JP6103433B2 - Marine thermoelectric power generation system and ship - Google Patents

Marine thermoelectric power generation system and ship Download PDF

Info

Publication number
JP6103433B2
JP6103433B2 JP2013070582A JP2013070582A JP6103433B2 JP 6103433 B2 JP6103433 B2 JP 6103433B2 JP 2013070582 A JP2013070582 A JP 2013070582A JP 2013070582 A JP2013070582 A JP 2013070582A JP 6103433 B2 JP6103433 B2 JP 6103433B2
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric power
cooling water
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013070582A
Other languages
Japanese (ja)
Other versions
JP2014194176A (en
Inventor
平田 宏一
宏一 平田
東勲 柳
東勲 柳
信雄 南方
信雄 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2013070582A priority Critical patent/JP6103433B2/en
Publication of JP2014194176A publication Critical patent/JP2014194176A/en
Application granted granted Critical
Publication of JP6103433B2 publication Critical patent/JP6103433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、ゼーベック効果を利用した熱電発電素子を用いて、船舶の内燃機関から排出される排気ガスの熱を電気に変換する船舶用熱電発電システムに関する。   The present invention relates to a ship thermoelectric power generation system that converts heat of exhaust gas discharged from an internal combustion engine of a ship into electricity using a thermoelectric power generation element that utilizes the Seebeck effect.

特許文献1には、船舶に搭載される水冷エンジンの発電装置が開示されている。特許文献1では、発電装置は熱発電素子によって構成され、水冷エンジンは、互いに近接している排気通路と冷却水通路との間を、壁によって仕切り、この壁の中に熱発電素子を備えている。この熱発電素子は、高温部を排気通路に近接させ、低温部を冷却水通路に近接させている。従って、熱発電素子は、高温部と低温部との間の温度差に応じて、起電力が発生し、温度差を利用して発電する。   Patent Document 1 discloses a power generation device for a water-cooled engine mounted on a ship. In Patent Document 1, the power generation device is configured by a thermoelectric generator, and the water-cooled engine partitions the exhaust passage and the coolant passage adjacent to each other by a wall, and includes the thermoelectric generator in the wall. Yes. In this thermoelectric generator, the high temperature portion is brought close to the exhaust passage, and the low temperature portion is brought close to the cooling water passage. Therefore, the thermoelectric generator generates an electromotive force according to the temperature difference between the high temperature portion and the low temperature portion, and generates power using the temperature difference.

特許文献2には、船舶等の内燃機関冷却用水冷式熱交換器にペルチエ素子モジュールを設けて廃熱を電気エネルギーに変換する構成が開示されている。特許文献2では、熱媒液放熱管と放熱フィンの間にペルチエ素子モジュールを挟設することで、ペルチエ素子モジュールの一方を高温の熱媒液で過熱し他方を大気又は海水で冷却して発電する。   Patent Document 2 discloses a configuration in which a Peltier element module is provided in a water-cooled heat exchanger for cooling an internal combustion engine such as a ship to convert waste heat into electric energy. In Patent Document 2, a Peltier element module is sandwiched between a heat medium liquid radiation pipe and a heat radiation fin, so that one of the Peltier element modules is overheated with a high-temperature heat medium liquid and the other is cooled with air or seawater to generate power. To do.

特許文献3には、エンジンからの排気が流れる排気管と、冷却水ポンプによって冷却水が循環する冷却水循環路とに熱電発電素子を取り付ける装置が開示されている。特許文献3では、複数の熱電発電素子を、排気管及び冷却水管に取り付ける場合に、冷却水管中の冷却水の流れが、排気管を流れる排気の方向と対向するように設計することにより、下流側の熱電発電素子での排気管及び冷却水管の温度差が大きくなるので、各熱電発電素子での発電量差が低減されて、全体の発電量が向上する。   Patent Document 3 discloses an apparatus in which a thermoelectric generator is attached to an exhaust pipe through which exhaust from an engine flows and a cooling water circulation path through which cooling water circulates by a cooling water pump. In Patent Document 3, when a plurality of thermoelectric power generation elements are attached to the exhaust pipe and the cooling water pipe, the flow of the cooling water in the cooling water pipe is designed so as to face the direction of the exhaust gas flowing through the exhaust pipe. Since the temperature difference between the exhaust pipe and the cooling water pipe in the thermoelectric power generation element on the side increases, the power generation difference in each thermoelectric power generation element is reduced, and the overall power generation capacity is improved.

特許文献4には、エンジン内からの冷却水を熱電発電ユニットに供給することで、熱電発電ユニットで熱電発電を行う装置が開示されている。特許文献4では、エンジンが高温になっている場合には、エンジン内からの冷却水を、熱電用冷却水通路に循環させないことで、エンジンのオーバーヒートを抑止している。   Patent Document 4 discloses an apparatus that performs thermoelectric power generation by a thermoelectric power generation unit by supplying cooling water from the engine to the thermoelectric power generation unit. In Patent Document 4, when the engine is at a high temperature, overheating of the engine is suppressed by not circulating the cooling water from the engine through the thermoelectric cooling water passage.

特許文献5には、高温側熱源をエンジンからの排気ガスとし、低温側熱源をラジエータによって冷却されるエンジンの冷却水として、熱電素子によって発電を行う熱電発電装置が開示されている。特許文献5では、熱電素子に生ずる温度差が大きくなるように、熱電素子への排気ガスあるいは冷却水の少なくとも一方の供給条件を可変する可変手段を設けている。   Patent Document 5 discloses a thermoelectric generator that generates power with a thermoelectric element using a high temperature side heat source as exhaust gas from an engine and a low temperature side heat source as cooling water for an engine cooled by a radiator. In Patent Document 5, variable means for changing the supply condition of at least one of exhaust gas and cooling water to the thermoelectric element is provided so that a temperature difference generated in the thermoelectric element becomes large.

特開2010−242700号公報JP 2010-242700 A 特開2007−198276号公報JP 2007-198276 A 特開2005−299417号公報JP 2005-299417 A 特開2005−307886号公報JP 2005-307886 A 特開2004−360681号公報Japanese Patent Application Laid-Open No. 2004-360681

