JP6305352B2 - 電流検出装置および磁界検出装置 - Google Patents

電流検出装置および磁界検出装置 Download PDF

Info

Publication number
JP6305352B2
JP6305352B2 JP2015008791A JP2015008791A JP6305352B2 JP 6305352 B2 JP6305352 B2 JP 6305352B2 JP 2015008791 A JP2015008791 A JP 2015008791A JP 2015008791 A JP2015008791 A JP 2015008791A JP 6305352 B2 JP6305352 B2 JP 6305352B2
Authority
JP
Japan
Prior art keywords
conductor
magnetic field
conductors
current
tmr element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015008791A
Other languages
English (en)
Other versions
JP2016133430A (ja
Inventor
陽亮 津嵜
陽亮 津嵜
隆志 長永
隆志 長永
泰助 古川
泰助 古川
吉田 幸久
幸久 吉田
佐竹 徹也
徹也 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015008791A priority Critical patent/JP6305352B2/ja
Publication of JP2016133430A publication Critical patent/JP2016133430A/ja
Application granted granted Critical
Publication of JP6305352B2 publication Critical patent/JP6305352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、電流検出装置および磁界検出装置に関し、特に、導体を流れる電流が誘起する磁界を検出することで当該導体を流れる電流を検出する電流検出装置、および、それを用いた磁界検出装置に関する。
近年、磁気抵抗効果素子として、トンネル磁気抵抗効果(tunneling magneto−resistance:TMR)を用いたTMR素子、および、巨大磁気抵抗効果(giant magneto−resistance:GMR)を用いたGMR素子が開発されている。TMR素子及びGMR素子は、従来の異方性磁気抵抗効果素子より、磁気抵抗比(magneto−resistance ratio:MR比)が大きく、磁気ヘッドおよび磁気記録装置への応用が進められている。
磁気抵抗(magneto−resistance:MR)効果は、外部磁界の強度と向きに応じて物質の抵抗が変化する現象である。この機能を有する素子は、磁気ヘッドおよび磁界検出センサへ応用されている。GMR素子は、強磁性体膜/金属膜/強磁性体膜の多層構造からなる。TMR素子は、強磁性体膜/絶縁膜/強磁性体膜の多層構造からなる。このとき金属膜または絶縁膜を隔てた2種類の強磁性体膜のうち、一方は、外部磁界に対して磁化方向が変化しない第一の磁性層、すなわち固定層である。また、他方は、外部磁界の方向に磁化が回転する第二の磁性層、すなわちフリー層である。このとき、外部磁界によって、第一の磁性層と第二の磁性層とのスピンの向きを、平行(0°)から反平行(180°)の間を変化させる場合を考える。その場合、GMR素子の場合は、金属膜と強磁性体膜との界面での電子の散乱確率が変化することに起因する抵抗変化が生じる。一方、TMR素子の場合は、絶縁層を隔てた2種類の強磁性体膜の間のトンネル電流が変化することで抵抗が変化する。このため、外部磁界の変化を素子の抵抗変化として読みだすことが可能となる。
これらの磁気抵抗素子における固定層である第一の磁性層は、磁化方向を固定するために、強磁性層と交換結合させる。一方で、フリー層である第二の磁性層を、外部磁界に対して自由に動くことが出来る構造とする、スピンバルブ構造が一般に用いられている。スピンバルブ構造の磁気抵抗素子は、第二の磁性層と第一の磁性層の磁気的な結合を弱め、フリー層磁化の外部磁界に対する感度を向上させることが可能である。そのため、高感度な磁界検出が可能となる。一般に、電流が存在するときに、当該電流に比例した磁界が発生することが知られている。このため、検出対象の電流が流れる導体の近傍に磁界検出装置を配置することで、当該電流が誘起する磁界を介して、導体を流れる電流の強度を測定することが可能である。
磁界検出に用いる磁気抵抗効果素子では、第2の磁性層の磁化が回転する際の、その磁化の前の状態に依存した経路を動くヒステリシスは磁界検出の測定誤差を発生させる要因となる。また、磁性層内に存在する不純物または加工時にダメージを受けた部分で磁界が一時的にトラップされ、その後、開放されることで、磁化が急激な変化をし、抵抗が不連続的に変化をすることがある。その場合に生じるバルクハウゼンノイズも、測定誤差を発生させる要因となる。
磁気特性を改善するためには、バイアス磁界を印加する方法が取られる。バイアス磁界を印加することによって、磁気抵抗効果素子において、検出対象となる磁界の強度に応じて磁化が動くフリー層のヒステリシス及びバルクハウゼンノイズを改善する事ができる。フリー層の磁気特性を改善する手法として、対象となる磁気抵抗効果素子の近くに永久磁石を配したり、素子の近傍に永久磁石として作用する強磁性膜を成膜したりすることで直流磁界を印加する方法がとられる。例えば特許文献1に示す磁気抵抗効果素子は、GMR素子の近傍に強磁性膜を成膜することで直流バイアス磁界を印加し、フリー層の磁界方向を定め、ヒステリシスやノイズの低減を目的としている。
特開2008−243920号公報
TMR素子およびGMR素子は外部磁界に対して抵抗が変化するため、この変化を読み取ることで外部磁界を検出することが可能となる。しかしながら、上述したように、これらのTMR素子およびGMR素子を使用した磁界検出において、そのフリー層の磁化のヒステリシス及びバルクハウゼンノイズは、外部磁界に対する抵抗変化の再現性を低下させる要因となる。このようなヒステリシス及びバルクハウゼンノイズが発生する要因の一つとして、フリー層の素子エッジ部分の磁化の挙動がある。素子のエッジ部分においては、素子のエッチングプロセスにおいてフリー層磁気特性が劣化し、ヒステリシスやバルクハウゼンノイズを発生させる。また、素子のエッジ部分では反磁界の効果で形状異方性磁界および外部磁界が弱められるため、ヒステリシスやバルクハウゼンノイズが相対的に発生しやすい。これらの影響を抑制するために、例えば特許文献1では、フリー層に対して、直流磁界をバイアス磁界として印加し、ヒステリシス及びバルクハウゼンノイズを低減する方法を用いている。直流磁界は、素子近傍に永久磁石を配置すること、あるいは、素子近傍に強磁性膜を積層すること、あるいは、コイルを用いて電流が誘起する磁界を用いることによって、印加する方法が取られる。しかしながら、素子の作製とは別に、バイアス磁界を印加する為の他の工程または装置を別途用いる方法では、作製工数が増加するため、コストが増大するという問題点がある。また、フリー層に印加されたバイアス磁界は、フリー層の磁化の動きを制限するため、感度が低下してしまうという問題点がある。
本発明は、かかる問題点を解決するためになされたものであり、安価な構成で、素子全体にバイアス磁界を印加することによる感度の低下を抑制し、出力にヒステリシスやバルクハウゼンノイズの少ない電流検出装置、および、それを用いた磁界検出装置を得ることを目的としている。
本発明は、磁化方向が固定された固定層と外部磁界によって磁化方向が変化する自由層とが積層された矩形板状の磁気抵抗効果素子と、前記磁気抵抗効果素子の2つの主面のうちの一方の主面に対向して設けられ、検出対象の電流が流れる第1の導体と、前記第1の導体に流れる電流によって誘起される磁界により変化する前記磁気抵抗効果素子の抵抗値を測定し、前記抵抗値から前記第1の導体に流れる電流値を算出する電流値算出部と、前記磁気抵抗効果素子の4つの側面のうちの少なくとも1つの側面に対して、当該側面に平行になるように配置され、前記磁気抵抗効果素子にバイアス磁界を付与するバイアス磁界印加用導体とを備え、前記バイアス磁界印加用導体は、前記磁気抵抗効果素子の積層方向において、前記バイアス磁界印加用導体の一部または全部が、それに対応する前記磁気抵抗効果素子の前記側面を含む端部に重なるように、配置され、前記バイアス磁界印加用導体に流れる電流によって前記磁気抵抗効果素子に前記バイアス磁界を付与する電流検出装置である。
