JP2017051446 A JP 2017051446A JP 2017051446 A JP2017051446 A JP 2017051446A JP 6322795 B2 JP6322795 B2 JP 6322795B2
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric power
cooling water
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017051446A
Other languages
Japanese (ja)
Other versions
JP2017118819A (en
Inventor
平田 宏一
宏一 平田
東勲 柳
東勲 柳
信雄 南方
信雄 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2017051446A priority Critical patent/JP6322795B2/en
Publication of JP2017118819A publication Critical patent/JP2017118819A/en
Application granted granted Critical
Publication of JP6322795B2 publication Critical patent/JP6322795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、ゼーベック効果を利用した熱電発電素子を用いて、船舶の内燃機関から排出される排気ガスの熱を電気に変換する船舶用熱電発電システムに関する。   The present invention relates to a ship thermoelectric power generation system that converts heat of exhaust gas discharged from an internal combustion engine of a ship into electricity using a thermoelectric power generation element that utilizes the Seebeck effect.

特許文献1には、船舶に搭載される水冷エンジンの発電装置が開示されている。特許文献1では、発電装置は熱発電素子によって構成され、水冷エンジンは、互いに近接している排気通路と冷却水通路との間を、壁によって仕切り、この壁の中に熱発電素子を備えている。この熱発電素子は、高温部を排気通路に近接させ、低温部を冷却水通路に近接させている。従って、熱発電素子は、高温部と低温部との間の温度差に応じて、起電力が発生し、温度差を利用して発電する。   Patent Document 1 discloses a power generation device for a water-cooled engine mounted on a ship. In Patent Document 1, the power generation device is configured by a thermoelectric generator, and the water-cooled engine partitions the exhaust passage and the coolant passage adjacent to each other by a wall, and includes the thermoelectric generator in the wall. Yes. In this thermoelectric generator, the high temperature portion is brought close to the exhaust passage, and the low temperature portion is brought close to the cooling water passage. Therefore, the thermoelectric generator generates an electromotive force according to the temperature difference between the high temperature portion and the low temperature portion, and generates power using the temperature difference.

特許文献2には、船舶等の内燃機関冷却用水冷式熱交換器にペルチエ素子モジュールを設けて廃熱を電気エネルギーに変換する構成が開示されている。特許文献2では、熱媒液放熱管と放熱フィンの間にペルチエ素子モジュールを挟設することで、ペルチエ素子モジュールの一方を高温の熱媒液で過熱し他方を大気又は海水で冷却して発電する。   Patent Document 2 discloses a configuration in which a Peltier element module is provided in a water-cooled heat exchanger for cooling an internal combustion engine such as a ship to convert waste heat into electric energy. In Patent Document 2, a Peltier element module is sandwiched between a heat medium liquid radiation pipe and a heat radiation fin, so that one of the Peltier element modules is overheated with a high-temperature heat medium liquid and the other is cooled with air or seawater to generate power. To do.

特許文献3には、エンジンからの排気が流れる排気管と、冷却水ポンプによって冷却水が循環する冷却水循環路とに熱電発電素子を取り付ける装置が開示されている。特許文献3では、複数の熱電発電素子を、排気管及び冷却水管に取り付ける場合に、冷却水管中の冷却水の流れが、排気管を流れる排気の方向と対向するように設計することにより、下流側の熱電発電素子での排気管及び冷却水管の温度差が大きくなるので、各熱電発電素子での発電量差が低減されて、全体の発電量が向上する。   Patent Document 3 discloses an apparatus in which a thermoelectric generator is attached to an exhaust pipe through which exhaust from an engine flows and a cooling water circulation path through which cooling water circulates by a cooling water pump. In Patent Document 3, when a plurality of thermoelectric power generation elements are attached to the exhaust pipe and the cooling water pipe, the flow of the cooling water in the cooling water pipe is designed so as to face the direction of the exhaust gas flowing through the exhaust pipe. Since the temperature difference between the exhaust pipe and the cooling water pipe in the thermoelectric power generation element on the side increases, the power generation difference in each thermoelectric power generation element is reduced, and the overall power generation capacity is improved.

特許文献4には、エンジン内からの冷却水を熱電発電ユニットに供給することで、熱電発電ユニットで熱電発電を行う装置が開示されている。特許文献4では、エンジンが高温になっている場合には、エンジン内からの冷却水を、熱電用冷却水通路に循環させないことで、エンジンのオーバーヒートを抑止している。   Patent Document 4 discloses an apparatus that performs thermoelectric power generation by a thermoelectric power generation unit by supplying cooling water from the engine to the thermoelectric power generation unit. In Patent Document 4, when the engine is at a high temperature, overheating of the engine is suppressed by not circulating the cooling water from the engine through the thermoelectric cooling water passage.

特許文献5には、高温側熱源をエンジンからの排気ガスとし、低温側熱源をラジエータによって冷却されるエンジンの冷却水として、熱電素子によって発電を行う熱電発電装置が開示されている。特許文献5では、熱電素子に生ずる温度差が大きくなるように、熱電素子への排気ガスあるいは冷却水の少なくとも一方の供給条件を可変する可変手段を設けている。   Patent Document 5 discloses a thermoelectric generator that generates power with a thermoelectric element using a high temperature side heat source as exhaust gas from an engine and a low temperature side heat source as cooling water for an engine cooled by a radiator. In Patent Document 5, variable means for changing the supply condition of at least one of exhaust gas and cooling water to the thermoelectric element is provided so that a temperature difference generated in the thermoelectric element becomes large.

特開2010−242700号公報JP 2010-242700 A 特開2007−198276号公報JP 2007-198276 A 特開2005−299417号公報JP 2005-299417 A 特開2005−307886号公報JP 2005-307886 A 特開2004−360681号公報Japanese Patent Application Laid-Open No. 2004-360681

特許文献1から特許文献5に開示されているように、内燃機関から排出される排気ガスと、内燃機関を冷却する冷却水とを利用して発電を行う熱電発電装置が知られている。
しかし、これらの熱電発電装置に用いる熱電変換素子は、接合材の条件や材料の酸化等から仕様的に最高使用温度の制限を受ける。
例えば、ビスマス・テルル系(Bi−Te系)を利用した熱電変換素子では、最高使用温度は230℃程度、鉛・テルル系(Pb−Te系)を利用した熱電変換素子では、最高使用温度は530℃程度である。
従って、600℃を超えるような内燃機関の排気ガスを用いて排熱回収を行う場合に、安定した長期の発電運転を維持するためには、熱電変換素子の高温部の表面温度を適切な温度に調整する必要がある。また、使用する熱電変換素子の最高使用温度に対応して、高温部の表面温度を最高使用温度以下の適切な温度に維持することが望まれる。
As disclosed in Patent Documents 1 to 5, thermoelectric power generation apparatuses that generate power using exhaust gas discharged from an internal combustion engine and cooling water that cools the internal combustion engine are known.
However, the thermoelectric conversion elements used in these thermoelectric power generation devices are limited in terms of the maximum operating temperature in terms of specifications due to the bonding material conditions, material oxidation, and the like.
For example, in a thermoelectric conversion element using a bismuth / tellurium system (Bi-Te system), the maximum use temperature is about 230 ° C., and in a thermoelectric conversion element using a lead / tellurium system (Pb—Te system), the maximum use temperature is It is about 530 degreeC.
Accordingly, when exhaust heat recovery is performed using exhaust gas of an internal combustion engine exceeding 600 ° C., the surface temperature of the high-temperature portion of the thermoelectric conversion element is set to an appropriate temperature in order to maintain stable long-term power generation operation. It is necessary to adjust to. Further, it is desired to maintain the surface temperature of the high temperature part at an appropriate temperature equal to or lower than the maximum use temperature in accordance with the maximum use temperature of the thermoelectric conversion element used.

そこで、本発明は、安定した長期の発電運転を維持するため、熱電変換素子の高温部の表面温度を適切な温度に調整することができる船舶用熱電発電システム及び船舶を提供することを目的とする。   Therefore, an object of the present invention is to provide a marine thermoelectric power generation system and a marine vessel that can adjust the surface temperature of the high temperature portion of the thermoelectric conversion element to an appropriate temperature in order to maintain stable long-term power generation operation. To do.

