JP6292610B2 - Tube inner surface hydrophilization method and apparatus - Google Patents

Tube inner surface hydrophilization method and apparatus Download PDF

Info

Publication number
JP6292610B2
JP6292610B2 JP2014011535A JP2014011535A JP6292610B2 JP 6292610 B2 JP6292610 B2 JP 6292610B2 JP 2014011535 A JP2014011535 A JP 2014011535A JP 2014011535 A JP2014011535 A JP 2014011535A JP 6292610 B2 JP6292610 B2 JP 6292610B2
Authority
JP
Japan
Prior art keywords
tube
gas
resin tube
discharge
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014011535A
Other languages
Japanese (ja)
Other versions
JP2015138755A (en
Inventor
重雄 平松
重雄 平松
成剛 高島
成剛 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Nagoya Industries Promotion Corp
Original Assignee
Junkosha Co Ltd
Nagoya Industries Promotion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd, Nagoya Industries Promotion Corp filed Critical Junkosha Co Ltd
Priority to JP2014011535A priority Critical patent/JP6292610B2/en
Publication of JP2015138755A publication Critical patent/JP2015138755A/en
Application granted granted Critical
Publication of JP6292610B2 publication Critical patent/JP6292610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

本発明は、プラズマを利用した樹脂チューブ内面の表面処理方法、およびこの方法で製造した樹脂チューブに関するものである。 The present invention relates to a surface treatment method for an inner surface of a resin tube using plasma, and a resin tube manufactured by this method.

金属ロッドや樹脂ローラを被覆するための、樹脂フィルムや樹脂チューブは、熱的、化学的に安定で、剥離性に優れるなどの特性が求められることが多い。しかし、その特性のため、金属ロッドや樹脂ローラの外表面と、被覆樹脂フィルムや樹脂チューブとは接着性が悪く、接着性向上のため樹脂フィルムや樹脂チューブの接着側表面を改質し、接着性を向上させる検討がされてきた。例えば、チューブ内面にエッチング処理やプライマー処理などを施して接着性を高めることが提案されている(特許文献1参照)。しかしながら、前述の方法は、一般に取り扱いに注意を要する化学薬品を使用しており、作業に手間がかかる上に、環境負荷の問題がある。 Resin films and resin tubes for covering metal rods and resin rollers are often required to have properties such as being thermally and chemically stable and excellent in peelability. However, due to its characteristics, the adhesion between the outer surface of the metal rod or resin roller and the coated resin film or resin tube is poor, and the adhesion side surface of the resin film or resin tube is modified to improve adhesion. Consideration has been made to improve performance. For example, it has been proposed that the inner surface of the tube is subjected to etching treatment or primer treatment to improve adhesion (see Patent Document 1). However, the above-described methods generally use chemicals that require attention in handling, and work is troublesome and there is a problem of environmental burden.

一方、近年、大気圧下でグロー放電プラズマを発生させる技術が様々な用途で利用されており、フィルムやシートの表面改質処理にも用いられている。この技術は、一定の間隔で対向する高圧側電極と接地側電極との間に誘電体を挿入し、電極間に形成される放電部へプラズマ発生用ガスを導入するとともに高圧交流電圧を印加することにより、大気圧下でグロー放電プラズマを発生させるもので、電極上に誘電体層があることによって過度の電流が流れることによるアーク放電への移行を抑制している。この技術を用いて表面改質や薄膜形成などの表面処理を行う方法は、従来行われてきた真空下でのプラズマ処理と比較して、真空装置が不要であるため設備がコンパクトで安価であり、インラインの連続処理が容易であることなどからその方法についての検討が進められている。 On the other hand, in recent years, a technique for generating glow discharge plasma under atmospheric pressure has been used in various applications, and is also used for surface modification treatment of films and sheets. In this technique, a dielectric is inserted between a high-voltage side electrode and a ground-side electrode facing each other at a constant interval, a plasma generating gas is introduced into a discharge portion formed between the electrodes, and a high-voltage AC voltage is applied. Thus, glow discharge plasma is generated under atmospheric pressure, and the presence of the dielectric layer on the electrode suppresses the transition to arc discharge due to excessive current flow. Compared with the conventional plasma treatment under vacuum, the method of surface treatment using this technology, such as surface modification and thin film formation, does not require a vacuum device, so the equipment is compact and inexpensive. Since the in-line continuous processing is easy, the method is being studied.

例えば、外周部に高圧電極と接地電極を交互に配置したチューブの一端部から反応性ガスと希ガスの混合ガスを導入し、大気圧下で高圧電極と接地電極との間に高圧交流電圧を印加して、チューブ内部にグロー放電プラズマを発生させ、チューブ内面、またはチューブ内部の物体を処理する方法が開示されている(特許文献2参照)。しかし、このような方法ではチューブ外周面に電極が配置されているため、チューブ内部だけでなくチューブ外周面上の隣り合う電極間でもグロー放電プラズマが発生して外表面もプラズマによって処理されてしまうため、チューブ外表面の特性をそのまま維持して内表面のみを処理したい場合には使うことが出来ない。また、チューブ外周面で発生するプラズマはチューブ内面の処理には寄与せずロスとなり、さらに、電極が発熱して高温となりやすく、その発熱で溶融または変形する樹脂には使用できないという問題があった。 For example, a mixed gas of a reactive gas and a rare gas is introduced from one end of a tube in which a high voltage electrode and a ground electrode are alternately arranged on the outer periphery, and a high voltage AC voltage is applied between the high voltage electrode and the ground electrode at atmospheric pressure. A method is disclosed in which glow discharge plasma is generated inside a tube to treat the inner surface of the tube or an object inside the tube (see Patent Document 2). However, in such a method, since electrodes are arranged on the outer peripheral surface of the tube, glow discharge plasma is generated not only inside the tube but also between adjacent electrodes on the outer peripheral surface of the tube, and the outer surface is processed by the plasma. Therefore, it cannot be used when it is desired to treat only the inner surface while maintaining the characteristics of the outer surface of the tube. In addition, plasma generated on the outer surface of the tube does not contribute to the treatment of the inner surface of the tube and is lost, and furthermore, the electrode tends to generate heat and become high temperature, and cannot be used for a resin that melts or deforms due to the generated heat. .