本発明は、磁気抵抗効果素子の4つの側面のうちの少なくとも1つの側面に対して平行に設けられ、前記磁気抵抗効果素子にバイアス磁界を付与するバイアス磁界印加用導体を備えるようにしたので、安価な構成で、磁気抵抗効果素子全体にバイアス磁界を印加することによる感度の低下を抑制し、出力にヒステリシスやバルクハウゼンノイズの少ない電流検出装置、および、それを用いた磁界検出装置を得ることができる。
本発明の実施の形態1による電流検出装置の構成を示す斜視図である。 図1の一点鎖線a−a’における断面図である。 図1の一点鎖線b−b’における断面図である。 本発明の実施の形態1による電流検出装置を構成するための機器の接続を示した図である。 本発明の実施の形態1によるTMR素子と導体の配置を示した上面図である。 本発明の実施の形態2による電流検出装置の構成を示す斜視図である。 本発明の実施の形態2による電流検出装置を構成するための機器の接続を示した図である。 本発明の実施の形態2によるTMR素子と導体の配置を示した上面図である。 本発明の実施の形態3による電流検出装置の構成を示す斜視図である。 本発明の実施の形態3による電流検出装置を構成するための機器の接続を示した図である。 本発明の実施の形態3によるTMR素子と導体の配置を示した上面図である。 本発明の実施の形態4による電流検出装置の構成を示す斜視図である。 本発明の実施の形態4による電流検出装置を構成するための機器の接続を示した図である。 本発明の実施の形態4によるTMR素子と導体の配置を示した上面図である。 本発明の実施の形態5による電流検出装置の構成を示す斜視図である。 本発明の実施の形態5による電流検出装置を構成するための機器の接続を示した図である。 本発明の実施の形態5によるTMR素子と導体の配置を示した上面図である。 本発明の実施の形態6による電流検出装置の構成を示す斜視図である。 本発明の実施の形態6による電流検出装置を構成するための機器の接続を示した図である。 図18における一点鎖線a−a’の断面図である。 本発明の実施の形態7による磁界検出装置を構成するための機器の接続を示した図である。 本発明の実施の形態7における、磁界検出の手法を示したフローチャートである。 本発明の実施の形態7による磁界検出装置に設けられた制御装置の構成を示したブロック図である。 本発明の実施の形態1〜6による電流検出装置に設けられた制御装置のハードウエア構成、および、実施の形態7による磁界検出装置に設けられた制御装置のハードウエア構成を示した図である。 本発明の実施の形態7による磁界検出装置に設けられた制御装置の実際的な構成を示したブロック図である。
本発明に係る実施の形態は、磁気抵抗効果素子として、スピンバルブ構造を有するトンネル磁気抵抗効果(TMR)または巨大磁気抵抗効果(GMR)を用い、導体を流れる電流が誘起する磁界を検出することによって、導体を流れる電流を検出する原理からなる電流検出装置に関する。但し、以下の実施の形態では、磁気抵抗効果素子としてTMR素子を例として挙げて説明することとする。
さらに、本発明に係る実施の形態は、当該電流検出装置を用いて、導体を流れる電流が誘起する磁界で外部磁界を打ち消し、それをTMR素子またはGMR素子の抵抗値から検出することで外部磁界の強度を検出するための磁界検出装置に関する。
以下、本発明に係る各実施の形態について、図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る電流検出装置の構成を示した斜視図である。図1に示すように、実施の形態1に係る電流検出装置においては、細長い矩形(長方形)の平板状のTMR素子1が設けられている。TMR素子1は、磁化方向が固定された固定層(後述する図2の符号101参照)と、外部磁界によって磁化方向が変化するフリー層(後述する図2の符号106参照)とを有している。TMR素子1の構成の詳細については図2を用いて後述する。
なお、以下の説明では、図1に示すように、矩形の各部材における、短辺が延びた方向を「短手方向」と呼び、長辺が延びた方向を「長手方向」と呼ぶこととする。
また、TMR素子1においては、短辺が延びた方向を「短手方向」または「a−a’方向」と呼び、長辺が延びた方向を「長手方向」または「b−b’方向」と呼び、TMR素子1の短手方向及び長手方向の両方に垂直な方向を「積層方向」と呼ぶこととする。
TMR素子1の2つの平面(すなわち、主面)のうち、上面には上部電極5が設けられ、下面には下部電極6が設けられている。
上部電極5は、図1に示すように、TMR素子1の平面の大きさよりも大きく、TMR素子1の平面全体に設けられるとともに、さらに、a−a’方向に、その片側がTMR素子1の端部から突出している。具体的には、上部電極5の短手方向の一方の端部が、TMR素子1の短手方向の端部から、a−a’方向におけるa方向に突出するように設けられている。
同様に、下部電極6も、図1に示すように、TMR素子1の平面の大きさよりも大きく、TMR素子1の平面全体に設けられるとともに、さらに、a−a’方向に、その片側がTMR素子1の端部から突出している。ただし、下部電極6の突出する方向は、上部電極5の逆方向である。すなわち、下部電極6の短手方向の一方の端部が、TMR素子1の端部から、a−a’方向におけるa’方向に突出するように設けられている。
また、図1に示すように、TMR素子1に対向して、矩形(長方形)の平板状の導体4が配置されている。TMR素子1と導体4とは互いに平行になるように配置され、TMR素子1と導体4との間には、予め設定された一定距離の空隙が設けられている。この導体4には、本実施の形態の電力検出装置の検出対象の電流が印加される。導体4の大きさは、TMR素子1の大きさよりも小さく、導体4の短手方向および長手方向の長さは、いずれも、TMR素子1よりも短い。また、TMR素子1の積層方向から見た場合、TMR素子1と導体4とは、互いにその長手方向が平行で、かつ、互いにその中心が重なるように配置されている。ここで、中心とは、TMR素子1および導体4の上面または下面(すなわち、平面)の対角線の交点を意味する。
また、図1に示すように、導体4と同一平面上に、導体4の四方を取り囲むように、導体2a、2b、3a、3bが配置されている。導体2a、2b、3a、3bは、TMR素子1のエッジ部分を含むフリー層(後述する図2の符号106参照)に、バイアス磁界を印加するためのバイアス磁界印加用導体である。ここで、エッジとは、TMR素子1の側面を構成する側壁を意味する。導体2a、2b、3a、3bは、図1に示すように、細長い板状の形状を有している。導体2a,2bは、導体4の長手方向に平行な方向に向かって延びている。導体3a,3bは、導体4の短手方向に平行な方向に向かって延びている。従って、導体2a,2bの延びている方向は、TMR素子1の長手方向と平行であり、導体3a,3bの延びている方向は、TMR素子1の短手方向と平行である。また、積層方向から見た場合に、後述する図2及び図3に「積層方向において重なっている部分」として示されるように、導体2a,2b,3a,3bの一部または全部が、それに対応するTMR素子1の各側面のエッジを含む端部に重なるように配置されている。図5は、TMR素子1と導体2a、2b、3a、3bとを、TMR素子1の積層方向から見た時の配置の一例である。図5においては、TMR素子1が破線で示され、導体4および導体2a,2b,3a,3bが実線で示されている。図5の例においては、TMR素子1の各側面のエッジを含む端部が、それに対応する各導体2a,2b,3a,3bの一部と重なるように配置されていることがわかる(すなわち、各導体2a,2b,3a,3bの一部が、TMR素子1より、外側にはみ出ている)。
図2は、図1に示したTMR素子1のa−a’における断面図である。図2において、図1と同じ構成については、同一符号を付して示している。実施の形態1に係るTMR素子1はスピンバルブ構造であり、下から順に、固定層を構成する反強磁性膜101、強磁性膜102、非磁性膜103、強磁性膜104、トンネル絶縁膜105、および、フリー層を構成する強磁性膜106が、積層されている。また、図2に示す矢印102a、104a、106aは、それぞれ、強磁性膜102、104、106の磁化方向を示している。強磁性膜106の磁化方向106aは、外部磁界の方向を向くため、外部磁界と共に変化する。また、下部電極6と、導体2a、2bおよび導体4との間には、絶縁膜(図示せず)が形成されており、電気的に絶縁されている。