請求項1記載の本発明に対応した船舶用熱電発電システムにおいては、船舶の内燃機関から排出される排気ガスの通る排気ガス経路と、内燃機関を冷却する冷却水の通る冷却水経路と、冷却水を噴射し排気ガスの温度を低下させる排気ガス経路に設けた混合手段と、高温部で排気ガス経路から受熱し、低温部で冷却水経路へ放熱することにより発電を行なう混合手段の上流側に設けた熱電発電手段と、冷却水を排気ガス経路の排気ガスに混合させる熱電発電手段の上流側に設けたミキサ手段と、ミキサ手段で供給する冷却水を調節して高温部における温度を制御する温度制御手段とを備えたことを特徴とする。請求項1に記載の本発明によれば、ミキサ手段で供給する冷却水を調節して高温部における温度を制御する温度制御手段を備えたことで、熱電発電手段の高温部の表面温度を適切な温度に調整し、安定した長期の発電運転を維持することができるとともに、混合手段よりも上流側に熱電発電手段が設けられているため、高温部が排気ガスの温度の低下の影響を受けることなく発電が可能となる。   In the marine thermoelectric power generation system corresponding to the first aspect of the present invention, the exhaust gas path through which the exhaust gas discharged from the internal combustion engine of the ship passes, the cooling water path through which the cooling water for cooling the internal combustion engine passes, and the cooling The upstream side of the mixing means provided in the exhaust gas path for injecting water and lowering the temperature of the exhaust gas, and the mixing means for generating power by receiving heat from the exhaust gas path in the high temperature part and radiating heat to the cooling water path in the low temperature part The thermoelectric power generation means provided in the above, the mixer means provided upstream of the thermoelectric power generation means for mixing the cooling water with the exhaust gas in the exhaust gas path, and the cooling water supplied by the mixer means are adjusted to control the temperature in the high temperature section And a temperature control means. According to the first aspect of the present invention, the temperature control means for controlling the temperature in the high temperature part by adjusting the cooling water supplied by the mixer means is provided, so that the surface temperature of the high temperature part of the thermoelectric power generation means is appropriately set. The temperature can be adjusted to a stable temperature and stable long-term power generation operation can be maintained, and since the thermoelectric power generation means is provided upstream of the mixing means, the high temperature part is affected by a decrease in the exhaust gas temperature. Power generation is possible without any problems.

請求項2記載の本発明は、請求項1に記載の船舶用熱電発電システムにおいて、熱電発電手段の使用上限温度に基づいて温度制御手段を制御することを特徴とする。請求項2に記載の本発明によれば、用いる熱電発電手段の仕様に応じて、熱電発電手段の高温部の表面温度を適切な温度に調整することができる。   According to a second aspect of the present invention, there is provided the marine thermoelectric power generation system according to the first aspect, wherein the temperature control means is controlled based on a use upper limit temperature of the thermoelectric power generation means. According to this invention of Claim 2, according to the specification of the thermoelectric power generation means to be used, the surface temperature of the high temperature part of a thermoelectric power generation means can be adjusted to suitable temperature.

請求項3記載の本発明は、請求項2に記載の船舶用熱電発電システムにおいて、高温部における温度を検出する温度検出手段を備え、温度制御手段が温度検出手段の検出値と使用上限温度とに基づいてミキサ手段を制御することを特徴とする。請求項3に記載の本発明によれば、熱電発電手段を、使用上限温度を超えた高温にさらすことなく、安定した長期の発電運転を維持することができる。   According to a third aspect of the present invention, there is provided the marine thermoelectric power generation system according to the second aspect, further comprising temperature detecting means for detecting a temperature in the high temperature portion, wherein the temperature control means includes a detected value of the temperature detecting means, an upper limit temperature for use, Based on the above, the mixer means is controlled. According to the third aspect of the present invention, it is possible to maintain a stable long-term power generation operation without exposing the thermoelectric power generation means to a high temperature exceeding the use upper limit temperature.

請求項4記載の本発明は、請求項2又は請求項3に記載の船舶用熱電発電システムにおいて、温度制御手段は、使用上限温度以下の温度で高温部と低温部との温度差を調節して熱電発電手段の発電出力を制御することを特徴とする。請求項4に記載の本発明によれば、発電量を向上させることができる。   According to a fourth aspect of the present invention, there is provided the marine thermoelectric power generation system according to the second or third aspect, wherein the temperature control means adjusts the temperature difference between the high temperature portion and the low temperature portion at a temperature that is equal to or lower than a use upper limit temperature. And controlling the power generation output of the thermoelectric power generation means. According to the fourth aspect of the present invention, the amount of power generation can be improved.

請求項5記載の本発明は、請求項1から請求項4のいずれかに記載の船舶用熱電発電システムにおいて、ミキサ手段は、熱電発電手段よりも上流の排気ガス経路に開口する開口部を有し、開口部から冷却水を排気ガスの流れ方向に噴射することを特徴とする。請求項5に記載の本発明によれば、排気ガスの温度を迅速に低下できるとともに、排気ガスの流れを阻害しないことで、内燃機関への悪影響を防止できる。   According to a fifth aspect of the present invention, in the thermoelectric power generation system for a ship according to any one of the first to fourth aspects, the mixer means has an opening that opens to an exhaust gas path upstream of the thermoelectric power generation means. The cooling water is injected from the opening in the flow direction of the exhaust gas. According to the fifth aspect of the present invention, the temperature of the exhaust gas can be quickly reduced, and an adverse effect on the internal combustion engine can be prevented by not inhibiting the flow of the exhaust gas.

請求項6記載の本発明は、請求項5に記載の船舶用熱電発電システムにおいて、開口部は、多孔構造となっており、冷却水をシャワー状に噴射することを特徴とする。請求項6に記載の本発明によれば、シャワー状に噴射することで、更に排気ガスの温度を迅速に均一に低下できる。   According to a sixth aspect of the present invention, in the marine thermoelectric power generation system according to the fifth aspect, the opening has a porous structure and jets cooling water in a shower shape. According to the sixth aspect of the present invention, the temperature of the exhaust gas can be further rapidly and uniformly reduced by spraying in a shower shape.

請求項7記載の本発明は、請求項1から請求項6のいずれかに記載の船舶用熱電発電システムにおいて、冷却水は、少なくとも内燃機関の運転中に取水手段により連続的に取水され、内燃機関を冷却した後に連続的に排出されることを特徴とする。請求項7に記載の本発明によれば、冷却水を循環させる場合と比べて、安定して冷却効果を得ることができる。   According to a seventh aspect of the present invention, in the marine thermoelectric power generation system according to any one of the first to sixth aspects, the cooling water is continuously taken in by the water intake means at least during the operation of the internal combustion engine. The engine is continuously discharged after being cooled. According to this invention of Claim 7, compared with the case where cooling water is circulated, a cooling effect can be acquired stably.

請求項8記載の本発明は、請求項7に記載の船舶用熱電発電システムにおいて、冷却水経路には、取水した冷却水の一部を分岐して流すことを特徴とする。請求項8に記載の本発明によれば、冷却水経路に流す冷却水とは別にミキサ手段に冷却水を供給することができ、内燃機関の冷却効果を損なうことが防止できる。   The eighth aspect of the present invention is the marine thermoelectric power generation system according to the seventh aspect, characterized in that a part of the taken cooling water is branched and flowed through the cooling water path. According to the eighth aspect of the present invention, it is possible to supply the cooling water to the mixer means separately from the cooling water flowing through the cooling water path, and to prevent the cooling effect of the internal combustion engine from being impaired.