特許文献1から特許文献5に開示されているように、内燃機関から排出される排気ガスと、内燃機関を冷却する冷却水とを利用して発電を行う熱電発電装置が知られている。
しかし、これらの熱電発電装置に用いる熱電変換素子は、接合材の条件や材料の酸化等から仕様的に最高使用温度の制限を受ける。
例えば、ビスマス・テルル系(Bi−Te系)を利用した熱電変換素子では、最高使用温度は230℃程度、鉛・テルル系(Pb−Te系)を利用した熱電変換素子では、最高使用温度は530℃程度である。
従って、600℃を超えるような内燃機関の排気ガスを用いて排熱回収を行う場合に、安定した長期の発電運転を維持するためには、熱電変換素子の高温部の表面温度を適切な温度に調整する必要がある。また、使用する熱電変換素子の最高使用温度に対応して、高温部の表面温度を最高使用温度以下の適切な温度に維持することが望まれる。
特に、内燃機関を冷却する冷却水を用いる場合には、内燃機関の運転停止によって熱電変換素子への冷却水の供給が停止され、その結果、熱電変換素子の表面温度が最高使用温度を超えてしまうことがある。
As disclosed in Patent Documents 1 to 5, thermoelectric power generation apparatuses that generate power using exhaust gas discharged from an internal combustion engine and cooling water that cools the internal combustion engine are known.
However, the thermoelectric conversion elements used in these thermoelectric power generation devices are limited in terms of the maximum operating temperature in terms of specifications due to the bonding material conditions, material oxidation, and the like.
For example, in a thermoelectric conversion element using a bismuth / tellurium system (Bi-Te system), the maximum use temperature is about 230 ° C., and in a thermoelectric conversion element using a lead / tellurium system (Pb—Te system), the maximum use temperature is It is about 530 degreeC.
Accordingly, when exhaust heat recovery is performed using exhaust gas of an internal combustion engine exceeding 600 ° C., the surface temperature of the high-temperature portion of the thermoelectric conversion element is set to an appropriate temperature in order to maintain stable long-term power generation operation. It is necessary to adjust to. Further, it is desired to maintain the surface temperature of the high temperature part at an appropriate temperature equal to or lower than the maximum use temperature in accordance with the maximum use temperature of the thermoelectric conversion element to be used.
In particular, when cooling water for cooling the internal combustion engine is used, the supply of cooling water to the thermoelectric conversion element is stopped by stopping the operation of the internal combustion engine, and as a result, the surface temperature of the thermoelectric conversion element exceeds the maximum operating temperature. May end up.

そこで、本発明は、取水を停止した場合でも、熱電発電手段が船体周囲の水に曝されることで、熱電発電手段の冷却を安定して行える船舶用熱電発電システム及び船舶を提供することを目的とする。   Therefore, the present invention provides a marine thermoelectric power generation system and a ship that can stably cool the thermoelectric power generation means by exposing the thermoelectric power generation means to water around the hull even when water intake is stopped. Objective.

請求項1記載の本発明に対応した船舶用熱電発電システムにおいては、船舶の内燃機関から排出される排気ガスの通る排気ガス経路と、内燃機関を冷却する冷却水の通る冷却水経路と、高温部で排気ガス経路から受熱し、低温部で冷却水経路の取水部又は喫水以下の船体に放熱することにより発電を行なう熱電発電手段とを備えたことを特徴とする。請求項1に記載の本発明によれば、取水を停止した場合でも、熱電発電手段が船体周囲の水に曝されるため、熱電発電手段の冷却を安定して行える。   In the marine thermoelectric power generation system corresponding to the first aspect of the present invention, an exhaust gas path through which exhaust gas discharged from the internal combustion engine of the ship passes, a cooling water path through which cooling water for cooling the internal combustion engine passes, and a high temperature And a thermoelectric power generation means for generating power by receiving heat from the exhaust gas path at the section and dissipating heat to the intake section of the cooling water path or the hull below the draft at the low temperature section. According to the first aspect of the present invention, even when water intake is stopped, the thermoelectric power generation means is exposed to the water around the hull, so that the thermoelectric power generation means can be cooled stably.

請求項2記載の本発明は、請求項1に記載の船舶用熱電発電システムにおいて、冷却水を排気ガス経路の排気ガスに混合させるミキサ手段と、ミキサ手段で供給する冷却水を調節して高温部における温度を制御する温度制御手段とを備えたことを特徴とする。請求項2に記載の本発明によれば、ミキサ手段で供給する冷却水を調節して高温部における温度を制御する温度制御手段を備えたことで、熱電発電手段の高温部の表面温度を適切な温度に調整し、安定した長期の発電運転を維持することができる。   According to a second aspect of the present invention, there is provided a marine thermoelectric power generation system according to the first aspect, wherein the mixer means for mixing the cooling water with the exhaust gas in the exhaust gas passage, and the cooling water supplied by the mixer means is adjusted to a high temperature. And a temperature control means for controlling the temperature in the section. According to the second aspect of the present invention, the temperature control means for controlling the temperature in the high temperature part by adjusting the cooling water supplied by the mixer means is provided, so that the surface temperature of the high temperature part of the thermoelectric power generation means is appropriately set. The temperature can be adjusted to a stable temperature and stable long-term power generation operation can be maintained.

請求項3記載の本発明は、請求項2に記載の船舶用熱電発電システムにおいて、熱電発電手段の使用上限温度に基づいて温度制御手段を制御することを特徴とする。請求項3に記載の本発明によれば、用いる熱電発電手段の仕様に応じて、熱電発電手段の高温部の表面温度を適切な温度に調整することができる。   According to a third aspect of the present invention, there is provided the marine thermoelectric power generation system according to the second aspect, wherein the temperature control means is controlled based on a use upper limit temperature of the thermoelectric power generation means. According to this invention of Claim 3, according to the specification of the thermoelectric power generation means to be used, the surface temperature of the high temperature part of a thermoelectric power generation means can be adjusted to suitable temperature.

請求項4記載の本発明は、請求項3に記載の船舶用熱電発電システムにおいて、高温部における温度を検出する温度検出手段を備え、温度制御手段が温度検出手段の検出値と使用上限温度とに基づいてミキサ手段を制御することを特徴とする。請求項4に記載の本発明によれば、熱電発電手段を、使用上限温度を超えた高温にさらすことなく、安定した長期の発電運転を維持することができる。   According to a fourth aspect of the present invention, there is provided the marine thermoelectric power generation system according to the third aspect, further comprising temperature detecting means for detecting a temperature in the high temperature part, wherein the temperature control means includes a detected value of the temperature detecting means, a use upper limit temperature, Based on the above, the mixer means is controlled. According to the present invention as set forth in claim 4, a stable long-term power generation operation can be maintained without exposing the thermoelectric power generation means to a high temperature exceeding the upper limit temperature for use.

請求項5記載の本発明は、請求項3又は請求項4に記載の船舶用熱電発電システムにおいて、温度制御手段は、使用上限温度以下の温度で高温部と低温部との温度差を調節して熱電発電手段の発電出力を制御することを特徴とする。請求項5に記載の本発明によれば、発電量を向上させることができる。   According to a fifth aspect of the present invention, there is provided the marine thermoelectric power generation system according to the third or fourth aspect, wherein the temperature control means adjusts the temperature difference between the high temperature part and the low temperature part at a temperature not more than the upper limit temperature of use. And controlling the power generation output of the thermoelectric power generation means. According to the fifth aspect of the present invention, the power generation amount can be improved.

請求項6記載の本発明は、請求項2から請求項5のいずれかに記載の船舶用熱電発電システムにおいて、ミキサ手段は、熱電発電手段よりも上流の排気ガス経路に開口する開口部を有し、開口部から冷却水を排気ガスの流れ方向に噴射することを特徴とする。請求項6に記載の本発明によれば、排気ガスの温度を迅速に低下できるとともに、排気ガスの流れを阻害しないことで、内燃機関への悪影響を防止できる。   A sixth aspect of the present invention is the marine thermoelectric power generation system according to any one of the second to fifth aspects, wherein the mixer means has an opening that opens to an exhaust gas path upstream of the thermoelectric power generation means. The cooling water is injected from the opening in the flow direction of the exhaust gas. According to the sixth aspect of the present invention, the temperature of the exhaust gas can be quickly reduced, and an adverse effect on the internal combustion engine can be prevented by not inhibiting the flow of the exhaust gas.