図2を見るとより分かるように、上述した通り、TMR素子1の下方には、導体4と同一平面内であって、導体4の長手方向と平行に延びた導体2a、2bが配置されている。また、導体4と同一平面内であって、導体4の短手方向と平行に延びた導体3a、3bが配置されている。本実施の形態においては、TMR素子1のフリー層(強磁性膜106)の長手方向のエッジ部分において、導体4に印加された検出対象の電流が誘起する磁界の面内成分を、導体2a、2bに印加した電流が誘起する磁界により相殺する。これにより、検出対象の電流が誘起する磁界による磁界の動きを、TMR素子1のエッジ近傍において抑制または制限することができる。その結果、加工プロセスを経てダメージを受けた箇所における磁化の影響および反磁界の影響によるTMR素子1の磁界に対する抵抗変化におけるヒステリシスおよびバルクハウゼンノイズの発生を抑制することができる。その結果、導体4に流れる電流を精度よく検出することができる。
図3に、図1に示したTMR素子1のb−b’における断面図を示す。図3において、図1及び図2と同じ構成については、同一符号を付して示している。上述した導体3a、3bを流れる電流が発生する磁界の面内成分は、TMR素子1の長手方向を向くため、TMR素子1の短手方向のエッジで発生する反磁界を抑制することが可能であり、反磁界による形状異方性の低減に起因して発生する、ヒステリシスやバルクハウゼンノイズの発生を緩和することが可能となる。その結果、導体4に流れる電流を、より精度よく検出することができる。
なお、図3においては、上部電極5および下部電極6の端部が、TMR素子1の側面よりも外側に突出しているが、図1においては、上部電極5および下部電極6の端部とTMR素子1の端部とが同一平面内に揃っており、上部電極5および下部電極6の端部が、TMR素子1の側面よりも外側に突出していないように記載されている。本実施の形態では、特に、図3の構成に限定されることはなく、図1の構成でもよく、すなわち、図1または図3のいずれの構成でもよいこととする。
図4は、実施の形態1に係る電流検出装置の構成及び動作を説明するための模式図である。図4に示すように、上部電極5と下部電極6に電流源152が接続される。また、上部電極5と下部電極6との間には電圧計151が接続される。電圧計151には、制御装置155が接続されている。また、TMR素子1の長手方向に対して平行に配置された導体2a、2bには、それぞれ、電流源153a、153bが接続されており、導体4を流れる電流と逆向きのバイアス電流が供給される。一方、TMR素子1の短手方向と平行に配置された導体3a、3bには、それぞれ、電流源153c、153dが接続されている。さらに、導体4には、検出対象の電流を消費するための負荷154が直列に接続されている。
図24は、電圧計151及び制御装置155のハードウエア構成を示した図である。図24の電圧計は、図4の電圧計151である。制御装置155には、電圧計151により測定された電圧値が入力される。制御装置155は、電圧計151からのデータが入力されるインタフェース部(図示せず)を有しており、このインタフェース部が制御装置155の入力部を構成している。制御装置155の出力部は、図24のディスプレイである。また、制御装置155は、電流測定部(図示せず)を有しており、この電流測定部は、プロセッサがメモリに記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実行してもよい。
本実施の形態1に係る電流検出装置は、各部材が図4に示すように接続され、以下のように動作する。まず、電流源152により、TMR素子1に対して、予め設定された一定値の電流が印加される。この時、TMR素子1の下部電極6と上部電極5との間には電圧計151が接続されている。電圧計151で、TMR素子1に生じた電位差を読み取ることで、TMR素子1の抵抗変化を検出することができる。
ただし、制御装置155はTMR素子1の抵抗値を必ずしも取得する必要はない。TMR素子に印加する電流が一定であるとき、TMR素子1の上部電極と下部電極間に発生する電圧の変化は、TMR素子1の抵抗変化に実質的に比例するため、電圧変化から直接、導体4を流れる電流強度を検出することが可能である。
この時のTMR素子1の抵抗または電圧変化は、検出対象の導体4に流れる電流が誘起する磁界に比例または単調増加もしくは減少するため、その抵抗変化または電圧変化を読み取ることで、電流強度を検出することが可能となる。制御装置155(電流値算出部)は、電圧計151が測定した電圧値または、電圧値と電流源152によってTMR素子1に印加された定電流の電流値とから、TMR素子1の抵抗値を求め、当該電圧値、または、当該抵抗値に基づいて導体4に流れる電流の電流値を求める。
磁界に対するTMR素子1の抵抗変化は通常、電流源152から印加される電流値に対して変化し、電流値が大きくなるほど抵抗変化は減少する。このため、電流源152から印加される各電流値に対してTMR素子1にその電流値を流した時の、下部電極6と上部電極5との間の電位差の変化、または、前記電位差をその時の電流値で除することによって得られる抵抗値の変化を、制御装置155は記憶している。これは、導体4を流れる電流値と、TMR素子1の抵抗値との関係、または、導体4を流れる電流値と、TMR素子1に印加される電流によってTMR素子1に誘起される電圧の関係の対応表が記録されている。またこの関係は、TMR素子1に印加される電流強度によって変化するため、TMR素子1に印加される電流値毎に別に記録されている。導体4を流れる電流値に応じて得られた、TMR素子1の抵抗値、または、誘起される電圧を、対応表の内、電圧、または、抵抗値が最も近しい、導体4を流れる電流値の値近傍の区間において、種々の補間法(線形補間法、多項式補間法など)を使用して測定値を確定する。これら処理は制御装置155が実行する。ただし、電流源152からTMR素子1に印加される電流値が一定である場合は、その電流値における、磁界に対する電位差の変化、または、抵抗変化のみを記憶していればよい。すなわち、導体4に流れる検出対象電流が誘起する磁界に対して、電圧計151が検出するTMR素子1の下部電極6と上部電極5の間の電位差変化の変化、または、これを電流源152が供給する電流値で除することによって得られるTMR素子1の抵抗値の変化を、電流源152が供給する電流値毎に制御装置155が記憶している値と比較することによって、電流値を検出することが可能である。
また、導体4を流れる電流が誘起する磁界に対して、TMR素子1の抵抗変化が実質的に線形的である場合は、抵抗値の磁界に対する変化の割合を記憶しておくことによって、導体4を流れる測定対象電流の大きさを算出することが可能である。この時の、導体4を流れる電流値に対する、TMR素子1の抵抗値の変化の割合をa、TMR素子1に磁界を印加しない時の、TMR素子1の抵抗をbとすると、測定対象電流の大きさxに対する、TMR素子1の抵抗をyとすると次式のようになる。
y=ax+b
この時、a、bを予め取得しておき、測定対象電流が流れた時のyを測定することで、xを求めることが可能となる。なお、この時の、a、bは必ずしも抵抗値である必要はなく、TMR素子1に対して定電流を印加した時に、TMR素子1の上部電極5と下部電極6との間に生じる電位差を使用することでも、実現できる。この時は、TMR素子1に入力したある定流値に対して、導体4に電流を流した時のTMR素子1に誘起される前記電圧の変化の割合をa'、磁界を印加しない時のTMR素子1に誘起される電圧b'とすると、測定対象電流の大きさxに対するTMR素子1に誘起される電圧y’とすると、これらの関係は次式のようになる。
y’=a’x+b’
従って、a’とb’を予め取得しておくことで、得られた電圧y’に対して、導体4を流れる電流を計算することが可能となる。
なお、前述のとおり、TMR素子1の抵抗値は、TMR素子1に印加した電流値によって変化するため、上記で示した各定数a、b、a’、b’はTMR素子1に印加した電流値依存性がある。このため、TMR素子1に印加した電流値によって、これら定数を自動的に変更する機能が必要であり、この機能は制御装置155に内包されている。
また、導体4には、検出対象の電流を消費するための負荷154が直列に接続されており、導体4を流れる検出対象の電流が誘起する磁界はTMR素子1の長手方向と直交する向きに印加される。また、TMR素子1の長手方向と平行に配置された導体2a、2bには、それぞれ、電流源153a、153bが接続されており、導体4を流れる電流と逆向きのバイアス電流が供給される。一方、TMR素子1の短手方向と平行に配置された導体3a、3bには、それぞれ、電流源153c、153dが接続され、予め設定された一定値の電流が印加される。この時、導体3a、3bに電流源153c、153dから供給する電流は、強度が一定の電流であるが、導体2a、2bに印加する電流は、導体4に流れる検出対象の電流に比例した強度である必要がある。