また、別な方法として例えば、外部電極として導電性液体を用い、その液体中に内部に内側電極を配置したチューブを導入しながら、導電性液体と内部電極との間に高周波電圧を印加することによりプラズマを発生させ、チューブ内面を処理する方法がある(特許文献3参照)。しかしながら、これらの方法では装置の構造上、チューブ内の圧力を上げるとチューブを排出する押出機へ逆流してしまうため、チューブ内圧だけで拡形状態を維持することは出来ず、チューブの拡径状態を保持するためのガイド部材を配置することが必要であり、チューブ内面に接触するように配置されているガイド部材によってチューブ内面にスジが発生する問題があった。同明細書に記載されるようなローラを被覆して接着する場合にしても、内面にスジがあると密着性、接着性の低下につながる虞があり好ましくない。また、被処理チューブ自体を誘電体としてグロー放電プラズマを発生させているため、誘電体つまり被処理チューブの肉厚が薄くなると、安定したグロー放電プラズマの発生を維持できる条件が非常に限定されるなど、被処理チューブの肉厚によってプラズマ発生条件が制限されて期待する効果が得られない場合があった。 As another method, for example, a conductive liquid is used as an external electrode, and a high frequency voltage is applied between the conductive liquid and the internal electrode while introducing a tube in which the inner electrode is disposed. There is a method of generating plasma and treating the inner surface of the tube (see Patent Document 3). However, in these methods, if the pressure in the tube is raised due to the structure of the device, it will flow backward to the extruder that discharges the tube, so the expanded state cannot be maintained only by the tube internal pressure, and the tube diameter is increased. It is necessary to arrange a guide member for maintaining the state, and there is a problem that streaks are generated on the inner surface of the tube by the guide member disposed so as to be in contact with the inner surface of the tube. Even when a roller as described in this specification is coated and adhered, if there are streaks on the inner surface, there is a possibility that adhesion and adhesion may be reduced, which is not preferable. Further, since glow discharge plasma is generated by using the tube to be processed as a dielectric, the conditions under which stable generation of glow discharge plasma can be maintained are very limited when the thickness of the dielectric, that is, the tube to be processed is reduced. For example, the plasma generation conditions are limited by the thickness of the tube to be processed, and the expected effect may not be obtained.

特開平11‐302414号公報Japanese Patent Laid-Open No. 11-302414 特開平5‐202481号公報Japanese Patent Laid-Open No. 5-202481 WO2007/032425号公報WO2007 / 032425

このような問題を解決するために、本発明の課題は、大気圧グロー放電プラズマを利用して樹脂チューブ内表面を処理するにあたり、チューブ内部で均一で安定的なグロー放電プラズマを発生させることにより、チューブ外表面の特性を維持しつつチューブ内表面のみを表面処理して、接着性に優れた樹脂チューブを製造する方法、およびこの方法で製造した樹脂チューブを提供することにある。 In order to solve such problems, an object of the present invention is to generate a uniform and stable glow discharge plasma inside the tube when processing the inner surface of the resin tube using atmospheric pressure glow discharge plasma. An object of the present invention is to provide a method for producing a resin tube excellent in adhesiveness by treating only the inner surface of the tube while maintaining the characteristics of the outer surface of the tube, and a resin tube produced by this method.

上記課題を解決するために、本発明者らは鋭意検討を進めた結果、従来のように高圧電極と接地電極をそれぞれ、チューブ内部とチューブ外部とに配置するのではなく、チューブ内部に両電極を配置することでチューブ内部に均一で安定なプラズマ発生領域を確保することができることを見出した。 In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the high-voltage electrode and the ground electrode are not disposed inside and outside the tube as in the prior art, but both electrodes are disposed inside the tube. It has been found that a uniform and stable plasma generation region can be secured inside the tube by arranging.

即ち、上記目的達成のため、本発明では、押出成形装置から連続的に排出される樹脂チューブの内側に、外表面に導電体成分でパターン図柄を構成し内表面を導電体で被覆した筒形状の誘電体から成る放電電極を配置し、さらに前記樹脂チューブと前記放電電極との間隙へガスを導入するためのガス導入機構と、前記樹脂チューブと前記放電電極との間隙からガスを排出するためのガス排出機構とを備え、前記ガス導入機構からガスを導入、および前記ガス排出機構からガスの排出を行いながら、前記放電電極に高周波電源から電圧を印加することにより、前記樹脂チューブと放電電極の間に大気圧グロー放電プラズマを発生させ、前記樹脂チューブ内面を表面処理することを特徴とする。 That is, in order to achieve the above object, in the present invention, a cylindrical shape in which a pattern design is formed on the outer surface of the resin tube continuously discharged from the extrusion molding apparatus and the inner surface is covered with the conductor. In order to discharge gas from the gap between the resin tube and the discharge electrode, and a gas introduction mechanism for introducing gas into the gap between the resin tube and the discharge electrode The resin tube and the discharge electrode by applying a voltage from a high frequency power source to the discharge electrode while introducing the gas from the gas introduction mechanism and discharging the gas from the gas discharge mechanism During this, atmospheric pressure glow discharge plasma is generated to treat the inner surface of the resin tube.

本発明の製造方法では、従来公知の押出成形装置から樹脂チューブを連続的に排出する工程において、当該押出成形装置の先端の金型から排出された後に内径規制部材を配置し、その下流側に放電電極を配置したものである。放電電極は、筒形状の誘電体と導電体部材により構成され、誘電体の外面には導電体成分でパターン図柄を構成し、内面を導電体で被覆した構造である。誘電体外面側の導電体部材のパターンによって、放電電極表面全体におけるプラズマの発生密度を均一にすることが可能になり、プラズマガスの発生に使われる以外のロス電流を減らすことも可能になる。前記パターン図柄としては、限定されないが、プラズマガスの発生効率、発生密度を考慮したパターンとすることが必要である。電極はチューブ内部にのみ配置しており、発生するプラズマによる影響をチューブ外表面に与えることは一切ない。 In the production method of the present invention, in the step of continuously discharging the resin tube from the conventionally known extrusion molding apparatus, the inner diameter regulating member is disposed after being discharged from the die at the tip of the extrusion molding apparatus, and on the downstream side thereof. Discharge electrodes are arranged. The discharge electrode is composed of a cylindrical dielectric and a conductor member, and has a structure in which a pattern design is formed of a conductor component on the outer surface of the dielectric and the inner surface is covered with a conductor. With the pattern of the conductor member on the outer surface of the dielectric, it is possible to make the plasma generation density uniform on the entire discharge electrode surface, and it is possible to reduce the loss current other than that used for generating the plasma gas. The pattern design is not limited, but it is necessary to make the pattern in consideration of the generation efficiency and generation density of plasma gas. The electrode is disposed only inside the tube and does not have any influence on the outer surface of the tube due to the generated plasma.

本発明に係る樹脂チューブの製造方法では、前記樹脂チューブの内面と前記放電電極の外面の間隙は、0.1mm以上、8mm以下となるように配置されていることが好ましく、より好ましくは0.1mm以上5mm以下である。これは、間隙が大きいとプラズマガス濃度が低下しその処理効果が十分に発揮されず、高電圧をかけないと処理の進行が遅くなるが、高電圧をかけることにより電極の温度が上昇し、樹脂チューブの温度が上昇して変形、極端な場合にはチューブが溶けるなどの現象が起こることを避けるためである。 勿論、条件を整えて更なる高電圧をかければ間隙を広くすることは可能だが、作業の危険性、発熱量の増加、電源が高価となるなど実用上問題がある。 In the method for producing a resin tube according to the present invention, the gap between the inner surface of the resin tube and the outer surface of the discharge electrode is preferably arranged to be 0.1 mm or more and 8 mm or less, more preferably 0. 1 mm or more and 5 mm or less. This is because if the gap is large, the plasma gas concentration is lowered and the treatment effect is not fully exhibited, and if the high voltage is not applied, the progress of the treatment is delayed, but the electrode temperature rises by applying a high voltage, This is to avoid the phenomenon that the temperature of the resin tube rises and deforms, and in the extreme case, the tube melts. Of course, if the conditions are adjusted and a higher voltage is applied, the gap can be widened, but there are practical problems such as risk of work, increase in the amount of heat generated, and the power supply being expensive.