請求項7記載の本発明は、請求項6に記載の船舶用熱電発電システムにおいて、開口部は、多孔構造となっており、冷却水をシャワー状に噴射することを特徴とする。請求項7に記載の本発明によれば、シャワー状に噴射することで、更に排気ガスの温度を迅速に低下できる。   A seventh aspect of the present invention is the marine thermoelectric power generation system according to the sixth aspect, wherein the opening has a porous structure and the cooling water is jetted in a shower shape. According to the seventh aspect of the present invention, the temperature of the exhaust gas can be further rapidly reduced by spraying in a shower shape.

請求項8記載の本発明は、請求項1から請求項7のいずれかに記載の船舶用熱電発電システムにおいて、冷却水は、少なくとも内燃機関の運転中に取水部により連続的に取水され、内燃機関を冷却した後に連続的に排出されることを特徴とする。請求項8に記載の本発明によれば、冷却水を循環させる場合と比べて、安定して冷却効果を得ることができる。   The present invention according to claim 8 is the marine thermoelectric power generation system according to any one of claims 1 to 7, wherein the cooling water is continuously taken in by the water intake unit at least during operation of the internal combustion engine, The engine is continuously discharged after being cooled. According to this invention of Claim 8, compared with the case where cooling water is circulated, a cooling effect can be acquired stably.

請求項9記載の本発明は、請求項6又は請求項7に記載の船舶用熱電発電システムにおいて、開口部から噴射する冷却水は、取水した冷却水の一部を用いたことを特徴とする。請求項9に記載の本発明によれば、冷却水経路に流す冷却水とは別にミキサ手段に冷却水を供給することができ、内燃機関の冷却効果を損なうことが防止できる。   A ninth aspect of the present invention is the marine thermoelectric power generation system according to the sixth or seventh aspect, wherein a part of the taken cooling water is used as the cooling water injected from the opening. . According to the ninth aspect of the present invention, it is possible to supply the cooling water to the mixer means separately from the cooling water flowing through the cooling water path, and to prevent the cooling effect of the internal combustion engine from being impaired.

請求項10記載の本発明は、請求項2から請求項9のいずれかに記載の船舶用熱電発電システムにおいて、温度制御手段は、冷却水経路に設けた流量調節バルブを調節して冷却水の流量を制御することを特徴とする。請求項10に記載の本発明によれば、排気ガスの温度低下量を調整できるため、発電量を低下させることなく熱電発電手段の高温部の表面温度を適切な温度に調整できる。   According to a tenth aspect of the present invention, there is provided the marine thermoelectric power generation system according to any one of the second to ninth aspects, wherein the temperature control means adjusts a flow rate adjusting valve provided in the cooling water path to adjust the cooling water. It is characterized by controlling the flow rate. According to the tenth aspect of the present invention, since the temperature decrease amount of the exhaust gas can be adjusted, the surface temperature of the high temperature portion of the thermoelectric power generation means can be adjusted to an appropriate temperature without reducing the power generation amount.

請求項11記載の本発明は、請求項1から請求項10のいずれかに記載の船舶用熱電発電システムにおいて、熱電発電手段は、排気ガス経路の周囲に複数の熱電発電素子を配置し、更に熱電発電素子を取水部又は喫水以下の船体に伝熱的に連接して構成したことを特徴とする。請求項11に記載の本発明によれば、排気ガス経路からの受熱と、冷却水経路への放熱を効率よく行える。   The present invention according to claim 11 is the marine thermoelectric power generation system according to any one of claims 1 to 10, wherein the thermoelectric power generation means includes a plurality of thermoelectric power generation elements arranged around the exhaust gas path, The thermoelectric power generation element is configured to be connected in a heat transfer manner to a water hull or a hull below a draft. According to the eleventh aspect of the present invention, it is possible to efficiently receive heat from the exhaust gas path and dissipate heat to the cooling water path.

請求項12記載の本発明は、請求項11に記載の船舶用熱電発電システムにおいて、熱電発電素子が配置された排気ガス経路の内面、及び/又は熱電発電素子が配置された取水部若しくは喫水以下の船体に伝熱フィンを設けたことを特徴とする。請求項12に記載の本発明によれば、排気ガス経路からの受熱量を増やすことができ、取水部又は喫水以下の船体からの放熱量を増やすことができる。   The present invention according to claim 12 is the marine thermoelectric power generation system according to claim 11, wherein the inner surface of the exhaust gas path in which the thermoelectric power generation element is arranged and / or the intake section or the draft in which the thermoelectric power generation element is arranged are below. A heat transfer fin is provided on the hull. According to the present invention described in claim 12, the amount of heat received from the exhaust gas path can be increased, and the amount of heat released from the intake section or the hull below the draft can be increased.

請求項13記載の本発明は、請求項11又は請求項12に記載の船舶用熱電発電システムにおいて、熱電発電素子の周囲に圧縮性と耐熱性を有したシール材を設け、シール材を排気ガス経路と取水部又は喫水以下の船体とで挟持したことを特徴とする。請求項13に記載の本発明によれば、シール材によって熱電発電素子の結露や塩害を防止することができ、耐久性能を高めることができる。また、それぞれの熱電発電素子にかかる面圧を均等にしやすくなるため、発電効率を高めることができる。   According to a thirteenth aspect of the present invention, in the marine thermoelectric power generation system according to the eleventh or twelfth aspect, a seal material having compressibility and heat resistance is provided around the thermoelectric power generation element, and the seal material is an exhaust gas. It is characterized by being sandwiched between the route and the intake section or the hull below the draft. According to this invention of Claim 13, the dew condensation and salt damage of a thermoelectric power generation element can be prevented with a sealing material, and durability performance can be improved. Moreover, since it becomes easy to make the surface pressure concerning each thermoelectric power generation element uniform, electric power generation efficiency can be improved.

請求項14記載の本発明は、請求項2から請求項13のいずれかに記載の船舶用熱電発電システムにおいて、温度制御手段は、内燃機関の運転停止前に冷却水の供給量を増すように調節することを特徴とする。請求項14に記載の本発明によれば、内燃機関の運転停止前に冷却効果を高めておくことで、内燃機関の停止によって冷却水の供給が停止したとしても、熱電発電素子の高温部の表面温度がオーバーシュ―トして使用上限温度を超えないようにできる。   According to a fourteenth aspect of the present invention, in the marine thermoelectric power generation system according to any one of the second to thirteenth aspects, the temperature control means increases the supply amount of the cooling water before the operation of the internal combustion engine is stopped. It is characterized by adjusting. According to the present invention described in claim 14, by increasing the cooling effect before stopping the operation of the internal combustion engine, even if the supply of cooling water is stopped due to the stop of the internal combustion engine, The surface temperature can be overshooted so that it does not exceed the upper limit temperature.

請求項15記載の本発明に対応した船舶においては、請求項1から請求項14のいずれかに記載の船舶用熱電発電システムを搭載したことを特徴とする。請求項15に記載の本発明によれば、安定した長期の発電運転を維持することができる船舶用熱電発電システムを利用できる。   In the ship corresponding to this invention of Claim 15, the thermoelectric power generation system for ships in any one of Claims 1-14 was mounted. According to the present invention of the fifteenth aspect, a marine thermoelectric power generation system capable of maintaining a stable long-term power generation operation can be used.

本発明によれば、取水を停止した場合でも、熱電発電手段が船体周囲の水に曝されるため、熱電発電手段の冷却を安定して行える。   According to the present invention, even when water intake is stopped, the thermoelectric power generation means is exposed to the water around the hull, so that the thermoelectric power generation means can be cooled stably.