請求項9記載の本発明は、請求項1から請求項8のいずれかに記載の船舶用熱電発電システムにおいて、温度制御手段は、冷却水経路に設けた流量調節バルブを調節して冷却水の流量を制御することを特徴とする。請求項9に記載の本発明によれば、排気ガスの温度低下量を調整できるため、発電量を低下させることなく熱電発電手段の高温部の表面温度を適切な温度に調整できる。   According to a ninth aspect of the present invention, there is provided the marine thermoelectric power generation system according to any one of the first to eighth aspects, wherein the temperature control means adjusts a flow rate adjustment valve provided in the cooling water path to adjust the cooling water. It is characterized by controlling the flow rate. According to the present invention described in claim 9, since the temperature decrease amount of the exhaust gas can be adjusted, the surface temperature of the high temperature portion of the thermoelectric power generation means can be adjusted to an appropriate temperature without decreasing the power generation amount.

請求項10記載の本発明は、請求項1から請求項9のいずれかに記載の船舶用熱電発電システムにおいて、熱電発電手段は、排気ガス経路の周囲に複数の熱電発電素子を配置し、更に熱電発電素子を冷却水経路で挟持して構成したことを特徴とする。請求項10に記載の本発明によれば、排気ガス経路からの受熱と、冷却水経路への放熱を効率よく行える。   The tenth aspect of the present invention is the marine thermoelectric power generation system according to any one of the first to ninth aspects, wherein the thermoelectric power generation means includes a plurality of thermoelectric power generation elements arranged around the exhaust gas path. It is characterized in that the thermoelectric generator is sandwiched between cooling water paths. According to the tenth aspect of the present invention, it is possible to efficiently receive heat from the exhaust gas path and release heat to the cooling water path.

請求項11記載の本発明は、請求項10に記載の船舶用熱電発電システムにおいて、熱電発電素子が配置された排気ガス経路の内面に伝熱フィンを設けたことを特徴とする。請求項11に記載の本発明によれば、排気ガス経路からの受熱量を増やすことができる。   The eleventh aspect of the present invention is the marine thermoelectric power generation system according to the tenth aspect, characterized in that heat transfer fins are provided on the inner surface of the exhaust gas path in which the thermoelectric power generation elements are arranged. According to the present invention described in claim 11, the amount of heat received from the exhaust gas path can be increased.

請求項12記載の本発明は、請求項10又は請求項11に記載の船舶用熱電発電システムにおいて、熱電発電素子の周囲に圧縮性と耐熱性を有したシール材を設け、シール材を排気ガス経路と冷却水経路とで挟持したことを特徴とする。請求項12に記載の本発明によれば、シール材によって熱電発電素子の結露や塩害を防止することができ、耐久性能を高めることができる。また、それぞれの熱電発電素子にかかる面圧を均等にしやすくなるため、発電効率を高めることができる。   According to a twelfth aspect of the present invention, in the marine thermoelectric power generation system according to the tenth or eleventh aspect, a seal material having compressibility and heat resistance is provided around the thermoelectric power generation element, and the seal material is exhaust gas. It is characterized by being sandwiched between the path and the cooling water path. According to the present invention as set forth in claim 12, the sealing material can prevent condensation and salt damage of the thermoelectric power generation element, and can improve durability. Moreover, since it becomes easy to make the surface pressure concerning each thermoelectric power generation element uniform, electric power generation efficiency can be improved.

請求項13記載の本発明は、請求項10から請求項12のいずれかに記載の船舶用熱電発電システムにおいて、冷却水経路の冷却水の流れ方向は、排気ガス経路の排気ガスの流れ方向と対向していることを特徴とする。請求項13に記載の本発明によれば、流れ方向に熱電発電素子を併設した場合でも、それぞれの熱電発電素子における高温部と低温部との温度差を均一にでき、また高温部と低温部との温度差を大きくでき、発電効率を高めることができる。   According to a thirteenth aspect of the present invention, in the marine thermoelectric power generation system according to any one of the tenth to twelfth aspects, the flow direction of the cooling water in the cooling water path is the flow direction of the exhaust gas in the exhaust gas path. It is characterized by facing. According to the thirteenth aspect of the present invention, even when a thermoelectric power generation element is provided in the flow direction, the temperature difference between the high temperature part and the low temperature part in each thermoelectric power generation element can be made uniform, and the high temperature part and the low temperature part. The temperature difference can be increased and the power generation efficiency can be increased.

請求項14記載の本発明は、請求項1から請求項13のいずれかに記載の船舶用熱電発電システムにおいて、温度制御手段は、内燃機関の運転停止前に冷却水の供給量を増すように調節することを特徴とする。請求項14に記載の本発明によれば、内燃機関の運転停止前に冷却効果を高めておくことで、内燃機関の停止によって冷却水の供給が停止したとしても、熱電発電素子の高温部の表面温度がオーバーシュートして使用上限温度を超えないようにできる。   According to a fourteenth aspect of the present invention, in the marine thermoelectric power generation system according to any one of the first to thirteenth aspects, the temperature control means increases the supply amount of the cooling water before the operation of the internal combustion engine is stopped. It is characterized by adjusting. According to the present invention described in claim 14, by increasing the cooling effect before stopping the operation of the internal combustion engine, even if the supply of cooling water is stopped due to the stop of the internal combustion engine, It is possible to prevent the surface temperature from overshooting and exceeding the upper limit use temperature.

請求項15記載の本発明は、請求項1から請求項13のいずれかに記載の船舶用熱電発電システムにおいて、温度制御手段は、内燃機関の運転停止後に冷却水の供給を所定条件になるまで継続することを特徴とする。請求項15に記載の本発明によれば、内燃機関の運転停止後に熱電発電素子の高温部の表面温度がオーバーシュートして使用上限温度を超えないようにできる。   According to a fifteenth aspect of the present invention, in the marine thermoelectric power generation system according to any one of the first to thirteenth aspects, the temperature control means until the cooling water supply reaches a predetermined condition after the operation of the internal combustion engine is stopped. It is characterized by continuing. According to the fifteenth aspect of the present invention, after the operation of the internal combustion engine is stopped, the surface temperature of the high temperature portion of the thermoelectric power generation element can overshoot so as not to exceed the use upper limit temperature.

請求項16記載の本発明に対応した船舶においては、請求項1から請求項15のいずれかに記載の船舶用熱電発電システムを搭載したことを特徴とする。請求項16に記載の本発明によれば、船舶の内燃機関から排出される排気ガスや内燃機関を冷却する冷却水を利用し、安定した長期の発電運転を維持することができる船舶用熱電発電システムを利用できる。   In the ship corresponding to this invention of Claim 16, the thermoelectric power generation system for ships in any one of Claims 1-15 was mounted. According to the sixteenth aspect of the present invention, a marine thermoelectric power generation that can maintain a stable and long-term power generation operation using exhaust gas discharged from an internal combustion engine of a ship or cooling water that cools the internal combustion engine. The system is available.

本発明によれば、ミキサ手段で供給する冷却水を調節して高温部における温度を制御する温度制御手段を備えたことで、熱電発電手段の高温部の表面温度を適切な温度に調整し、安定した長期の発電運転を維持することができるとともに、混合手段よりも上流側に熱電発電手段が設けられているため、高温部が排気ガスの温度の低下の影響を受けることなく発電が可能となる。   According to the present invention, by providing the temperature control means for adjusting the cooling water supplied by the mixer means to control the temperature in the high temperature part, the surface temperature of the high temperature part of the thermoelectric power generation means is adjusted to an appropriate temperature, Stable and long-term power generation operation can be maintained, and thermoelectric power generation means are provided upstream of the mixing means, so that the high-temperature part can generate power without being affected by a decrease in exhaust gas temperature. Become.

また、熱電発電手段の使用上限温度に基づいて温度制御手段を制御する場合には、用いる熱電発電手段の仕様に応じて、熱電発電手段の高温部の表面温度を適切な温度に調整することができる。   Further, when controlling the temperature control means based on the upper limit temperature of use of the thermoelectric power generation means, the surface temperature of the high temperature portion of the thermoelectric power generation means can be adjusted to an appropriate temperature according to the specifications of the thermoelectric power generation means used. it can.

また、高温部における温度を検出する温度検出手段を備え、温度制御手段が温度検出手段の検出値と使用上限温度とに基づいてミキサ手段を制御する場合には、熱電発電手段を、使用上限温度を超えた高温にさらすことなく、安定した長期の発電運転を維持することができる。   Further, when the temperature control means includes a temperature detection means for detecting the temperature in the high temperature part and the temperature control means controls the mixer means based on the detected value of the temperature detection means and the upper limit temperature for use, the thermoelectric power generation means is set to the upper limit temperature for use. A stable long-term power generation operation can be maintained without being exposed to a high temperature exceeding.

