JP6299090B2 - 電気光学装置、電気光学装置の駆動方法および電子機器 - Google Patents

電気光学装置、電気光学装置の駆動方法および電子機器 Download PDF

Info

Publication number
JP6299090B2
JP6299090B2 JP2013131381A JP2013131381A JP6299090B2 JP 6299090 B2 JP6299090 B2 JP 6299090B2 JP 2013131381 A JP2013131381 A JP 2013131381A JP 2013131381 A JP2013131381 A JP 2013131381A JP 6299090 B2 JP6299090 B2 JP 6299090B2
Authority
JP
Japan
Prior art keywords
transistor
period
data line
potential
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013131381A
Other languages
English (en)
Other versions
JP2015004907A (ja
Inventor
人嗣 太田
人嗣 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013131381A priority Critical patent/JP6299090B2/ja
Publication of JP2015004907A publication Critical patent/JP2015004907A/ja
Application granted granted Critical
Publication of JP6299090B2 publication Critical patent/JP6299090B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

本発明は、例えば画素回路が微細化したときに有効な電気光学装置、電気光学装置の駆動方法および電子機器に関する。
近年、有機発光ダイオード(Organic Light Emitting Diode、以下「OLED」という)素子などの発光素子を用いた電気光学装置が各種提案されている。この電気光学装置では、走査線とデータ線との交差に対応して、上記発光素子やトランジスターなどを含む画素回路が、表示すべき画像の画素に対応して設けられる構成が一般的である。このような構成において、画素の階調レベルに応じた電位のデータ信号が当該トランジスターのゲートに印加されると、当該トランジスターは、ゲート・ソース間の電圧に応じた電流を発光素子に供給する。これにより、当該発光素子は、階調レベルに応じた輝度で発光する(例えば特許文献1参照)。
また、電気光学装置に対して、表示サイズの小型化や表示の高精細化が要求されることが多い。表示サイズの小型化と表示の高精細化とを両立するためには、画素回路を微細化する必要があるので、電気光学装置を例えばシリコン集積回路に設ける技術も提案されている(例えば特許文献2参照)。
特開2007−316462号公報 特開2009−288435号公報
ところで、画素回路を微細化したとき、発光素子への供給電流を微小領域で制御する必要がある。発光素子に供給される電流は、トランジスターのゲート・ソース間の電圧によって制御されるが、微小領域では、ゲート・ソース間の電圧のわずかな変化に対して、発光素子に供給される電流が大きく変化してしまう。一方、データ信号を出力する回路は、データ線を短時間で充電するために、その駆動能力が高められている。このように高い駆動能力を有する回路において、非常に細かい精度でデータ信号を出力させることは困難である。本発明は、上述した事情に鑑みてなされたもので、その目的の一つは、細かい精度のデータ信号を必要としない一方で、発光素子に供給する電流を精度良く制御することが可能な電気光学装置、電気光学装置の駆動方法および電子機器を提供することにある。
本発明の第1の態様に係る電気光学装置は、データ線と、データ線に対応して設けられた画素回路と、画素回路を駆動する駆動回路と、第1電極とデータ線に接続された第2電極とを有する第1保持容量とを具備し、画素回路は、駆動電流に応じた輝度で発光する発光素子と、ゲート・ソース間の電圧に応じた駆動電流を発光素子に供給する第1トランジスターと、データ線と第1トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第2トランジスターとを具備し、駆動回路は、第1期間において、第2トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を第1電極に供給し、第1期間に続く第2期間において、第2トランジスターをオン状態に制御する。
以上の構成によれば、第1期間で指定階調に応じた電位のデータ信号が第1保持容量の第1電極に供給されたとき、データ線の電位は、第1保持容量およびデータ線の容量の容量比で当該第1保持容量の電位を分圧した分だけシフトされ、第2期間で第1トランジスターのゲートに供給される。このため、本発明によれば、第1トランジスターのゲートの電位の範囲は、データ信号の電位範囲に対し狭められる。したがって、第1トランジスターのゲート・ソース間の電圧変化に対する電流変化が大きい場合にも、正確に電流を制御することができる。
以上のようにデータ信号を第1保持容量の第1電極に供給する構成では、第1電極に対してデータ信号の供給を開始した直後にデータ線の電位が不安定に変動する可能性がある。本発明では、第1電極にデータ信号が供給される第1期間にて、第2トランジスターがオフ状態に制御されることでデータ線と第1トランジスターのゲートとは電気的に絶縁されるから、第1電極にデータ信号を供給した直後におけるデータ線の電位の不安定な変動が第1トランジスターのゲートまで波及しない。したがって、例えば第2トランジスターをオン状態に制御した状態で第1電極にデータ信号を供給する構成と比較して、第1トランジスターのゲートの電位がデータ信号に応じた目標の電位に高精度に設定され、結果的に発光素子の輝度の誤差を低減する(ひいては表示品位を向上する)ことが可能である。
本発明の好適な態様において、画素回路は、第1トランジスターのゲートと一方の電流端とを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第3トランジスターを具備し、駆動回路は、第3期間において、画素回路における第3トランジスターをオン状態にして当該画素回路における第1トランジスターの閾値電圧を生成し、第2期間において、指定階調と生成した閾値電圧とに応じた駆動電流を発光素子に供給する。以上の構成によれば、指定階調と閾値電圧とに応じた駆動電流が発光素子に供給されるため、第1トランジスターの閾値電圧の誤差(画素回路毎の相違や設計値からの相違)が補償されて、指定階調に応じた電流が高精度に発光素子に供給される。したがって、発光素子の輝度の誤差(表示ムラ)が抑制された高品位の表示が可能になる。
本発明の第2の態様に係る電気光学装置は、第1データ線と、第2データ線と、第1データ線に対応して設けられた第1画素回路と、第2データ線に対応して設けられた第2画素回路と、第1電極と第1データ線に接続された第2電極とを有する第1保持容量と、第3電極と第2データ線に接続された第4電極とを有する第2保持容量と、第1画素回路および第2画素回路を駆動する駆動回路とを具備し、第1画素回路は、駆動電流に応じた輝度で発光する第1発光素子と、ゲート・ソース間の電圧に応じた駆動電流を第1発光素子に供給する第1トランジスターと、第1データ線と第1トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第2トランジスターとを具備し、第2画素回路は、駆動電流に応じた輝度で発光する第2発光素子と、ゲート・ソース間の電圧に応じた駆動電流を第2発光素子に供給する第3トランジスターと、第2データ線と第3トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第4トランジスターとを具備し、駆動回路は、第1期間において、第2トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を第1電極に供給し、その後に第4トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を第3電極に供給し、第1期間に続く第2期間において、第2トランジスターおよび第4トランジスターをオン状態に制御する。以上の構成によれば、上述した第1の態様と同様に、第1トランジスターのゲートおよび第3トランジスターのゲートにおける電位の範囲が、データ信号の電位範囲に対し狭められる。また、第2期間において、第1画素回路の第2トランジスターと第2画素回路の第4トランジスターとが一斉に制御されるため、第2トランジスターと第4トランジスターとを個別の期間に制御する構成と比較して、各画素回路の制御が簡素化されるという利点もある。
本発明の好適な態様において、第1画素回路は、第1発光素子に供給される駆動電流の経路上に設けられた第5トランジスターを具備し、第2画素回路は、第2発光素子に供給される駆動電流の経路上に設けられた第6トランジスターを具備し、駆動回路は、第2期間に続く第4期間において、第5トランジスターおよび第6トランジスターをオン状態にする。以上の構成によれば、第4期間において、第5トランジスターおよび第6トランジスターをオン状態にすることにより、各発光素子の発光・非発光を制御することが出来る。
なお、本発明は、電気光学装置のほか、電気光学装置の駆動方法や、当該電気光学装置を有する電子機器として概念することも可能である。電子機器としては、典型的にはヘッドマウント・ディスプレイ(HMD)や電子ビューファイダーなどの表示装置が挙げられる。
本発明の第1実施形態に係る電気光学装置の構成を示す斜視図である。 同電気光学装置の構成を示す図である。 同電気光学装置における画素回路を示す図である。 同電気光学装置の動作を示すタイミングチャートである。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置におけるデータ信号の振幅圧縮を示す図である。 第2実施形態に係る電気光学装置の構成を示す図である。 同電気光学装置における画素回路を示す図である。 同電気光学装置の動作を示すタイミングチャートである。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 第3実施形態に係る電気光学装置の構成を示す図である。 同電気光学装置の動作を示すタイミングチャートである。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 同電気光学装置の動作説明図である。 実施形態等に係る電気光学装置を用いたHMDを示す斜視図である。 HMDの光学構成を示す図である。
以下、本発明を実施するための形態について図面を参照して説明する。
<第1実施形態>
図1は、本発明の実施形態に係る電気光学装置10の構成を示す斜視図である。
