JP5557473B2 - Method and apparatus for manufacturing plastic film - Google Patents

Method and apparatus for manufacturing plastic film Download PDF

Info

Publication number
JP5557473B2
JP5557473B2 JP2009124793A JP2009124793A JP5557473B2 JP 5557473 B2 JP5557473 B2 JP 5557473B2 JP 2009124793 A JP2009124793 A JP 2009124793A JP 2009124793 A JP2009124793 A JP 2009124793A JP 5557473 B2 JP5557473 B2 JP 5557473B2
Authority
JP
Japan
Prior art keywords
electrode
melt
plastic film
splint
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009124793A
Other languages
Japanese (ja)
Other versions
JP2010269550A (en
Inventor
健二 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2009124793A priority Critical patent/JP5557473B2/en
Priority to CN200910164761XA priority patent/CN101664990B/en
Publication of JP2010269550A publication Critical patent/JP2010269550A/en
Application granted granted Critical
Publication of JP5557473B2 publication Critical patent/JP5557473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明はプラスチックフィルムの製造方法および装置に関し、特に溶融状態の樹脂をダイから押し出した後の冷却固化工程に静電密着法を採用した場合の操業安定性を維持し、且つ品質の優れたフィルムを得ることができるプラスチックフィルムの製造方法および装置に関するものである。   TECHNICAL FIELD The present invention relates to a method and apparatus for producing a plastic film, and in particular, a film that maintains operational stability when an electrostatic adhesion method is employed in a cooling and solidifying process after extruding a molten resin from a die and has excellent quality. The present invention relates to a plastic film manufacturing method and apparatus capable of obtaining

通常のTダイ法によるプラスチックフィルムの製膜工程では、押出機から溶融状態の樹脂をT型ダイを通してフィルム状に押し出し、押し出されたフィルム状溶融体をキャスティングロールと称される回転駆動している冷却ロール(以下、CRという)の表面に押し付けることによって冷却固化する方法がとられている。更に冷却成形されたフィルムは、次の延伸工程で縦・横二軸方向に延伸されることで、最終的に二軸延伸プラスチックフィルムが得られる。   In a film forming process of a plastic film by a normal T-die method, a molten resin is extruded from a extruder through a T-die into a film shape, and the extruded film-like melt is rotationally driven called a casting roll. A method of cooling and solidifying by pressing against the surface of a cooling roll (hereinafter referred to as CR) is employed. Furthermore, the film formed by cooling is stretched in the longitudinal and lateral biaxial directions in the next stretching step, whereby a biaxially stretched plastic film is finally obtained.

このCR表面にフィルム状溶融体を押し付ける方法としては、エアーナイフ装置により巾方向に均一にエアーを吹き付ける方法、あるいは、フィルム状溶融体に、高電圧を印加した電極より静電荷を付与させ、電気的に接地されたCRに静電気力で密着させる方法(以下、静電密着法という)がある。この静電密着法は、冷却速度、成形されたフィルムの厚み精度や品質の均一性に優れているため、工業的手段として従来より広く採用されている。   As a method of pressing the film-like melt on the CR surface, air is uniformly blown in the width direction by an air knife device, or an electrostatic charge is applied to the film-like melt from an electrode to which a high voltage is applied. There is a method (hereinafter referred to as an electrostatic contact method) in which the grounded CR is brought into close contact with an electrostatic force. This electrostatic contact method is widely used as an industrial means since it is excellent in cooling rate, thickness accuracy and quality uniformity of the formed film.

この静電密着法は、プラスチックフィルムの連続生産ラインに適用するには、電極を定期的に交換しなければならないという操業上の問題があった。その理由は、Tダイから押し出される溶融樹脂からモノマーやオリゴマーなどの蒸気が発生し、これが電極上に付着して凝縮するために、電極の均一放電を妨げ、電極周囲の空気のイオン化が不均一になって、フィルム状溶融体の密着性低下及び密着斑に起因する表面欠陥が発生するという経時変化をもたらすためである。   In order to apply this electrostatic contact method to a continuous production line for plastic films, there is an operational problem that the electrodes must be periodically replaced. The reason is that vapors such as monomers and oligomers are generated from the molten resin extruded from the T-die, which adheres to the electrode and condenses, preventing uniform discharge of the electrode and non-uniform ionization of air around the electrode. This is because it causes a change over time in that the adhesiveness of the film-like melt decreases and surface defects due to adhesion spots occur.

この操業上の問題を解決するための最も有効な手段は、電極の温度を溶融樹脂から発生する蒸気の凝縮温度より高温に維持することで、付着したモノマーやオリゴマーを昇華させる方法である。たとえば特公昭47−29782号公報には、電極に直接電流を流して250℃以上にヒータ加熱する方法が開示されている。   The most effective means for solving this operational problem is a method of sublimating the adhered monomer or oligomer by maintaining the temperature of the electrode at a temperature higher than the condensation temperature of the vapor generated from the molten resin. For example, Japanese Examined Patent Publication No. 47-29782 discloses a method in which a heater is heated to 250 ° C. or higher by passing a current directly through an electrode.