また、温度制御手段が、使用上限温度以下の温度で高温部と低温部との温度差を調節して熱電発電手段の発電出力を制御する場合には、発電量を向上させることができる。   Moreover, when the temperature control means controls the power generation output of the thermoelectric power generation means by adjusting the temperature difference between the high temperature part and the low temperature part at a temperature equal to or lower than the use upper limit temperature, the power generation amount can be improved.

また、ミキサ手段が、熱電発電手段よりも上流の排気ガス経路に開口する開口部を有し、開口部から冷却水を排気ガスの流れ方向に噴射する場合には、排気ガスの温度を迅速に低下できるとともに、排気ガスの流れを阻害しないことで、内燃機関への悪影響を防止できる。   Further, when the mixer means has an opening that opens to the exhaust gas path upstream of the thermoelectric power generation means, and the cooling water is injected from the opening in the flow direction of the exhaust gas, the temperature of the exhaust gas is quickly increased. In addition to being able to reduce, the flow of exhaust gas is not hindered, thereby preventing adverse effects on the internal combustion engine.

また、開口部が、多孔構造となっており、冷却水をシャワー状に噴射する場合には、更に排気ガスの温度を迅速に均一に低下できる。   Further, the opening has a porous structure, and when the cooling water is injected in a shower shape, the temperature of the exhaust gas can be further rapidly and uniformly reduced.

また、冷却水が、少なくとも内燃機関の運転中に取水手段により連続的に取水され、内燃機関を冷却した後に連続的に排出される場合には、冷却水を循環させる場合と比べて、安定して冷却効果を得ることができる。   Further, when the cooling water is continuously taken in by the water intake means at least during the operation of the internal combustion engine and continuously discharged after the internal combustion engine is cooled, the cooling water is more stable than the case where the cooling water is circulated. Cooling effect can be obtained.

また、冷却水経路には、取水した冷却水の一部を分岐して流す場合には、冷却水経路に流す冷却水とは別にミキサ手段に冷却水を供給することができ、内燃機関の冷却効果を損なうことが防止できる。   In addition, when part of the taken cooling water flows in the cooling water path, the cooling water can be supplied to the mixer means separately from the cooling water flowing in the cooling water path. It can be prevented that the effect is impaired.

また、温度制御手段が、冷却水経路に設けた流量調節バルブを調節して冷却水の流量を制御する場合には、排気ガスの温度低下量を調整できるため、発電量を低下させることなく熱電発電手段の高温部の表面温度を適切な温度に調整できる。   In addition, when the temperature control means controls the flow rate of the cooling water by adjusting the flow rate adjustment valve provided in the cooling water path, the temperature reduction amount of the exhaust gas can be adjusted, so that the thermoelectric power can be reduced without reducing the power generation amount. The surface temperature of the high temperature part of the power generation means can be adjusted to an appropriate temperature.

また、熱電発電手段が、排気ガス経路の周囲に複数の熱電発電素子を配置し、更に熱電発電素子を冷却水経路で挟持して構成した場合には、排気ガス経路からの受熱と、冷却水経路への放熱を効率よく行える。   Further, when the thermoelectric power generation means is configured by arranging a plurality of thermoelectric power generation elements around the exhaust gas path, and further sandwiching the thermoelectric power generation elements by the cooling water path, the heat reception from the exhaust gas path and the cooling water It is possible to efficiently dissipate heat to the route.

また、熱電発電素子が配置された排気ガス経路の内面に伝熱フィンを設けた場合には、排気ガス経路からの受熱量を増やすことができる。   In addition, when heat transfer fins are provided on the inner surface of the exhaust gas path where the thermoelectric power generation elements are arranged, the amount of heat received from the exhaust gas path can be increased.

また、熱電発電素子の周囲に圧縮性と耐熱性を有したシール材を設け、シール材を排気ガス経路と冷却水経路とで挟持した場合には、シール材によって熱電発電素子の結露や塩害を防止することができ、耐久性能を高めることができる。また、それぞれの熱電発電素子にかかる面圧を均等にしやすくなるため、発電効率を高めることができる。   In addition, when a sealing material having compressibility and heat resistance is provided around the thermoelectric power generation element and the sealing material is sandwiched between the exhaust gas path and the cooling water path, the sealing material prevents condensation or salt damage of the thermoelectric power generation element. Can be prevented and durability can be improved. Moreover, since it becomes easy to make the surface pressure concerning each thermoelectric power generation element uniform, electric power generation efficiency can be improved.

また、冷却水経路の冷却水の流れ方向は、排気ガス経路の排気ガスの流れ方向と対向している場合には、流れ方向に熱電発電素子を併設した場合でも、それぞれの熱電発電素子における高温部と低温部との温度差を均一にでき、また高温部と低温部との温度差を大きくでき、発電効率を高めることができる。   In addition, when the flow direction of the cooling water in the cooling water path is opposite to the flow direction of the exhaust gas in the exhaust gas path, even if a thermoelectric power generation element is provided in the flow direction, the high temperature in each thermoelectric power generation element The temperature difference between the high temperature part and the low temperature part can be made uniform, and the temperature difference between the high temperature part and the low temperature part can be increased, thereby improving the power generation efficiency.

また、温度制御手段が、内燃機関の運転停止前に冷却水の供給量を増すように調節する場合には、内燃機関の運転停止前に冷却効果を高めておくことで、内燃機関の停止によって冷却水の供給が停止したとしても、熱電発電素子の高温部の表面温度がオーバーシュ―トし使用上限温度を超えないようにできる。   Further, when the temperature control means adjusts the supply amount of the cooling water before the operation of the internal combustion engine is stopped, by increasing the cooling effect before the operation of the internal combustion engine is stopped, Even if the supply of the cooling water is stopped, the surface temperature of the high temperature portion of the thermoelectric power generation element can be overshooted so as not to exceed the upper limit use temperature.

また、温度制御手段が、内燃機関の運転停止後に冷却水の供給を所定条件になるまで継続する場合には、内燃機関の運転停止後に熱電発電素子の高温部の表面温度がオーバーシュ―トし使用上限温度を超えないようにできる。   In addition, when the temperature control means continues the cooling water supply until the predetermined condition is reached after the operation of the internal combustion engine is stopped, the surface temperature of the high temperature portion of the thermoelectric power generation element overshoots after the operation of the internal combustion engine is stopped. The maximum use temperature can be prevented from exceeding.

また、本発明の船舶によれば、船舶の内燃機関から排出される排気ガスや内燃機関を冷却する冷却水を利用し、安定した長期の発電運転を維持することができる船舶用熱電発電システムを利用できる。   Further, according to the ship of the present invention, there is provided a marine thermoelectric power generation system capable of maintaining stable long-term power generation operation using exhaust gas discharged from an internal combustion engine of the ship or cooling water for cooling the internal combustion engine. Available.

本発明の実施形態による船舶用熱電発電システムの構成図The block diagram of the thermoelectric power generation system for ships by embodiment of this invention 同船舶用熱電発電システムの熱電発電手段の横断面図Cross-sectional view of thermoelectric power generation means of the marine thermoelectric power generation system 同熱電発電手段の要部縦断面図Longitudinal section of the main part 同熱電発電手段の熱電発電素子とシール材を示す平面図The top view which shows the thermoelectric power generation element and sealing material of the thermoelectric power generation means 同熱電発電手段における熱電発電素子の電気的接続と冷却水・排気ガスの流れを示す構成図The block diagram which shows the electrical connection of the thermoelectric power generation element in the same thermoelectric power generation means, and the flow of cooling water / exhaust gas 同船舶用熱電発電システムのミキサ手段を示す要部拡大断面図及びA−A’断面図The principal part expanded sectional view and A-A 'sectional view which show the mixer means of the thermoelectric power generation system for ships

以下に、本発明の実施形態による船舶用熱電発電システムについて説明する。   Below, the thermoelectric power generation system for ships by the embodiment of the present invention is explained.