電気光学装置10は、例えばヘッドマウント・ディスプレイにおいて画像を表示するマイクロ・ディスプレイである。電気光学装置10の詳細については後述するが、複数の画素回路や当該画素回路を駆動する駆動回路などが例えばシリコン基板に形成された有機EL装置であり、画素回路には、発光素子の一例であるOLEDが用いられている。
電気光学装置10は、表示部で開口する枠状のケース72に収納されるとともに、FPC(Flexible Printed Circuits)基板74の一端が接続されている。FPC基板74には、半導体チップの制御回路5が、COF(Chip On Film)技術によって実装されるとともに、複数の端子76が設けられて、図示省略された上位回路に接続される。当該上位回路から複数の端子76を介して画像データが同期信号に同期して供給される。同期信号には、垂直同期信号や、水平同期信号、ドットクロック信号が含まれる。また、画像データは、表示すべき画像の画素の指定階調(階調レベル)を例えば8ビットで規定する。
制御回路5は、電気光学装置10の電源回路とデータ信号出力回路との機能を兼用するものである。すなわち、制御回路5は、同期信号にしたがって生成した各種の制御信号や各種電位を電気光学装置10に供給するほか、デジタルの画像データをアナログのデータ信号に変換して、電気光学装置10に供給する。
図2は、第1実施形態に係る電気光学装置10の構成を示す図である。この図に示されるように、電気光学装置10は、走査線駆動回路20と、デマルチプレクサ30と、レベルシフト回路40と、表示部100とに大別される。
このうち、表示部100には、表示すべき画像の画素に対応した画素回路110がマトリクス状に配列されている。詳細には、表示部100において、m行の走査線12が図において横方向に延在して設けられ、また、3列毎にグループ化された(3n)列のデータ線14が図において縦方向に延在し、かつ、各走査線12と互いに電気的な絶縁を保って設けられている。そして、m行の走査線12と(3n)列のデータ線14との交差部に対応して画素回路110が設けられている。このため、本実施形態において画素回路110は、縦m行×横(3n)列でマトリクス状に配列されている。
ここで、m、nは、いずれも自然数である。走査線12および画素回路110のマトリクスのうち、行(ロウ)を区別するために、図において上から順に1、2、3、…、(m−1)、m行と呼ぶ場合がある。同様にデータ線14および画素回路110のマトリクスの列(カラム)を区別するために、図において左から順に1、2、3、…、(3n−1)、(3n)列と呼ぶ場合がある。また、データ線14のグループを一般化して説明するために、1以上n以下の整数jを用いると、左から数えてj番目のグループには、(3j−2)列目、(3j−1)列目および(3j)列目のデータ線14が属している、ということになる。
なお、同一行の走査線12と同一グループに属する3列のデータ線14との交差に対応した3つの画素回路110は、それぞれR(赤)、G(緑)、B(青)の画素に対応して、これらの3画素が表示すべきカラー画像の1ドットを表現する。すなわち、本実施形態では、RGBに対応したOLEDの発光によって1ドットのカラーを加法混色で表現する構成となっている。
さて、電気光学装置10には、次のような制御信号が制御回路5によって供給される。詳細には、電気光学装置10には、走査線駆動回路20を制御するための制御信号Ctrと、デマルチプレクサ30での選択を制御するための制御信号Sel(1)、Sel(2)、Sel(3)と、これらの信号に対して論理反転の関係にある制御信号/Sel(1)、/Sel(2)、/Sel(3)と、レベルシフト回路40を制御するための負論理の制御信号/Giniとが供給される。なお、制御信号Ctrには、実際にはパルス信号や、クロック信号、イネーブル信号など、複数の信号が含まれる。
また、電気光学装置10には、デマルチプレクサ30での選択タイミングに合わせてデータ信号Vd(1)、Vd(2)、…、Vd(n)が、1、2、…、n番目のグループに対応して制御回路5によって供給される。なお、データ信号Vd(1)〜Vd(n)が取り得る電位の最高値をVmaxとし、最低値をVminとする。
走査線駆動回路20は、フレームの期間にわたって走査線12を1行毎に順番に走査するための走査信号を、制御信号Ctrにしたがって生成するものである。ここで、1、2、3、…、(m−1)、m行目の走査線12に供給される走査信号を、それぞれGwr(1)、Gwr(2)、Gwr(3)、…、Gwr(m-1)、Gwr(m)と表記している。
なお、走査線駆動回路20は、走査信号Gwr(1)〜Gwr(m)のほかにも、当該走査信号に同期した各種の制御信号を行毎に生成して表示部100に供給するが、図2においては図示を省略している。また、フレームの期間とは、電気光学装置10が1カット(コマ)分の画像を表示するのに要する期間をいい、例えば同期信号に含まれる垂直同期信号の周波数が120Hzであれば、その1周期分の8.3ミリ秒の期間である。
デマルチプレクサ30は、列毎に設けられたトランスミッションゲート34の集合体であり、各グループを構成する3列に、データ信号を順番に供給するものである。
ここで、j番目のグループに属する(3j−2)、(3j−1)、(3j)列に対応したトランスミッションゲート34の入力端は互いに共通接続されて、その共通端子にそれぞれデータ信号Vd(j)が供給される。
j番目のグループにおいて左端列である(3j−2)列に設けられたトランスミッションゲート34は、制御信号Sel(1)がHレベルであるとき(制御信号/Sel(1)がLレベルであるとき)にオン(導通)する。同様に、j番目のグループにおいて中央列である(3j−1)列に設けられたトランスミッションゲート34は、制御信号Sel(2)がHレベルであるとき(制御信号/Sel(2)がLレベルであるとき)にオンし、j番目のグループにおいて右端列である(3j)列に設けられたトランスミッションゲート34は、制御信号Sel(3)がHレベルであるとき(制御信号/Sel(3)がLレベルであるとき)にオンする。
レベルシフト回路40は、保持容量44とPチャネルMOS型のトランジスター45とNチャネルMOS型のトランジスター46との組を列毎にそれぞれ有し、各列のトランスミッションゲート34の出力端から出力されるデータ信号の電位をシフトするものである。ここで、保持容量44は第1電極h1と第2電極h2とを有する。保持容量44の第1電極h1は、トランスミッションゲート34の出力端とトランジスター46のドレインノードとに接続される一方、保持容量44の第2電極h2は、対応する列のデータ線14とトランジスター45のドレインノードとに接続される。また、図2では省略しているが、保持容量44の容量をCrf1とする。
各列のトランジスター45のソースノードには初期電位Viniが各列にわたって共通に給電され、ゲートノードには制御信号/Giniが各列にわたって共通に供給される。また、各列のトランジスター46のソースノードには、電位Vrefが各列にわたって共通に給電され、ゲートノードには、制御信号/GiniをNOT回路18によって論理反転した信号が各列にわたって共通に供給される。
したがって、本実施形態において、各列のトランジスター45、46は、制御信号/GiniがLレベルであるときに一斉にオンし、制御信号/GiniがHレベルであるときに一斉にオフする構成となっている。
保持容量50は、データ線14毎に設けられている。詳細には、保持容量50の一端はデータ線14に接続され、他端は、各列にわたって共通の例えば電位Vssに接地されている。このため、保持容量50は、データ線14の電位を保持する。
なお、保持容量50については、図2では表示部100の外側に設けられているが、これはあくまでも等価回路であり、表示部100の内側、または、内側から外側にわたって設けられも良いのはもちろんである。また、図2では省略しているが、保持容量50の容量をCdtとする。電位Vssは、論理信号である走査信号や制御信号のLレベルに相当する。
本実施形態では、便宜的に走査線駆動回路20、デマルチプレクサ30およびレベルシフト回路40に分けているが、これらについては、画素回路110を駆動する駆動回路としてまとめて概念することが可能である。
図3を参照して画素回路110について説明する。各画素回路110については電気的にみれば互いに同一構成なので、ここでは、i行目であって、j番目のグループのうち左端列の(3j−2)列目に位置するi行(3j−2)列の画素回路110を例にとって説明する。
なお、iは、画素回路110が配列する行を一般的に示す場合の記号であって、1以上m以下の整数である。
図3に示されるように、画素回路110は、PチャネルMOS型のトランジスター121、122、124と、OLED130と、保持容量132とを含む。
この画素回路110には、走査信号Gwr(i)、制御信号Gel(i)が供給される。ここで、走査信号Gwr(i)、制御信号Gel(i)は、それぞれi行目に対応して走査線駆動回路20によって供給されるものである。このため、走査信号Gwr(i)、制御信号Gel(i)は、i行目であれば、着目している(3j−2)列以外の他の列の画素回路にも共通に供給される。
i行(3j−2)列の画素回路110におけるトランジスター122にあっては、ゲートノードがi行目の走査線12に接続され、ドレインまたはソースノードの一方が(3j−2)列目のデータ線14に接続され、他方がトランジスター121におけるゲートノードと、保持容量132の一端とにそれぞれ接続されている。ここで、トランジスター121のゲートノードについては、他のノードと区別するためにgと表記する。
トランジスター121にあっては、ソースノードが給電線116に接続され、ドレインノードがトランジスター124のソースノードに接続されている。ここで、給電線116には、画素回路110において電源の高位側となる電位Velが給電される。
トランジスター124にあって、ゲートノードにはi行目に対応した制御信号Gel(i)が供給され、ドレインノードがOLED130のアノードに接続されている。
保持容量132の他端は、給電線116に接続される。このため、保持容量132は、トランジスター121のゲート・ソース間の電圧を保持する。ここで、保持容量132の容量をCpixと表記したとき、保持容量50の容量Cdtと、保持容量44の容量Crf1と、保持容量132の容量Cpixとは、CdtはCrf1よりも大きく、CpixはCdtおよびCrf1よりも十分に小さくなるように設定される。
なお、保持容量132としては、トランジスター121のゲートノードgに寄生する容量を用いても良いし、シリコン基板において互いに異なる導電層で絶縁層を挟持することによって形成される容量を用いても良い。
本実施形態において電気光学装置10はシリコン基板に形成されるので、トランジスター121、122、124の基板電位については電位Velとしている。
OLED130のアノードは、画素回路110毎に個別に設けられる画素電極である。これに対して、OLED130のカソードは、画素回路110のすべてにわたって共通の共通電極118であり、画素回路110において電源の低位側となる電位Vctに保たれている。
OLED130は、上記シリコン基板において、アノードと光透過性を有するカソードとで白色有機EL層を挟持した素子である。そして、OLED130の出射側(カソード側)にはRGBのいずれかに対応したカラーフィルターが重ねられる。