また、本発明では、樹脂チューブと放電電極との間隙にガスを導入しながら放電電極に電圧を印加して、前記樹脂チューブの内側と放電電極の間に発生したプラズマガスにより樹脂チューブの内面を表面処理する。使用する高周波電源は、周波数5〜50kHz、放電電圧5〜15kVrms、パルス変調周波数0〜5Hzの範囲に対応できるものが適しており、周波数、電圧などの条件は、処理速度、導入するガスの種類と濃度、電極の材質、処理する樹脂チューブの材質などによって適宜に設定する。 Further, in the present invention, a voltage is applied to the discharge electrode while introducing a gas into the gap between the resin tube and the discharge electrode, and the inner surface of the resin tube is caused to flow by the plasma gas generated between the inside of the resin tube and the discharge electrode. Surface treatment. A high-frequency power source to be used is suitable for a frequency range of 5 to 50 kHz, a discharge voltage of 5 to 15 kV rms, and a pulse modulation frequency of 0 to 5 Hz. Conditions such as a frequency and a voltage are the processing speed and the type of gas to be introduced. And the concentration, the material of the electrode, the material of the resin tube to be treated, etc.

本発明において、前記樹脂チューブはフッ素樹脂チューブであることが好適である。 In the present invention, the resin tube is preferably a fluororesin tube.

かかる構成によれば、大気圧グロー放電プラズマを利用して樹脂チューブ内表面を処理するにあたり、チューブ径、肉厚の大小に関わらず、チューブ内部で均一で安定的なグロー放電プラズマを発生させることが可能になり、さらに、チューブ外表面に一切影響を与えずチューブ内表面のみを表面処理することが可能であると同時に、チューブ内面にスジなどの傷をつけないことでより接着性に優れた樹脂チューブを提供することが出来る。 According to this configuration, when processing the inner surface of the resin tube using the atmospheric pressure glow discharge plasma, a uniform and stable glow discharge plasma can be generated inside the tube regardless of the diameter and thickness of the tube. In addition, it is possible to treat only the inner surface of the tube without affecting the outer surface of the tube at the same time, and at the same time, it has better adhesion by not scratching the inner surface of the tube. A resin tube can be provided.

チューブ内面の表面処理機能を備えた溶融押出成形装置を説明する図である。It is a figure explaining the melt-extrusion molding apparatus provided with the surface treatment function of the tube inner surface. 押出機の先端に取り付けられた金型(ダイ)と内径規制部材とを説明する図である。It is a figure explaining the metal mold | die (die | dye) attached to the front-end | tip of an extruder, and an internal diameter control member. 樹脂チューブ内部に配置される電極の配置図である。It is an arrangement plan of electrodes arranged inside a resin tube. 電極の構造の一例を示す模式図である。(b)は側面図である。(a)は(b)のA−A´線における断面図である。It is a schematic diagram which shows an example of the structure of an electrode. (B) is a side view. (A) is sectional drawing in the AA 'line of (b). (a)、(b)および(c)は、外面側電極パターンの他の実施形態の例を示す模式側面図である。(A), (b) and (c) is a schematic side view which shows the example of other embodiment of an outer surface side electrode pattern. 電極の放電メカニズムの模式図である。It is a schematic diagram of the discharge mechanism of an electrode.

以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが本発明の成立に必須であるとは限らない。 The embodiments described below do not limit the invention according to the claims, and all combinations of features described in the embodiments are not necessarily essential for the establishment of the present invention.

図1は、チューブ内面の表面処理機能を備えた溶融押出成形装置の一実施形態を示す断面図である。図1に示す溶融押出成形装置は、ホッパー12より投入された樹脂材料を溶融状態に調整しスクリュー11の回転によって樹脂を押出す押出機1と、押出機の先端に取り付けられた金型(ダイ)2と、ダイ2から外部に排出された樹脂チューブAの内周面を接触させて冷却する内径規制部材3と、内径規制部材3により冷却・固化された樹脂チューブをテンションロールを介し一定の速度で引き取る引取機5と、引取機5により引き取られた樹脂チューブを連続的に巻き取る巻取り機6とから構成される、従来より公知のチューブ製造装置を基本としており、ここにチューブ内面の表面処理に必要な構成を設けたものである。本発明では、樹脂チューブ内面の表面処理のために、ダイ2から排出される樹脂チューブAの内部に、放電電極4を配置し、樹脂チューブAと放電電極4との間隙へガスを導入するためのガス導入機構と、樹脂チューブAと放電電極4との間隙内の圧力を一定に保つためのガス排出機構とが設けられる。 FIG. 1 is a cross-sectional view showing an embodiment of a melt extrusion molding apparatus having a surface treatment function on the inner surface of a tube. The melt extrusion molding apparatus shown in FIG. 1 includes an extruder 1 that adjusts a resin material introduced from a hopper 12 to a molten state and extrudes resin by rotation of a screw 11, and a die (die) attached to the tip of the extruder. ) 2, the inner diameter regulating member 3 that cools by contacting the inner peripheral surface of the resin tube A discharged from the die 2 to the outside, and the resin tube cooled and solidified by the inner diameter regulating member 3 is fixed through a tension roll. It is based on a conventionally known tube manufacturing apparatus composed of a take-up machine 5 that takes up at a speed and a winder 6 that continuously takes up a resin tube taken up by the take-up machine 5. A configuration necessary for the surface treatment is provided. In the present invention, for the surface treatment of the inner surface of the resin tube, the discharge electrode 4 is disposed inside the resin tube A discharged from the die 2 and gas is introduced into the gap between the resin tube A and the discharge electrode 4. And a gas discharge mechanism for keeping the pressure in the gap between the resin tube A and the discharge electrode 4 constant.