図1は本発明の実施形態による船舶用熱電発電システムの構成図、図2は同船舶用熱電発電システムの熱電発電手段の横断面図、図3は同熱電発電手段の要部縦断面図、図4は同熱電発電手段の熱電発電素子とシール材を示す平面図、図5は同熱電発電手段における熱電発電素子の電気的接続と冷却水・排気ガスの流れを示す構成図である。   FIG. 1 is a configuration diagram of a marine thermoelectric power generation system according to an embodiment of the present invention, FIG. 2 is a transverse sectional view of thermoelectric power generation means of the marine thermoelectric power generation system, and FIG. FIG. 4 is a plan view showing the thermoelectric power generation element and the sealing material of the thermoelectric power generation means, and FIG. 5 is a configuration diagram showing the electrical connection of the thermoelectric power generation element and the flow of cooling water / exhaust gas in the thermoelectric power generation means.

図1に示すように、船舶1は内燃機関10を搭載している。内燃機関10から排出される排気ガスは、排気管で構成される排気ガス経路20を通って船外に排出される。内燃機関10には、冷却水経路30から冷却水が供給される。冷却水は、少なくとも内燃機関10の運転中に取水手段31により連続的に取水され、内燃機関10を冷却した後に連続的に排出される。   As shown in FIG. 1, the ship 1 is equipped with an internal combustion engine 10. Exhaust gas discharged from the internal combustion engine 10 is discharged outside the ship through an exhaust gas path 20 constituted by an exhaust pipe. Cooling water is supplied to the internal combustion engine 10 from the cooling water passage 30. The cooling water is continuously taken in by the water intake means 31 at least during the operation of the internal combustion engine 10 and is continuously discharged after the internal combustion engine 10 is cooled.

排気ガス経路20の下流には、混合手段21を設けている。混合手段21では、冷却水経路30から供給される冷却水を、排気ガス経路20内に噴射して排気ガスの温度を低下している。
混合手段21より上流の排気ガス経路20には、熱電発電手段40を設けている。熱電発電手段40は、加熱ブロック41と冷却ブロック42と熱電発電素子43とで構成される。加熱ブロック41は、排気ガス経路20の一部で構成され、冷却ブロック42は、冷却水経路30の一部で構成される。
A mixing means 21 is provided downstream of the exhaust gas path 20. In the mixing means 21, the cooling water supplied from the cooling water path 30 is injected into the exhaust gas path 20 to reduce the temperature of the exhaust gas.
A thermoelectric power generation means 40 is provided in the exhaust gas path 20 upstream of the mixing means 21. The thermoelectric power generation means 40 includes a heating block 41, a cooling block 42, and a thermoelectric power generation element 43. The heating block 41 is configured by a part of the exhaust gas path 20, and the cooling block 42 is configured by a part of the cooling water path 30.

熱電発電手段40より上流の排気ガス経路20には、ミキサ手段50を設けている。ミキサ手段50では、冷却水経路30から供給される冷却水を排気ガス経路20の排気ガスに混合させる。   Mixer means 50 is provided in the exhaust gas path 20 upstream of the thermoelectric power generation means 40. In the mixer means 50, the cooling water supplied from the cooling water passage 30 is mixed with the exhaust gas in the exhaust gas passage 20.

温度制御手段61は、冷却水経路30に設けた流量調節バルブ33を調節して冷却水の流量を制御し、ミキサ手段50から供給する冷却水を調節して排気ガス経路20を流れる排気ガスの温度、すなわち熱電発電手段40での高温部における温度を制御する。
また、温度制御手段61は、冷却水経路30に設けた流量調節バルブ34を調節して冷却水の流量を制御し、冷却ブロック42に供給する冷却水を調節して、熱電発電手段40での低温部における温度を制御する。
熱電発電手段40には、高温部における温度を検出する温度検出手段62を備えている。なお、温度検出手段62は、熱電発電手段40の上流側の排気ガス経路20を流れる排気ガスの温度を検出し、熱電発電手段40の高温部の温度を推定してもよい。
The temperature control means 61 controls the flow rate of the cooling water by adjusting the flow rate adjustment valve 33 provided in the cooling water path 30, adjusts the cooling water supplied from the mixer means 50, and controls the exhaust gas flowing through the exhaust gas path 20. The temperature, that is, the temperature in the high temperature portion of the thermoelectric generator 40 is controlled.
Further, the temperature control means 61 controls the flow rate of the cooling water by adjusting the flow rate adjustment valve 34 provided in the cooling water path 30, and adjusts the cooling water supplied to the cooling block 42, so that the thermoelectric power generation means 40 Control the temperature in the low temperature part.
The thermoelectric power generation means 40 is provided with a temperature detection means 62 for detecting the temperature in the high temperature part. The temperature detector 62 may detect the temperature of the exhaust gas flowing through the exhaust gas path 20 upstream of the thermoelectric generator 40 and estimate the temperature of the high temperature portion of the thermoelectric generator 40.

温度制御手段61は、温度検出手段62の検出値と熱電発電素子43の使用上限温度に基づいてミキサ手段50を制御することで、熱電発電素子43を、使用上限温度を超えた高温にさらすことなく、安定した長期の発電運転を維持することができる。
また、温度制御手段61は、熱電発電素子43の使用上限温度以下の温度で高温部と低温部との温度差を調節して熱電発電手段40の発電出力を制御することで、発電量を向上させることができる。
また、温度制御手段61は、冷却水経路30に設けた流量調節バルブ34を調節して冷却水の流量を制御することで、排気ガスの温度低下量を調整できるため、発電量を低下させることなく熱電発電手段40の高温部の表面温度を適切な温度に調整できる。
The temperature control means 61 controls the mixer means 50 based on the detected value of the temperature detection means 62 and the use upper limit temperature of the thermoelectric generation element 43, thereby exposing the thermoelectric generation element 43 to a high temperature exceeding the use upper limit temperature. And stable and long-term power generation operation can be maintained.
Further, the temperature control means 61 controls the power generation output of the thermoelectric power generation means 40 by adjusting the temperature difference between the high temperature part and the low temperature part at a temperature equal to or lower than the upper limit use temperature of the thermoelectric power generation element 43, thereby improving the power generation amount. Can be made.
Further, the temperature control means 61 can adjust the flow rate of the cooling water by adjusting the flow rate adjustment valve 34 provided in the cooling water path 30, thereby adjusting the temperature decrease amount of the exhaust gas, thereby reducing the power generation amount. The surface temperature of the high temperature portion of the thermoelectric generator 40 can be adjusted to an appropriate temperature.