また、ミキサ手段で供給する冷却水を調節して高温部における温度を制御する温度制御手段を備えた場合には、熱電発電手段の高温部の表面温度を適切な温度に調整し、安定した長期の発電運転を維持することができる。   In addition, when the temperature control means for controlling the temperature in the high temperature part by adjusting the cooling water supplied by the mixer means is provided, the surface temperature of the high temperature part of the thermoelectric power generation means is adjusted to an appropriate temperature for stable long term The power generation operation can be maintained.

また、熱電発電手段の使用上限温度に基づいて温度制御手段を制御する場合には、用いる熱電発電手段の仕様に応じて、熱電発電手段の高温部の表面温度を適切な温度に調整することができる。   Further, when controlling the temperature control means based on the upper limit temperature of use of the thermoelectric power generation means, the surface temperature of the high temperature portion of the thermoelectric power generation means can be adjusted to an appropriate temperature according to the specifications of the thermoelectric power generation means used. it can.

また、高温部における温度を検出する温度検出手段を備え、温度制御手段が温度検出手段の検出値と使用上限温度とに基づいてミキサ手段を制御する場合には、熱電発電手段を、使用上限温度を超えた高温にさらすことなく、安定した長期の発電運転を維持することができる。   Further, when the temperature control means includes a temperature detection means for detecting the temperature in the high temperature part and the temperature control means controls the mixer means based on the detected value of the temperature detection means and the upper limit temperature for use, the thermoelectric power generation means is set to the upper limit temperature for use. A stable long-term power generation operation can be maintained without being exposed to a high temperature exceeding.

また、温度制御手段が、使用上限温度以下の温度で高温部と低温部との温度差を調節して熱電発電手段の発電出力を制御する場合には、発電量を向上させることができる。   Moreover, when the temperature control means controls the power generation output of the thermoelectric power generation means by adjusting the temperature difference between the high temperature part and the low temperature part at a temperature equal to or lower than the use upper limit temperature, the power generation amount can be improved.

また、ミキサ手段が、熱電発電手段よりも上流の排気ガス経路に開口する開口部を有し、開口部から冷却水を排気ガスの流れ方向に噴射する場合には、排気ガスの温度を迅速に低下できるとともに、排気ガスの流れを阻害しないことで、内燃機関への悪影響を防止できる。   Further, when the mixer means has an opening that opens to the exhaust gas path upstream of the thermoelectric power generation means, and the cooling water is injected from the opening in the flow direction of the exhaust gas, the temperature of the exhaust gas is quickly increased. In addition to being able to reduce, the flow of exhaust gas is not hindered, thereby preventing adverse effects on the internal combustion engine.

また、開口部が、多孔構造となっており、冷却水をシャワー状に噴射する場合には、更に排気ガスの温度を迅速に低下できる。   Further, the opening has a porous structure, and when the cooling water is injected in a shower shape, the temperature of the exhaust gas can be further rapidly reduced.

また、冷却水が、少なくとも内燃機関の運転中に取水部により連続的に取水され、内燃機関を冷却した後に連続的に排出される場合には、冷却水を循環させる場合と比べて、安定して冷却効果を得ることができる。   In addition, when the cooling water is continuously taken in by the water intake unit at least during the operation of the internal combustion engine and is continuously discharged after the internal combustion engine is cooled, the cooling water is more stable than when the cooling water is circulated. Cooling effect can be obtained.

また、開口部から噴射する冷却水は、取水した冷却水の一部を用いた場合には、冷却水経路に流す冷却水とは別にミキサ手段に冷却水を供給することができ、内燃機関の冷却効果を損なうことが防止できる。   In addition, when a part of the cooling water taken is used as the cooling water injected from the opening, the cooling water can be supplied to the mixer means separately from the cooling water flowing through the cooling water path. It can be prevented that the cooling effect is impaired.

また、温度制御手段が、冷却水経路に設けた流量調節バルブを調節して冷却水の流量を制御する場合には、排気ガスの温度低下量を調整できるため、発電量を低下させることなく熱電発電手段の高温部の表面温度を適切な温度に調整できる。   In addition, when the temperature control means controls the flow rate of the cooling water by adjusting the flow rate adjustment valve provided in the cooling water path, the temperature reduction amount of the exhaust gas can be adjusted, so that the thermoelectric power can be reduced without reducing the power generation amount. The surface temperature of the high temperature part of the power generation means can be adjusted to an appropriate temperature.

また、熱電発電手段が、排気ガス経路の周囲に複数の熱電発電素子を配置し、更に熱電発電素子を取水部又は喫水以下の船体に伝熱的に連接して構成した場合には、排気ガス経路からの受熱と、冷却水経路への放熱を効率よく行える。   Further, when the thermoelectric power generation means is configured by arranging a plurality of thermoelectric power generation elements around the exhaust gas path and further connecting the thermoelectric power generation elements to the water section or the hull below the draft, the exhaust gas It is possible to efficiently receive heat from the path and dissipate heat to the cooling water path.

また、熱電発電素子が配置された排気ガス経路の内面、及び/又は熱電発電素子が配置された取水部若しくは喫水以下の船体に伝熱フィンを設けた場合には、排気ガス経路からの受熱量を増やし、取水部又は喫水以下の前記船体からの放熱量を増やすことができる。   In addition, when heat transfer fins are provided on the inner surface of the exhaust gas path where the thermoelectric power generation element is disposed and / or the intake section where the thermoelectric power generation element is disposed or the hull below the draft, the amount of heat received from the exhaust gas path The amount of heat released from the hull below the intake section or draft can be increased.

また、熱電発電素子の周囲に圧縮性と耐熱性を有したシール材を設け、シール材を排気ガス経路と取水部又は喫水以下の船体とで挟持した場合には、シール材によって熱電発電素子の結露や塩害を防止することができ、耐久性能を高めることができる。また、それぞれの熱電発電素子にかかる面圧を均等にしやすくなるため、発電効率を高めることができる。   In addition, when a sealing material having compressibility and heat resistance is provided around the thermoelectric power generation element and the sealing material is sandwiched between the exhaust gas path and the water intake section or the hull below the draft, the sealing material of the thermoelectric power generation element is used. Condensation and salt damage can be prevented, and durability can be enhanced. Moreover, since it becomes easy to make the surface pressure concerning each thermoelectric power generation element uniform, electric power generation efficiency can be improved.

また、温度制御手段が、内燃機関の運転停止前に冷却水の供給量を増すように調節する場合には、内燃機関の運転停止前に冷却効果を高めておくことで、内燃機関の停止によって冷却水の供給が停止しても、熱電発電素子の高温部の表面温度がオーバーシュ―トして使用上限温度を超えないようにできる。   Further, when the temperature control means adjusts the supply amount of the cooling water before the operation of the internal combustion engine is stopped, by increasing the cooling effect before the operation of the internal combustion engine is stopped, Even if the supply of cooling water is stopped, the surface temperature of the high temperature portion of the thermoelectric generator can be overshooted so as not to exceed the upper limit temperature.

また、本発明の船舶によれば、安定した長期の発電運転を維持することができる船舶用熱電発電システムを利用できる。   Moreover, according to the ship of this invention, the thermoelectric power generation system for ships which can maintain the stable long-term power generation operation can be utilized.