近年のプラスチックフィルム製造ラインの高速化に伴い、静電密着に必要な全電荷量が増加するので、電極に印加する電圧を高くして放電電荷(電流)を増加しなければならない。しかし、単に電極に高密度の放電をさせようとすると、均一な放電能力を超過して不安定なストリーマコロナ放電に至る。また電圧をスパーク限界を超えて高くすると、スパーク放電の危険性が増大する。ところが、上述のように電極を高温に加熱することで、熱電子放出が促され低電圧で充分な放電電流が得られる。高温に加熱した電極は、非加熱電極に比べ明らかに低電圧易放電特性を示す利点も見逃せない。   As the speed of plastic film production lines in recent years increases, the total amount of electric charge necessary for electrostatic adhesion increases, so the voltage applied to the electrode must be increased to increase the discharge charge (current). However, simply trying to discharge the electrode at a high density leads to an unstable streamer corona discharge exceeding the uniform discharge capacity. Also, increasing the voltage beyond the spark limit increases the risk of spark discharge. However, by heating the electrode to a high temperature as described above, thermionic emission is promoted and a sufficient discharge current can be obtained at a low voltage. The electrode heated to a high temperature cannot be overlooked, as compared with the non-heated electrode, clearly has the advantage of having a low voltage easy discharge characteristic.

特公昭47−29782号公報Japanese Patent Publication No.47-29782

しかしながら、電極をヒータとして直接電流を流して加熱するために避けられない固有の問題がある。   However, there is an inherent problem that cannot be avoided because the electrode is used as a heater for direct current flow.

静電密着法に用いる電極は、フィルム状溶融体の巾より広い間隔をもって設けた左右の支持体間に電極を架設し、この電極におけるフィルム状溶融体の左右両端よりも外側の部分に絶縁スリーブを装着して、そのフィルム状溶融体の巾に応じて電極からの放電巾を調節できる構造になっている。電極には直流高電圧電源が接続され、それとは別回路で電極加熱電源が電極の左右端に接続される。   The electrode used for the electrostatic contact method is constructed by laying an electrode between left and right supports provided at intervals wider than the width of the film-like melt, and insulating sleeves on the outer sides of both ends of the film-like melt in this electrode. The discharge width from the electrode can be adjusted according to the width of the film-like melt. A DC high voltage power supply is connected to the electrode, and an electrode heating power supply is connected to the left and right ends of the electrode in a separate circuit.

運転中に放電している電極は、加熱電流によってヒータ加熱されながら、電極近傍では気中放電によるイオン風が吹き、周囲の空気を巻き込んで風速十数m/sの風が通過するため、常に熱が奪われる状態にある。このヒータ加熱とイオン風空冷との平衡温度として、250℃以上を維持するように、電極をヒータ加熱する必要がある。   The electrode that is being discharged during operation is heated by the heater current, while the ion wind from the air discharge blows in the vicinity of the electrode, and the surrounding air passes through the wind and the wind speed of several tens m / s always passes. Heat is taken away. It is necessary to heat the electrode with a heater so that the equilibrium temperature between the heater heating and the ion air cooling is maintained at 250 ° C. or higher.

ところが、絶縁スリーブで覆われ放電を遮蔽されている電極部分は、このイオン風に冷却されないために、簡単に発熱過多となる。ときに異常な高温になると、電極金属材料の高温酸化劣化や引張強度低下を起こし、著しいときには電極が溶断することになる。これを避けるためにはヒータ加熱を抑えなければならず、電極を充分な高温度に昇温することができなかった。   However, since the electrode portion covered with the insulating sleeve and shielded from discharge is not cooled by the ion wind, it easily generates excessive heat. When the temperature is abnormally high, the electrode metal material is deteriorated at high temperature and the tensile strength is lowered. In order to avoid this, heater heating must be suppressed, and the temperature of the electrode could not be raised to a sufficiently high temperature.

この現象は高生産速度で顕著な問題となる。すなわち高い放電電流が必要な状況下では強いイオン風空冷が作用するためである。   This phenomenon becomes a significant problem at high production speeds. That is, strong ion wind cooling acts in a situation where a high discharge current is required.

更に厄介な問題は、絶縁スリーブの先端は、CRへ直接スパーク放電しないようにフィルム状溶融体の左右端部から溶融体の巾方向の内側5〜10mmに位置させるのが最適であるが、絶縁スリーブに覆われた電極自体が異常な高温にあると、絶縁スリーブ先端の電極露出部分から斜めにスパークが起き易くなる。それを避けるために絶縁スリーブを更に溶融体の巾方向の内側に位置させる必要があり、結果としてフィルム状溶融体の端部のCRに対する密着成形ができないために不安定な巾変動が起きる。これは後の二軸延伸工程でフィルム製品端部の延伸ムラとなる重大な問題である。   A more troublesome problem is that the tip of the insulating sleeve is optimally positioned 5 to 10 mm inside the width direction of the melt from the left and right ends of the film melt so as not to directly spark discharge to the CR. If the electrode itself covered with the sleeve is at an abnormally high temperature, sparks are likely to occur obliquely from the electrode exposed portion at the tip of the insulating sleeve. In order to avoid this, it is necessary to position the insulating sleeve further on the inner side in the width direction of the melt, and as a result, it is impossible to perform close contact molding on the CR at the end of the film-like melt, resulting in unstable width fluctuations. This is a serious problem that causes uneven stretching at the end of the film product in the subsequent biaxial stretching step.

本発明の課題は、電極を高温度に加熱維持することを可能とし、低分子量物の電極付着を阻止して長時間の放電安定性と易放電特性を得ることができると共に、電極端部で起きるスパーク放電トラブルを防止することで、結果的に優れた品質を有する二軸延伸プラスチックフィルムを工業的に安定して生産する方法を提供することにある。   It is an object of the present invention to enable heating and maintaining an electrode at a high temperature, to prevent the adhesion of an electrode with a low molecular weight, and to obtain long-term discharge stability and easy discharge characteristics. An object of the present invention is to provide a method for industrially and stably producing a biaxially stretched plastic film having excellent quality by preventing a spark discharge trouble that occurs.