このようなOLED130において、アノードからカソードに電流が流れると、アノードから注入された正孔とカソードから注入された電子とが有機EL層で再結合して励起子が生成され、白色光が発生する。このときに発生した白色光は、シリコン基板(アノード)とは反対側のカソードを透過し、カラーフィルターによる着色を経て、観察者側に視認される構成となっている。
<第1実施形態の動作>
図4を参照して電気光学装置10の動作について説明する。図4は、電気光学装置10における各部の動作を説明するためのタイミングチャートである。なお、この図において、電圧振幅を示す縦スケールは、説明便宜のために必ずしも一致していない(以下の図14、図21においても同様である)。
この図に示されるように、走査信号Gwr(1)〜Gwr(m)が順次Lレベルに切り替えられて、1フレームの期間において1〜m行目の走査線12が1水平走査期間(H)毎に順番に走査される。
1水平走査期間(H)での動作は、各行の画素回路110にわたって共通である。そこで以下については、i行目が水平走査される走査期間において、特にi行(3j−2)列の画素回路110について着目して動作を説明する。
本実施形態ではi行目の走査期間は、大別すると、図4において(b)で示される初期化期間と(d)で示される供給期間と(e)で示される書込期間とに分けられる。そして、(e)の書込期間の後、間をおいて(a)で示される発光期間となり、1フレームの期間経過後に再びi行目の走査期間に至る。このため、時間の順でいえば、(発光期間)→初期化期間→供給期間→書込期間→(発光期間)というサイクルの繰り返しとなる。
<発光期間>
説明の便宜上、初期化期間の前提となる発光期間から説明する。図4に示されるように、i行目の発光期間では、走査信号Gwr(i)がHレベルであり、制御信号Gel(i)はLレベルである。
このため、図5に示されるようにi行(3j−2)列の画素回路110においては、トランジスター124がオンする一方、トランジスター122がオフする。したがって、トランジスター121は、保持容量132によって保持された電圧、すなわちゲート・ソース間の電圧Vgsに応じた電流IdsをOLED130に供給する。後述するように発光期間におけるゲートノードgの電位は、指定階調に応じた電位のデータ信号を保持容量44、50の容量比に応じてレベルシフトした値であるので、電圧Vgsについては、指定階調に応じた電圧ということになる。このため、トランジスター121は、指定階調に応じた電流を供給するので、OLED130は、当該電流に応じた輝度で発光することになる。
なお、i行目の発光期間は、i行目以外が水平走査される期間であるから、データ線14の電位は適宜変動する。ただし、i行目の画素回路110においては、トランジスター122がオフしているので、ここでは、データ線14の電位変動を考慮していない。
また、図5においては、動作説明で重要となる経路を太線で示している(以下の図6〜図10、図15〜図19、図22〜図25においても同様である)。
<初期化期間>
次にi行目の走査期間に至ると、まず、(b)の初期化期間が開始する。初期化期間では、発光期間と比較して、制御信号Gel(i)がHレベルになる。このため、図6に示されるように、i行(3j−2)列の画素回路110においてはトランジスター124がオフする。これによってOLED130に供給される電流の経路が遮断されるので、OLED130は、オフ(非発光)状態となる。また、初期化期間においては制御信号/GiniがLレベルになるので、レベルシフト回路40においては、図6に示されるようにトランジスター45、46がそれぞれオンする。このため、保持容量44の第1電極h1は電位Vrefに、保持容量44の第2電極h2(およびデータ線14)は電位Viniに、それぞれ初期化される。
初期化期間では、続いて制御信号/GiniがLレベルの状態で、走査信号Gwr(i)がLレベルとなる。このため、図7に示されるように、i行(3j−2)列の画素回路110ではトランジスター122がオンするので、ゲートノードgがデータ線14に電気的に接続された状態になる。したがって、ゲートノードgも電位Viniになるので、保持容量132の保持電圧は、発光期間において保持していた電圧から、(Vel−Vini)に初期化される。
<供給期間>
初期化期間の後に(d)の供給期間に至る。供給期間では、図4に示すように、制御信号/GiniがHレベルになるので、レベルシフト回路40ではトランジスター45、46がそれぞれオフする。また、走査信号Gwr(i)がHレベルになるので、トランジスター122がオフする。すなわち、供給期間においては、トランジスター121のゲートノードgとデータ線14との絶縁が維持される。
図8に示されるように、保持容量44の第2電極h2からi行(3j−2)列の画素回路110におけるトランジスター122に至るまでの経路(すなわちデータ線14)は、フローティング状態になるものの、保持容量50の他端が電位Vssに接地されているので、データ線14の電位Vdataはトランスミッションゲート34のオンによってデータ信号が供給されるまで、電位Viniに維持される。
続いて供給期間においては、図4に示すように、走査信号Gwr(i)をHレベルに維持した状態で、制御回路5はデータ信号を供給する。具体的には、制御回路5は、j番目のグループでいえば、データ信号Vd(j)を順番に、i行目であって当該グループに属する左端列の(3j−2)列、中央列の(3j−1)列、右端列の(3j)列の画素の指定階調に応じた電位に順番に切り替える。制御回路5は、他のグループへのデータ信号についても、同様に電位を順番に切り替える。
一方、制御回路5は、データ信号の電位の切り替えに合わせて制御信号Sel(1)、Sel(2)、Sel(3)を順番に排他的にHレベルとする。なお、図4では省略しているが、制御回路5は、制御信号Sel(1)、Sel(2)、Sel(3)とは論理反転の関係にある制御信号/Sel(1)、/Sel(2)、/Sel(3)についても出力している。これによって、デマルチプレクサ30は、各グループにおいてトランスミッションゲート34がそれぞれ左端列、中央列、右端列の順番でオンすることで、各保持容量44の第1電極h1にデータ信号を順次に供給する。
ここで、図9に示されるように、j番目のグループに属する左端列のトランスミッションゲート34が制御信号Sel(1)、/Sel(1)によってオンしたとき、保持容量44の第1電極h1は、初期化された電位Vrefからデータ信号Vd(j)の電位に、すなわちi行(3j−2)列の画素の指定階調に応じた電位に変化する。このときの第1電極h1の電位変化分をΔVとして、変化後の電位を(Vref+ΔV)として表すことにする。一方、データ線14の電位Vdataは、保持容量44の第2電極h2に電気的に接続されるので、第1電極h1の電位から第1電極h1の電位変化分ΔVに容量比k1を乗じた値だけ、第1電極h1の電位の変化方向にシフトした値(Vdata=Vini+k1・ΔV)となる。なお、容量比k1は、Crf1/(Cdt+Crf1)である。
データ線14の電位Vdataは、トランスミッションゲート34がオンした場合に直ちに目的の電位(Vini+k1・ΔV)に変化するのが理想的である。しかし、(3j−2)列のデータ線14の電位Vdataについて図4に例示される通り、実際には、データ線14の電位Vdataは、トランスミッションゲート34がオンした時点から、不安定に変動する期間を経て、目的の電位で安定する。本実施形態の供給期間は、各列のデータ線14の電位Vdataが安定するのに十分な時間長に設定されている。したがって、各データ線14の電位Vdataは、供給期間の終了時において目的の電位(Vdata=Vini+k1・ΔV)で安定する。供給期間では、トランジスター122がオフ状態に維持されることでトランジスター121のゲートはデータ線14から絶縁された状態にあるから、供給期間内(第1電極h1に対するデータ信号の供給直後)での電位Vdataの不安定な変動は、トランジスター121のゲートノードgの電位には影響しない。
<書込期間>
供給期間の後に(e)の書込期間に至る。書込期間では、走査信号Gwr(i)がLレベルになるので、図10に示すように、画素回路110においてはトランジスター122がオンする。具体的には、i行目の走査信号Gwr(i)がローレベルに設定されることでi行の3n個の画素回路の各々におけるトランジスター122が一斉にオン状態に遷移する。以上の説明から理解される通り、j番目のグループに属する(3j−2)列、(3j−1)列、(3j)列の各列に着目すると、供給期間では、各列の画素回路110におけるトランジスター122がオフ状態に維持された状態で、第1電極h1に対するデータ信号の供給により各列のデータ線14の電位が順番にデータ信号に応じた電位に設定される一方、供給期間の経過後の書込期間では、i番目のグループに属する各列の画素回路110のトランジスター122が一斉にオン状態に制御される。
書込期間において、トランジスター122がオンすると、データ線14とトランジスター121のゲートノードgとが電気的に導通するため、ゲートノードgの電位は、データ線14の電位Vdataに応じた電位(したがってデータ信号に応じた電位)に変動する。具体的には、保持容量132の容量Cpixを便宜的に無視すると、トランジスター121のゲートノードgの電位は、供給期間の終点におけるデータ線14の電位Vdata(=Vini+k1・ΔV)に略等しい電位に変動する。
図11は、書込期間におけるデータ信号の電位とゲートノードgの電位との関係を示す図である。制御回路5から供給されるデータ信号は、上述したように画素の指定階調に応じて最小値Vminから最大値Vmaxまでの電位範囲を取り得る。本実施形態では、当該データ信号が直接ゲートノードgに書き込まれるのではなく、図に示されるようにレベルシフトされて、ゲートノードgに書き込まれる。
このとき、ゲートノードgの電位範囲ΔVgateは、データ信号の電位範囲ΔVdata(=Vmax−Vmin)に容量比k1を乗じた値に圧縮される。例えば、Crf1:Cdt=1:9となるように保持容量44、50の容量を設定したとき、ゲートノードgの電位範囲ΔVgateをデータ信号の電位範囲ΔVdataの1/10に圧縮することができる。
また、ゲートノードgの電位範囲ΔVgateを、データ信号の電位範囲ΔVdataに対してどの方向にどれだけシフトさせるかについては、電位Vini、Vrefで定めることができる。これは、データ信号の電位範囲ΔVdataが、電位Vrefを基準にして容量比k1で圧縮されるとともに、その圧縮範囲が電位Viniを基準にシフトされたものが、ゲートノードgの電位範囲ΔVgateとなるためである。
このようにi行目の書込期間において、i行目の画素回路110のゲートノードgには、指定階調に応じた電位のデータ信号を保持容量44、50の容量比に応じてレベルシフトした電位が書き込まれる。やがて走査信号Gwr(i)がHレベルになり、トランジスター122がオフする。これによって書込期間が終了して、ゲートノードgの電位は、シフトされた値に確定する。
前述の通り、書込期間の経過後の発光期間では、制御信号Gel(i)がローレベルに遷移する。具体的には、i行目の制御信号Gel(i)がローレベルに設定されることでi行の3n個の画素回路110の各々におけるトランジスター124が一斉にオン状態に遷移する。したがって、発光期間では、OLED130がデータ信号に応じた輝度で発光する。さらに、このようなi行目の動作は、実際には、1フレームの期間において1、2、3、…、(m−1)、m行目の順番で実行されるとともに、フレーム毎に繰り返される。