本発明の実施形態による船舶用熱電発電システムの構成図The block diagram of the thermoelectric power generation system for ships by embodiment of this invention 同船舶用熱電発電システムの熱電発電手段の斜視図A perspective view of thermoelectric power generation means of the marine thermoelectric power generation system 同船舶用熱電発電システムのミキサ手段を示す要部拡大断面図及びA−A’断面図The principal part expanded sectional view and A-A 'sectional view which show the mixer means of the thermoelectric power generation system for ships

以下に、本発明の実施形態による船舶用熱電発電システムについて説明する。   Below, the thermoelectric power generation system for ships by the embodiment of the present invention is explained.

図1は本発明の実施形態による船舶用熱電発電システムの構成図である。
図1に示すように、船舶1は内燃機関10を搭載している。内燃機関10から排出される排気ガスは、排気管で構成される排気ガス経路20を通って排出される。内燃機関10には、冷却水経路30から冷却水が供給される。冷却水は、少なくとも内燃機関10の運転中に取水部31により連続的に取水され、内燃機関10を冷却した後に連続的に排出される。
FIG. 1 is a configuration diagram of a marine thermoelectric power generation system according to an embodiment of the present invention.
As shown in FIG. 1, the ship 1 is equipped with an internal combustion engine 10. Exhaust gas exhausted from the internal combustion engine 10 is exhausted through an exhaust gas path 20 constituted by an exhaust pipe. Cooling water is supplied to the internal combustion engine 10 from the cooling water passage 30. The cooling water is continuously taken in by the water intake unit 31 at least during the operation of the internal combustion engine 10 and is continuously discharged after the internal combustion engine 10 is cooled.

排気ガス経路20と取水部31に臨ませて、排気ガス経路20から受熱し取水部31に放熱する熱電発電手段40を設けている。熱電発電手段40は、加熱ブロック41と冷却ブロック42と熱電発電素子43とで構成される。加熱ブロック41は、排気ガス経路20の一部で構成され、冷却ブロック42は、取水部31で構成される。取水部31は、喫水以下の船体2に配置される。   Thermoelectric power generation means 40 that receives heat from the exhaust gas path 20 and dissipates heat to the water intake part 31 is provided facing the exhaust gas path 20 and the water intake part 31. The thermoelectric power generation means 40 includes a heating block 41, a cooling block 42, and a thermoelectric power generation element 43. The heating block 41 is configured by a part of the exhaust gas path 20, and the cooling block 42 is configured by the water intake unit 31. The intake section 31 is disposed in the hull 2 below the draft.

熱電発電手段40より上流の排気ガス経路20には、ミキサ手段50を設けている。ミキサ手段50では、冷却水経路30から供給される冷却水を排気ガス経路20の排気ガスに混合させる。   Mixer means 50 is provided in the exhaust gas path 20 upstream of the thermoelectric power generation means 40. In the mixer means 50, the cooling water supplied from the cooling water passage 30 is mixed with the exhaust gas in the exhaust gas passage 20.

温度制御手段61は、冷却水経路30に設けた流量調節バルブ33を調節して冷却水の流量を制御し、ミキサ手段50から供給する冷却水を調節して排気ガス経路20を流れる排気ガスの温度、すなわち熱電発電手段40での高温部における温度を制御する。
また、温度制御手段61は、冷却水経路30に設けた流量調節バルブ34を調節して冷却水の流量を制御し、取水部31を流れる冷却水を調節して、熱電発電手段40での低温部における温度を制御する。
熱電発電手段40には、高温部における温度を検出する温度検出手段62を備えている。なお、温度検出手段62は、熱電発電手段40の上流側の排気ガス経路20を流れる排気ガスの温度を検出し、熱電発電手段40の高温部の温度を推定してもよい。
The temperature control means 61 controls the flow rate of the cooling water by adjusting the flow rate adjustment valve 33 provided in the cooling water path 30, adjusts the cooling water supplied from the mixer means 50, and controls the exhaust gas flowing through the exhaust gas path 20. The temperature, that is, the temperature in the high temperature portion of the thermoelectric generator 40 is controlled.
In addition, the temperature control means 61 controls the flow rate of the cooling water by adjusting the flow rate adjustment valve 34 provided in the cooling water path 30, and adjusts the cooling water flowing through the intake portion 31, so that the temperature of the thermoelectric power generation means 40 is low. Control the temperature in the section.
The thermoelectric power generation means 40 is provided with a temperature detection means 62 for detecting the temperature in the high temperature part. The temperature detector 62 may detect the temperature of the exhaust gas flowing through the exhaust gas path 20 upstream of the thermoelectric generator 40 and estimate the temperature of the high temperature portion of the thermoelectric generator 40.

温度制御手段61は、温度検出手段62の検出値と熱電発電素子43の使用上限温度に基づいてミキサ手段50を制御することで、熱電発電素子43を、使用上限温度を超えた高温にさらすことなく、安定した長期の発電運転を維持することができる。
また、温度制御手段61は、熱電発電素子43の使用上限温度以下の温度で高温部と低温部との温度差を調節して熱電発電手段40の発電出力を制御することで、発電量を向上させることができる。
また、温度制御手段61は、冷却水経路30に設けた流量調節バルブ34を調節して冷却水の流量を制御することで、排気ガスの温度低下量を調整できるため、発電量を低下させることなく熱電発電手段40の高温部の表面温度を適切な温度に調整できる。
The temperature control means 61 controls the mixer means 50 based on the detected value of the temperature detection means 62 and the use upper limit temperature of the thermoelectric generation element 43, thereby exposing the thermoelectric generation element 43 to a high temperature exceeding the use upper limit temperature. And stable and long-term power generation operation can be maintained.
Further, the temperature control means 61 controls the power generation output of the thermoelectric power generation means 40 by adjusting the temperature difference between the high temperature part and the low temperature part at a temperature equal to or lower than the upper limit use temperature of the thermoelectric power generation element 43, thereby improving the power generation amount. Can be made.
Further, the temperature control means 61 can adjust the flow rate of the cooling water by adjusting the flow rate adjustment valve 34 provided in the cooling water path 30, thereby adjusting the temperature decrease amount of the exhaust gas, thereby reducing the power generation amount. The surface temperature of the high temperature portion of the thermoelectric generator 40 can be adjusted to an appropriate temperature.

また、温度制御手段61は、内燃機関10の運転停止前にミキサ手段50に供給する冷却水の供給量を増すように調節することが好ましい。例えば、内燃機関10の起動停止を行う起動停止手段63が、内燃機関10の停止指示を行う前に温度制御手段61に信号を出力することで、内燃機関10の運転停止前に冷却水の供給量を増すように調節することができる。内燃機関10の運転停止前に冷却効果を高めておくことで、内燃機関10の停止によって冷却水の供給が停止しても、熱電発電素子43の高温部の表面温度がオーバーシュ―トして使用上限温度を超えないようにできる。この運転停止時の熱電発電素子43の高温部の表面温度のオーバーシュ―トは、熱電発電手段40を取水部31に臨ませて周囲の水に放熱しているため比較的少ないが、運転停止前に上記のような制御をすることは、確実に使用上限温度を超えないようする上で好ましい。   Further, the temperature control means 61 is preferably adjusted so as to increase the amount of cooling water supplied to the mixer means 50 before the operation of the internal combustion engine 10 is stopped. For example, the start / stop means 63 for starting and stopping the internal combustion engine 10 outputs a signal to the temperature control means 61 before issuing an instruction to stop the internal combustion engine 10, thereby supplying cooling water before the internal combustion engine 10 is stopped. The amount can be adjusted to increase. By increasing the cooling effect before the operation of the internal combustion engine 10 is stopped, even if the supply of cooling water is stopped due to the stop of the internal combustion engine 10, the surface temperature of the high temperature portion of the thermoelectric power generation element 43 is overshot. The maximum use temperature can be prevented from exceeding. The overshoot of the surface temperature of the high temperature portion of the thermoelectric power generation element 43 when the operation is stopped is relatively small because the thermoelectric power generation means 40 is exposed to the water portion 31 and dissipates heat to the surrounding water. It is preferable to perform the control as described above in order to ensure that the use upper limit temperature is not exceeded.