本発明者等はこのような課題を解決するために鋭意検討の結果、本発明を完成した。   The inventors of the present invention have completed the present invention as a result of intensive studies in order to solve such problems.

すなわち本発明は、ダイより溶融樹脂をフィルム状に押し出し、静電密着法を用いてフィルム状溶融体を回転冷却ロール表面に密着させる冷却成形方法を用いたプラスチックフィルムの製造方法であって、静電密着を行わせるために回転冷却ロールに近接してフィルム状溶融体の巾方向に架設配置した電極に直接電流を流してヒータ加熱するに際して、前記電極として、その両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、他の部分よりも電気抵抗が低減された電極を用いることを特徴とするプラスチックフィルムの製造方法である。   That is, the present invention is a method for producing a plastic film using a cooling molding method in which a molten resin is extruded from a die into a film shape, and the film-like melt is brought into close contact with the surface of a rotary cooling roll using an electrostatic adhesion method. When the heater is heated by directly passing an electric current through an electrode installed in the width direction of the film-like melt in the vicinity of the rotary cooling roll in order to perform electro-adhesion, as the electrode, the melt end from the both-end support part In another aspect of the present invention, there is provided a method for producing a plastic film, comprising using an electrode having an electrical resistance lower than that of other portions up to an inner position in the melt width direction.

また本発明は、ダイより押し出された溶融樹脂にて構成されたフィルム状溶融体を静電密着法を用いて回転冷却ロール表面に密着させる手段を用いたプラスチックフィルムの製造装置であって、静電密着のための電荷を発生させる電極を、回転冷却ロールに近接してフィルム状溶融体の巾方向に架設配置し、この電極に直接電流を流してヒータ加熱させるように構成し、前記電極は、その両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、他の部分よりも電気抵抗が低減されていることを特徴とするプラスチックフィルムの製造装置である。   The present invention also relates to an apparatus for producing a plastic film using means for bringing a film-like melt composed of a molten resin extruded from a die into close contact with the surface of a rotary cooling roll using an electrostatic contact method. An electrode for generating an electric charge for electro-adhesion is arranged in the width direction of the film-like melt in the vicinity of the rotating cooling roll, and a current is passed directly to the electrode to heat the heater. The plastic film manufacturing apparatus is characterized in that the electrical resistance is reduced more than other portions from the both end support portions to the inner position in the melt width direction from the melt end portions.

電気抵抗を低減させるための手段は、任意のものを採用することができる。本発明によれば、電気抵抗を低減させるための手段として、電極の断面積を実質的に拡大する副子電極を設けることが特に望ましい。そのほかにも、たとえば電極自体の両端部の断面積を他の部分よりも大きくするなどの手法を採用することもできる。また、たとえば電極両端部の材質を他の部分よりも電気伝導度の大きなものに変えるなどの手法を採用することもできる。   Any means for reducing the electrical resistance can be employed. According to the present invention, as a means for reducing the electrical resistance, it is particularly desirable to provide a splint electrode that substantially enlarges the cross-sectional area of the electrode. In addition, for example, a method of making the cross-sectional area of both ends of the electrode itself larger than that of other portions can be employed. Further, for example, a method of changing the material of both ends of the electrode to a material having higher electric conductivity than other portions can be employed.

本発明によれば、電極として、その両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、他の部分よりも電気抵抗が低減されたものを用いることで、電極を常に高温度に加熱維持でき、これによって経時変化のない安定した放電特性を得ることと、電極の端部で起きるスパーク放電トラブルを回避することとが可能となる。結果として優れた品質を有する二軸延伸プラスチックフィルムを工業的に安定して生産することができる。   According to the present invention, the electrode is always used by using an electrode whose electrical resistance is lower than that of the other part from the both end support part to the position inside the melt width direction from the melt end part. It is possible to maintain heating at a high temperature, thereby obtaining stable discharge characteristics that do not change with time, and avoiding spark discharge troubles that occur at the ends of the electrodes. As a result, a biaxially stretched plastic film having excellent quality can be produced industrially and stably.

本発明の実施の形態のプラスチックフィルムの製造装置の要部の正面図である。It is a front view of the principal part of the manufacturing apparatus of the plastic film of embodiment of this invention. 図1に示された部分の左側面図である。It is a left view of the part shown by FIG.

以下、本発明について詳細に説明する。
図1および図2に示すように、Tダイ1よりフィルム状溶融体2をCR3の表面に押し出し、溶融体2がCR3と接する接点近傍に架設配置した電極4により静電荷を付与して、溶融体2をCR3の表面に静電密着させる。電極4の構成は、左右の支持体5どうしの間に電極4を架設して引張り、この両端の支持体5から、溶融体2の端部よりも溶融体2の巾方向の内側の位置まで、電極の断面積を実質的に拡大する副子電極6を設けている。更にフィルム状溶融体2の左右両端より外側に絶縁スリーブ7を装着し、放電巾をスライド調節可能にしている。
Hereinafter, the present invention will be described in detail.
As shown in FIGS. 1 and 2, a film-like melt 2 is extruded from the T-die 1 onto the surface of the CR 3, and an electrostatic charge is imparted by the electrode 4 installed near the contact point where the melt 2 contacts the CR 3 to melt the melt. The body 2 is electrostatically adhered to the surface of CR3. The structure of the electrode 4 is that the electrode 4 is stretched between the left and right supports 5 and pulled, and the support 5 at both ends extends from the end of the melt 2 to the position inside the melt 2 in the width direction. A splint electrode 6 that substantially enlarges the cross-sectional area of the electrode is provided. Furthermore, insulating sleeves 7 are mounted outside the left and right ends of the film-like melt 2 so that the discharge width can be adjusted by sliding.