本実施の形態1においては、導体2a,2bを設けたことによって、TMR素子1のフリー層(強磁性膜106)の長手方向のエッジ部分において、導体4を流れる検出対象の電流が誘起する磁界の面内成分が、導体2a、2bに印加された電流が誘起する磁界によって相殺される。また、導体3a、3bを流れる電流が発生する磁界の面内成分は、TMR素子1の長手方向を向くため、TMR素子1の短手方向のエッジで発生する反磁界を抑制する。その結果、加工プロセスを経てダメージを受けた箇所(図2参照)における磁化の影響および反磁界の影響によるTMR素子1の磁界に対する抵抗変化におけるヒステリシスおよびバルクハウゼンノイズの発生を抑制することができる。その結果、導体4に流れる電流を精度よく検出することができる。
このように、本実施の形態1では、TMR素子1の側面の下部に、電流を流してバイアス磁界を誘起させる導体2a,2b,3a,3bを備えることで、TMR素子1の側面に直交する向きにバイアス磁界を印加することが可能になる。
TMR素子1の長手方向の側面においては、導体4を流れる電流と逆向きのバイアス電流を導体2a,2bに流すことによって、検出対象となる導体4の磁界を打消す向きに、導体2a,2bによりバイアス磁界を印加する。これにより、TMR素子1の側面近傍において、加工プロセス等で劣化した磁化の回転を抑制し、電流検出時のバルクハウゼンノイズやヒステリシスの発生による検出精度の低下を抑制することができる。
また、TMR素子1の短手方向の側面においては、導体3a,3bにより、長手方向を向くバイアス磁界を印加することで、磁化の動きを抑制することで、電流検出時のバルクハウゼンノイズやヒステリシスの発生による検出精度低下を抑制するとともに、反磁界による形状異方性の低下を補うことができ、電流検出精度を向上することが可能である。
以上、説明したように、実施の形態1では、TMR素子1のエッジ部分に局所的にバイアス磁界を印加するバイアス磁界印加用の導体2a,2b,3a,3bを設けることで、安価な構成で、エッジ近傍でダメージを受けた磁化または反磁界の影響を強く受ける磁化のヒステリシスやバルクハウゼンノイズの影響を抑制しつつ、導体4を流れる電流を精度良く検出することが可能な電流検出装置を実現することが可能となる。
また、本実施の形態では、TMR素子1の長手方向および短手方向の両方のエッジに対しバイアス磁界を印加する構造を有する電流検出装置を示したが、TMR素子1の長手方向または短手方向のエッジのいずれかにだけバイアス磁界を印加する構造であっても、部分的であるが、本発明の効果を得ることが可能である。すなわち、上記の説明においては、バイアス磁界印加用導体として、導体2a,2b,3a,3bの4つを設ける例について説明したが、これら4つの導体は必ずしもすべて設ける必要はなく、これらのうちの少なくとも1つを設ければよく、その場合においても、部分的であるが、本発明の効果を得ることができる。
以上のように、実施の形態1に係る電流検出装置は、磁化方向が固定された固定層と外部磁界によって磁化方向が変化する自由層とが積層された矩形板状のTMR素子1(磁気抵抗効果素子)と、TMR素子1の平面に対向して設けられた導体4(第1の導体)と、導体4に流れる電流が誘起する磁界により変化するTMR素子1の抵抗値を測定し、当該抵抗値に基づいて導体4に流れる電流を検出する制御装置155(電流測定部)と、TMR素子1の4つの側面のうちの少なくとも1つの側面に対して平行になるように配置され、TMR素子1にバイアス磁界を付与する導体2a,2b,3a,3b(第2の導体)を備え、TMR素子1の積層方向において、導体2a,2b,3a,3bの一部または全部が、それに対応するTMR素子1の側面に重なるように配置され、導体2a,2b,3a,3bに印加する電流によってTMR素子1の側面にバイアス磁界を付与する構成を有している。
このように、本実施の形態では、TMR素子1の側面の下部(または上部)に、バイアス電流を流す導体2a,2b,3a,3bを備えることで、TMR素子1の側面に直交する向きにバイアス磁界を印加することが可能になる。
上述したように、TMR素子1の出力における、バルクハウゼンノイズやヒステリシスの発生要因は長手方向エッジにおける、側壁(エッジ)ダメージなどに起因する不連続な磁化挙動、および、短手方向エッジにおける反磁界による形状異方性磁界の低下が要因の一つにある。そのため、本実施の形態1では、導体2a,2bによりバイアス磁界を印加することで、長手方向のエッジにおける磁化の動きを抑制することができ、不連続な磁化挙動による、素子の抵抗変化におけるバルクハウゼンノイズやヒステリシスを低減することが可能となる。また、短手方向のエッジにおける反磁界は、フリー層の磁化のヒステリシスやバルクハウゼンノイズを増加させるため、導体3a,3bによりバイアス磁界を印加することで、反磁界を抑制することは、TMR素子1の抵抗変化におけるヒステリシスやバルクハウゼンノイズを低減させることに有効である。また、本実施の形態1においては、TMR素子1の端部にのみバイアス磁界を印加するようにしたので、TMR素子1全体にバイアス磁界を印加することによる感度の低下を抑制することができる。
以上のことから、本実施の形態1を実施することで、高感度で電流検出精度の高い電流検出装置を実現することが可能となる。
また、本実施の形態1では、図4のように配線するだけで実現可能であるため、TMR素子1全体にバイアス磁界を印加する追加的な構造の作製が不要であり、作製コストを抑えることができる。
実施の形態2.
図6は、本発明の実施の形態2に係る電流検出装置を構成する、TMR素子1と、検出対象の電流が流れる導体4と、バイアス磁界印加用の導体2a,2b,3a,3bとの配置を示す斜視図である。図7は、実施の形態2に係る電流検出装置の動作を説明するための模式図である。また、図8は、TMR素子1と導体2a、2b、3a、3b、4の配置及び接続関係の上面図である。
上述の図1に示した実施の形態1との違いは、実施の形態1では、図1に示すように、導体4と導体2a,2bとが別体で構成され、互いに離間していたが、本実施の形態2では、導体4と導体2a,2bとが接続されて、一体の導体61となっている点が異なる。以下では、実施の形態1と異なる構成についてのみ説明し、実施の形態1と同じ構成については、説明を省略する。
図6〜図8に示すように、実施の形態2では、導体2a,2bのそれぞれ長手方向の向きが異なる各一端が、導体4の長手方向の向きが同じ端同士で接続されて、1つの導体61となっている。なお、図6に示すように、導体4と導体2aとの接続部を接続部61a、導体4と導体2bとの接続部を接続部61bとすると、接続部61aと接続部61bとは、導体4の中心に対し、互いに点対称の位置になるように構成されている。すなわち、導体4と導体2a,2bとは、導体4の長手方向の向きが異なる点対称の片端で、それぞれ、接続されている。
次に、実施の形態2の動作について、図7に基づいて説明する。
上述したように、実施の形態2においては、導体4と導体2a,2bとが接続されているため、図4に示した電流源153a,153bが設けられていない。他の構成については、基本的に、図4と同じであるため、同一符号を付して示し、その説明は省略する。
実施の形態2では、検出対象の電流は、導体4、導体2a、2bを流れる。導体4と導体2a、2bの端部が電気的に接続されているため、導体2a、2bを流れる電流は導体4を流れる電流と等しく、導体2a、2bから発生する磁界は導体4から発生する検出対象の磁界に比例する。このため、TMR素子1のエッジ近傍では、導体4から発生する磁界を、導体2a,2bから発生する磁界で、常に相殺することが可能となる。また、実施の形態2でも、実施の形態1と同様に、導体3a、3bを流れる電流が発生する磁界の面内成分は、TMR素子1の長手方向を向くため、TMR素子1の短手方向のエッジで発生する反磁界を抑制する。
以上のように、実施の形態2によると、上記の実施の形態1と同様の効果が得られる。さらに、実施の形態2では、導体2a,2bのそれぞれ長手方向の向きが異なる(逆向き)の各一端が、接続部61a、61bにおいて、導体4の長手方向の向きが同じ端同士でそれぞれ接続されている構成となっている。こうして接続したことにより、導体2a,2bと導体4とが電気的に接続されたので、導体4に流れる電流を、TMR素子1の長手方向の側面へのバイアス磁界を印加するための電流として用いることができ、バイアス電流を印加するための電流源153a,153bを省略することができる。そのため、電流検出装置の構成をより簡単にすることができ、低価格で製造することが可能となる。また、バイアス磁界は検出対象磁界に常に比例するため、TMR素子1の長手方向の側面部分において、検出対象磁界を精度良く打ち消す事ができ、側面部分の磁化挙動による電流検出精度の低下を効果的に抑制することが可能となる。
実施の形態3.