冷却水経路30には、ミキサ手段50よりも下流側に設けた混合手段への冷却水の流量を調整する流量調節バルブ35を設けている。流量調節バルブ35は、温度制御手段61によって調節される。図示しないが、混合手段は、冷却水経路30から供給される冷却水を、排気ガス経路20内に噴射して排気ガスの温度を低下させる。
なお、図1では、内燃機関10を冷却した冷却水を、流量調節バルブ33を介してミキサ手段50に供給しているが、内燃機関10に供給される前の冷却水を、流量調節バルブ33を介してミキサ手段50に供給してもよい。
The cooling water path 30 is provided with a flow rate adjusting valve 35 that adjusts the flow rate of the cooling water to the mixing means provided downstream of the mixer means 50. The flow rate adjustment valve 35 is adjusted by the temperature control means 61. Although not shown, the mixing means injects the cooling water supplied from the cooling water passage 30 into the exhaust gas passage 20 to lower the temperature of the exhaust gas.
In FIG. 1, the cooling water that has cooled the internal combustion engine 10 is supplied to the mixer means 50 via the flow rate adjustment valve 33, but the cooling water before being supplied to the internal combustion engine 10 is supplied to the flow rate adjustment valve 33. May be supplied to the mixer means 50.

排気ガス経路20を構成する加熱ブロック41の内面には伝熱フィン22を設けている。それぞれの伝熱フィン22は、加熱ブロック41の内面に立設され、それぞれの伝熱フィン22の間には、排気ガスが流れる流路を形成している。伝熱フィン22を設けることで、排気ガス経路20からの受熱量を増やすことができる。
また、熱電発電素子43が配置された取水部31にも伝熱フィン42aを設けている。それぞれの伝熱フィン42aは、取水部31の内面に立設され、それぞれの伝熱フィン42aの間には、水が流れる流路を形成している。伝熱フィン42aを設けることで、取水部31への放熱量を増やすことができる。
Heat transfer fins 22 are provided on the inner surface of the heating block 41 constituting the exhaust gas path 20. Each heat transfer fin 22 is provided upright on the inner surface of the heating block 41, and a flow path through which exhaust gas flows is formed between each heat transfer fin 22. By providing the heat transfer fins 22, the amount of heat received from the exhaust gas path 20 can be increased.
Moreover, the heat-transfer fin 42a is provided also in the water intake part 31 in which the thermoelectric generation element 43 is arrange | positioned. Each heat transfer fin 42a is erected on the inner surface of the water intake section 31, and a flow path through which water flows is formed between each heat transfer fin 42a. By providing the heat transfer fins 42a, the amount of heat released to the water intake unit 31 can be increased.

熱電発電手段40は、排気ガス経路20の周囲に複数の熱電発電素子43を配置し、更に熱電発電素子43を冷却ブロック42で挟持して構成される。
熱電発電素子43は、一方の面が高温部、他方の面が低温部であり、高温部で加熱ブロック41(排気ガス経路20)から受熱し、低温部で冷却ブロック42(取水部31)へ放熱することにより発電を行なう。
熱電発電素子43は、排気ガス経路20と取水部31との間に挟持されることで、排気ガス経路20からの受熱と、取水部31への放熱を効率よく行える。
The thermoelectric power generation means 40 is configured by arranging a plurality of thermoelectric power generation elements 43 around the exhaust gas path 20 and further sandwiching the thermoelectric power generation elements 43 by a cooling block 42.
The thermoelectric power generation element 43 has a high temperature part on one side and a low temperature part on the other side, and receives heat from the heating block 41 (exhaust gas path 20) at the high temperature part and to the cooling block 42 (water intake part 31) at the low temperature part. It generates electricity by dissipating heat.
The thermoelectric power generation element 43 is efficiently sandwiched between the exhaust gas path 20 and the water intake unit 31, thereby efficiently receiving heat from the exhaust gas path 20 and radiating heat to the water intake unit 31.

図2は同船舶用熱電発電システムの熱電発電手段の斜視図である。
図2に示すように、熱電発電素子43の周囲に圧縮性と耐熱性を有したシール材44を設けている。シール材44は加熱ブロック41と冷却ブロック42とで挟持される。シール材44を設けることで、加熱ブロック41及び冷却ブロック42への熱電発電素子43の密着性を高め、熱電発電素子43の結露や塩害を防止することができ、耐久性能を高めることができる。また、それぞれの熱電発電素子43にかかる面圧を均等にしやすくなり、発電効率を高めることができる。
FIG. 2 is a perspective view of thermoelectric power generation means of the marine thermoelectric power generation system.
As shown in FIG. 2, a sealing material 44 having compressibility and heat resistance is provided around the thermoelectric power generation element 43. The sealing material 44 is sandwiched between the heating block 41 and the cooling block 42. By providing the sealing material 44, the adhesiveness of the thermoelectric power generation element 43 to the heating block 41 and the cooling block 42 can be increased, condensation or salt damage of the thermoelectric power generation element 43 can be prevented, and durability performance can be improved. In addition, the surface pressure applied to each thermoelectric power generation element 43 can be easily made uniform, and the power generation efficiency can be increased.

図3は同船舶用熱電発電システムのミキサ手段を示す要部拡大断面図及びA−A’断面図である。
図3に示すように、ミキサ手段50は、冷却水経路30から冷却水を導入する導入口51と、リング状空間52と、排気ガス経路20に開口する開口部53とを有している。
リング状空間52は、排気ガス経路20の外周にリング状に形成されている。開口部53は、リング状に多数設けており、冷却水を排気ガスの流れ方向に噴射する。
冷却水は、導入口51からリング状空間52に導かれ、開口部53から排気ガス経路20に噴射される。
リング状に設けた多数の開口部53から冷却水を排気ガスの流れ方向に噴射することで、排気ガスの温度を迅速に低下できるとともに、排気ガスの流れを阻害しないことで内燃機関10への負荷を増す悪影響を防止できる。開口部53は、多孔構造となっており、冷却水をシャワー状に噴射することが好ましい。シャワー状に噴射することで更に排気ガスの温度を迅速に低下できる。
FIG. 3 is an enlarged cross-sectional view of a main part and a cross-sectional view taken along line AA ′ showing mixer means of the marine thermoelectric power generation system.
As shown in FIG. 3, the mixer means 50 has an inlet 51 for introducing cooling water from the cooling water path 30, a ring-shaped space 52, and an opening 53 that opens to the exhaust gas path 20.
The ring-shaped space 52 is formed in a ring shape on the outer periphery of the exhaust gas path 20. A large number of openings 53 are provided in a ring shape, and the cooling water is injected in the flow direction of the exhaust gas.
The cooling water is guided from the inlet 51 to the ring-shaped space 52 and is injected from the opening 53 to the exhaust gas path 20.
By injecting the cooling water from a large number of openings 53 provided in a ring shape in the flow direction of the exhaust gas, the temperature of the exhaust gas can be quickly reduced and the flow of the exhaust gas is not hindered. The adverse effect of increasing the load can be prevented. The opening 53 has a porous structure, and it is preferable to spray the cooling water in a shower shape. The temperature of the exhaust gas can be further rapidly reduced by spraying in a shower form.