図2は、押出機1の先端に取り付けられたダイ2と内径規制部材3の一実施形態を示す断面図である。図中の矢印は、樹脂の流れとチューブ排出方向を示す。図2に示すように、ダイ2の本体21には押出機(図示せず)から押し出された溶融状態の樹脂が通過する流路22と、溶融状態の樹脂をチューブ状に成形するための環状の出口孔23が形成されている。また、内径規制部材3は、本体21に環状に形成された出口孔23の中央部を貫通し、ダイ2より突出するように設けられている。図2に示した内径規制部材3は、円筒形状であるが、円錐もしくは円錐の上下面(底面と、底面に対向する面)を平面にした円錐形状などチューブ内面と接触する部分の断面形状が円形となるものであればよい。また、内径規制部材3の外径は、製造しようとする樹脂チューブの内径に応じて決定される。図面左側の押出機から排出された溶融樹脂は、ダイ2の出口孔23から排出され、一定速度で引き取られつつ、内径規制部材3の外周面と接触し、冷却・固化される。ここで、樹脂チューブAの材質は、押出成形可能なものであれば特に限定されないが、フッ素樹脂が特に好適である。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体樹脂(PFA)、フッ化エチレン‐プロピレン共重合体樹脂(FEP)、エチレン‐テトラフルオロエチレン共重合体樹脂(ETFE)、ポリフッ化ビニル樹脂などがあげられる。これらの中でも、PFAが特に好ましい。 FIG. 2 is a cross-sectional view showing an embodiment of the die 2 and the inner diameter regulating member 3 attached to the tip of the extruder 1. The arrows in the figure indicate the resin flow and the tube discharge direction. As shown in FIG. 2, the main body 21 of the die 2 has a flow path 22 through which a molten resin extruded from an extruder (not shown) passes, and an annular shape for forming the molten resin into a tube shape. The outlet hole 23 is formed. Further, the inner diameter regulating member 3 is provided so as to pass through the center portion of the outlet hole 23 formed in an annular shape in the main body 21 and protrude from the die 2. The inner diameter regulating member 3 shown in FIG. 2 has a cylindrical shape, but has a cross-sectional shape of a portion that contacts the inner surface of the tube, such as a cone or a conical shape in which the upper and lower surfaces (the bottom surface and the surface facing the bottom surface) of the cone are flat. It may be a circular shape. The outer diameter of the inner diameter regulating member 3 is determined according to the inner diameter of the resin tube to be manufactured. The molten resin discharged from the extruder on the left side of the drawing is discharged from the outlet hole 23 of the die 2 and is taken up at a constant speed while coming into contact with the outer peripheral surface of the inner diameter regulating member 3 and cooled and solidified. Here, the material of the resin tube A is not particularly limited as long as it can be extruded, but a fluororesin is particularly suitable. Examples of the fluororesin include polytetrafluoroethylene resin (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), fluorinated ethylene-propylene copolymer resin (FEP), and ethylene-tetrafluoroethylene. Examples thereof include a copolymer resin (ETFE) and a polyvinyl fluoride resin. Among these, PFA is particularly preferable.

図3は、樹脂チューブ内部に配置する放電電極の配置の一例を示す側面図である。図3に示すように、内径規制部材3の先に放電電極4を配置する。樹脂チューブAと放電電極4の間隙は、樹脂チューブAが放電電極4に触れない程度に小さいほど望ましく、0.1mm以上8mm以下とすることが好ましい。より好ましくは0.1mm以上5mm以下である。樹脂チューブAと放電電極4の間隙を小さくすることで、消費ガスを減らすことができ、樹脂チューブAの内面と放電電極4との間に形成される空間内のプラズマガス濃度を高めることで、より効果的に表面処理を行うことができる。内径規制部材3の内部には、内径規制部材3と放電電極4を冷却するための媒体を流すための冷却媒体流路31、樹脂チューブA内へガスを導入および樹脂チューブA内からガスを排出するためのガス導入・排出路32、および放電電極4につながる高周波電源45に接続された金属電線44が内部に配置されている。 FIG. 3 is a side view showing an example of the arrangement of the discharge electrodes arranged inside the resin tube. As shown in FIG. 3, the discharge electrode 4 is disposed at the tip of the inner diameter regulating member 3. The gap between the resin tube A and the discharge electrode 4 is desirably as small as possible so that the resin tube A does not touch the discharge electrode 4, and is preferably 0.1 mm or more and 8 mm or less. More preferably, it is 0.1 mm or more and 5 mm or less. By reducing the gap between the resin tube A and the discharge electrode 4, the consumption gas can be reduced, and by increasing the plasma gas concentration in the space formed between the inner surface of the resin tube A and the discharge electrode 4, Surface treatment can be performed more effectively. Inside the inner diameter regulating member 3, a cooling medium channel 31 for flowing a medium for cooling the inner diameter regulating member 3 and the discharge electrode 4, a gas is introduced into the resin tube A, and a gas is discharged from the resin tube A The metal electric wire 44 connected to the high-frequency power source 45 connected to the gas introduction / discharge passage 32 and the discharge electrode 4 is arranged inside.

図4は、放電電極の構造の一例を示す模式図である。(b)は側面図、(a)は(b)のA‐A´線における断面図である。放電電極の構造は、先述のように筒形状の誘電体41の内面に導電体部材43を配置し、外面に導電体成分でパターン図柄を構成した導電体部材42を配置したものである。図4には、メッシュ状パターンの電極をあげたが、これに限定されず、他にも棒状、メッシュ状、スパイラル状などの様々の態様が可能である。図5(a)、(b)および(c)は、電極のパターンとして他の実施形態を示した模式側面図である。また、筒形状の誘電体は、円筒だけでなく、断面が楕円形、三角形、四角形などの処理物の形状に合わせた筒形状が選択可能である。誘電体の材質には、アルミナAlなどのセラミックスやガラスなど、耐熱性、誘電特性に優れる材料が適している。導電体部材の材質としては、銅、銀、ニッケル、アルミニウム、カーボンなどの種々の導電性材料を選択可能である。図3に示すように、放電電極4は、内径規制部材3の内部および金型2の内部を通して、電線44で高周波電源45に接続されている。筒形状誘電体41の外面の導電体部材42に電圧を印加し、内面の導電体部材43側でアースをとる接続としており、この両面の導電体部材42、43間に誘電体を挟んで電圧をかける構造である。筒形状の誘電体の内外を導電体で挟む電極構造のため、表面処理する樹脂チューブを誘電体としてチューブの外側にも電極を配置する従来の方法と異なり、誘電体の厚さを任意に調節することが可能で、グロー放電プラズマの条件の調整範囲を広げることが可能となる。電極間にかける電圧は、樹脂チューブに変形などの影響が出ない温度となるような条件とすれば問題ないが、出来れば50kHz以下とすることが望ましい。樹脂チューブ内部へ導入するガスの種類にもよるが、高周波過ぎると、誘電体が損傷するなどの虞がある。電圧が高すぎると電極が発熱して高温になり、発熱で消費するロスが大きくなる。また、グロー放電からアーク放電へと移行する場合があり望ましくない。アーク放電へ移行してしまうと、チューブを溶かすなどの問題が生じる。使用する高周波電源としては、放電電極をパターン図柄で構成しているのでプラズマガスの発生効率が高く、整合回路の必要がない周波数50kHz以下の安価なもので十分である。 FIG. 4 is a schematic diagram showing an example of the structure of the discharge electrode. (B) is a side view, (a) is sectional drawing in the AA 'line of (b). As described above, the structure of the discharge electrode is such that the conductor member 43 is disposed on the inner surface of the cylindrical dielectric 41 and the conductor member 42 having a pattern symbol made of a conductor component is disposed on the outer surface. Although FIG. 4 shows an electrode having a mesh pattern, the present invention is not limited to this, and various other forms such as a rod shape, a mesh shape, and a spiral shape are possible. FIGS. 5A, 5B and 5C are schematic side views showing other embodiments as electrode patterns. Further, as the cylindrical dielectric, not only a cylinder but also a cylindrical shape matching the shape of the processed object such as an ellipse, a triangle, or a quadrangle can be selected. As the dielectric material, a material excellent in heat resistance and dielectric properties such as ceramics such as alumina Al 2 O 3 and glass is suitable. As a material of the conductor member, various conductive materials such as copper, silver, nickel, aluminum, and carbon can be selected. As shown in FIG. 3, the discharge electrode 4 is connected to a high-frequency power source 45 by an electric wire 44 through the inside of the inner diameter regulating member 3 and the inside of the mold 2. A voltage is applied to the conductor member 42 on the outer surface of the cylindrical dielectric 41, and grounding is performed on the conductor member 43 side on the inner surface. The voltage is obtained by sandwiching the dielectric between the conductor members 42 and 43 on both surfaces. It is a structure to apply. Due to the electrode structure in which the inside and outside of the cylindrical dielectric are sandwiched between conductors, the thickness of the dielectric can be adjusted as desired, unlike the conventional method in which the resin tube to be surface-treated is used as the dielectric and the electrode is also placed outside the tube. It is possible to expand the adjustment range of the conditions of the glow discharge plasma. The voltage applied between the electrodes is not a problem if the temperature is such that the resin tube is not affected by deformation or the like, but it is desirable that the voltage be 50 kHz or less if possible. Depending on the type of gas introduced into the resin tube, if the frequency is too high, the dielectric may be damaged. When the voltage is too high, the electrode generates heat and becomes high temperature, and loss due to heat generation increases. In addition, there is a case where a transition from glow discharge to arc discharge is not desirable. If it shifts to arc discharge, problems, such as melting a tube, will arise. As a high-frequency power source to be used, a low-cost power source having a frequency of 50 kHz or less that has high generation efficiency of plasma gas and does not require a matching circuit is sufficient because the discharge electrode is configured with a pattern design.