ところで、供給期間にてトランジスター122をオン状態に維持したままデータ信号を第1電極h1に供給する構成(以下「対比例」)では、第1電極h1に対するデータ信号の供給直後のデータ線14の電位Vdataの変動がトランジスター122を介してトランジスター121のゲートノードgに波及するため、トランジスター121のゲートノードgの電位は、データ信号に対応する目標の電位とは異なる電位に設定され得る。したがって、対比例においては、OLED130の輝度に誤差が発生し得る。本実施形態では、供給期間にてトランジスター122がオフ状態に維持されることでデータ線14とトランジスター121のゲートノードgとが電気的に絶縁されるから、第1電極h1にデータ信号を供給した直後におけるデータ線14の電位Vdataの不安定な変動がトランジスター121のゲートノードgまで波及しない。したがって、対比例と比較すると、トランジスター121のゲートノードgの電位がデータ信号に応じた目標の電位に高精度に設定され、結果的にOLED130の輝度の誤差を低減する(ひいては表示品位を向上する)ことが可能である。
<第2実施形態>
第1実施形態において、トランジスター121の閾値電圧が画素回路110毎にばらついていると、表示画面の一様性を損なうような表示ムラが発生する。そこで、次にトランジスター121における閾値電圧のばらつきを補償した第2実施形態について説明する。なお、以下においては説明の重複を避けるために、第1実施形態との相違する部分を中心に説明することにする。
図12は、第2実施形態に係る電気光学装置10の構成を示す図である。
この図に示した第2実施形態が第1実施形態(図2参照)と相違する点は、第1に、給電線16が設けられている点、第2に、レベルシフト回路40の一部が異なる点、および、第3に、画素回路110の構成並びに動作が異なる点、にある。
まず、第1の相違点については、給電線16が表示部100の各列においてデータ線14に沿ってそれぞれ設けられている。各給電線16には電位Vorstが共通に給電されている。また、各列の保持容量50の他端は、対応する列の給電線16にそれぞれ接続されている。
第2の相違点については、第1実施形態におけるトランジスター46(図2参照)が、図12におけるトランジスター43に置き換わっている。このトランジスター43のゲートには、制御信号Grefが、制御回路5から各列にわたって共通に供給される。
図13を参照して第3の相違点について説明する。図13は、第2実施形態に係る電気光学装置10の画素回路110の構成を示す図である。この図に示した画素回路110が図3に示した回路構成と相違する点は、PチャネルMOS型のトランジスター123、125が追加されている点にある。
このうち、トランジスター123にあっては、ゲートノードにi行目に対応した制御信号Gcmp(i)が供給され、ソースノードがトランジスター121のドレインノードに接続されている。また、トランジスター123のドレインノードは、トランジスター121のゲートノードgに接続されている。
一方、トランジスター125にあっては、ゲートノードにi行目に対応した制御信号Gorst(i)が供給され、ソースノードがOLED130のアノードに接続されている。また、トランジスター125のドレインノードは、対応する列の給電線16に接続されている。
なお、トランジスター123、125の基板電位についても、トランジスター121、122、124と同様に電位Velとしている。
<第2実施形態の動作>
図14を参照して第2実施形態に係る電気光学装置10の動作について説明する。図14は、第2実施形態における動作を説明するためのタイミングチャートである。
この図に示されるように、走査信号Gwr(1)〜Gwr(m)が順次Lレベルに切り替えられて、1フレームの期間において1〜m行目の走査線12が1水平走査期間(H)毎に順番に走査される点については、第1実施形態と同様である。ただし、第2実施形態ではi行目の走査期間が、第1実施形態と比較して、(b)で示される初期化期間と(d)で示される供給期間との間に、(c)で示される補償期間が挿入されている。このため、第2実施形態では、時間の順でいえば(発光期間)→初期化期間→補償期間→供給期間→書込期間→(発光期間)というサイクルの繰り返しとなる。
<発光期間>
第2実施形態では、図14に示されるように、i行目の発光期間では走査信号Gwr(i)がHレベルである。また、論理信号である制御信号Gel(i)、Gcmp(i)、Gorst(i)のうち、制御信号Gel(i)がLレベルであり、制御信号Gcmp(i)、Gorst(i)がHレベルである。
このため、図15に示されるようにi行(3j−2)列の画素回路110においては、トランジスター124がオンする一方、トランジスター122、123、125がオフする。したがって、トランジスター121は、ゲート・ソース間の電圧Vgsに応じた電流IdsをOLED130に供給する。
後述するように、第2実施形態において発光期間での電圧Vgsは、トランジスター121の閾値電圧から、データ信号の電位に応じてレベルシフトした値である。このため、OLED130には、指定階調に応じた電流がトランジスター121の閾値電圧を補償した状態で供給されることになる。
<初期化期間>
i行目の走査期間に至って、まず(b)の初期化期間が開始する。初期化期間では、発光期間と比較して、制御信号Gel(i)がHレベルに、制御信号Gorst(i)がLレベルに、それぞれ変化する。
このため、図16に示されるように、i行(3j−2)列の画素回路110においてはトランジスター124がオフし、トランジスター125がオンする。これによってOLED130に供給される電流の経路が遮断されるとともに、OLED130のアノードが電位Vorstにリセットされる。
OLED130は、上述したようにアノードとカソードとで有機EL層を挟持した構成であるので、アノード・カソードの間には、実際には図において破線で示されるように容量Coledが並列に寄生する。発光期間においてOLED130に電流が流れていたときに、当該OLED130のアノード・カソード間の両端電圧が当該容量Coledによって保持されるが、この保持電圧は、トランジスター125のオンによってリセットされる。このため、第2実施形態では、後の発光期間においてOLED130に再び電流が流れるときに、当該容量Coledで保持されている電圧の影響を受けにくくなる。
詳細には、例えば高輝度の表示状態から低輝度の表示状態に転じるときに、リセットしない構成であると、輝度が高い(大電流が流れた)ときの高電圧が保持されてしまうので、次に、小電流を流そうとしても、過剰な電流が流れてしまって、低輝度の表示状態にさせることができなくなる。これに対して、第2実施形態では、トランジスター125のオンによってOLED130のアノードの電位がリセットされるので、低輝度側の再現性が高められることになる。
なお、第2実施形態において、電位Vorstについては、当該電位Vorstと共通電極118の電位Vctとの差がOLED130の発光閾値電圧を下回るように設定される。このため、初期化期間(次に説明する補償期間、供給期間および書込期間)において、OLED130はオフ(非発光)状態である。
一方、初期化期間では、制御信号/GiniがLレベルになり、制御信号GrefがHレベルになるので、レベルシフト回路40においては、トランジスター45、43がそれぞれオンする。このため、保持容量44の第2電極h2と電気的に接続されるデータ線14は電位Viniに、保持容量44の第1電極h1は電位Vrefに、それぞれ初期化される。
第2実施形態において電位Viniについては、(Vel−Vini)がトランジスター121の閾値電圧|Vth|よりも大きくなるように設定される。なお、トランジスター121はPチャネル型であるので、ソースノードの電位を基準とした閾値電圧Vthは負である。そこで、高低関係の説明で混乱が生じるのを防ぐために、閾値電圧については、絶対値の|Vth|で表し、大小関係で規定することにする。
また、第2実施形態において電位Vrefについては、データ信号Vd(1)〜Vd(n)が取り得る電位に対して、後の供給期間において第1電極h1の電位が上昇変化するような値に、例えば最低値Vminよりも低くなるように設定される。
<補償期間>
i行目の走査期間では、次に(c)の補償期間となる。補償期間では初期化期間と比較して、図14に示すように、走査信号Gwr(i)および制御信号Gcmp(i)がLレベルとなる。一方、補償期間では、制御信号GrefがHレベルに維持された状態で制御信号/GiniがHレベルになる。
このため、図17に示されるように、レベルシフト回路40においては、トランジスター43がオンした状態でトランジスター45がオフすることによって、第1電極h1が電位Vrefに固定される。一方、i行(3j−2)列の画素回路110ではトランジスター122がオンすることによって、ゲートノードgがデータ線14に電気的に接続されるので、補償期間の開始当初においてゲートノードgは電位Viniとなる。
補償期間においてトランジスター123がオンするので、トランジスター121はダイオード接続となる。このため、トランジスター121にはドレイン電流が流れて、ゲートノードgおよびデータ線14を充電する。詳細には、電流が、給電線116→トランジスター121→トランジスター123→トランジスター122→(3j−2)列目のデータ線14という経路で流れる。このため、トランジスター121のオンによって互いに接続状態にあるデータ線14およびゲートノードgは、電位Viniから上昇する。
ただし、上記経路に流れる電流は、ゲートノードgが電位(Vel−|Vth|)に近づくにつれて流れにくくなるので、補償期間の終了に至るまでに、データ線14およびゲートノードgは電位(Vel−|Vth|)で飽和する。したがって、保持容量132は、補償期間の終了に至るまでにトランジスター121の閾値電圧|Vth|を保持することになる。
<供給期間>
補償期間が終了すると、図14に示されるように、制御信号Gcmp(i)がHレベルになるので、トランジスター121のダイオード接続が解除される一方、制御信号GrefがLレベルになるので、トランジスター43がオフになる。また、その後に供給期間が開始すると、走査信号Gwr(i)がHレベルになるので、図18に示されるように、トランジスター122がオフする。すなわち、供給期間においては、第1実施形態と同様に、トランジスター121のゲートノードgとデータ線14との絶縁が維持される。また、供給期間の開始時においては、データ線14の電位Vdataは、保持容量50によって補償期間の終了時の電位に維持されている。
i行目の供給期間において制御回路5は、j番目のグループでいえば、データ信号Vd(j)を順番に、i行(3j−2)列、i行(3j−1)列、i行(3j)列の画素の指定階調に応じた電位に切り替える。一方、制御回路5は、データ信号の電位の切り替えに合わせて制御信号Sel(1)、Sel(2)、Sel(3)を順番に排他的にHレベルとする。制御回路5は、図14では省略しているが、制御信号Sel(1)、Sel(2)、Sel(3)とは論理反転の関係にある制御信号/Sel(1)、/Sel(2)、/Sel(3)についても出力している。これによって、デマルチプレクサ30では、各グループにおいてトランスミッションゲート34がそれぞれ左端列、中央列、右端列の順番でオンする。
