JP2014030933A - Method for producing plastic film - Google Patents

Method for producing plastic film Download PDF

Info

Publication number
JP2014030933A
JP2014030933A JP2012171547A JP2012171547A JP2014030933A JP 2014030933 A JP2014030933 A JP 2014030933A JP 2012171547 A JP2012171547 A JP 2012171547A JP 2012171547 A JP2012171547 A JP 2012171547A JP 2014030933 A JP2014030933 A JP 2014030933A
Authority
JP
Japan
Prior art keywords
discharge
electrode
sheet
plastic film
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012171547A
Other languages
Japanese (ja)
Inventor
Sumuto Kihara
澄人 木原
Kenji Tsubouchi
健二 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2012171547A priority Critical patent/JP2014030933A/en
Publication of JP2014030933A publication Critical patent/JP2014030933A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing industrially at high speed, a plastic film excellent in thickness uniformity, capable of producing stably a cast sheet having uniform crystallization even when a casting roll is operated at high speed, by maintaining stable pinning discharge at a low voltage by removing discharge interference which is characteristic to a belt-like blade electrode.SOLUTION: In a sheet cooling molding method in which a resin 2 formed by melt extrusion molding in a sheet shape from a die 1 is extruded along the surface of a rotary cooling roll 3, and allowed to adhere to the surface of the rotary cooling roll 3 by applying a high voltage to a blade-shaped discharge electrode 4, discharge is prevented from an upward end edge 4-2 on the farther side from the cooling roll 3 of the discharge electrode 4.

Description

本発明は、プラスチックフィルムの製造方法に関するものである。更に詳しくは、熱可塑性樹脂をダイからシート状に押し出した後の冷却固化工程に特徴を有するプラスチックフィルムの製造方法に関するものであり、特に、静電密着法においてシートの品質を損なうことなくプラスチックフィルムの生産性を飛躍的に向上させることが可能なプラスチックフィルムの製造方法に関するものである。   The present invention relates to a method for producing a plastic film. More specifically, the present invention relates to a method for producing a plastic film characterized by a cooling and solidifying process after extruding a thermoplastic resin from a die into a sheet shape, and in particular, the plastic film without impairing the quality of the sheet in the electrostatic adhesion method. The present invention relates to a method for producing a plastic film capable of dramatically improving productivity.

通常Tダイ法によるキャストシートの製膜工程では、押出機から溶融樹脂をT型ダイで押し出し、押し出されたシート状溶融体をキャスティングロールと称される駆動回転している冷却ロール(以下、「CR」という)の表面に押し付けることによって冷却固化する方法でキャストシートが成形される。次いで冷却成形されたキャストシートを延伸工程で縦または横の一軸、或いは縦と横の二軸に延伸し、熱処理して最終的に延伸プラスチックフィルムが得られる。   Usually, in the film forming process of the cast sheet by the T-die method, the molten resin is extruded from the extruder with a T-die, and the extruded sheet-like melt is driven and rotated by a cooling roll called a casting roll (hereinafter referred to as “ The cast sheet is formed by a method of cooling and solidifying by pressing on the surface of CR). Next, the cast sheet formed by cooling is stretched uniaxially or biaxially or biaxially in the longitudinal and lateral directions in a stretching process, and heat-treated to finally obtain a stretched plastic film.

このCR表面にシート状溶融体を押し付ける方法として、シートの巾方向に高電圧印加電極を設け、シート状溶融体に静電荷を析出させ静電気的にCRに密着させる方法(以下、「静電密着法」という)が一般的に採用されている。   As a method of pressing the sheet-like melt on the CR surface, a method in which a high voltage application electrode is provided in the width direction of the sheet, an electrostatic charge is deposited on the sheet-like melt and electrostatically adhered to the CR (hereinafter referred to as “electrostatic adhesion”). Law ”is generally adopted.