本発明でいう断面積を実質的に拡大する副子電極6としては、例えば、電極4がワイヤー状電極であれば、ワイヤーに沿わせて断面形状が円形や楕円、半円や三日月型の金属材料を接触させたもの、或いはワイヤーに筒状の管を被せたものなどが挙げらる。また電極4がブレード状電極であれば、これを2枚の板状金属材料で挟んだり長円管に挿入したもの、或いは非放電側エッジをコの字型金具に差し込んだものなどが挙げられる。ただし、これらに限定するものではない。   As the splint electrode 6 that substantially enlarges the cross-sectional area in the present invention, for example, if the electrode 4 is a wire electrode, the cross-sectional shape along the wire is a circle, ellipse, semicircle, or crescent type metal. The thing which made the material contact or the thing which covered the tubular pipe | tube on the wire etc. are mentioned. If the electrode 4 is a blade-like electrode, it may be sandwiched between two plate-like metal materials or inserted into an oval tube, or the non-discharge side edge is inserted into a U-shaped bracket. . However, it is not limited to these.

本発明における副子電極6の重要な機能は、電極4の断面積を実質的に拡大することによって、直接電流を流して電極4をヒータ加熱するとき、加熱電流は副子側にも分流され(電極4の見掛け電気抵抗が下がり)、副子電極6を設けた電極4自身の単位長さ当りの自己発熱を抑えることができる点にある。つまり、この電極部分を絶縁スリーブ7で遮蔽しても異常発熱させずに低温度を保持できるのである。   An important function of the splint electrode 6 in the present invention is to substantially expand the cross-sectional area of the electrode 4 so that when the electrode 4 is heated by direct heating, the heating current is also shunted to the splint side. (The apparent electrical resistance of the electrode 4 is lowered), and the self-heating per unit length of the electrode 4 itself provided with the splint electrode 6 can be suppressed. That is, even if this electrode portion is shielded by the insulating sleeve 7, a low temperature can be maintained without causing abnormal heat generation.

更に副子電極6の形状を工夫することで、電極4と副子電極6とで構成される電極端部の放電能力を適度に抑えることができる。   Furthermore, by devising the shape of the splint electrode 6, it is possible to moderately suppress the discharge capability of the electrode end portion composed of the electrode 4 and the splint electrode 6.

放電現象に関しては原理的に放電電極先端の曲率半径と放電能力には比例相関があり、副子電極6で電極4の曲率半径を大きくすると、その直下だけ放電電流を少なく抑えることが可能なのである。すなわち副子電極6を設けた電極端部は低温度の維持効果と放電先端形状に依存した放電電流の抑制効果との相乗効果を利用することで、絶縁スリーブ7の先端をフィルム状溶融体2の端部よりも溶融体2の巾方向の内側に深く入れる必要がなくなる。これにより、フィルム状溶融体2の端部もCR2に充分密着成形させながら、且つCR2へ直接スパークする危険性を回避できるのである。   Regarding the discharge phenomenon, there is a proportional correlation between the radius of curvature of the discharge electrode and the discharge capacity in principle, and if the radius of curvature of the electrode 4 is increased by the splint electrode 6, the discharge current can be suppressed to a level just below that. . That is, the electrode end provided with the splint electrode 6 uses the synergistic effect of the low temperature maintenance effect and the discharge current suppression effect depending on the discharge tip shape, so that the tip of the insulating sleeve 7 is attached to the film-like melt 2. It is not necessary to put deeper into the inner side in the width direction of the melt 2 than the end portion of the melt. Thereby, it is possible to avoid the risk of sparking directly to CR2 while the end portion of the film-like melt 2 is also formed in close contact with CR2.

副子電極6に用いる金属材料としては、例えば、銅合金、ニッケル、鋼、ステンレス、タングステン、アモルファス合金などが挙げられる。しかし、これらに限定するものではない。ただし表面酸化で著しく導電性低下する材料は好ましくない。   Examples of the metal material used for the splint electrode 6 include a copper alloy, nickel, steel, stainless steel, tungsten, and an amorphous alloy. However, it is not limited to these. However, a material whose conductivity is significantly reduced by surface oxidation is not preferable.

本発明では、電極4の温度は、350℃以上400℃未満に加熱維持することが好ましい。   In the present invention, the temperature of the electrode 4 is preferably maintained at 350 ° C. or higher and lower than 400 ° C.

モノマーやオリゴマーなどの低分子量物の電極凝縮をさせないためには少なくとも350℃以上に加熱することが好ましく、尚且つ低電圧易放電特性を得るには、更に高温域が好ましいが、400℃以上になると金属の酸化劣化が著しくなり、逆に電極の寿命を短くしてしまう。   In order to prevent electrode condensation of low molecular weight substances such as monomers and oligomers, it is preferable to heat at least 350 ° C. or higher, and in order to obtain low voltage and easy discharge characteristics, a higher temperature range is preferable, but 400 ° C. or higher. In this case, the oxidative deterioration of the metal becomes remarkable, and conversely the life of the electrode is shortened.