ここで、左端列のトランスミッションゲート34が制御信号Sel(1)、/Sel(1)によってオンしたとき、保持容量44の第1電極h1は、補償期間における電位Vrefから、データ信号Vd(j)の電位に、すなわちi行(3j−2)列の画素の指定階調に応じた電位(Vref+ΔV)に変化する。データ線14の電位Vdataは、保持容量44の第2電極h2と電気的に接続されているので、補償期間における電位(Vel−|Vth|)から、第1電極h1の電位変化分ΔVに容量比k1を乗じた値だけ上昇する方向にシフトした値(Vdata=Vel−|Vth|+k1・ΔV)となる。
図14に示すように、データ線14の電位Vdataは、トランスミッションゲート34がオンした時点から、不安定に変動する期間を経て目的の電位で安定する。第2実施形態においても、第1実施形態と同様に、供給期間では、トランジスター122がオフ状態に維持されることでトランジスター121のゲートノードgはデータ線14から絶縁された状態にある。また、供給期間は、各列のデータ線14の電位Vdataが安定するのに十分な時間長に設定されている。したがって、供給期間での電位Vdataの不安定な変動はトランジスター121のゲートノードgの電位には影響しない。
<書込期間>
供給期間の後に(e)の書込期間に至る。書込期間では、図14に示すように、走査信号Gwr(i)がLレベルになる。したがって、書込み期間では、図19に示すように、画素回路110においてはトランジスター122がオンする。本実施形態においては、i行目の走査信号Gwr(i)がローレベルに設定されることでi行の3n個の画素回路の各々におけるトランジスター122が一斉にオン状態に遷移する。以上の説明から理解される通り、j番目のグループに属する(3j−2)列、(3j−1)列、(3j)列の各列に着目すると、供給期間では、各列の画素回路110におけるトランジスター122がオフ状態に維持された状態で、第1電極h1に対するデータ信号の供給により各列のデータ線14の電位が順番にデータ信号に応じた電位Vdataに設定される一方、供給期間の経過後の書込期間では、i番目のグループに属する各列の画素回路110のトランジスター122が一斉にオン状態に制御される。
書込期間において、トランジスター122がオンすると、データ線14とゲートノードgとが電気的に導通するため、トランジスター121のゲートノードgの電位は、補償期間の終了時の電位(Vel−|Vth|)からデータ線14の電位Vdataに応じた電位(したがってデータ信号に応じた電位)に変動する。具体的には、保持容量132の容量Cpixを便宜的に無視すると、トランジスター121のゲートノードgの電位は、供給期間の終点におけるデータ線14の電位Vdataに略等しい電位(Vel−|Vth|+k1・ΔV)に設定される。したがって、書込期間の経過後の発光期間において制御信号Gel(i)がローレベルに遷移すると、OLED130がデータ信号に応じた輝度で発光する。本実施形態においては、第i行目の制御信号Gel(i)がローレベルに設定されることで第i行の3n個の画素回路の各々におけるトランジスター124が一斉にオン状態に遷移する。さらに、このようなi行目の動作は、実際には、1フレームの期間において1、2、3、…、(m−1)、m行目の順番で実行されるとともに、フレーム毎に繰り返される。
第2実施形態においても第1実施形態と同様の効果が実現される。また、第2実施形態によれば、トランジスター121によってOLED130に供給される電流Idsでは、閾値電圧の影響が相殺される。このため、第2実施形態によれば、トランジスター121の閾値電圧が画素回路110毎にばらついても、そのばらつきが補償されて、指定階調に応じた電流がOLED130に供給されるので、OLED130の輝度の誤差(表示ムラ)が抑制された高品位の表示が可能になる。
<第3実施形態>
第2実施形態においては、レベルシフト回路40における保持容量44の第1電極h1に対してデマルチプレクサ30からデータ信号を直接に供給する構成を例示した。このため、第2実施形態においては、レベルシフト回路40にデータ信号が供給される期間と初期化期間および補償期間とを重複させることができない。
そこで次に、このような時間的な制約を緩和することができる第3実施形態について説明する。なお、以下においては説明の重複を避けるために、第2実施形態との相違する部分を中心に説明することにする。
図20は、第3実施形態に係る電気光学装置10の構成を示す図である。
この図に示した第3実施形態が図12に示した第2実施形態と相違する点は、主としてレベルシフト回路40の各列において保持容量41およびトランスミッションゲート42が設けられている点にある。
詳細には、各列においてトランスミッションゲート42は、トランスミッションゲート34の出力端と保持容量44の第1電極h1との間に、電気的に介挿されている。すなわち、トランスミッションゲート42の入力端がトランスミッションゲート34の出力端に接続され、トランスミッションゲート42の出力端が保持容量44の第1電極h1に接続されている。
なお、各列のトランスミッションゲート42は、制御回路5から供給される制御信号GcplがHレベルであるとき(制御信号/GcplがLレベルであるとき)に一斉にオンする。
また、各列において保持容量41の一端は、トランスミッションゲート34の出力端(トランスミッションゲート42の入力端)に接続され、保持容量41の他端は、固定電位、例えば電位Vssに共通に接地されている。図20では省略しているが、保持容量41の容量をCrf2とする。
<第3実施形態の動作>
図21を参照して第3実施形態に係る電気光学装置10の動作について説明する。図21は、第3実施形態における動作を説明するためのタイミングチャートである。
この図に示されるように、走査信号Gwr(1)〜Gwr(m)が順次Lレベルに切り替えられて、1フレームの期間において1〜m行目の走査線12が1水平走査期間(H)毎に順番に走査される点については、第2実施形態と同様である。また、第3実施形態ではi行目の走査期間が、(b)で示される初期化期間、(c)で示される補償期間、(d)で示される供給期間、(e)で示される書込期間の順となっている点についても、第2実施形態と同様である。第3実施形態において(d)の供給期間は、制御信号GcplがLからHレベルになるとき(制御信号/GcplがLレベルになったとき)から走査信号がLからHレベルになるときまでの期間である。
第3実施形態においても、第2実施形態と同様に、時間の順でいえば(発光期間)→初期化期間→補償期間→供給期間→書込期間→(発光期間)というサイクルの繰り返しとなる。ただし、第3実施形態では、第2実施形態と比較して、(b)の初期化期間と(c)の補償期間とにわたって、制御回路5からデータ信号が供給され得る点において第2実施形態と相違している。
<発光期間>
第3実施形態では、図21に示されるように、i行目の発光期間では走査信号Gwr(i)がHレベルであり、また、制御信号Gel(i)がLレベルであり、制御信号Gcmp(i)、Gorst(i)がHレベルである。
このため、図22に示されるようにi行(3j−2)列の画素回路110においては、トランジスター124がオンする一方、トランジスター122、123、125がオフするので、当該画素回路110における動作は基本的に第2実施形態と同様となる。すなわち、トランジスター121は、ゲート・ソース間の電圧Vgsに応じた電流IdsをOLED130に供給することになる。
<初期化期間>
i行目の走査期間に至って、まず(b)の初期化期間が開始する。
第3実施形態において初期化期間では、発光期間と比較して、制御信号Gel(i)がHレベルに、制御信号Gorst(i)がLレベルに、それぞれ変化する。
このため、図23に示されるように、i行(3j−2)列の画素回路110においてはトランジスター124がオフし、トランジスター125がオンする。これによってOLED130に供給される電流の経路が遮断されるとともに、トランジスター125のオンによってOLED130のアノードが電位Vorstにリセットされるので、当該画素回路110における動作は基本的に第2実施形態と同様となる。
一方、第3実施形態において初期化期間では、制御信号/GiniがLレベルになり、制御信号GrefがHレベルになるとともに、制御信号GcplがLレベルになる。このため、レベルシフト回路40においては、図23に示されるようにトランジスター45、43がそれぞれオンするとともに、トランスミッションゲート42がオフする。したがって、保持容量44の第2電極h2に電気的に接続するデータ線14は電位Viniに、保持容量44の第1電極h1は電位Vrefに、それぞれ初期化される。
第3実施形態では電位Vrefについては、データ信号Vd(1)〜Vd(n)が取り得る電位に対して、後の供給期間において第1電極h1の電位が上昇変化するような値に設定される。
上述したように、第3実施形態において制御回路5は、初期化期間および補償期間にわたってデータ信号を供給する。すなわち、制御回路5は、j番目のグループでいえば、データ信号Vd(j)を順番に、i行(3j−2)列、i行(3j−1)列、i行(3j)列の画素の指定階調に応じた電位に切り替える一方、データ信号の電位の切り替えに合わせて制御信号Sel(1)、Sel(2)、Sel(3)を順番に排他的にHレベルとする。これによって、デマルチプレクサ30では、各グループにおいてトランスミッションゲート34がそれぞれ左端列、中央列、右端列の順番でオンする。
ここで、初期化期間において、j番目のグループに属する左端列のトランスミッションゲート34が制御信号Sel(1)によってオンする場合、図23に示されるように、データ信号Vd(j)が保持容量41の一端に供給されるので、当該データ信号は、保持容量41によって保持される。
<補償期間>
i行目の走査期間においては、次に(c)の補償期間となる。図21に示すように、補償期間では、初期化期間と比較して、走査信号Gwr(i)がLレベルに、制御信号Gcmp(i)がLレベルに、それぞれ変化する。
このため、図24に示されるように、i行(3j−2)列の画素回路110ではトランジスター122がオンして、ゲートノードgがデータ線14に電気的に接続される一方、トランジスター123のオンによって、トランジスター121がダイオード接続となる。
したがって、電流が、給電線116→トランジスター121→トランジスター123→トランジスター122→(3j−2)列目のデータ線14という経路で流れるので、ゲートノードgの電位およびデータ線14の電位Vdataは、電位Viniから上昇し、やがて(Vel−|Vth|)に飽和する。したがって、第3実施形態においても、保持容量132は、補償期間の終了に至るまでにトランジスター121の閾値電圧|Vth|を保持することになる。
第3実施形態において、補償期間では、制御信号GrefがHレベルを維持した状態で制御信号/GiniがHレベルになるので、レベルシフト回路40において保持容量44の第1電極h1は電位Vrefに固定される。
また、補償期間において、j番目のグループに属する左端列のトランスミッションゲート34が制御信号Sel(1)によってオンする場合、図24に示されるように、データ信号Vd(j)が保持容量41によって保持される。