図9は、本発明の実施の形態3によるTMR素子および各導体の配置を示した斜視図である。図10は、実施の形態3に係る電流検出装置の動作を説明するための模式図である。また、図11はTMR素子1と導体2a、2b、3a、3b、4の配置及び接続関係の上面図である。
上述の図1に示した実施の形態1との違いは、実施の形態1では、図1に示すように、導体4と導体2a,2bと導体3a,3bがすべて別体で構成され、互いに離間していたが、本実施の形態3では、導体4と導体2a,2bと導体3a,3bとがすべて接続されて、一体の導体91となっている点が異なる。以下では、実施の形態1と異なる構成についてのみ説明し、実施の形態1と同じ構成については、説明を省略する。
実施の形態3においては、図9〜図11に示すように、互いに直交する導体2aと導体3aの各一端同士が接続部92aで接続されるとともに、同じく互いに直交する導体2bと導体3bの各一端同士が接続部92bで接続されている。これらの接続により出来た2つのL字型の導体におけるTMR素子1の長手方向に沿った導体2a,2bに相当する導体部分の各端が、導体4の両端の片側にそれぞれ接続されている。このように、本実施の形態3では、導体2a,2bのそれぞれ長手方向の向きが異なる各一端が、導体4の長手方向の向きが同じ端同士で接続されるとともに、導体2a,2bのそれぞれ長手方向の各他端が、当該他端に直交する導体3a,3bのそれぞれ長手方向の各一端に接続されている。
次に、実施の形態3の動作について、図10に基づいて説明する。
上述したように、実施の形態3においては、導体4と導体2a,2bと導体3a,3bとが接続されているため、図4に示した電流源153a,153b,153c,153dが設けられていない。他の構成については、基本的に、図4と同じであるため、同一符号を付して示し、その説明は省略する。
実施の形態3では、検出対象の電流は、導体4、導体2a、2b、導体3a,3bを流れる。導体4と導体2a、2bと導体3bが電気的に接続されているため、導体2a、2b、3a、3bを流れる電流は導体4を流れる電流と等しく、導体2a、2b、3a、3bから発生する磁界は導体4から発生する検出対象の磁界に比例する。このため、TMR素子1のエッジ近傍では、導体4から発生する磁界を、導体2a,2b,3a,3bから発生する磁界で、常に相殺することが可能となる。
このように、実施の形態3によると、検出対象の電流を用いて、TMR素子1の長手方向および短手方向のエッジの両方にバイアス磁界を印加することが可能となり、更に、長手方向のエッジにおいては、検出対象となる磁界に比例した強度の磁界を印加することで、本発明の効果を簡易に得ることが可能となる。また、実施の形態3においては、本発明を実施するために追加的な電流源は不要である。したがって、工数を増やすことなく、電流検出精度の向上が可能である。
以上のように、実施の形態3によると、上記の実施の形態1と同様の効果が得られる。さらに、実施の形態3では、導体2a,2bのそれぞれ長手方向の向きが異なる各一端が、導体4の長手方向の向きが同じ端同士で接続されるとともに、導体2a,2bのそれぞれ長手方向の各他端が、当該他端に直交する導体3a,3bのそれぞれ長手方向の各一端に接続されている。当該構成により、検出対象となる導体4に流れる電流を、TMR素子1の長手方向の側面および短手方向の側面の両方にバイアス磁界を印加するために使用することで、追加的な電源を全く用いないで、実施の形態1と同様の効果を得ることが可能となる。そのため、電流検出装置の構造を簡単にすることができ、安価に製造をすることが可能となる。また、TMR素子1の長手方向の側面に印加される磁界は、検出対象の磁界に比例するため、精度よく打消すことが可能となり、側面部分の磁化挙動による磁界検出精度の低下を抑制することが可能となる。
実施の形態4.
図12は本発明の実施の形態4のTMR素子1と導体121の配置の斜視図である。図13は、実施の形態4に係る電流検出装置の動作を説明するための模式図である。また、図14はTMR素子1と導体121の配置の上面図である。
上述の図1に示した実施の形態1との違いは、実施の形態1では、図1に示すように、導体4と導体2a,2bと導体3a,3bがすべて別体で構成され、互いに離間していたが、実施の形態4では、導体4と導体2a,2bと導体3a,3bとがすべて接続されて、一体の導体121となっている点が異なる。本実施の形態4では、図12〜図14に示されるように、導体4と長手方向が等しい導体2a,2bが、導体3a,3bを介して、導体4と並列に接続されている。以下では、実施の形態1と異なる構成についてのみ説明し、実施の形態1と同じ構成については、説明を省略する。
本実施の形態4においては、図12〜図14に示すように、互いに直交する導体2aと導体3aの各一端同士が接続部92aで接続されるとともに、同じく互いに直交する導体2bと導体3bの各一端同士が接続部92bで接続されている。これらの接続により出来た2つのL字型の導体のTMR素子1の長手方向に沿った導体2a,2bに相当する導体部分の各端が、導体4の両端の片側にそれぞれ接続されている。
上述の実施の形態3との違いは、実施の形態3では、導体3a,3bと導体4とが、導体2a,2bを介して接続されていたが、実施の形態4では、導体3a,3bと導体4とが直接接続されている点が異なる。
従って、実施の形態4では、導体121は、一枚の矩形の平板状の導体から構成されており、長手方向に延びた2本のスリット121a,121bが形成された構成とも言える。TMR素子1の短手方向において、スリット121a,121bよりも外側になる部分が、実施の形態1の導体2a,2bに相当する。また、TMR素子1の長手方向において、スリット121a,121bよりも外側になる部分が、実施の形態1の導体3a,3bに相当する。
このように、実施の形態4では、導体3a,3bを介して導体4と導体2a,2bとが並列に接続されているため、導体2a、2bを流れる電流は、検出対象の電流の一部であり、導体2a、2bの電流容量による検出対象の電流の上限の制限を緩和することが可能である。実施の形態4では、TMR素子1のエッジ部分に検出対象の磁界と同じ方向の磁界を印加するため、TMR素子1の長手方向のエッジに部分における反磁界の影響を緩和することが可能となる。本発明を実施するために、追加的に電源を使用する必要が無いため、工数を増加させること無く、本発明の効果を得ることができる。
以上のように、実施の形態4によると、反磁界の影響を緩和することが可能であるので、ヒステリシスおよびバルクハウゼンノイズの発生を抑制することができる。その結果、導体4に流れる電流を精度よく検出することができる。さらに、実施の形態4では、検出対象の磁界が流れる導体4に対して、TMR素子1の長手方向側面にバイアス磁界を印加するための導体2a,2bを並列に接続することで、バイアス磁界を印加するための導体2a,2bの電流容量による検出可能電流上限の低下を解消することが可能となる。TMR素子1の側面には、検出対象の磁界と同方向に磁界が印加されるため、TMR素子1の長手方向の側面における反磁界の影響による磁化の不規則な挙動を低減することができ、電流検出精度を向上させることが可能となる。また、実施の形態4によれば、導体2a,2b,3a,3bにバイアス磁界を印加する為の電流源を別途要することなしに、TMR素子1の長手方向側面にバイアス磁界を印加することが可能となる。
実施の形態5.