本発明でいう電極温度の測定方法は、金属の抵抗温度測定法を用いることができる。
これは、温度によって抵抗率が変わる原理を利用したもので、予め電極4及び副子電極6の金属材を高温に加熱制御された炉内に入れ、200〜500℃の温度と抵抗値の相関関係を検量し、抵抗率の温度係数を実測する。次に実用温度は、電極加熱電源からの出力電圧/電流を正確に計測し、その抵抗値の変化から温度が演算できる。本発明における電極4の温度設定は、この演算温度が目標温度に達するように電極加熱電源の出力を微調整することで行い得る。
As the electrode temperature measuring method in the present invention, a metal resistance temperature measuring method can be used.
This is based on the principle that the resistivity changes depending on the temperature. The metal materials of the electrode 4 and the splint electrode 6 are previously placed in a furnace controlled to be heated to a high temperature, and the correlation between the temperature of 200 to 500 ° C. and the resistance value. The relationship is calibrated and the temperature coefficient of resistivity is measured. Next, the practical temperature can be calculated from the change in resistance value by accurately measuring the output voltage / current from the electrode heating power source. The temperature setting of the electrode 4 in the present invention can be performed by finely adjusting the output of the electrode heating power supply so that the calculated temperature reaches the target temperature.

本発明では、好ましくは、電極4に対して、副子電極6を設けた電極部の断面積拡大率が2〜10倍で、且つ抵抗値が1/1.5〜1/4.0である。   In the present invention, preferably, the cross-sectional area enlargement ratio of the electrode portion provided with the splint electrode 6 is 2 to 10 times that of the electrode 4, and the resistance value is 1 / 1.5-1 to 4.0. is there.

電極4のヒータ加熱電流を副子電極6側に分流させ、自己発熱を抑えるのであるが、発熱を抑え過ぎると、副子電極6に低分子量物が付着したり、露出している副子電極6直下における溶融体2のCR3に対する密着性が著しく低下してフィルムの巾変動を起こしたりするので、好くない。適度な温度と適度な低レベルの放電能力は維持する必要がある。これらは電極4と副子電極6の導電性能によって決まるのであるが、断面積拡大率が2〜10倍で、且つ抵抗値が1/1.5〜1/4.0の範囲とすることで、これらを良好に維持することができる。   The heater heating current of the electrode 4 is diverted to the side of the splint electrode 6 to suppress self-heating. However, if the heat generation is excessively suppressed, low molecular weight substances adhere to the splint electrode 6 or are exposed. This is not preferable because the adhesion of the melt 2 directly below 6 to the CR3 is remarkably lowered and the width of the film is changed. It is necessary to maintain a moderate temperature and a moderate low level discharge capability. These are determined by the conductive performance of the electrode 4 and the splint electrode 6, but the cross-sectional area enlargement ratio is 2 to 10 times and the resistance value is in the range of 1 / 1.5-1 to 4.0. These can be maintained well.

本発明に用いる電極4としては、線径0.05〜0.2mmのワイヤー或いは厚さ0.01〜0.05mmのブレードが、その放電能力が実用的で好ましい。   As the electrode 4 used in the present invention, a wire having a wire diameter of 0.05 to 0.2 mm or a blade having a thickness of 0.01 to 0.05 mm is preferable because of its practical discharge capability.

本発明に用いられるCR3としては、内部に冷却媒体(水)が循環する構造を持ち、表面温度を15〜60℃としたものが好ましい。15℃未満では、CR3の表面に水滴が露結し、水膜によるフィルム状溶融体2の密着斑やフィルム欠陥が生じること、或いはフィルム状溶融体2が接触しないCR3の端部の水滴にスパーク放電するトラブルが発生することので好ましくない。また、60℃を超えると、フィルムのCR3の表面からの剥離が困難となり、フィルムが剥離応力によって縦方向に伸ばされるために、次工程で延伸斑を引起こす。   As CR3 used for this invention, what has the structure where a cooling medium (water) circulates inside, and made surface temperature 15-60 degreeC is preferable. Below 15 ° C, water droplets are condensed on the surface of CR3, causing adhesion of film-like melt 2 and film defects due to a water film, or sparking on the water droplets at the end of CR3 where film-like melt 2 is not in contact. It is not preferable because a trouble of discharging occurs. Moreover, when it exceeds 60 degreeC, since peeling from the surface of CR3 of a film will become difficult and a film will be extended | stretched to the vertical direction by peeling stress, a stretch spot will be caused at the following process.

CR3の表面材質及び表面仕上げに関しては特に限定するものではない。   The surface material and surface finish of CR3 are not particularly limited.

本発明でいうプラスチックフィルムとは、静電密着法が適応できる熱可塑性樹脂であれば特に限定はしない。   The plastic film referred to in the present invention is not particularly limited as long as it is a thermoplastic resin to which the electrostatic contact method can be applied.

例えば、ポリエチレンテレフタレートで代表されるポリエステル系フィルム、ポリエチレン、ポリプロピレンなどのポリオレフィン系フィルム、ナイロン6、ナイロン66などのポリアミド系フィルム、或いはこれらのポリマーを含む共重合物、混合物よりなるフィルムである。本発明は、特に厚み精度、光学的歪みについての要求が厳しいポリエステル系二軸延伸フィルム用の未延伸フィルム成形に極めて有用である。   For example, a polyester film represented by polyethylene terephthalate, a polyolefin film such as polyethylene or polypropylene, a polyamide film such as nylon 6 or nylon 66, or a copolymer or a mixture containing these polymers. The present invention is extremely useful for forming an unstretched film for a polyester biaxially stretched film, which is particularly demanding for thickness accuracy and optical distortion.

以下に本発明を実施例により具体的に説明する。ただし、本発明は、これに限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to this.