また、温度制御手段61は、内燃機関10の運転停止前にミキサ手段50及び/又は冷却ブロック42に供給する冷却水の供給量を増すように調節することが好ましい。例えば、内燃機関10の起動停止を行う起動停止手段63が、運転停止指示があった後、内燃機関10の停止制御を行う前、又は内燃機関10が実際に運転を停止するまでの間に温度制御手段61に信号を出力することで、内燃機関10の運転停止前に冷却水の供給量を増すように調節することができる。内燃機関10の運転停止前に冷却効果を高めておくことで、内燃機関10の停止によって冷却水の供給が停止しても、熱電発電素子43の高温部の表面温度がオーバーシュ―トして使用上限温度を超えないようにできる。
また、温度制御手段61は、内燃機関10の運転停止後に冷却水の供給を所定条件になるまで継続してもよい。例えば、内燃機関10の起動停止を行う起動停止手段63が、内燃機関10の停止指示を行う時に温度制御手段61に信号を出力することで、内燃機関10の運転停止後に冷却水の供給を所定条件になるまで継続することができる。この所定条件とは、所定の時間や熱電発電素子43の高温部の温度が所定の温度以下になること等をいう。内燃機関10の運転停止後に冷却水の供給を所定条件になるまで継続することで、内燃機関10の運転停止後に熱電発電素子43の高温部の表面温度がオーバーシュ―トして使用上限温度を超えないようにできる。
Further, the temperature control means 61 is preferably adjusted so that the amount of cooling water supplied to the mixer means 50 and / or the cooling block 42 is increased before the operation of the internal combustion engine 10 is stopped. For example, after the start / stop means 63 for starting and stopping the internal combustion engine 10 is instructed to stop the operation, before the stop control of the internal combustion engine 10 is performed, or until the internal combustion engine 10 actually stops the operation. By outputting a signal to the control means 61, the supply amount of the cooling water can be adjusted to increase before the operation of the internal combustion engine 10 is stopped. By increasing the cooling effect before the operation of the internal combustion engine 10 is stopped, even if the supply of cooling water is stopped due to the stop of the internal combustion engine 10, the surface temperature of the high temperature portion of the thermoelectric power generation element 43 is overshot. The maximum use temperature can be prevented from exceeding.
Further, the temperature control means 61 may continue supplying the cooling water after the operation of the internal combustion engine 10 is stopped until a predetermined condition is satisfied. For example, the start / stop means 63 for starting and stopping the internal combustion engine 10 outputs a signal to the temperature control means 61 when issuing a stop instruction for the internal combustion engine 10, thereby supplying cooling water after the operation of the internal combustion engine 10 is stopped. Can continue until the condition is met. The predetermined condition refers to a predetermined time or the temperature of the high temperature portion of the thermoelectric generator 43 being equal to or lower than a predetermined temperature. By continuing the supply of cooling water after the operation of the internal combustion engine 10 is stopped until a predetermined condition is reached, the surface temperature of the high temperature portion of the thermoelectric power generation element 43 overshoots after the operation of the internal combustion engine 10 is stopped, and the use upper limit temperature is increased. Can not exceed.

冷却水経路30には、内燃機関10への冷却水の流量を調整する流量調節バルブ35、及び混合手段21への冷却水の流量を調整する流量調節バルブ36を設けている。これら流量調節バルブ35、36は、温度制御手段61によって調節される。
なお、図1では、内燃機関10を冷却した冷却水を、流量調節バルブ33を介してミキサ手段50に供給し、流量調節バルブ34を介して冷却ブロック42に供給しているが、内燃機関10に供給される前の冷却水を分岐して、流量調節バルブ33を介してミキサ手段50に供給し、流量調節バルブ34を介して冷却ブロック42に供給してもよい。このように、ミキサ手段50又は冷却ブロック42に供給される冷却水は、内燃機関10を冷却した後の冷却水又は内燃機関10に供給される前の冷却水を任意に組み合わせて使用することができる。内燃機関10を冷却した後の冷却水をミキサ手段50及び冷却ブロック42に供給する場合は、冷却水経路30が簡素化できる。この船舶1の内燃機関10の場合、冷却水は循環することなく内燃機関10を冷却した後、直ちに船外に排出されるため、内燃機関10を冷却した後の冷却水温度は高いものではなく、熱電発電手段40の低温部に供給しても十分に使用できるものである。
The cooling water path 30 is provided with a flow rate adjusting valve 35 for adjusting the flow rate of cooling water to the internal combustion engine 10 and a flow rate adjusting valve 36 for adjusting the flow rate of cooling water to the mixing means 21. These flow rate adjusting valves 35 and 36 are adjusted by a temperature control means 61.
In FIG. 1, the cooling water that has cooled the internal combustion engine 10 is supplied to the mixer means 50 via the flow rate adjustment valve 33 and is supplied to the cooling block 42 via the flow rate adjustment valve 34. The cooling water before being supplied to the water may be branched, supplied to the mixer means 50 via the flow rate adjusting valve 33, and supplied to the cooling block 42 via the flow rate adjusting valve 34. Thus, the cooling water supplied to the mixer means 50 or the cooling block 42 can be used by arbitrarily combining the cooling water after cooling the internal combustion engine 10 or the cooling water before being supplied to the internal combustion engine 10. it can. When the cooling water after cooling the internal combustion engine 10 is supplied to the mixer means 50 and the cooling block 42, the cooling water path 30 can be simplified. In the case of the internal combustion engine 10 of the ship 1, since the cooling water is immediately discharged outside the ship after cooling the internal combustion engine 10 without circulating, the cooling water temperature after cooling the internal combustion engine 10 is not high. Even if it is supplied to the low temperature part of the thermoelectric generator 40, it can be used sufficiently.

図2及び図3に示すように、排気ガス経路20を構成する加熱ブロック41の内面には伝熱フィン22を設けている。それぞれの伝熱フィン22は、加熱ブロック41の内面から排気ガス経路20の中心に向かって立設され、上流より下流の高さを高くしている。それぞれの伝熱フィン22の間には、排気ガスが流れる流路を形成している。伝熱フィン22を設けることで、排気ガス経路20からの受熱量を増やすことができる。   As shown in FIGS. 2 and 3, heat transfer fins 22 are provided on the inner surface of the heating block 41 constituting the exhaust gas path 20. Each heat transfer fin 22 is erected from the inner surface of the heating block 41 toward the center of the exhaust gas path 20 and has a height downstream from the upstream. Between each heat transfer fin 22, a flow path through which exhaust gas flows is formed. By providing the heat transfer fins 22, the amount of heat received from the exhaust gas path 20 can be increased.

熱電発電手段40は、排気ガス経路20の周囲に複数の熱電発電素子43を配置し、更に熱電発電素子43を冷却ブロック42でばねにより挟持して構成される。
熱電発電素子43は、一方の面が高温部、他方の面が低温部であり、高温部で加熱ブロック41(排気ガス経路20)から受熱し、低温部で冷却ブロック42(冷却水経路30)へ放熱することにより発電を行なう。
熱電発電素子43は、排気ガス経路20と冷却水経路30との間に挟持されることで、排気ガス経路20からの受熱と、冷却水経路30への放熱を効率よく行える。
The thermoelectric power generation means 40 is configured by arranging a plurality of thermoelectric power generation elements 43 around the exhaust gas path 20 and further sandwiching the thermoelectric power generation elements 43 by a cooling block 42 with a spring.
The thermoelectric power generation element 43 has a high temperature part on one side and a low temperature part on the other side, and receives heat from the heating block 41 (exhaust gas path 20) at the high temperature part, and a cooling block 42 (cooling water path 30) at the low temperature part. Power is generated by dissipating heat.
The thermoelectric power generation element 43 is efficiently sandwiched between the exhaust gas path 20 and the cooling water path 30, and thus can efficiently receive heat from the exhaust gas path 20 and release heat to the cooling water path 30.

図3及び図4に示すように、熱電発電素子43の周囲に圧縮性と耐熱性を有したシール材44を設けている。シール材44は加熱ブロック41と冷却ブロック42とで挟持される。シール材44を設けることで、加熱ブロック41及び冷却ブロック42への熱電発電素子43の密着性を高め、熱電発電素子43の結露や塩害を防止することができ、耐久性能を高めることができる。また、それぞれの熱電発電素子43にかかる面圧を均等にしやすくなり、発電効率を高めることができる。   As shown in FIGS. 3 and 4, a seal material 44 having compressibility and heat resistance is provided around the thermoelectric power generation element 43. The sealing material 44 is sandwiched between the heating block 41 and the cooling block 42. By providing the sealing material 44, the adhesiveness of the thermoelectric power generation element 43 to the heating block 41 and the cooling block 42 can be increased, condensation or salt damage of the thermoelectric power generation element 43 can be prevented, and durability performance can be improved. In addition, the surface pressure applied to each thermoelectric power generation element 43 can be easily made uniform, and the power generation efficiency can be increased.

図5に示すように、本実施形態の船舶用熱電発電システムでは、排気ガスの流れ方向に3枚、円周方向に8枚の熱電発電素子43を用いている。冷却水経路30の冷却水の流れ方向は、排気ガス経路20の排気ガスの流れ方向と対向している。冷却水経路30の冷却水の流れ方向と排気ガス経路20の排気ガスの流れ方向とを対向することで、排気ガスの流れ方向に熱電発電素子43を併設した場合でも、それぞれの熱電発電素子43における高温部と低温部との温度差を均一にでき、また高温部と低温部との温度差を大きくでき、発電効率を高めることができる。   As shown in FIG. 5, in the marine thermoelectric power generation system of the present embodiment, three thermoelectric power generation elements 43 are used in the exhaust gas flow direction and eight in the circumferential direction. The flow direction of the cooling water in the cooling water path 30 is opposed to the flow direction of the exhaust gas in the exhaust gas path 20. Even when the thermoelectric power generation elements 43 are provided in the exhaust gas flow direction by facing the flow direction of the cooling water in the cooling water path 30 and the flow direction of the exhaust gas in the exhaust gas path 20, the respective thermoelectric power generation elements 43. The temperature difference between the high-temperature part and the low-temperature part can be made uniform, and the temperature difference between the high-temperature part and the low-temperature part can be increased, thereby improving the power generation efficiency.