図15は本発明の実施の形態5のTMR素子1と導体1510の配置を示した斜視図である。図16は、実施の形態1に係る電流検出装置の動作を説明するための模式図である。また、図17は本実施の形態によるTMR素子1と導体1510の上面図である。
上述の図1に示した実施の形態1との違いは、実施の形態1では、図1に示すように、導体4と導体2a,2bと導体3a,3bとがすべて別体で構成され、互いに離間していたが、実施の形態5では、導体4と導体2a,2bと導体3a,3bとがすべて接続されている点が異なる。さらに、実施の形態5では、導体2a,2bの外側に、導体2a,2bの長手方向に平行に、さらなる導体7a,7bが設けられている点が、上記の実施の形態1〜4と異なる。本実施の形態5では、導体4、導体2a,2b、導体3a,3b、導体7a,7bが、すべて接続されて、一体の導体1510となっている。
また、上述した実施の形態3との違いは、実施の形態3では、導体4に導体2a,2bを介して導体3a,3bが接続されていたが、実施の形態5では、逆に、導体4に導体3a,3bを介して導体2a,2bが接続されている。導体4、導体2a,2b、導体7a,7bは、互いに平行に配置され、導体3a,3bを介して、導体4、導体2a,2b、及び、導体7a,7bが接続されている。
さらに具体的に説明すると、図17に示すように、導体3a,3bが、導体3a,3bの長手方向のそれぞれ逆向きに延長され、当該延長により構成された延長部分3aEx,3bExに、矩形の導体7a,7bの各一端が接続されるとともに、導体2a,2bの各一端が接続されている。
なお、延長部分3aEx,3bExも、導体3a,3bと同じ導体から構成されている。
また、導体7a,7bの幅(または断面積)は、導体4の短手方向の幅(または断面積)と小さいかあるいは等しく、且つ、導体2a,2b,3a,3bの幅(または断面積)よりも大きい。
さらに、導体7a,7bは、L字型になるように、導体7a,7bの長手方向に直交する方向にその一端が延びて、延長部分7aEx,7bExとなっている。延長部分7aEx,7bExも、導体7a,7bと同じ導体から構成されている。また、延長部分7aEx,7bExの端部は、導体2a,2bの各他端に接続されている。
従って、全体の形状としては、図17に示すように、導体4と導体3a,3bとが矩形の平板状の導体から構成され、その両側に、導体2a,7a,及び、それらの延長部分3aEx,7aExから構成された矩形の平板状の導体1511aと、導体2b,7b、および、それらの延長部分3bEx,7bExから構成された矩形の平板状の導体1511bとが接続されている。導体1511aは、スリット1512aが形成された矩形の平板状の導体とも言え、スリット1512aの外側が導体7aに相当する。同様に、導体1511bは、スリット1512bが形成された矩形の平板状の導体とも言え、スリット1512bの外側が導体7bに相当する。
なお、導体3a,3bの延長部分3aEx,3bExは、互いに、導体4の短手方向の逆向きの方向に延びているため、導体4の中心に対し、互いに点対称の位置になるように構成されている。同様に、導体7a,7bの延長部分7aEx,7bExは、互いに、導体4の短手方向の逆向きの方向に延びているため、導体4の中心に対し、互いに点対称の位置になるように構成されている。
他の構成については、他の実施の形態のいずれかと同じであるため、ここでは、他の実施の形態と異なる構成についてのみ説明し、他の実施の形態と同じ構成については、説明を省略する。
上述したように、実施の形態5においては、導体2a、2bのそれぞれに対して、並列に新たな導体7a,7bを接続することで、検出対象となる電流の一部が、導体2a、2b、7a、7bに印加される。従って、本実施の形態によると、導体2a、2bの電流容量による検出可能電流上限の制約を緩和することが可能となる。並列に接続される導体7a,7bは、導体2a、2bよりも幅を広くすることで検出可能電流を効果的に増加させる事が可能となる。また、本実施の形態によると、本発明の実施に追加的な電源を使用する必要が無いため、工数を増加させること無く、発明の効果を得ることができる。
以上のように、実施の形態5によると、上記の実施の形態1と同様の効果が得られ、さらに、実施の形態5では、TMR素子1の長手方向に、バイアス磁界を印加するための導体2a,2bと並列に追加的に導体7a,7bを接続することで、バイアス磁界を印加するための導体2a,2bの電流容量による検出可能電流上限の低下を解消することが可能となる。さらに、実施の形態5では、導体2a,2b,3a,3b,7a,7bにバイアス磁界を印加する為の電流源を別途要することなしに、TMR素子1の長手方向側面にバイアス磁界を印加することが可能となる。
なお、実施の形態5では、導体2a,2bの長手方向に並列に導体7a,7bを設ける例について説明したが、その場合に限らず、同様に、導体3a,3bの長手方向に並列に導体7a,7bと同様の導体を設けるようにしてもよい。また、導体2a,2bの長手方向と導体3a,3bの長手方向との両方に、並列に、導体7a,7bと同様の導体を設けるようにしてもよい。
なお、本実施の形態で示した、TMR素子1の長手方向に延びた側面に対して平行に設けられ、且つ、その断面積が、導体2a,2bよりも大きく、導体4よりも小さい、導体7a,7bは、上述した実施の形態1〜4のいずれの構成にも適用可能であることは言うまでもない。
実施の形態6.
図18は本発明の実施の形態6による電流検出装置の、TMR素子1と各導体の配置を示した斜視図である。図19は、実施の形態6に係る電流検出装置の動作を説明するための模式図である。また、図20における破線a−a’における断面図を図20に示す。
上述の図1に示した実施の形態1との違いは、実施の形態1の図1に示した導体4の代わりに、実施の形態6では、導体181が設けられている点である。図1の導体4は、導体2a,2b,3a,3bと同一平面内に設けられていたが、実施の形態6では、検出対象の電流が流れる導体181と、バイアス磁界印加用の導体2a,2b,3a,3bとが、異なる平面内に設けられている。すなわち、TMR素子1、導体2a,2b,3a,3b、および、導体181が、上から順に、3層に分かれて、互いに、予め設定された距離の空隙を介して、異なる3つの平面内にそれぞれ配置されている。以下では、実施の形態1と異なる構成についてのみ説明し、実施の形態1と同じ構成については、説明を省略する。
実施の形態6では、検出対象の電流が流れる導体181が、1番下の層として設けられている。その上の層に、TMR素子1の長手および短手方向のエッジにバイアス磁界を印加するための導体2a,2b,3a,3bが設けられている。導体2a,2b,3a,3bは、図1の配置と同じように全体として矩形形状になるようにそれぞれ配置されているが、図1においてはそれらの中央に配置されている導体4は、本実施の形態6では設けられていない。また、導体2a,2b,3a,3bの上の層に、TMR素子1が設けられている。TMR素子1には、図1と同じように、上部電極5と下部電極6とが設けられている。このように、本実施の形態では、導体2a,2b,3a,3bと、導体181とが、分離して、異なる平面内に設けられているため、導体181の大きさは自由に選ぶことができる。したがって、検出対象となる電流の大きさに合わせたサイズの導体181を使用することで、検出対象の電流が流れる導体181の電流容量を検出対象の電流の強度に合わせて設計することができる。
図19に、本実施の形態で電流検出装置を構成するための機器の接続を示す。図19に示すように、本実施の形態においては、導体2a、導体2b、及び、導体181が、すべて、負荷154に並列に接続されている。
そのため、TMR素子1の長手および短手方向の各エッジに磁界を印加するための電流は、導体2a、2bを負荷154に並列に接続することで、検出対象の電流に比例して供給することができるため、簡易に、電流供給回路を構成することが可能となる。
なお、ここで、導体2a、2bに流れる電流が導体181を流れる電流と同じ方向であるように接続した場合には、上述の実施の形態4の効果を得ることができる。一方、導体2a、2bに流れる電流が導体181を流れる電流の向きと逆向きになるように接続した場合には、上述の実施の形態5に示した効果を得ることが可能となる。
また、図19において、191は、導体2a、2bの各々と負荷154との間に接続された抵抗器である。導体2a、2bに流れる電流の強度は、導体181に並列に、導体2a、2bと直列になるように抵抗器191を挿入することで、追加的な電源を用いずに、本実施の形態に係る電流検出装置を実現することが可能となる。
図20に、図18の破線a−a’の断面図を示す。検出対象の電流が流れる導体181と、本実施の形態を適用した電流検出装置201のみを、簡易に示してある。図20に示すように、導体181とTMR素子1とはその間隔を一定に保つスペーサー200を介して固定されることが望ましい。TMR素子1と導体181との間隔を一定に保つことができれば、導体の形状に規定されること無く、任意の導体を流れる任意の強度の電流の測定を行うことが可能である。
以上のように、本実施の形態によれば、上述の実施の形態1と同様の効果が得られるとともに、本実施の形態においては、導体2a,2b,3a,3bと、導体181とを、分離して、互いに異なる平面内に設けるようにしたため、導体181の大きさの自由度を高くすることができる。
実施の形態7.