[実施例1]
溶融ポリエチレンテレフタレートをTダイよりフィルム状に押し出し、表面温度20℃の冷却ロールを速度60m/minで回転させ、静電密着法により巾1100mm・厚さ195μmの無配向フィルムを冷却成形した。
[Example 1]
Molten polyethylene terephthalate was extruded into a film form from a T die, a cooling roll having a surface temperature of 20 ° C. was rotated at a speed of 60 m / min, and a non-oriented film having a width of 1100 mm and a thickness of 195 μm was cooled and molded by an electrostatic adhesion method.

このとき、フィルム状溶融体と冷却ロールとの接点近くに直径0.1mmのタングステンワイヤーを支持体間距離1450mmで架設し、支持体からフィルム状溶融体の端部よりも溶融体の巾方向の内側10mmの位置まで、電極に被さるステンレス管にて構成される副子電極を設けた。副子電極による断面積拡大率は6.2倍で通電抵抗は約1/3であった。更に電極の両端部には絶縁のためのセラミックスリーブを被せ、スリーブの先端をフィルム状溶融体の端部よりも溶融体の巾方向の内側約3mmの位置に入れた。電極には加熱電流を流し電極の温度を400℃に維持しながら、電極には6.5kVの直流正電圧を印加して、フィルム状溶融体に静電荷を与え、フィルムを冷却ロールに密着させた。   At this time, a tungsten wire having a diameter of 0.1 mm is installed near the contact point between the film-like melt and the cooling roll at a distance of 1450 mm between the supports, and from the support to the width direction of the melt rather than the end of the film-like melt. A splint electrode composed of a stainless steel tube covering the electrode was provided up to a position of 10 mm inside. The cross-sectional area enlargement ratio by the splint electrode was 6.2 times, and the conduction resistance was about 1/3. Further, an insulating ceramic sleeve was covered on both ends of the electrode, and the end of the sleeve was placed at a position about 3 mm inside the width direction of the melt from the end of the film-like melt. While applying a heating current to the electrode and maintaining the temperature of the electrode at 400 ° C., a DC positive voltage of 6.5 kV is applied to the electrode to give an electrostatic charge to the film-like melt, and the film is brought into close contact with the cooling roll. It was.

生産を開始して48時間経過しても、未延伸フィルムには外観上の欠陥は観察されなかった。またこの冷却成形フィルムを縦及び横方向に延伸倍率各4倍に二軸延伸して、厚み12μmの二軸延伸ポリエチレンテレフタレートフィルムとした。厚み及び光学的均一性にも優れたフィルムが安定して得られた。   Even after 48 hours from the start of production, no defects in appearance were observed in the unstretched film. The cooled molded film was biaxially stretched in the longitudinal and lateral directions at a stretching ratio of 4 times to obtain a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm. A film excellent in thickness and optical uniformity was stably obtained.

[比較例1]
副子電極を設けない以外は、実施例1と同じ条件でポリエチレンテレフタレートフィルムを冷却成形した。
[Comparative Example 1]
A polyethylene terephthalate film was cooled and molded under the same conditions as in Example 1 except that no splint electrode was provided.

そうしたところ、セラミックスリーブで遮蔽されている部分が赤熱し、短時間で酸化劣化を起こし断線した。そこで、仕方なく直接加熱電流を絞り、放電電極を200℃にするしかできなかった。   As a result, the portion shielded by the ceramic sleeve became red hot, causing oxidative deterioration in a short time and breaking. Therefore, it was unavoidable to directly reduce the heating current and bring the discharge electrode to 200 ° C.

生産を開始して20時間経過してストリーマ放電が間欠的に発生し、未延伸フィルムに表面荒れが観察された。この欠陥は二軸延伸フィルムでも観察されフィルム製品としては不合格となった。   After 20 hours from the start of production, streamer discharge was intermittently generated, and surface roughness was observed on the unstretched film. This defect was also observed in the biaxially stretched film and was rejected as a film product.

[実施例2]
下記以外は実施例1と同じ条件でポリエチレンテレフタレートフィルムを冷却成形した。
[Example 2]
A polyethylene terephthalate film was cooled and molded under the same conditions as in Example 1 except for the following.

すなわち、実施例1のワイヤーに代えて、フィルム状溶融体と冷却ロールとの接点近くに巾3mm・厚み0.02mmのステンレスブレードを支持体間距離1450mmに架設し、支持体からフィルム状溶融体の端部よりも溶融体の巾方向の内側10mmの位置まで、U字型金具を挟み副子電極を設けた。副子電極による断面積拡大率は6.2倍で通電抵抗は約1/4であった。更に電極の両端部にはセラミックスリーブを被せ、スリーブの先端をフィルム状溶融体の端部よりも溶融体の巾方向の内側約3mmの位置に入れた。電極には加熱電流を流し電極の温度を400℃に維持しながら、電極には6.5kVの直流正電圧を印加して、フィルム状溶融体に静電荷を与え、フィルムを冷却ロールに密着させた。   That is, instead of the wire of Example 1, a stainless steel blade having a width of 3 mm and a thickness of 0.02 mm was installed near the contact point between the film-shaped melt and the cooling roll at a distance of 1450 mm between the supports. A splint electrode was provided by sandwiching the U-shaped metal fitting to the position 10 mm inside from the edge of the melt in the width direction of the melt. The cross-sectional area expansion ratio by the splint electrode was 6.2 times, and the conduction resistance was about 1/4. Furthermore, a ceramic sleeve was put on both ends of the electrode, and the tip of the sleeve was placed at a position about 3 mm inside the width direction of the melt from the end of the film-like melt. While applying a heating current to the electrode and maintaining the temperature of the electrode at 400 ° C., a DC positive voltage of 6.5 kV is applied to the electrode to give an electrostatic charge to the film-like melt, and the film is brought into close contact with the cooling roll. It was.