なお、本発明の実施形態では、熱電発電手段40を取水部31に設けた場合で説明したが、喫水以下の船体2に設けてもよい。すなわち、熱電発電素子43を取水部31の代わりに喫水以下の船体2に伝熱的に連接して構成する。この場合には、熱電発電素子43が配置された喫水以下の船体2に伝熱フィン42aを設けることが好ましい。また、熱電発電素子43が配置された喫水以下の船体2と排気ガス経路20(加熱ブロック41)とはシール材44で挟持することが好ましい。熱電発電手段40を喫水以下の船体2に設けることにより取水部31に設けた場合と同様に、船体2の周囲に無尽蔵にある水を冷却源とすることが可能となる。
また、熱電発電素子43が防水性を有している場合には直接、熱電発電素子43を船体2の周囲の水に臨ませ水に曝すことも可能である。
In addition, although embodiment of this invention demonstrated the case where the thermoelectric power generation means 40 was provided in the water part 31, you may provide in the hull 2 below draft. That is, the thermoelectric power generation element 43 is configured to be connected in heat transfer to the hull 2 below the draft instead of the water portion 31. In this case, it is preferable to provide the heat transfer fins 42a on the hull 2 below the draft where the thermoelectric power generation elements 43 are arranged. Moreover, it is preferable that the hull 2 below the draft in which the thermoelectric power generation element 43 is disposed and the exhaust gas path 20 (heating block 41) are sandwiched by the sealing material 44. By providing the thermoelectric power generation means 40 in the hull 2 below the draft, it is possible to use inexhaustible water around the hull 2 as a cooling source, similarly to the case where it is provided in the water intake section 31.
Further, when the thermoelectric generation element 43 is waterproof, it is possible to directly expose the thermoelectric generation element 43 to the water around the hull 2 and expose it to the water.

以上のように、本実施形態による船舶用熱電発電システムは、低温部で冷却水経路30の取水部31又は喫水以下の船体2に放熱することにより発電を行なう熱電発電手段40を備えたことで、取水を停止した場合でも、熱電発電手段40が船体2の周囲の水に曝されるため、熱電発電手段40の冷却を安定して行える。
また、ミキサ手段50で供給する冷却水を調節して高温部における温度を制御する温度制御手段61を備えたことで、熱電発電手段40の高温部の表面温度を適切な温度に調整し、安定した長期の発電運転を維持することができる。
また、熱電発電手段40で用いる熱電発電素子43の使用上限温度に基づいて温度制御手段61を制御することで、用いる熱電発電素子43の仕様に応じて、熱電発電手段40の高温部の表面温度を適切な温度に調整することができる。
As described above, the marine thermoelectric power generation system according to the present embodiment includes the thermoelectric power generation means 40 that generates power by radiating heat to the intake portion 31 of the cooling water path 30 or the hull 2 below the draft at the low temperature portion. Even when the water intake is stopped, since the thermoelectric power generation means 40 is exposed to the water around the hull 2, the thermoelectric power generation means 40 can be cooled stably.
Further, by providing the temperature control means 61 for controlling the temperature in the high temperature part by adjusting the cooling water supplied by the mixer means 50, the surface temperature of the high temperature part of the thermoelectric power generation means 40 is adjusted to an appropriate temperature and stable. Long-term power generation operation can be maintained.
Further, by controlling the temperature control means 61 based on the upper limit temperature of use of the thermoelectric power generation element 43 used in the thermoelectric power generation means 40, the surface temperature of the high temperature portion of the thermoelectric power generation means 40 according to the specifications of the thermoelectric power generation element 43 to be used. Can be adjusted to an appropriate temperature.

本発明の船舶用熱電発電システムを搭載することで、取水を停止した場合でも熱電発電手段の冷却を安定して行え、安定した長期の発電運転を維持することができる。   By installing the marine thermoelectric power generation system of the present invention, the thermoelectric power generation means can be stably cooled even when water intake is stopped, and a stable long-term power generation operation can be maintained.

1 船舶
10 内燃機関
20 排気ガス経路
30 冷却水経路
31 取水部
33 流量調節バルブ
34 流量調節バルブ
40 熱電発電手段
41 加熱ブロック
42 冷却ブロック
43 熱電発電素子
44 シール材
50 ミキサ手段
51 開口部
61 温度制御手段
62 温度検出手段
63 起動停止手段
DESCRIPTION OF SYMBOLS 1 Ship 10 Internal combustion engine 20 Exhaust gas path 30 Cooling water path 31 Water intake part 33 Flow control valve 34 Flow control valve 40 Thermoelectric power generation means 41 Heating block 42 Cooling block 43 Thermoelectric power generation element 44 Sealing material 50 Mixer means 51 Opening 61 Temperature control Means 62 Temperature detection means 63 Start / stop means

Claims (15)