本発明では、樹脂チューブAと放電電極4との間隙に、プラズマ化しやすいガス(励起ガス)、もしくは励起ガスと反応性ガスとの混合ガスをガス導入・排出路32から供給し、放電電極4に高周波電源45より電圧を印加することでプラズマガスが発生する。このときの電極近傍の放電の状態を示す模式図が図6である。電極46から金属部材42に電圧が印加され、金属部材43との間に電界が発生する。この電界によって誘電体41が分極し、誘電体41の金属部材42がない表面と金属部材42の端部に電界が集中し、電子が加速し、部分放電が起こる。この部分放電は誘電体41の表面に沿って矢印の方向へ成長する。誘電体表面近傍のグロー放電領域47にある励起ガス分子と反応ガス分子は、高速の電子と衝突しプラズマとなる。このプラズマが樹脂チューブAの内面と接触し、樹脂チューブAの内表面のC‐C結合、もしくはC‐F結合を切断すると同時に、プラズマガス成分、樹脂チューブA内に存在していた水分、もしくは反応ガスの成分が、樹脂チューブAの内表面の官能基として導入される。樹脂チューブA内部へ導入するガスとしては、励起ガスとして、希ガス、窒素から選ばれる少なくとも1種のガスである。励起ガスのみでも構わないが、フッ素樹脂など親水性が低い樹脂の処理には反応性ガスを併用することが好ましい。反応性ガスは、プラズマによって分解するような低分子ガスであれば限定されることはないが、チューブの用途によってその成分を選ぶと良い。励起ガスと併用する反応性ガスの具体例として、水素ガス、珪素系ガス、一酸化炭素、メタンガス、プロパンガス、ブタンガス、アクリル酸エステル、アクリル酸、メタクリル酸、酢酸ビニル、アセトン、ヒドロキシエチルメタアクリレート、グリシジルメタアクリレート、プロパギルアルコール、水などをガス化させたものを例示できるが、これに限定されるものではない。これらのガスはプラズマ中の電子との衝突や紫外線、プラズマ生成された粒子との反応によって分解され、・SI、・OH、・C=O、・COOHなどのラジカル状態となり、同じくプラズマガスによってC‐C結合、C‐F結合を切断されたチューブ内表面に官能基として導入される。 In the present invention, a gas (excited gas) that is easily plasmified or a mixed gas of an excited gas and a reactive gas is supplied from the gas introduction / discharge path 32 to the gap between the resin tube A and the discharge electrode 4. A plasma gas is generated by applying a voltage from the high-frequency power source 45 to the substrate. FIG. 6 is a schematic diagram showing the state of discharge in the vicinity of the electrode at this time. A voltage is applied from the electrode 46 to the metal member 42, and an electric field is generated between the electrode 46 and the metal member 43. This electric field polarizes the dielectric 41, the electric field concentrates on the surface of the dielectric 41 where the metal member 42 is not present and the end of the metal member 42, the electrons are accelerated, and partial discharge occurs. This partial discharge grows in the direction of the arrow along the surface of the dielectric 41. Excited gas molecules and reactive gas molecules in the glow discharge region 47 near the dielectric surface collide with high-speed electrons and become plasma. This plasma comes into contact with the inner surface of the resin tube A and cuts the CC bond or CF bond on the inner surface of the resin tube A. At the same time, the plasma gas component, the moisture present in the resin tube A, or A component of the reaction gas is introduced as a functional group on the inner surface of the resin tube A. The gas introduced into the resin tube A is at least one gas selected from a rare gas and nitrogen as an excitation gas. Although only the excitation gas may be used, it is preferable to use a reactive gas in combination with a treatment of a resin having low hydrophilicity such as a fluororesin. The reactive gas is not limited as long as it is a low molecular gas that can be decomposed by plasma, but its component may be selected depending on the use of the tube. Specific examples of the reactive gas used in combination with the excitation gas include hydrogen gas, silicon-based gas, carbon monoxide, methane gas, propane gas, butane gas, acrylic acid ester, acrylic acid, methacrylic acid, vinyl acetate, acetone, and hydroxyethyl methacrylate. Examples include those obtained by gasifying glycidyl methacrylate, propargyl alcohol, water, and the like, but are not limited thereto. These gases are decomposed by collisions with electrons in the plasma, ultraviolet rays, and reaction with plasma generated particles, and become radical states such as · SI, · OH, · C = O, · COOH, and C -C bond, CF bond is introduced as a functional group on the cut inner surface of the tube.