なお、すでに初期化期間において、j番目のグループに属する左端列のトランスミッションゲート34が制御信号Sel(1)によってオンした場合には、補償期間において、当該トランスミッションゲート34はオンすることはないが、保持容量41にデータ信号Vd(j)が保持されている点において変わりはない。
また、補償期間が終了すると、制御信号Gcmp(i)がHレベルになるので、トランジスター121のダイオード接続が解除される。
第3実施形態においては、図21に示すように、補償期間が終了してから次の供給期間が開始するまでの間において制御信号GrefがLレベルになるため、トランジスター43がオフになる。
<供給期間>
供給期間では、図21に示されるように、制御信号GcplがHレベルとなる(制御信号/GcplがLレベルとなる)。このため、図25に示されるように、レベルシフト回路40においてトランスミッションゲート42がオンするので、保持容量41に保持されたデータ信号が保持容量44の第1電極h1に供給され、第1電極h1の電位は、補償期間における電位Vrefから電位(Vref+ΔV)に変化する。
一方、データ線14の電位Vdataは、保持容量44の第2電極h2にデータ線14が接続されているので、補償期間における電位(Vel−|Vth|)から、第1電極h1の電位変化分ΔVに容量比k2を乗じた値だけ上昇する方向にシフトした値(Vel−|Vth|+k2・ΔV)となる。なお、容量比k2はCdt、Crf1、Crf2の容量比である。
以上の説明から理解される通り、第3実施形態においては、初期化期間または補償期間においてj番目のグループに属する各列のトランスミッションゲート34がi行(3j−2)列、i行(3j−1)列、i行(3j)列の順にオン状態に制御され、保持容量41に対してデータ信号が順次に供給される。供給期間において、トランジスター122がオフ状態に維持された状態で、トランスミッションゲート42をオンすることで各列の第1電極h1に一斉にデータ信号が供給されて、データ線14の電位Vdataがデータ信号に応じて設定される。
図21に示すように、データ線14の電位Vdataは、トランスミッションゲート42がオンした時点から、大きさが不安定に変動する期間を経て、目的の電位で安定する。供給期間では、トランジスター122がオフ状態に維持されることでトランジスター121のゲートはデータ線14から絶縁された状態にある。また、供給期間は、各列のデータ線14の電位Vdataが安定するのに十分な時間長に設定されている。したがって、不安定な電位Vdataの変動はトランジスター121のゲートの電位には影響しない。
<書込期間>
供給期間の後に(e)の書込期間に至る。書込期間では、図21に示すように、走査信号Gwr(i)がLレベルになる。したがって、書込み期間では、図26に示すように、画素回路110においてはトランジスター122がオンする。トランジスター122がオンすると、データ線14とゲートノードgとが電気的に導通するため、ゲートノードgの電位はデータ線14の電位Vdata(Vel−|Vth|+k2・ΔV)に応じて変動する。具体的には、保持容量132の容量Cpixを便宜的に無視すると、トランジスター121のゲートノードgの電位は、供給期間の終点におけるデータ線14の電位Vdata(=Vel−|Vth|+k2・ΔV)に略等しい電位に変動する。したがって、その後の制御信号Gel(i)がローレベルに遷移する発光期間では、OLED130がデータ信号とトランジスター121の閾値電圧Vthに応じた輝度で発光する。本実施形態においては、第i行目の制御信号Gel(i)がローレベルに設定されることで第i行の3n個の画素回路の各々におけるトランジスター124が一斉にオン状態に遷移する。さらに、このようなi行目の動作は、実際には、1フレームの期間において1、2、3、…、(m−1)、m行目の順番で実行されるとともに、フレーム毎に繰り返される。
第3実施形態においても第1実施形態と同様の効果が実現される。また、第3実施形態によれば、制御回路5からデマルチプレクサ30を介して供給されるデータ信号を保持容量41に保持させる動作が、初期化期間から補償期間までにわたって実行される。このため、1水平走査期間に実行すべき動作について時間的な制約を緩和することができる。
例えば、補償期間においてゲート・ソース間電圧Vgsが閾値電圧に近づくにつれ、トランジスター121に流れる電流が低下するので、ゲートノードgを電位(Vel−|Vth|)に収束するまで時間を要するが、第3実施形態では、第2実施形態と比較して図21に示されるように補償期間を長く確保することができる。このため、第3実施形態によれば、第2実施形態と比較して、トランジスター121の閾値電圧のばらつきを、精度良く補償することができる。
また、データ信号の供給動作についても低速化することができる。
<応用・変形例>
本発明は、上述した実施形態や応用例などの実施形態等に限定されるものではなく、例えば次に述べるような各種の変形が可能である。また、次に述べる変形の態様は、任意に選択された一または複数を適宜に組み合わせることもできる。
前述の各実施形態では、供給期間を、各列のデータ線14の電位Vdataが安定するのに十分な時間長に設定したが、供給期間の時間長は任意に設定され得る。例えば、第1電極h1に対するデータ信号の供給直後における電位Vdataの不安定な変動は経時的に減衰する。したがって、第1電極h1に対するデータ信号の供給の開始後でデータ線14の電位Vdataが安定する以前に供給期間を終了する(すなわちトランジスター121をオン状態に遷移させる)構成でも、第1電極h1に対するデータ信号の供給の時点でトランジスター121がオン状態に維持されている構成(対比例)と比較すれば、電位Vdataの変動の影響がトランジスター122のゲートノードgの電位に波及する可能性が低減されるという前述の効果は確かに実現される。ただし、データ線14の電位Vdataの不安定な変動の影響を確実に低減する観点からは、前述の各実施形態の例示の通り、供給期間を、第1電極h1に対するデータ信号の供給の開始後にデータ線14の電位Vdataが安定するのに十分な時間長に設定した構成が格別に好適である。
<制御回路>
実施形態において、データ信号を供給する制御回路5については電気光学装置10とは別体としたが、制御回路5についても、走査線駆動回路20やデマルチプレクサ30、レベルシフト回路40とともに、シリコン基板に集積化しても良い。
<基板>
実施形態においては、電気光学装置10をシリコン基板に集積した構成としたが、他の半導体基板に集積した構成しても良い。また、ポリシリコンプロセスを適用してガラス基板等に形成しても良い。いずれにしても、画素回路110が微細化して、トランジスター121において、ゲート電圧Vgsの変化に対しドレイン電流が指数関数的に大きく変化する構成に有効である。
<デマルチプレクサ>
実施形態等では、データ線14を3列毎にグループ化するとともに、各グループにおいてデータ線14を順番に選択して、データ信号を供給する構成としたが、グループを構成するデータ線数については「2」であっても良いし、「4」以上であっても良い。
また、グループ化せずに、すなわちデマルチプレクサ30を用いないで各列のデータ線14にデータ信号を一斉に線順次で供給する構成でも良い。ここで、第1実施形態において、デマルチプレクサ30を用いないで各列のデータ線14にデータ信号を一斉に線順次で供給する構成とした場合、保持容量44の第1電極h1がデータ信号出力回路(制御回路5)における出力端に接続される。データ信号出力回路の出力インピーダンスが低いとき、データ信号が出力されない期間において第1電極h1が接地レベルになるので、これを初期電位に用いることができる。
<トランジスターのチャネル型>
上述した実施形態等では、画素回路110におけるトランジスター121〜125をPチャネル型で統一したが、Nチャネル型で統一しても良い。また、Pチャネル型およびNチャネル型を適宜組み合わせても良い。
<その他>
実施形態等では、電気光学素子として発光素子であるOLEDを例示したが、例えば無機発光ダイオードやLED(Light Emitting Diode)など、電流に応じた輝度で発光するものであれば良い。
<電子機器>
次に、実施形態等や応用例に係る電気光学装置10を適用した電子機器について説明する。電気光学装置10は、画素が小サイズで高精細な表示な用途に向いている。そこで、電子機器として、ヘッドマウント・ディスプレイを例に挙げて説明する。
図27は、ヘッドマウント・ディスプレイの外観を示す図であり、図28は、その光学的な構成を示す図である。
まず、図27に示されるように、ヘッドマウント・ディスプレイ300は、外観的には、一般的な眼鏡と同様にテンプル310や、ブリッジ320、レンズ301L、301Rを有する。また、ヘッドマウント・ディスプレイ300は、図28に示されるように、ブリッジ320近傍であってレンズ301L、301Rの奥側(図において下側)には、左眼用の電気光学装置10Lと右眼用の電気光学装置10Rとが設けられる。
電気光学装置10Lの画像表示面は、図28において左側となるように配置している。これによって電気光学装置10Lによる表示画像は、光学レンズ302Lを介して図において9時の方向に出射する。ハーフミラー303Lは、電気光学装置10Lによる表示画像を6時の方向に反射させる一方で、12時の方向から入射した光を透過させる。
電気光学装置10Rの画像表示面は、電気光学装置10Lとは反対の右側となるように配置している。これによって電気光学装置10Rによる表示画像は、光学レンズ302Rを介して図において3時の方向に出射する。ハーフミラー303Rは、電気光学装置10Rによる表示画像を6時方向に反射させる一方で、12時の方向から入射した光を透過させる。
この構成において、ヘッドマウント・ディスプレイ300の装着者は、電気光学装置10L、10Rによる表示画像を、外の様子と重ね合わせたシースルー状態で観察することができる。
また、このヘッドマウント・ディスプレイ300において、視差を伴う両眼画像のうち、左眼用画像を電気光学装置10Lに表示させ、右眼用画像を電気光学装置10Rに表示させると、装着者に対し、表示された画像があたかも奥行きや立体感を持つかのように知覚させることができる(3D表示)。
なお、電気光学装置10については、ヘッドマウント・ディスプレイ300のほかにも、ビデオカメラやレンズ交換式のデジタルカメラなどにおける電子式ビューファインダーにも適用可能である。
10……電気光学装置、5……制御回路、72……ケース、74……基板、76……端子、12……走査線、14……データ線、16……給電線、18……NOT回路、20……走査線駆動回路、30……デマルチプレクサ、34……トランスミッションゲート、40……レベルシフト回路、42……トランスミッションゲート、43,45,46……トランジスター、41,44……保持容量、100……表示部、110……画素回路、121〜125……トランジスター、130……発光素子、132……保持容量、50……保持容量、116……給電線、118……共通電極、300……ディスプレイ、301L,301R……レンズ、302L,302R……光学レンズ、303L,303R……ハーフミラー、310……テンプル、320……ブリッジ。