本実施の形態では、上述の本発明の実施の形態1〜6に係る電流検出装置を用いて構成される磁界検出装置について説明する。本実施の形態による磁界検出装置の磁界検出精度は、電流検出装置の電流検出精度に依存するため、上述の実施の形態1〜6で説明した電流検出精度が向上した電流検出装置を用いることによって、磁界検出精度を向上させることが可能となる。
図21は、本実施の形態に係る磁界検出装置の構成を示した図である。本実施の形態に係る磁界検出装置は、上述した実施の形態1〜6のいずれかによる電流検出装置を用いて構成される。図21では、本実施の形態に係る磁界検出装置として、上述した実施の形態1による電流検出装置を用いたものが記載されているが、その場合に限らず、上述した実施の形態1〜6のうちの任意のいずれの電流検出装置を用いても、本実施の形態に係る磁界検出装置を構成することができる。
電流検出装置の構成については、上述の実施の形態1〜6と同じであるため、ここではその説明を省略する。図21において、210は検出対象の外部磁界、211は導体4に印加した電流により誘起する磁界、212は導体4に印加される電流、213は導体4に電流212を印加する電流源、214は制御装置である。他の構成については、図1と同じであるため、同一符号を付して示す。
図23は、制御装置214の内部構成を示すブロック図である。制御装置214には、電圧測定部215と、抵抗測定部216と、判定部218と、磁界演算部219と、表示部217とが設けられている。
電圧測定部215は、例えば、図1に示す電圧計151から構成されている。
抵抗測定部216は、電圧測定部215で測定された電圧値に基づいて、TMR素子1の抵抗値を算出するものである。
判定部218は、導体4を流れる電流が誘起する誘起磁界が、TMR素子1に印加されている外部磁界を打ち消したか否かを、抵抗測定部216で測定したTMR素子1の抵抗値を、TMR素子1に外部磁界を印加しないときの抵抗値と比較することで判定するものである。
磁界演算部219は、判定部218が、導体4を流れる電流が誘起する誘起磁界が、TMR素子1に印加されている外部磁界を打ち消したと判定した場合に、その時点の導体4を流れる電流の値に基づいて、外部磁界の強度を算出するものである。
表示部217は、抵抗測定部216、判定部218及び磁界演算部219の処理結果を表示するものである。
また、実際的な処理としては、下記構成とし、TMR素子1に印加される電圧を取得することで、本実施の形態による磁界検出装置を実現することが可能である。図25は制御装置214の構造を省略した制御装置214aのブロック図である。制御装置214aにおいては、判定部218は、電圧測定部215の値から、抵抗値に換算せず直接、TMR素子1に印加されている外部磁界が打ち消されたかどうかを判定する。最初に、定電流をTMR素子1に印加し、TMR素子1に外部磁界が印加されていない場合の、TMR素子1の電圧を判定部218に記憶させておく。次に、電流源213から導体4に流した電流に対して、TMR素子1の電圧がTMR素子に磁界を印加しない時の電圧と等しくなることを検出することで、TMR素子に印加された外部磁界が打ち消されたかどうかを判定するものである。表示部217は、電圧測定部215、判定部218、磁界演算部219の処理結果を表示するものである。
図24は、制御装置214のハードウエア構成を示した図である。図23の電圧測定部215は電圧計であり、表示部217はディスプレイである。抵抗測定部216、判定部218および磁界演算部219は、プロセッサがメモリに記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実行してもよい。なお、実施の形態1と本実施の形態7とでは、メモリに記憶されたプログラムが異なる。
図21の構成において、検出対象となる外部磁界210は、TMR素子1の短手方向に沿った方向に印加される。まず、外部磁界210を印加しない状態で、抵抗測定部216が、TMR素子1の抵抗値を測定する。この時のTMR素子1の抵抗値をR0とする。なお、抵抗測定部216は、例えば、次の手順により、抵抗値を測定すればよい。まず、TMR素子1に対して、電流源152により、予め設定された一定値の電流を印加する。その状態で、電圧測定部215により、TMR素子1に生じた電位差を読み取り、電流源152が印加した電流の値から、抵抗R0を演算する。
次に、検出対象の外部磁界210を印加し、抵抗測定部216が、再び、TMR素子1の抵抗値を測定する。この時の、TMR素子1の抵抗値をR1とする。抵抗値の測定手順は、上記と同じでよい。次に、抵抗測定部216は、この時のTMR素子1の抵抗値R1と、先に求めた抵抗値R0との差分(R1−R0)を、ΔRとして求める。
次に、判定部218が、電流源213を制御して、導体4に対して、予め設定された一定値の直流電流Iを、電流212として印加する。この電流212が誘起する磁界211は、検出対象の外部磁界210と合成され、方向が同じ時は強め合い、逆向きの時は弱めあい相殺する。いま、定電流Iを導体4に印加した状態で、抵抗測定部216が、TMR素子1の抵抗値を測定し、その時の抵抗値をR2とする。抵抗測定部216は、抵抗値R2と抵抗値R0の差分(R2−R0)をΔR’として求める。このとき、ΔR’>ΔRである場合は、定電流Iの値を減少(または逆方向に電流を増加)させる。一方、ΔR’<ΔRの場合は、定電流Iの値を増加(逆方向の電流を減少)させる。そして、その時の磁界強度において同様の操作を繰り返し、ΔR’が最小になる時の電流値を計測することで外部磁界210を求めることができる。この時の電流値が誘起する磁界211は、丁度、検出対象の外部磁界210を相殺しているため、この時の電流強度は検出対象の外部磁界210に比例している。したがって、磁界演算部219により、このときの定電流Iの電流値に、予め設定されたある係数を乗じることで、外部磁界210の強度を容易に求めることが可能である。
図22に、ここまでに述べた、本実施の形態に係る磁界検出装置により、外部磁界の測定を行うための一連の手順をフローチャートとして示す。これは、抵抗測定部216、判定部218、および、磁界演算部219において行われる処理である。図22の処理について、簡単に説明する。
まず、外部磁界210を印加しない状態でTMR素子1の抵抗値R0を測定し、次に外部磁界H210を印加した状態でTMR素子1の抵抗R1を測定し、R0とR1の差の絶対値ΔRを求める(ステップS1)。
次に、図21の導体2の例えばA→B方向の電流を増加、または、B→A方向の電流を減少させる(ステップS2)。
次に、導体4に直流電流を供給した状態のTMR素子1の抵抗R2を測定し、R2とR0の差の絶対値ΔR’を求める(ステップS3)。
次に、ΔR>ΔR’(TMR素子1の抵抗がR0に近づくとき)か否かを判定し、そうであるならば、ステップS5に進み、そうでなければ、ステップS6に進む。
ステップS5では、ΔR’<α(α:予め設定された閾値)か否かを判定し、そうでなければ、ステップS1に戻り、ステップS1〜S4を繰り返して、同じ向きに直流電流を増加させ、ΔR’<αになったら、ステップS11に進む。
ステップS11では、この時点の電流212を磁界に換算して出力する。
また、ステップS4でΔR<ΔR’(TMR素子1の抵抗がR0から遠ざかる)の場合には、R0とR1の差の絶対値ΔRを求める(ステップS6)。
次に、図20の導体2の例えばB→A方向の電流を増加、またはA→B方向の電流を減少させる(ステップS7)。
次に、R2とR0の差の絶対値ΔR’を求める(ステップS8)。
次に、ΔR>ΔR’(TMR素子1の抵抗がR0に近づくとき)か否かを判定し、そうであるならば、ステップS10に進み、そうでなければ、ステップS1に戻る。
ステップS10では、ΔR’<α(α:予め設定された閾値)か否かを判定する。そうであれば、ステップS11に進み、そうでなければ、ステップS6に戻り、ステップS6〜S9を繰り返して、同じ向きに直流電流を増加させ、ΔR’<αになったら、ステップS11に進む。
ステップS11では、この時点の電流212を磁界に換算して出力する。
なお、導体4に供給する電流212は、図22のフローチャートにおいては、先ず、導体4の端Aから端Bの方向に流しているが、この順番は逆であってもよい。
また、実際的な方法としては、必ずしもTMR素子1の抵抗値を演算する必要はなく、TMR素子1に印加した電流によって誘起される電圧に対して、上記手順を実行することができる。これは、TMR素子に定電流を印加した時、TMR素子に誘起される電圧変化は、抵抗値の変化と実質的に同値であるからである。従って、TMR素子1に定電流を印加した時に、誘起される電圧をVとすると、図22に示したフローチャートにおいて、各ΔR、ΔR’はΔV、ΔV’と置き換えることができる。この方法であると、VをRに演算する必要が無いため、処理速度が高速化することができる。
本実施の形態によれば、上述の実施の形態1〜6による検出精度が改善された電流検出装置の構成を用いて、磁界検出を行うことで、精度良い磁界検出が可能となる。ここでは、磁気抵抗効果素子としてのTMR素子1の固定層磁化の方向と平行な方向に印加された外部磁界210を検出するために、外部磁界210を打消す向きの磁界が発生する方向の電流を導体4に印加し、TMR素子1の抵抗値が、外部磁界210が存在しない時の抵抗値になった時の印加電流を検出することにより、外部磁界210の強度を検出することで、磁界検出装置としての動作が可能となる。これにより、本実施の形態による効果で磁界検出精度が向上した磁界検出装置の構成が可能となる。
実施の形態8.