樹脂チューブA内部へガスを導入するガス導入・排出路32は複数配置し、ガス濃度の不均一が無いようにする。ガス導入・排出路32の形状は、樹脂チューブA内部へ均一に導入できるものであれば任意のものとすることができる。それぞれのガス導入速度は、処理速度に応じて増減させれば良いが、励起ガスは常温、大気圧下で0.2〜3L/minの範囲であり、反応性ガスは同じく0.01L/min以上で所望の処理の程度によって流量を調整するとよい。反応性ガスは、常温でガス状のものはそのまま導入するが、固体、もしくは液体状のものは、気化装置により気化させて導入する。励起ガスと反応ガスとの混合ガスを用いる場合は、混合した状態で樹脂チューブA内部に導入しても良いし、別々に導入しても良い。 A plurality of gas introduction / exhaust passages 32 for introducing gas into the resin tube A are arranged so that there is no non-uniform gas concentration. The shape of the gas introduction / discharge path 32 may be arbitrary as long as it can be uniformly introduced into the resin tube A. Each gas introduction rate may be increased or decreased according to the processing rate, but the excitation gas is in the range of 0.2 to 3 L / min at room temperature and atmospheric pressure, and the reactive gas is also 0.01 L / min. The flow rate may be adjusted according to the desired degree of processing. As the reactive gas, a gaseous gas is introduced as it is at room temperature, but a solid or liquid gas is introduced after being vaporized by a vaporizer. When a mixed gas of excitation gas and reaction gas is used, it may be introduced into the resin tube A in a mixed state or separately.

図1に示すように、押出機1によって排出され、内面の表面処理を施された樹脂チューブAは、引取機5で引き取られる。引取機5は、所定の間隔を設けて配置された1対のロールとこれら1対のロール間に掛け回された1本の無端ベルトとから構成される1組の回転体が、それぞれ無端ベルトの表面を接するように2組配置された構造をしている。樹脂チューブAは、引取機5の2組の回転体の無端ベルト部分に挟まれて一定の速度で引き取られる。引取り速度は、励起条件、所望の処理の程度などにより調整すれば良い。本発明では、チューブに折り目を付けたくないため、チューブの排出から引取りまでの工程を水平方向に配置して行った。 As shown in FIG. 1, the resin tube A discharged by the extruder 1 and subjected to the surface treatment on the inner surface is taken up by the take-up machine 5. The take-up machine 5 includes a pair of rotating bodies each composed of a pair of rolls arranged at a predetermined interval and a single endless belt wound around the pair of rolls. Two sets are arranged so as to contact the surface. The resin tube A is sandwiched between the endless belt portions of the two sets of rotating bodies of the take-up machine 5 and taken up at a constant speed. The take-up speed may be adjusted according to the excitation conditions, the degree of desired processing, and the like. In the present invention, since it is not desired to make a crease in the tube, the steps from discharging the tube to taking it out are arranged in the horizontal direction.

以下、本発明を、図1に示す溶融押出成形装置を用いて行った実施例を示し、より詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to an example in which the melt extrusion molding apparatus shown in FIG. 1 is used.

[実施例1]図1に概略を示した溶融押出成形装置を製作した。基本となる押出成形装置に口径25mmのダイを取り付け、そのダイの中央部を貫通しダイの先端から突出するように、内径規制部材を配置した。本実施例では、内径規制部材のチューブと接触する部分の外径が24.5mmのものを使用した。内径規制部材の先端には、放電電極を取り付けた。内径規制部材の内部には、内径規制部材を冷却するための冷却媒体流路が設けられ、放電電極を取り付けるアダプタを介して放電電極内部まで冷却媒体を送り込む流路を設けた。さらに、内径規制部材の内部には、樹脂チューブと放電電極との間隙へガスを導入、間隙からガスを排出するための導入・排出路を6箇所ずつ設けた。放電電極は、図4に示したように、外径22mm、内径20mmの円筒形状のアルミナセラミックス管の内面に厚さ80μmのアルミシートを接着させ、管外面にくし型形状の厚さ80μmのアルミシートを接着して作製した。くし型形状としては、歯の間隔が6mm、歯の太さが3mmのものを使用した。高周波電源には、最大能力50kHzのものを使用し、放電電極の外面側の導電体部材に電圧を印加して内面側の導電体部材でアースを取るような接続とした。本実施例では、放電電極外面と樹脂チューブ内面との距離が1mmとなるように電極外径を設定し、電極の長さは15cmとした。このようにして、表面処理樹脂チューブ成形装置を準備した。 Example 1 A melt extrusion molding apparatus schematically shown in FIG. 1 was produced. A die having a diameter of 25 mm was attached to a basic extrusion molding apparatus, and an inner diameter regulating member was disposed so as to penetrate the center of the die and protrude from the tip of the die. In this example, the inner diameter regulating member having an outer diameter of 24.5 mm in contact with the tube was used. A discharge electrode was attached to the tip of the inner diameter regulating member. A cooling medium flow path for cooling the inner diameter restriction member is provided inside the inner diameter restriction member, and a flow path for feeding the cooling medium to the inside of the discharge electrode through an adapter to which the discharge electrode is attached. Further, inside the inner diameter regulating member, six introduction / discharge paths for introducing gas into the gap between the resin tube and the discharge electrode and discharging gas from the gap were provided. As shown in FIG. 4, the discharge electrode is formed by bonding an aluminum sheet having a thickness of 80 μm to the inner surface of a cylindrical alumina ceramic tube having an outer diameter of 22 mm and an inner diameter of 20 mm, and forming a comb-shaped aluminum 80 μm thickness on the outer surface of the tube. The sheet was made by bonding. As the comb shape, a tooth having a tooth interval of 6 mm and a tooth thickness of 3 mm was used. A high-frequency power source having a maximum capacity of 50 kHz was used, and a connection was made such that a voltage was applied to the conductor member on the outer surface side of the discharge electrode and the conductor member on the inner surface side was grounded. In this example, the electrode outer diameter was set so that the distance between the outer surface of the discharge electrode and the inner surface of the resin tube was 1 mm, and the length of the electrode was 15 cm. In this way, a surface treatment resin tube forming apparatus was prepared.

上記の成形装置を用いて、樹脂チューブの成形を行った。原料樹脂にダイキン工業株式会社製テトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体樹脂(PFA:451HP‐J)を使用し、押出温度390℃に設定した。引取機の引き取り速度は2m/minとして、チューブ外径24.5mm、肉厚30μmのチューブを成形した。本実施例では、励起ガスとして窒素ガス、反応性ガスとして水蒸気を使用した。窒素ガスの流量は、1L/min、水蒸気の濃度は25000ppmとし、励起ガスと反応ガスを混合した状態で放電電極の外面と樹脂チューブ内面との間の空間へ、ガス導入・排出路から導入した。チューブ内部の圧力は、ガスを排出することで調整した。電圧を、周波数5〜10kHz、放電電圧10kV、パルス変調なしの条件で放電電極の外面の高周波側電極に印加して、プラズマを発生させた。この発生したプラズマにより内面のみ表面処理されたPFAチューブを得た。 The resin tube was molded using the above molding apparatus. The raw material resin was a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA: 451HP-J) manufactured by Daikin Industries, Ltd., and the extrusion temperature was set to 390 ° C. A take-up speed of the take-up machine was 2 m / min, and a tube having a tube outer diameter of 24.5 mm and a wall thickness of 30 μm was formed. In this example, nitrogen gas was used as the excitation gas and water vapor was used as the reactive gas. The flow rate of nitrogen gas was 1 L / min, the concentration of water vapor was 25000 ppm, and the gas was introduced from the gas introduction / discharge passage into the space between the outer surface of the discharge electrode and the inner surface of the resin tube in a state where the excitation gas and the reaction gas were mixed. . The pressure inside the tube was adjusted by discharging the gas. A voltage was applied to the high frequency side electrode on the outer surface of the discharge electrode under the conditions of a frequency of 5 to 10 kHz, a discharge voltage of 10 kV, and no pulse modulation to generate plasma. A PFA tube in which only the inner surface was treated with the generated plasma was obtained.