図6に示すように、ミキサ手段50は、冷却水経路30から冷却水を導入する導入口51と、リング状空間52と、排気ガス経路20に開口する開口部53とを有している。
リング状空間52は、排気ガス経路20の外周にリング状に形成されている。開口部53は、リング状に多数設けており、冷却水を排気ガスの流れ方向に噴射する。
冷却水は、導入口51からリング状空間52に導かれ、開口部53から排気ガス経路20に噴射される。
リング状に設けた多数の開口部53から冷却水を排気ガスの流れ方向に噴射することで、排気ガスの温度を迅速に低下できるとともに、排気ガスの流れを阻害しないことで内燃機関10への負荷を増す悪影響を防止できる。開口部53は、多孔構造となっており、冷却水をシャワー状に噴射することが好ましい。シャワー状に噴射することで更に排気ガスの温度を迅速に低下できる。
As shown in FIG. 6, the mixer means 50 has an inlet 51 for introducing cooling water from the cooling water path 30, a ring-shaped space 52, and an opening 53 that opens to the exhaust gas path 20.
The ring-shaped space 52 is formed in a ring shape on the outer periphery of the exhaust gas path 20. A large number of openings 53 are provided in a ring shape, and the cooling water is injected in the flow direction of the exhaust gas.
The cooling water is guided from the inlet 51 to the ring-shaped space 52 and is injected from the opening 53 to the exhaust gas path 20.
By injecting the cooling water from a large number of openings 53 provided in a ring shape in the flow direction of the exhaust gas, the temperature of the exhaust gas can be quickly reduced and the flow of the exhaust gas is not hindered. The adverse effect of increasing the load can be prevented. The opening 53 has a porous structure, and it is preferable to spray the cooling water in a shower shape. The temperature of the exhaust gas can be further rapidly reduced by spraying in a shower form.

以上のように、本実施形態による船舶用熱電発電システムは、ミキサ手段50で供給する冷却水を調節して高温部における温度を制御する温度制御手段61を備えたことで、熱電発電手段40の高温部の表面温度を適切な温度に調整し、安定した長期の発電運転を維持することができる。
また、熱電発電手段40で用いる熱電発電素子43の使用上限温度に基づいて温度制御手段61を制御することで、用いる熱電発電素子43の仕様に応じて、熱電発電手段40の高温部の表面温度を適切な温度に調整することができる。
As described above, the marine thermoelectric power generation system according to the present embodiment includes the temperature control unit 61 that controls the temperature in the high temperature part by adjusting the cooling water supplied by the mixer unit 50, and thus the thermoelectric power generation unit 40. The surface temperature of the high temperature part can be adjusted to an appropriate temperature, and stable long-term power generation operation can be maintained.
Further, by controlling the temperature control means 61 based on the upper limit temperature of use of the thermoelectric power generation element 43 used in the thermoelectric power generation means 40, the surface temperature of the high temperature portion of the thermoelectric power generation means 40 according to the specifications of the thermoelectric power generation element 43 to be used. Can be adjusted to an appropriate temperature.

本発明の船舶用熱電発電システムを搭載することで、船舶の内燃機関から排出される排気ガスや内燃機関を冷却する冷却水を利用し、安定した長期の発電運転を維持することができる。   By mounting the marine thermoelectric power generation system of the present invention, it is possible to maintain a stable long-term power generation operation using exhaust gas discharged from the internal combustion engine of the ship or cooling water for cooling the internal combustion engine.

1 船舶
10 内燃機関
20 排気ガス経路
30 冷却水経路
31 取水手段
33 流量調節バルブ
34 流量調節バルブ
40 熱電発電手段
41 加熱ブロック
42 冷却ブロック
43 熱電発電素子
44 シール材
50 ミキサ手段
51 開口部
61 温度制御手段
62 温度検出手段
63 起動停止手段



DESCRIPTION OF SYMBOLS 1 Ship 10 Internal combustion engine 20 Exhaust gas path 30 Cooling water path 31 Water intake means 33 Flow rate adjustment valve 34 Flow rate adjustment valve 40 Thermoelectric power generation means 41 Heating block 42 Cooling block 43 Thermoelectric power generation element 44 Sealing material 50 Mixer means 51 Opening 61 Temperature control Means 62 Temperature detection means 63 Start / stop means



Claims (16)