[比較例2]
副子電極を設けない以外は、実施例2と同じ条件でポリエチレンテレフタレートフィルムを冷却成形した。
[Comparative Example 2]
A polyethylene terephthalate film was cooled and molded under the same conditions as in Example 2 except that the splint electrode was not provided.

そうしたところ、セラミックスリーブで遮蔽されている部分が赤熱し、短時間で酸化劣化を起こし断線した。そこで、仕方なく直接加熱電流を絞り、放電電極を200℃にするしかできなかった。   As a result, the portion shielded by the ceramic sleeve became red hot, causing oxidative deterioration in a short time and breaking. Therefore, it was unavoidable to directly reduce the heating current and bring the discharge electrode to 200 ° C.

生産を開始して20時間経過してストリーマ放電が間欠的に発生し、未延伸フィルムに表面荒れが観察された。この欠陥は二軸延伸フィルムでも観察されフィルム製品としては不合格となった。   After 20 hours from the start of production, streamer discharge was intermittently generated, and surface roughness was observed on the unstretched film. This defect was also observed in the biaxially stretched film and was rejected as a film product.

1 Tダイ
2 フィルム状溶融体
3 キャスティングロール(CR)
4 電極
5 電極支持体
6 副子電極
7 絶縁スリーブ
1 T-die 2 Film-like melt 3 Casting roll (CR)
4 electrode 5 electrode support 6 splint electrode 7 insulating sleeve

Claims (12)

ダイより溶融樹脂をフィルム状に押し出し、静電密着法を用いてフィルム状溶融体を回転冷却ロール表面に密着させる冷却成形方法を用いたプラスチックフィルムの製造方法であって、静電密着を行わせるために回転冷却ロールに近接してフィルム状溶融体の巾方向に架設配置した電極に直接電流を流してヒータ加熱するに際して、前記電極として、その両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、他の部分よりも電気抵抗が低減された電極を用いることを特徴とするプラスチックフィルムの製造方法。   A method for producing a plastic film using a cooling molding method in which a molten resin is extruded from a die into a film shape, and the film-like melt is brought into close contact with the surface of a rotary cooling roll using an electrostatic contact method. Therefore, when the heater is heated by passing a current directly to an electrode installed in the width direction of the film-like melt in the vicinity of the rotary cooling roll, the melt width is larger than the melt end than the end of the melt as the electrode. A method for producing a plastic film, comprising using an electrode having an electric resistance lower than that of other portions up to a position inside the direction. 電極の温度を350℃以上400℃未満に加熱維持することを特徴とする請求項1記載のプラスチックフィルムの製造方法。 2. The method for producing a plastic film according to claim 1 , wherein the temperature of the electrode is maintained at 350 ° C. or higher and lower than 400 ° C. 電極の両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、副子電極によって電極の断面積を実質的に拡大することを特徴とする請求項1または2記載のプラスチックフィルムの製造方法。 3. The plastic film according to claim 1 or 2, wherein the cross-sectional area of the electrode is substantially enlarged by the splint electrode from the both-end supporting part of the electrode to a position inside the melt width direction from the melt end part. Manufacturing method. 副子電極を設けた電極部の断面積拡大率を副子電極を設けていない電極部の2〜10倍とし、且つ副子電極を設けた電極部の抵抗値を副子電極を設けていない電極部の抵抗値の1/1.5〜1/4.0とすることを特徴とする請求項3記載のプラスチックフィルムの製造方法。 The cross-sectional area enlargement ratio of the electrode portion provided with the splint electrode is set to 2 to 10 times that of the electrode portion not provided with the splint electrode, and the resistance value of the electrode portion provided with the splint electrode is not provided with the splint electrode 4. The method for producing a plastic film according to claim 3 , wherein the resistance value of the electrode portion is 1 / 1.5-1 / 4. 電極として線径0.05〜0.2mmのワイヤーを用いることを特徴とする請求項1から4までのいずれか1項記載のプラスチックフィルムの製造方法。   The method for producing a plastic film according to any one of claims 1 to 4, wherein a wire having a wire diameter of 0.05 to 0.2 mm is used as the electrode. 電極として厚さ0.01〜0.05mmのブレードを用いることを特徴とする請求項1から4までのいずれか1項記載のプラスチックフィルムの製造方法。   The method for producing a plastic film according to any one of claims 1 to 4, wherein a blade having a thickness of 0.01 to 0.05 mm is used as the electrode. ダイより押し出された溶融樹脂にて構成されたフィルム状溶融体を静電密着法を用いて回転冷却ロール表面に密着させる手段を用いたプラスチックフィルムの製造装置であって、静電密着のための電荷を発生させる電極を、回転冷却ロールに近接してフィルム状溶融体の巾方向に架設配置し、この電極に直接電流を流してヒータ加熱させるように構成し、前記電極は、その両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、他の部分よりも電気抵抗が低減されていることを特徴とするプラスチックフィルムの製造装置。   An apparatus for producing a plastic film using means for adhering a film-like melt composed of a molten resin extruded from a die to the surface of a rotary cooling roll using an electrostatic adhesion method, for electrostatic adhesion An electrode for generating an electric charge is installed in the width direction of the film-like melt in the vicinity of the rotary cooling roll, and the heater is heated by directly passing an electric current to the electrode. The plastic film manufacturing apparatus is characterized in that the electrical resistance is reduced as compared with other portions from the end of the melt to the position inside the melt width direction. 電極は、350℃以上400℃未満に加熱維持されるものであることを特徴とする請求項7記載のプラスチックフィルムの製造装置。 8. The plastic film manufacturing apparatus according to claim 7 , wherein the electrode is heated and maintained at 350 ° C. or higher and lower than 400 ° C. 電極の両端支持部から溶融体端部よりも溶融体巾方向の内側の位置まで、電極の断面積を実質的に拡大する副子電極を設けたことを特徴とする請求項7または8記載のプラスチックフィルムの製造装置。 The splint electrode which substantially expands the cross-sectional area of an electrode from the both-ends support part of the electrode to the position inside the melt width direction from the melt end part is provided. Plastic film manufacturing equipment. 副子電極を設けた電極部の断面積拡大率が副子電極を設けていない電極部の2〜10倍であり、且つ副子電極を設けた電極部の抵抗値が副子電極を設けていない電極部の抵抗値の1/1.5〜1/4.0であることを特徴とする請求項9記載のプラスチックフィルムの製造装置。 The cross-sectional area enlargement ratio of the electrode portion provided with the splint electrode is 2 to 10 times that of the electrode portion not provided with the splint electrode, and the resistance value of the electrode portion provided with the splint electrode is provided with the splint electrode. 10. The apparatus for producing a plastic film according to claim 9 , wherein the resistance value of the non-electrode portion is 1 / 1.5 to 1 / 4.0. 電極が線径0.05〜0.2mmのワイヤーであることを特徴とする請求項7から10までのいずれか1項記載のプラスチックフィルムの製造装置。   The plastic film manufacturing apparatus according to any one of claims 7 to 10, wherein the electrode is a wire having a wire diameter of 0.05 to 0.2 mm. 電極が厚さ0.01〜0.05mmのブレードであることを特徴とする請求項7から10までのいずれか1項記載のプラスチックフィルムの製造装置。   11. The plastic film manufacturing apparatus according to claim 7, wherein the electrode is a blade having a thickness of 0.01 to 0.05 mm.
JP2009124793A 2009-05-25 2009-05-25 Method and apparatus for manufacturing plastic film Active JP5557473B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009124793A JP5557473B2 (en) 2009-05-25 2009-05-25 Method and apparatus for manufacturing plastic film
CN200910164761XA CN101664990B (en) 2009-05-25 2009-07-22 Manufacturing method and apparatus for plastic membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124793A JP5557473B2 (en) 2009-05-25 2009-05-25 Method and apparatus for manufacturing plastic film