Claims (6)

  1. 保持容量が設けられたデータ線と、
    前記データ線に対応して設けられた画素回路と、
    前記画素回路を駆動する駆動回路と、
    第1電極と前記データ線に接続された第2電極とを有する第1保持容量と
    を具備し、
    前記画素回路は、
    駆動電流に応じた輝度で発光する発光素子と、
    ゲート・ソース間の電圧に応じた駆動電流を前記発光素子に供給する第1トランジスターと、
    前記データ線と前記第1トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第2トランジスターとを具備し、
    前記駆動回路は、
    第1期間において、前記第2トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を前記第1電極に供給して、前記保持容量と前記第1保持容量で分圧し
    前記第1期間に続く第2期間において、前記第2トランジスターをオン状態に制御して、前記第1トランジスターのゲートに書込み
    前記第1期間の前に、前記第1電極と前記第2電極が所定電位に初期化され、
    前記第1期間では、前記データ線の電位が、不安定に変動する期間を経て目的電位で安定する
    電気光学装置。
  2. 前記画素回路は、
    前記第1トランジスターのゲートと一方の電流端とを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第3トランジスターを具備し、
    前記駆動回路は、
    第3期間において、前記画素回路における前記第3トランジスターをオン状態にして当該画素回路における前記第1トランジスターの閾値電圧を生成し、前記第2期間の後に、指定階調と生成した前記閾値電圧とに応じた駆動電流を前記発光素子に供給する
    請求項1の電気光学装置。
  3. 第1データ線保持容量が設けられた第1データ線と、
    第2データ線保持容量が設けられた第2データ線と、
    前記第1データ線に対応して設けられた第1画素回路と、
    前記第2データ線に対応して設けられた第2画素回路と、
    第1電極と前記第1データ線に接続された第2電極とを有する第1保持容量と、
    第3電極と前記第2データ線に接続された第4電極とを有する第2保持容量と、
    前記第1画素回路および前記第2画素回路を駆動する駆動回路と
    を具備し、
    前記第1画素回路は、
    駆動電流に応じた輝度で発光する第1発光素子と、
    ゲート・ソース間の電圧に応じた駆動電流を前記第1発光素子に供給する第1トランジスターと、
    前記第1データ線と前記第1トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第2トランジスターとを具備し、
    前記第2画素回路は、
    駆動電流に応じた輝度で発光する第2発光素子と、
    ゲート・ソース間の電圧に応じた駆動電流を前記第2発光素子に供給する第3トランジスターと、
    前記第2データ線と前記第3トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第4トランジスターとを具備し、
    前記駆動回路は、
    第1期間において、前記第2トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を前記第1電極に供給して、前記第1データ線保持容量と前記第1保持容量で分圧し、その後に前記第4トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を前記第3電極に供給して、前記第2データ線保持容量と前記第2保持容量で分圧し
    前記第1期間に続く第2期間において、前記第2トランジスターおよび前記第4トランジスターをオン状態に制御して、前記第1トランジスターおよび前記第3トランジスターのゲートに書込み
    前記第1期間の前に、前記第1電極と前記第2電極が所定電位に初期化され、
    前記第1期間では、前記第1データ線の電位が、不安定に変動する期間を経て目的電位で安定する
    電気光学装置。
  4. 前記第1画素回路は、前記第1発光素子に供給される駆動電流の経路上に設けられた第5トランジスターを具備し、
    前記第2画素回路は、前記第2発光素子に供給される駆動電流の経路上に設けられた第6トランジスターを具備し、
    前記駆動回路は、前記第2期間に続く第4期間において、前記第5トランジスターおよび前記第6トランジスターをオン状態にする
    請求項3の電気光学装置。
  5. 請求項1から請求項4の何れかの電気光学装置を具備する電子機器。
  6. 保持容量が設けられたデータ線と、
    前記データ線に対応して設けられた画素回路と、
    前記画素回路を駆動する駆動回路と、
    第1電極と前記データ線に接続された第2電極とを有する第1保持容量と
    を具備し、
    前記画素回路は、
    駆動電流に応じた輝度で発光する発光素子と、
    ゲート・ソース間の電圧に応じた駆動電流を前記発光素子に供給する第1トランジスターと、
    前記データ線と前記第1トランジスターのゲートとを電気的に導通させるオン状態と絶縁させるオフ状態とに切替えられる第2トランジスターと、を具備する電気光学装置の駆動方法であって、
    第1期間において、前記第2トランジスターをオフ状態に制御した状態で、指定階調に応じた電位のデータ信号を前記第1電極に供給して、前記保持容量と前記第1保持容量で分圧し
    前記第1期間に続く第2期間において、前記第2トランジスターをオン状態に制御して、前記第1トランジスターのゲートに書込み
    前記第1期間の前に、前記第1電極と前記第2電極が所定電位に初期化され、
    前記第1期間では、前記データ線の電位が、不安定に変動する期間を経て目的電位で安定する
    電気光学装置の駆動方法。
JP2013131381A 2013-06-24 2013-06-24 電気光学装置、電気光学装置の駆動方法および電子機器 Active JP6299090B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131381A JP6299090B2 (ja) 2013-06-24 2013-06-24 電気光学装置、電気光学装置の駆動方法および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131381A JP6299090B2 (ja) 2013-06-24 2013-06-24 電気光学装置、電気光学装置の駆動方法および電子機器