船舶の内燃機関から排出される排気ガスの通る排気ガス経路と、
前記内燃機関を冷却する冷却水の通る冷却水経路と、
前記冷却水を噴射し前記排気ガスの温度を低下させる前記排気ガス経路に設けた混合手段と、
高温部で前記排気ガス経路から受熱し、低温部で前記冷却水経路へ放熱することにより発電を行なう前記混合手段の上流側に設けた熱電発電手段と、
前記冷却水を前記排気ガス経路の前記排気ガスに混合させる前記熱電発電手段の上流側に設けたミキサ手段と、
前記ミキサ手段で供給する前記冷却水を調節して前記高温部における温度を制御する温度制御手段と
を備えたことを特徴とする船舶用熱電発電システム。
An exhaust gas path through which exhaust gas discharged from the internal combustion engine of the ship passes,
A cooling water path through which the cooling water for cooling the internal combustion engine passes;
Mixing means provided in the exhaust gas path for injecting the cooling water and lowering the temperature of the exhaust gas;
Thermoelectric power generation means provided on the upstream side of the mixing means for receiving heat from the exhaust gas path at a high temperature part and generating heat by radiating heat to the cooling water path at a low temperature part;
Mixer means provided on the upstream side of the thermoelectric power generating means for mixing the cooling water with the exhaust gas in the exhaust gas path;
A marine thermoelectric power generation system comprising: temperature control means for controlling the temperature in the high temperature section by adjusting the cooling water supplied by the mixer means.
前記熱電発電手段の使用上限温度に基づいて前記温度制御手段を制御することを特徴とする請求項1に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 1, wherein the temperature control unit is controlled based on a use upper limit temperature of the thermoelectric power generation unit. 前記高温部における前記温度を検出する温度検出手段を備え、前記温度制御手段が前記温度検出手段の検出値と前記使用上限温度とに基づいて前記ミキサ手段を制御することを特徴とする請求項2に記載の船舶用熱電発電システム。   3. A temperature detection means for detecting the temperature in the high temperature part, wherein the temperature control means controls the mixer means based on a detection value of the temperature detection means and the use upper limit temperature. The marine thermoelectric power generation system described in 1. 前記温度制御手段は、前記使用上限温度以下の温度で前記高温部と前記低温部との温度差を調節して前記熱電発電手段の発電出力を制御することを特徴とする請求項2又は請求項3に記載の船舶用熱電発電システム。   The said temperature control means adjusts the temperature difference of the said high temperature part and the said low temperature part at the temperature below the said use upper limit temperature, and controls the electric power generation output of the said thermoelectric power generation means, The Claim 2 or Claim characterized by the above-mentioned. 3. The marine thermoelectric power generation system according to 3. 前記ミキサ手段は、前記熱電発電手段よりも上流の前記排気ガス経路に開口する開口部を有し、前記開口部から前記冷却水を前記排気ガスの流れ方向に噴射することを特徴とする請求項1から請求項4のいずれかに記載の船舶用熱電発電システム。   The said mixer means has an opening part opened to the said exhaust gas path | route upstream from the said thermoelectric power generation means, The said cooling water is injected in the flow direction of the said exhaust gas from the said opening part. The marine thermoelectric power generation system according to any one of claims 1 to 4. 前記開口部は、多孔構造となっており、前記冷却水をシャワー状に噴射することを特徴とする請求項5に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 5, wherein the opening has a porous structure, and the cooling water is injected in a shower shape. 前記冷却水は、少なくとも前記内燃機関の運転中に取水手段により連続的に取水され、前記内燃機関を冷却した後に連続的に排出されることを特徴とする請求項1から請求項6のいずれかに記載の船舶用熱電発電システム。   7. The cooling water according to claim 1, wherein the cooling water is continuously taken in by a water intake means at least during operation of the internal combustion engine, and is continuously discharged after the internal combustion engine is cooled. The marine thermoelectric power generation system described in 1. 前記冷却水経路には、取水した前記冷却水の一部を分岐して流すことを特徴とする請求項7に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 7, wherein a part of the taken cooling water is branched and flowed in the cooling water path. 前記温度制御手段は、前記冷却水経路に設けた流量調節バルブを調節して前記冷却水の流量を制御することを特徴とする請求項1から請求項8のいずれかに記載の船舶用熱電発電システム。   The marine thermoelectric power generation according to any one of claims 1 to 8, wherein the temperature control means controls a flow rate of the cooling water by adjusting a flow rate adjusting valve provided in the cooling water path. system. 前記熱電発電手段は、前記排気ガス経路の周囲に複数の熱電発電素子を配置し、更に前記熱電発電素子を前記冷却水経路で挟持して構成したことを特徴とする請求項1から請求項9のいずれかに記載の船舶用熱電発電システム。   The thermoelectric power generation means is configured by arranging a plurality of thermoelectric power generation elements around the exhaust gas path, and further sandwiching the thermoelectric power generation element between the cooling water paths. A marine thermoelectric power generation system according to any one of the above. 前記熱電発電素子が配置された前記排気ガス経路の内面に伝熱フィンを設けたことを特徴とする請求項10に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 10, wherein a heat transfer fin is provided on an inner surface of the exhaust gas path in which the thermoelectric power generation element is disposed. 前記熱電発電素子の周囲に圧縮性と耐熱性を有したシール材を設け、前記シール材を前記排気ガス経路と前記冷却水経路とで挟持したことを特徴とする請求項10又は請求項11に記載の船舶用熱電発電システム。   The sealing material having compressibility and heat resistance is provided around the thermoelectric power generation element, and the sealing material is sandwiched between the exhaust gas path and the cooling water path. The thermoelectric power generation system for ships described. 前記冷却水経路の前記冷却水の流れ方向は、前記排気ガス経路の前記排気ガスの流れ方向と対向していることを特徴とする請求項10から請求項12のいずれかに記載の船舶用熱電発電システム。   The marine thermoelectric device according to any one of claims 10 to 12, wherein a flow direction of the cooling water in the cooling water passage is opposed to a flow direction of the exhaust gas in the exhaust gas passage. Power generation system. 前記温度制御手段は、前記内燃機関の運転停止前に前記冷却水の供給量を増すように調節することを特徴とする請求項1から請求項13のいずれかに記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to any one of claims 1 to 13, wherein the temperature control means adjusts the supply amount of the cooling water to be increased before the operation of the internal combustion engine is stopped. 前記温度制御手段は、前記内燃機関の運転停止後に前記冷却水の供給を所定条件になるまで継続することを特徴とする請求項1から請求項13のいずれかに記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to any one of claims 1 to 13, wherein the temperature control means continues the supply of the cooling water until a predetermined condition is satisfied after the operation of the internal combustion engine is stopped. 請求項1から請求項15のいずれかに記載した船舶用熱電発電システムを搭載したことを特徴とする船舶。


A marine vessel equipped with the marine thermoelectric power generation system according to any one of claims 1 to 15.


JP2017051446A 2017-03-16 2017-03-16 Marine thermoelectric power generation system and ship Active JP6322795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051446A JP6322795B2 (en) 2017-03-16 2017-03-16 Marine thermoelectric power generation system and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051446A JP6322795B2 (en) 2017-03-16 2017-03-16 Marine thermoelectric power generation system and ship

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013070581A Division JP6120150B2 (en) 2013-03-28 2013-03-28 Marine thermoelectric power generation system and ship

Publications (2)

Publication Number Publication Date
JP2017118819A JP2017118819A (en) 2017-06-29
JP6322795B2 true JP6322795B2 (en) 2018-05-16

Family

ID=59230895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051446A Active JP6322795B2 (en) 2017-03-16 2017-03-16 Marine thermoelectric power generation system and ship

Country Status (1)

Country Link
JP (1) JP6322795B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108860551A (en) * 2018-05-15 2018-11-23 常石集团(舟山)造船有限公司 Marine main engine residual heat using device
WO2020000121A1 (en) * 2018-06-25 2020-01-02 彭斯干 Method and device for producing low-carbon emission fossil fuel
CN110155280B (en) * 2019-06-26 2020-07-10 北京机械设备研究所 High-temperature air source water mixing cooling system suitable for underwater high-speed aircraft

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303145A (en) * 1996-05-14 1997-11-25 Yamaha Motor Co Ltd Marine engine
JP2000018095A (en) * 1998-06-30 2000-01-18 Nissan Motor Co Ltd Exhaust heat power generating set
JP2005299417A (en) * 2004-04-07 2005-10-27 Toyota Motor Corp Exhaust heat power generating device and automobile equipped with the same
JP4311272B2 (en) * 2004-04-22 2009-08-12 トヨタ自動車株式会社 Cooling medium circulation device
JP2006090215A (en) * 2004-09-24 2006-04-06 Yamaha Marine Co Ltd Exhaust system for engine
JP4625679B2 (en) * 2004-10-27 2011-02-02 日野自動車株式会社 Thermoelectric generator
WO2006046590A1 (en) * 2004-10-27 2006-05-04 Hino Motors, Ltd. Thermoelectric generation device
JP4675086B2 (en) * 2004-11-01 2011-04-20 日野自動車株式会社 Thermoelectric generator
JP2007032534A (en) * 2005-07-29 2007-02-08 Toyota Motor Corp Thermal power generating apparatus
JP5271487B2 (en) * 2006-08-31 2013-08-21 ダイキン工業株式会社 Power converter
JP2010242700A (en) * 2009-04-09 2010-10-28 Honda Motor Co Ltd Power generator of water-cooled engine

Also Published As

Publication number Publication date
JP2017118819A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6322795B2 (en) Marine thermoelectric power generation system and ship
KR101421958B1 (en) Structure for using exhaust heat of vehicle
JP4023472B2 (en) Thermoelectric generator
JP2006177265A (en) Thermoelectric power generation device
JP5114092B2 (en) Method for generating voltage and system for regulating the temperature of at least one thermoelectric module
KR20120042997A (en) Thermoelectric device comprising tube bundles
KR101494124B1 (en) Device Having a Heat Exchanger for a Thermoelectric Generator of a Motor Vehicle
JP6120150B2 (en) Marine thermoelectric power generation system and ship
JP6008315B2 (en) Waste heat recovery thermoelectric power generation system, and ship equipped with exhaust heat recovery thermoelectric power generation system
JP6093434B2 (en) Method of operating fuel cell stack and fuel cell system for fuel cell system
WO2016031089A1 (en) Drive system
US20180045435A1 (en) Thermoacoustic Cooling Device
JP6997714B2 (en) Power generation system
JP4311272B2 (en) Cooling medium circulation device
JP6103433B2 (en) Marine thermoelectric power generation system and ship
JP2005287090A (en) Thermoelectric generator
JP2012238825A (en) Thermal power generation apparatus and cooling system of the same
KR101755852B1 (en) Exhaust heat recovery apparatus
JP2006105452A (en) Cogeneration system and its control method
JP2013208002A (en) Power generation system with heat storage section
JP4550077B2 (en) Heat source machine
JP2006103537A (en) Cooling system
JP2005051952A (en) Generator
JP4887961B2 (en) Heat treatment equipment
JP2017044124A (en) Electrothermal warming-up device and vehicle driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180302

R150 Certificate of patent or registration of utility model

Ref document number: 6322795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250