Publications (2)

Publication Number Publication Date
JP2010269550A JP2010269550A (en) 2010-12-02
JP5557473B2 true JP5557473B2 (en) 2014-07-23

Family

ID=41801845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124793A Active JP5557473B2 (en) 2009-05-25 2009-05-25 Method and apparatus for manufacturing plastic film

Country Status (2)

Country Link
JP (1) JP5557473B2 (en)
CN (1) CN101664990B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019112077A1 (en) 2019-05-09 2020-11-12 Brückner Maschinenbau GmbH & Co. KG Plant for the production of a cast film and film stretching plant with such a plant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID21084A (en) * 1997-05-27 1999-04-15 Toray Industries METHOD AND EQUIPMENT FOR MAKING THERMOPLASTIC RESIN SHEET
JPH11309771A (en) * 1998-04-28 1999-11-09 Teijin Ltd Production of polyester film
JP2001054928A (en) * 1999-06-09 2001-02-27 Toray Ind Inc Production of thermoplastic resin sheet
JP2002254496A (en) * 2001-03-02 2002-09-11 Toray Ind Inc Thermoplastic resin sheet manufacturing apparatus and manufacture method using the same
JP2008238407A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Cellulose resin film, its manufacturing method and optical film

Also Published As

Publication number Publication date
CN101664990B (en) 2013-01-09
JP2010269550A (en) 2010-12-02
CN101664990A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP5557473B2 (en) Method and apparatus for manufacturing plastic film
CA1115236A (en) Improved film manufacturing processes through electrostatic plating
CA1330698C (en) Method of making a conductive polymer sheet
SE447781B (en) BANDVERMARE
US4129630A (en) Process for producing thermoplastic resin films having reduced thickness unevenness
JP5465912B2 (en) Film production method
JP4641673B2 (en) Method for producing polyamide film
JP2006015732A (en) Method for manufacturing polyamide-based resin film roll
JP2014030933A (en) Method for producing plastic film
JP2000271988A (en) Manufacture of aliphatic polyester film
JP4437587B2 (en) Method for producing thermoplastic resin sheet
JP5024377B2 (en) Method for producing biaxially stretched polyamide film
JP2001219460A (en) Method for manufacturing polyamide film
JPH08281794A (en) Thermoplastic resin film excellent in thickness uniformity and production thereof
JP4246923B2 (en) Casting equipment
JPS6342832A (en) Manufacture of polyester film
JP4352854B2 (en) Production apparatus and production method for polyester resin sheet
JP2001260202A (en) Method and apparatus for producing resin sheet
JP2857214B2 (en) Method for producing polyamide sheet
JP4325355B2 (en) Production apparatus and production method for polyester resin sheet
JPH09300456A (en) Polyamide sheet and its production
JP2003127207A (en) Method for manufacturing thermoplastic resin sheet
KR0181411B1 (en) Method of making thermoplastic sheet
JPH10315306A (en) Electrostatic charge casting apparatus
JP4352853B2 (en) Method for producing polyester resin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150