Publications (2)

Publication Number Publication Date
JP2015004907A JP2015004907A (ja) 2015-01-08
JP6299090B2 true JP6299090B2 (ja) 2018-03-28

Family

ID=52300833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131381A Active JP6299090B2 (ja) 2013-06-24 2013-06-24 電気光学装置、電気光学装置の駆動方法および電子機器

Country Status (1)

Country Link
JP (1) JP6299090B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233950A (ja) * 2011-04-28 2012-11-29 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP6064313B2 (ja) * 2011-10-18 2017-01-25 セイコーエプソン株式会社 電気光学装置、電気光学装置の駆動方法および電子機器

Also Published As

Publication number Publication date
JP2015004907A (ja) 2015-01-08

Similar Documents

Publication Publication Date Title
US11087683B2 (en) Electro-optical device, driving method of electro-optical device and electronic apparatus
US10002563B2 (en) Electro-optical device having pixel circuit and driving circuit, driving method of electro-optical device and electronic apparatus
TWI621115B (zh) 光電裝置及包括其之電子機器
JP5853614B2 (ja) 電気光学装置および電子機器
JP5887973B2 (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
CN107464523B (zh) 电光学装置以及电子设备
JP5929121B2 (ja) 電気光学装置および電子機器
JP2013228531A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP6492447B2 (ja) 電気光学装置、電子機器、及び電気光学装置の駆動方法
JP6079859B2 (ja) 電気光学装置および電子機器
JP6581951B2 (ja) 電気光学装置の駆動方法
JP5845963B2 (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP5929087B2 (ja) 電気光学装置および電子機器
JP6299090B2 (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP6052365B2 (ja) 電気光学装置および電子機器
JP6626802B2 (ja) 電気光学装置および電子機器
JP2019008325A (ja) 電気光学装置および電子機器
JP2013088640A (ja) 電気光学装置の駆動方法、電気光学装置および電子機器
JP2017058699A (ja) 電気光学装置および電子機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150