船舶の内燃機関から排出される排気ガスの通る排気ガス経路と、
前記内燃機関を冷却する冷却水の通る冷却水経路と、
高温部で前記排気ガス経路から受熱し、低温部で前記冷却水経路の取水部又は喫水以下の船体に放熱することにより発電を行なう熱電発電手段と
を備えたことを特徴とする船舶用熱電発電システム。
An exhaust gas path through which exhaust gas discharged from the internal combustion engine of the ship passes,
A cooling water path through which the cooling water for cooling the internal combustion engine passes;
Thermoelectric power generation for ships, comprising thermoelectric power generation means for generating heat by receiving heat from the exhaust gas path at a high temperature part and dissipating heat to a water intake part of the cooling water path or below the draft at a low temperature part system.
前記冷却水を前記排気ガス経路の前記排気ガスに混合させるミキサ手段と、
前記ミキサ手段で供給する前記冷却水を調節して前記高温部における温度を制御する温度制御手段と
を備えたことを特徴とする請求項1に記載の船舶用熱電発電システム。
Mixer means for mixing the cooling water with the exhaust gas in the exhaust gas path;
The marine thermoelectric power generation system according to claim 1, further comprising temperature control means for adjusting the cooling water supplied by the mixer means to control the temperature in the high temperature part.
前記熱電発電手段の使用上限温度に基づいて前記温度制御手段を制御することを特徴とする請求項2に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 2, wherein the temperature control means is controlled based on a use upper limit temperature of the thermoelectric power generation means. 前記高温部における前記温度を検出する温度検出手段を備え、前記温度制御手段が前記温度検出手段の検出値と前記使用上限温度とに基づいて前記ミキサ手段を制御することを特徴とする請求項3に記載の船舶用熱電発電システム。   4. A temperature detection means for detecting the temperature in the high temperature part, wherein the temperature control means controls the mixer means based on a detection value of the temperature detection means and the upper limit temperature for use. The marine thermoelectric power generation system described in 1. 前記温度制御手段は、前記使用上限温度以下の温度で前記高温部と前記低温部との温度差を調節して前記熱電発電手段の発電出力を制御することを特徴とする請求項3又は請求項4に記載の船舶用熱電発電システム。   The said temperature control means controls the electric power generation output of the said thermoelectric power generation means by adjusting the temperature difference of the said high temperature part and the said low temperature part by the temperature below the said use upper limit temperature. 4. A marine thermoelectric power generation system according to 4. 前記ミキサ手段は、前記熱電発電手段よりも上流の前記排気ガス経路に開口する開口部を有し、前記開口部から前記冷却水を前記排気ガスの流れ方向に噴射することを特徴とする請求項2から請求項5のいずれかに記載の船舶用熱電発電システム。   The said mixer means has an opening part opened to the said exhaust gas path | route upstream from the said thermoelectric power generation means, The said cooling water is injected in the flow direction of the said exhaust gas from the said opening part. The marine thermoelectric power generation system according to any one of claims 2 to 5. 前記開口部は、多孔構造となっており、前記冷却水をシャワー状に噴射することを特徴とする請求項6に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 6, wherein the opening has a porous structure, and the cooling water is injected in a shower shape. 前記冷却水は、少なくとも前記内燃機関の運転中に前記取水部により連続的に取水され、前記内燃機関を冷却した後に連続的に排出されることを特徴とする請求項1から請求項7のいずれかに記載の船舶用熱電発電システム。   8. The cooling water according to claim 1, wherein the cooling water is continuously taken in by the water intake section at least during the operation of the internal combustion engine, and is continuously discharged after the internal combustion engine is cooled. A marine thermoelectric power generation system according to claim 1. 前記開口部から噴射する前記冷却水は、取水した前記冷却水の一部を用いたことを特徴とする請求項6又は請求項7に記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to claim 6 or 7, wherein a part of the taken cooling water is used as the cooling water sprayed from the opening. 前記温度制御手段は、前記冷却水経路に設けた流量調節バルブを調節して前記冷却水の流量を制御することを特徴とする請求項2から請求項9のいずれかに記載の船舶用熱電発電システム。   The marine thermoelectric power generation according to any one of claims 2 to 9, wherein the temperature control means controls a flow rate of the cooling water by adjusting a flow rate adjusting valve provided in the cooling water path. system. 前記熱電発電手段は、前記排気ガス経路の周囲に複数の熱電発電素子を配置し、更に前記熱電発電素子を前記取水部又は喫水以下の前記船体に伝熱的に連接して構成したことを特徴とする請求項1から請求項10のいずれかに記載の船舶用熱電発電システム。   The thermoelectric power generation means is configured by arranging a plurality of thermoelectric power generation elements around the exhaust gas path, and further connecting the thermoelectric power generation elements in heat transfer to the intake section or the hull below the draft. The marine thermoelectric power generation system according to any one of claims 1 to 10. 前記熱電発電素子が配置された前記排気ガス経路の内面、及び/又は前記熱電発電素子が配置された前記取水部若しくは喫水以下の前記船体に伝熱フィンを設けたことを特徴とする請求項11に記載の船舶用熱電発電システム。   The heat transfer fin is provided in the inner surface of the exhaust gas path in which the thermoelectric power generation element is disposed and / or the water intake section in which the thermoelectric power generation element is disposed or the hull below the draft. The marine thermoelectric power generation system described in 1. 前記熱電発電素子の周囲に圧縮性と耐熱性を有したシール材を設け、前記シール材を前記排気ガス経路と前記取水部又は喫水以下の前記船体とで挟持したことを特徴とする請求項11又は請求項12に記載の船舶用熱電発電システム。   12. A sealing material having compressibility and heat resistance is provided around the thermoelectric power generation element, and the sealing material is sandwiched between the exhaust gas path and the water intake section or the hull below draft. A marine thermoelectric power generation system according to claim 12. 前記温度制御手段は、前記内燃機関の運転停止前に前記冷却水の供給量を増すように調節することを特徴とする請求項2から請求項13のいずれかに記載の船舶用熱電発電システム。   The marine thermoelectric power generation system according to any one of claims 2 to 13, wherein the temperature control means adjusts the supply amount of the cooling water before the operation of the internal combustion engine is stopped. 請求項1から請求項14のいずれかに記載した船舶用熱電発電システムを搭載したことを特徴とする船舶。   A marine vessel equipped with the marine thermoelectric power generation system according to any one of claims 1 to 14.
JP2013070582A 2013-03-28 2013-03-28 Marine thermoelectric power generation system and ship Active JP6103433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070582A JP6103433B2 (en) 2013-03-28 2013-03-28 Marine thermoelectric power generation system and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070582A JP6103433B2 (en) 2013-03-28 2013-03-28 Marine thermoelectric power generation system and ship

Publications (2)

Publication Number Publication Date
JP2014194176A JP2014194176A (en) 2014-10-09
JP6103433B2 true JP6103433B2 (en) 2017-03-29

Family

ID=51839571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070582A Active JP6103433B2 (en) 2013-03-28 2013-03-28 Marine thermoelectric power generation system and ship

Country Status (1)

Country Link
JP (1) JP6103433B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303145A (en) * 1996-05-14 1997-11-25 Yamaha Motor Co Ltd Marine engine
JPH11208592A (en) * 1998-01-20 1999-08-03 Yamaha Motor Co Ltd Engine for ship
JP2000018095A (en) * 1998-06-30 2000-01-18 Nissan Motor Co Ltd Exhaust heat power generating set
JP2002136160A (en) * 2000-10-27 2002-05-10 Seiko Epson Corp Thermoelectric generator
JP4311272B2 (en) * 2004-04-22 2009-08-12 トヨタ自動車株式会社 Cooling medium circulation device
JP2010242700A (en) * 2009-04-09 2010-10-28 Honda Motor Co Ltd Power generator of water-cooled engine

Also Published As

Publication number Publication date
JP2014194176A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
KR101421958B1 (en) Structure for using exhaust heat of vehicle
JP4023472B2 (en) Thermoelectric generator
KR20120042997A (en) Thermoelectric device comprising tube bundles
JP2006177265A (en) Thermoelectric power generation device
JP6322795B2 (en) Marine thermoelectric power generation system and ship
JP6008315B2 (en) Waste heat recovery thermoelectric power generation system, and ship equipped with exhaust heat recovery thermoelectric power generation system
JP2010242700A (en) Power generator of water-cooled engine
ES2321965T3 (en) AN EXHAUST VEHICLE EXHAUST COOLING SYSTEM.
JP2013046504A (en) Power generating system
JP6120150B2 (en) Marine thermoelectric power generation system and ship
WO2016031089A1 (en) Drive system
JP6611328B2 (en) Fuel cell system
JP6997714B2 (en) Power generation system
JP4311272B2 (en) Cooling medium circulation device
JP6103433B2 (en) Marine thermoelectric power generation system and ship
KR102005413B1 (en) Thermoelectric generator for boiler
JP2005287090A (en) Thermoelectric generator
JP2009194019A (en) Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment
KR20160002493A (en) A thermoelectric generator having heat exchanger using molten metal
JP2012238825A (en) Thermal power generation apparatus and cooling system of the same
JP4550077B2 (en) Heat source machine
JP2005051952A (en) Generator
JP2006105452A (en) Cogeneration system and its control method
JP4887961B2 (en) Heat treatment equipment
JP2013150420A (en) Thermoelectric generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170217

R150 Certificate of patent or registration of utility model

Ref document number: 6103433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250