[比較例1]先行技術文献3と同様にチューブ内部に高圧電極、チューブ外部に接地電極を配置した溶融押出成形装置を用いて、実施例1と同様にチューブを押出し、プラズマによる表面処理装置を通過させて処理を施したが、安定したグロー放電を維持した状態で所定の電圧まで上げることができず、十分な処理を施すことができなかった。 [Comparative Example 1] Using a melt extrusion molding apparatus in which a high-pressure electrode is disposed inside the tube and a ground electrode is disposed outside the tube as in Prior Art Document 3, a tube is extruded in the same manner as in Example 1, and a surface treatment apparatus using plasma is provided. Although the treatment was performed by passing it, the voltage could not be raised to a predetermined voltage while maintaining a stable glow discharge, and sufficient treatment could not be performed.

[表面処理品の評価][1.親水性]表面処理による親水性の評価は、接触角測定によって行った。表面処理前のチューブ内面の接触角は135°であったが、実施例1のチューブ内面の接触角は83°であり、親水処理の効果が確認された。チューブの色は透明であり、化学処理を施した場合の褐色化は認められなかった。また、チューブ外面の接触角には変化は無かった。[2.接着性]実施例1のチューブの内面とシリコンゴムとの接着性を評価した。実施例1のチューブを切り開いて、その内面と1次加硫のシリコンゴムとを圧着し、ピール強度を確認した。圧着条件は、圧力1kg、温度200℃、圧着時間4時間で行った。ピール強度はJIS Z0237に定められた測定方法に基づいて測定した。表面処理前のチューブは全く接着しないが、実施例1のチューブは、40N/cmの接着強度を発現した。また、そのチューブとシリコンゴムとの接着シートを200℃で100時間暴露した後に、同じくピール強度を測定したところ、38N/cmの接着強度を維持しており、耐熱特性も良好であることが確認された。 [Evaluation of surface treated product] [1. Hydrophilicity] Hydrophilicity evaluation by surface treatment was performed by contact angle measurement. Although the contact angle of the tube inner surface before the surface treatment was 135 °, the contact angle of the tube inner surface of Example 1 was 83 °, and the effect of the hydrophilic treatment was confirmed. The tube color was transparent, and no browning was observed when chemical treatment was applied. Moreover, there was no change in the contact angle of the tube outer surface. [2. Adhesiveness] The adhesiveness between the inner surface of the tube of Example 1 and silicon rubber was evaluated. The tube of Example 1 was cut open, and the inner surface thereof and the primary vulcanized silicon rubber were pressure-bonded to confirm the peel strength. The pressure bonding conditions were a pressure of 1 kg, a temperature of 200 ° C., and a pressure bonding time of 4 hours. The peel strength was measured based on the measurement method defined in JIS Z0237. The tube before the surface treatment did not adhere at all, but the tube of Example 1 developed an adhesive strength of 40 N / cm. The peel strength of the tube / silicon rubber adhesive sheet was exposed at 200 ° C. for 100 hours, and the peel strength was measured. As a result, it was confirmed that the adhesive strength of 38 N / cm was maintained and the heat resistance was good. It was done.

実施例1で本発明の方法を用いて作製したチューブは、従来公知の連続処理方法による処理チューブでは達成できなかった化学薬品処理と同等の親水性を示し、他材料との接着性についても化学薬品処理と同等、またはそれ以上の接着性であり、それはプライマーなどを用いることなく達成することができた。また、従来公知のプラズマ処理技術と比較して、励起ガスを生成させるために投入するエネルギーが低く抑えられ、安定して均一なプラズマを発生させることができた。そのため、チューブを連続的に成形しながらの短時間のプラズマ照射で十分な効果を示した。また、プラズマガスが均一で、低エネルギーでプラズマ化することが出来るため、チューブ肉厚が非常に薄い場合でも、チューブにピンホールや破れを生じることなく内面に表面処理を行うことが可能であった。さらに、チューブ外部には電極を配置せず、チューブ内部の電極でプラズマを発生させるため、チューブ外表面には一切影響を与えることがなかった。 The tube produced using the method of the present invention in Example 1 exhibits hydrophilicity equivalent to chemical treatment that could not be achieved by a conventionally known continuous treatment method, and also has chemical properties for adhesion to other materials. Adhesiveness equal to or better than chemical treatment, which could be achieved without using a primer or the like. In addition, compared with a conventionally known plasma processing technique, the energy input to generate the excitation gas is suppressed to a low level, and stable and uniform plasma can be generated. Therefore, a sufficient effect was demonstrated by short-time plasma irradiation while continuously forming the tube. In addition, since the plasma gas is uniform and can be turned into plasma with low energy, even if the tube thickness is very thin, it is possible to perform surface treatment on the inner surface without causing pinholes or tearing in the tube. It was. Further, since no electrode is disposed outside the tube and plasma is generated by the electrode inside the tube, the outer surface of the tube was not affected at all.

以上説明したように本発明によれば、大気圧グロー放電プラズマを利用して樹脂チューブ内表面を処理するにあたり、チューブ径、肉厚の大小に関わらず、チューブ内部で均一で安定的なグロー放電プラズマを発生させることが可能になる。さらに、樹脂チューブ外表面を一切処理せずにチューブ内表面のみを表面処理することが可能であると同時に、チューブ内面にスジなどの傷をつけることなく、チューブ外面にも折り目や傷のない接着性に優れた樹脂チューブを提供することが出来る。本発明の方法で処理したチューブは、他材料との接着が必要な各用途において有用に用いられるものである。 As described above, according to the present invention, when the inner surface of the resin tube is processed using the atmospheric pressure glow discharge plasma, the glow discharge is uniform and stable inside the tube regardless of the diameter and thickness of the tube. Plasma can be generated. In addition, it is possible to treat only the inner surface of the tube without treating the outer surface of the resin tube at the same time, and at the same time, adhesion without creases or scratches on the outer surface of the tube without scratching the inner surface of the tube A resin tube excellent in properties can be provided. The tube treated by the method of the present invention is useful for each application that requires adhesion to other materials.