前記実施の形態1、3〜7において、導体2a,2b,3a,3b,4,61,91,121,181,1510はそれぞれTMR素子の下部に積層される構成を便宜上示したが、この順序は必須ではなく、TMR素子1の上部にこれらの導体が積層されていても本発明の効果を得ることが可能である。
1 TMR素子、2a,2b,3a,3b,4,61,91,121,181,1510 導体、5 上部電極、6 下部電極、101 反強磁性膜、102 強磁性膜、102a 強磁性膜102の磁化方向、103 非磁性膜、104 強磁性膜、104a 強磁性膜104の磁化方向、105 トンネル絶縁膜、106 強磁性膜(フリー層)、106a 強磁性膜106(フリー層)の磁化方向、151 電圧計、152,153a,153b,153c,153d 電流源、154 負荷、191 抵抗器、200 スペーサー(絶縁体)、201 電流検出装置、210 外部磁界、211 補償磁界、212 電流、213 電流源、214 制御装置。

Claims (6)

  1. 磁化方向が固定された固定層と外部磁界によって磁化方向が変化する自由層とが積層された矩形板状の磁気抵抗効果素子と、
    前記磁気抵抗効果素子の2つの主面のうちの一方の主面に対向して設けられ、検出対象の電流が流れる第1の導体と、
    前記第1の導体に流れる電流によって誘起される磁界により変化する前記磁気抵抗効果素子の抵抗値を測定し、前記抵抗値から前記第1の導体に流れる電流値を算出する電流値算出部と、
    前記磁気抵抗効果素子の4つの側面のうちの少なくとも1つの側面に対して、当該側面に平行になるように配置され、前記磁気抵抗効果素子にバイアス磁界を付与するバイアス磁界印加用導体と
    を備え、
    前記バイアス磁界印加用導体は、前記磁気抵抗効果素子の積層方向において、前記バイアス磁界印加用導体の一部または全部が、それに対応する前記磁気抵抗効果素子の前記側面を含む端部に重なるように、配置され、
    前記バイアス磁界印加用導体に流れる電流によって前記磁気抵抗効果素子に前記バイアス磁界を付与する
    電流検出装置。
  2. 前記バイアス磁界印加用導体は、
    前記磁気抵抗効果素子の4つの側面のうちの長手方向に延びた2つの側面に対してそれぞれ平行になるように配置された1対の第2の導体を含み、
    前記1対の第2の導体のそれぞれ長手方向の向きが異なる各一端が、前記第1の導体の長手方向の向きが同じ端同士で接続されている
    請求項1に記載の電流検出装置。
  3. 前記バイアス磁界印加用導体は、
    前記磁気抵抗効果素子の4つの側面のうちの長手方向に延びた2つの側面に対してそれぞれ平行になるように配置された1対の第2の導体と、
    前記磁気抵抗効果素子の4つの側面のうちの短手方向に延びた2つの側面に対してそれぞれ平行になるように配置された1対の第3の導体と
    を含み、
    前記1対の第2の導体のそれぞれ長手方向の向きが異なる各一端が、前記第1の導体の長手方向の向きが同じ端同士で接続されるとともに、
    前記1対の第2の導体のそれぞれ長手方向の各他端が、当該他端に直交する前記1対の第3の導体のそれぞれ長手方向の各一端に接続されている
    請求項1に記載の電流検出装置。
  4. 前記バイアス磁界印加用導体は、
    前記磁気抵抗効果素子の4つの側面のうちの長手方向に延びた2つの側面に対してそれぞれ平行になるように配置された1対の第4の導体をさらに備え、
    前記第4の導体の断面積は、前記第2の導体の断面積よりも大きく、前記第1の導体の断面積よりも小さい
    請求項2または3に記載の電流検出装置。
  5. 前記バイアス磁界印加用導体は、
    前記磁気抵抗効果素子の4つの側面のうちの長手方向に延びた2つの側面に対してそれぞれ平行になるように配置された1対の第2の導体と、
    前記磁気抵抗効果素子の4つの側面のうちの短手方向に延びた2つの側面に対してそれぞれ平行になるように配置された1対の第3の導体と
    を含み、
    前記第1の導体と長手方向が等しい前記第2の導体が、前記第3の導体を介して、前記第1の導体と並列に接続されている
    請求項1に記載の電流検出装置。
  6. 請求項1から5までのいずれか1項に記載の電流検出装置と、
    前記電流検出装置が有する前記第1の導体に電流を印加する電流源と、
    前記第1の導体を流れる前記電流が誘起する誘起磁界が、前記磁気抵抗効果素子に印加されている外部磁界を打ち消したか否かを、前記磁気抵抗効果素子の抵抗値を、前記磁気抵抗効果素子に前記外部磁界を印加しないときの抵抗値と比較することで判定する判定部と、
    前記判定部が前記誘起磁界が前記外部磁界を打ち消したと判定した場合に、その時点の前記第1の導体を流れる電流の値に基づいて前記外部磁界の強度を算出する磁界演算部と
    を備えた
    磁界検出装置。
JP2015008791A 2015-01-20 2015-01-20 電流検出装置および磁界検出装置 Active JP6305352B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008791A JP6305352B2 (ja) 2015-01-20 2015-01-20 電流検出装置および磁界検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008791A JP6305352B2 (ja) 2015-01-20 2015-01-20 電流検出装置および磁界検出装置

Publications (2)

Publication Number Publication Date
JP2016133430A JP2016133430A (ja) 2016-07-25
JP6305352B2 true JP6305352B2 (ja) 2018-04-04

Family

ID=56437940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008791A Active JP6305352B2 (ja) 2015-01-20 2015-01-20 電流検出装置および磁界検出装置

Country Status (1)

Country Link
JP (1) JP6305352B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663685A (en) * 1985-08-15 1987-05-05 International Business Machines Magnetoresistive read transducer having patterned longitudinal bias
JPH01227482A (ja) * 1988-03-08 1989-09-11 Fujitsu Ltd 磁気抵抗素子
US5005096A (en) * 1988-12-21 1991-04-02 International Business Machines Corporation Magnetoresistive read transducer having hard magnetic shunt bias
JP5012939B2 (ja) * 2010-03-18 2012-08-29 Tdk株式会社 電流センサ
JP2014089088A (ja) * 2012-10-30 2014-05-15 Alps Electric Co Ltd 磁気抵抗効果素子

Also Published As

Publication number Publication date
JP2016133430A (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
US7737678B2 (en) Magnetic sensor and current sensor
US8593134B2 (en) Current sensor
EP2284555B1 (en) Magnetic sensor including a bridge circuit
US9400315B2 (en) Current sensor
JP5906488B2 (ja) 電流センサ
US10557726B2 (en) Systems and methods for reducing angle error for magnetic field angle sensors
JP5888402B2 (ja) 磁気センサ素子
US20130300404A1 (en) Current sensor
JP2008525787A (ja) 調節可能な特性を有する磁気センサ
JP6427588B2 (ja) 磁気センサ
JP6503802B2 (ja) 磁気センサ
JP2016001118A (ja) 電流検出装置、磁界検出装置及びこれらの方法
JP5187538B2 (ja) 磁気センサ
US11175353B2 (en) Position sensor with compensation for magnet movement and related position sensing method
US10330708B2 (en) Current detection device and correction factor calculation method
JP2012063203A (ja) 磁気センサ
JP2020085480A (ja) 磁気センサ及び位置検出装置
JP6305352B2 (ja) 電流検出装置および磁界検出装置
JPWO2018199068A1 (ja) 磁気センサー
US8547091B2 (en) Method for measuring resistance of resistor connected with MR element in parallel
WO2011111457A1 (ja) 磁気センサ及びそれを備えた磁気平衡式電流センサ
JP6080555B2 (ja) 回転検出装置及びその製造方法
WO2015125699A1 (ja) 磁気センサ
CN109541503A (zh) 磁传感器
JP6465725B2 (ja) 電流検出装置およびこれを用いた磁界検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R150 Certificate of patent or registration of utility model

Ref document number: 6305352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250