1 押出機、 11 スクリュー、 12 ホッパー、 2 金型(ダイ)、 21 金型本体、 22 樹脂流路、 23 出口孔、 3 内径規制部材、 31 冷却媒体流路、 32 ガス導入・排出路、 4 放電電極、 41 誘電体、 42 導電体部材(外面)、 43 導電体部材(内面)、 44 電線、 45 高周波電源、 46 電極、
47 グロー放電領域 5 引取機、 6 巻取り機、 A 樹脂チューブ
DESCRIPTION OF SYMBOLS 1 Extruder, 11 Screw, 12 Hopper, 2 Mold (die), 21 Mold body, 22 Resin flow path, 23 Outlet hole, 3 Inner diameter control member, 31 Cooling medium flow path, 32 Gas introduction / discharge path, 4 Discharge electrode, 41 dielectric, 42 conductor member (outer surface), 43 conductor member (inner surface), 44 electric wire, 45 high-frequency power supply, 46 electrode,
47 Glow discharge area 5 Take-up machine, 6 Winding machine, A Resin tube

Claims (3)

押出成形装置から連続的に排出される樹脂チューブの内側に、外表面に導電体成分でパターン図柄を構成し内表面を導電体で被覆した筒形状の誘電体から成る放電電極を配置し、さらに前記樹脂チューブと前記放電電極との間隙へガスを導入するためのガス導入機構と、前記樹脂チューブと前記放電電極との間隙からガスを排出するためのガス排出機構とを備え、前記ガス導入機構からガスを導入および前記ガス排出機構からガスの排出を行いながら、前記放電電極に高周波電源から電圧を印加することにより、前記樹脂チューブと放電電極の間に大気圧グロー放電プラズマを発生させ、前記大気圧グロー放電プラズマを前記樹脂チューブ内面と接触させて前記樹脂チューブ内面を表面処理することを特徴とする樹脂チューブの製造方法。 Disposed inside the resin tube continuously discharged from the extrusion molding apparatus is a discharge electrode made of a cylindrical dielectric material whose outer surface is composed of a pattern design with a conductor component and whose inner surface is covered with a conductor. A gas introduction mechanism for introducing gas into the gap between the resin tube and the discharge electrode; and a gas discharge mechanism for discharging gas from the gap between the resin tube and the discharge electrode. While introducing gas from and discharging gas from the gas discharge mechanism, by applying a voltage from a high frequency power source to the discharge electrode, an atmospheric pressure glow discharge plasma is generated between the resin tube and the discharge electrode, A method of manufacturing a resin tube, comprising: treating the inner surface of the resin tube with an atmospheric pressure glow discharge plasma in contact with the inner surface of the resin tube. 前記樹脂チューブの内面と前記放電電極の外面の間隙は、0.1mm以上、8mm以下となるように配置されていることを特徴とする請求項1に記載の樹脂チューブの製造方法。 The method for producing a resin tube according to claim 1, wherein the gap between the inner surface of the resin tube and the outer surface of the discharge electrode is 0.1 mm or more and 8 mm or less. 前記樹脂チューブの材質はフッ素樹脂であることを特徴とする請求項1または2に記載の樹脂チューブの製造方法。 The method of manufacturing a resin tube according to claim 1 or 2, wherein the resin tube is made of a fluororesin.
JP2014011535A 2014-01-24 2014-01-24 Tube inner surface hydrophilization method and apparatus Active JP6292610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011535A JP6292610B2 (en) 2014-01-24 2014-01-24 Tube inner surface hydrophilization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011535A JP6292610B2 (en) 2014-01-24 2014-01-24 Tube inner surface hydrophilization method and apparatus

Publications (2)

Publication Number Publication Date
JP2015138755A JP2015138755A (en) 2015-07-30
JP6292610B2 true JP6292610B2 (en) 2018-03-14

Family

ID=53769606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011535A Active JP6292610B2 (en) 2014-01-24 2014-01-24 Tube inner surface hydrophilization method and apparatus

Country Status (1)

Country Link
JP (1) JP6292610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936274B2 (en) 2018-06-26 2021-09-15 ダイキン工業株式会社 Molded product and its manufacturing method
JP6773167B1 (en) 2019-04-16 2020-10-21 ダイキン工業株式会社 Wafer cup

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258234A (en) * 1984-06-06 1985-12-20 Sumitomo Bakelite Co Ltd Plasma treatment of plastic pipe on its inner surface and device therefor
JP4563560B2 (en) * 2000-08-11 2010-10-13 大倉工業株式会社 Internally treated plastic tube manufacturing apparatus and method for manufacturing internally treated plastic tube using the apparatus
JP5477849B2 (en) * 2009-11-20 2014-04-23 エア・ウォーター株式会社 Conductive resin tube manufacturing method, conductive resin tube manufacturing apparatus, and roller manufacturing method

Also Published As

Publication number Publication date
JP2015138755A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US10155362B2 (en) Fluororesin tube
US9255330B2 (en) Method and device for atmospheric pressure plasma treatment
JP6292610B2 (en) Tube inner surface hydrophilization method and apparatus
JP2014002937A (en) Atmospheric pressure plasma treatment device, method for manufacturing atmospheric pressure plasma treatment device, and atmospheric pressure plasma treatment method
CN103079328B (en) A kind of medium blocking discharge electrode and preparation method thereof
JP5477849B2 (en) Conductive resin tube manufacturing method, conductive resin tube manufacturing apparatus, and roller manufacturing method
JP6190267B2 (en) Hydrophilic treatment equipment
TWI723083B (en) Surface treatment device and method for fluorine resin film
JP5465912B2 (en) Film production method
JP2014002936A (en) Device and method for atmospheric pressure plasma treatment
JP2002337210A (en) Inner surface-treated plastic tube manufacturing apparatus and method for manufacturing inner surface- treated plastic tube using the same
JP2021054012A (en) Laminate for printed wiring board
JP2012082249A (en) Surface treatment method of electric insulation sheet with semiconductive layer
JP2002028962A (en) Apparatus for manufacturing plastic tube provided with inner face treating function, and method for manufacturing inner face-treated plastic tube using the apparatus
JP2016030769A (en) Method and apparatus for treating surface of film
JP5557473B2 (en) Method and apparatus for manufacturing plastic film
WO2022102180A1 (en) Fluororesin film, molded rubber object, and method for producing molded rubber object
JP5424317B2 (en) Laminated plastic film and manufacturing method thereof
WO2024070619A1 (en) Laminate, metal-clad laminate, and wiring board
JP3754643B2 (en) Electrode structure and discharge plasma processing apparatus using the same
WO2019244997A1 (en) Fluorine resin film
JP6150094B1 (en) Surface treatment apparatus and method for fluororesin film
JP2009167323A (en) Surface-coated resin base body and method and apparatus for producing the same
JP4342709B2 (en) Plastic tube manufacturing apparatus and plastic tube manufacturing method using the apparatus
JPH05309787A (en) Weather-resistant sheet and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6292610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250