上記静電密着法は、CR回転速度が比較的遅い場合には、所望の品質を保有したキャストシートが得られるが、生産効率アップを目的にCR回転速度を高めてシートの製膜速度の高速化を図ろうとすると、CR回転速度の増速に伴いシート状溶融体の密着力低下及び密着斑に起因する問題が起きる。   When the CR rotation speed is relatively slow, the above-mentioned electrostatic contact method can obtain a cast sheet having a desired quality. However, for the purpose of increasing production efficiency, the CR rotation speed is increased to increase the sheet deposition speed. Attempting to achieve this will cause problems due to a decrease in the adhesion of the sheet-like melt and adhesion spots as the CR rotational speed increases.

通常、シート状溶融体がCR表面に接触する接点においては、CR回転に伴って随伴空気流圧とメルトテンションの分力がシート状溶融体に浮上力として働き、シート状溶融体とCR表面の間に僅かに随伴空気が巻き込まれ、微小な気泡状或いはトンネル状のエアーカミが生じる。このエアーカミの部分は他のCR密着成形部分と熱伝導つまり冷却速度が遅くなるために、その樹脂の結晶化度が高くなってしまう。このシートの製膜工程での局部的結晶化の斑は、キャストシートの表面欠点として表れると共に、次延伸工程で均一延伸性を損なって、延伸斑が拡大することになり、プラスチックフィルム製品の品質、特に厚み精度を悪化させてしまう重要なファクターである。
こういった理由から品質を損なわないシート製膜速度の上限が、生産効率アップのボトルネックとなっていた。
Usually, at the contact point where the sheet-shaped melt contacts the CR surface, the accompanying air flow pressure and the component of the melt tension act as levitation force on the sheet-shaped melt as the CR rotates, Accompanying air is slightly trapped in between, and minute bubble-shaped or tunnel-shaped air dust is generated. Since the air rubbed part has a lower heat conduction, that is, a cooling rate, with other CR contact molded parts, the crystallinity of the resin becomes high. The local crystallization spots in the film forming process of this sheet appear as surface defects of the cast sheet, and the uniform stretching property is impaired in the next stretching process, and the stretched spots are enlarged, and the quality of the plastic film product is increased. In particular, this is an important factor that deteriorates the thickness accuracy.
For these reasons, the upper limit of sheet deposition speed that does not impair quality has been a bottleneck for increasing production efficiency.

従来、静電密着法ではワイヤー電極が一般的であったが、高速化の改善手段として、例えば、特許文献1に記載されているような帯状のブレード電極を用いる方法が提案されている。   Conventionally, a wire electrode is generally used in the electrostatic contact method, but as a means for improving the speed, for example, a method using a belt-like blade electrode as described in Patent Document 1 has been proposed.

ところが、放電電極にブレード電極、つまり断面形状が薄い帯状のものを用いるために起きる固有の問題が存在する。   However, there is a problem inherent to the use of a blade electrode as a discharge electrode, that is, a strip having a thin cross-sectional shape.

帯状のブレード電極は、ブレードの両端エッジの一方をCR表面に向けてCR表面に対して立てた状態で使用し、高電圧を印加すると、CRに近い側の下向端エッジとCR表面との間に強い電界が形成され、ピニング放電が起きる。   The band-shaped blade electrode is used in a state where one of both end edges of the blade faces the CR surface with respect to the CR surface, and when a high voltage is applied, the downward edge of the side close to the CR and the CR surface A strong electric field is formed between them, and pinning discharge occurs.

ところが、このブレード電極では、先端エッジの曲率半径Rは(例えば0.025mm)、ワイヤー電極の半径R(例えば0.75mm)に比べると圧倒的に小さく、ブレード電極の方が低電圧易放電能力を有しているにも関わらず、高い印加電圧が必要であるという矛盾した事実がある。また更に、低電圧設定にしていても弱いスパーク放電が頻発するという厄介な問題がある。   However, in this blade electrode, the radius of curvature R of the leading edge (for example, 0.025 mm) is overwhelmingly smaller than the radius R of the wire electrode (for example, 0.75 mm), and the blade electrode has a lower voltage easy discharge capability. There is a contradictory fact that a high applied voltage is required despite having Furthermore, there is a troublesome problem that weak spark discharge frequently occurs even at a low voltage setting.

これは、CRに近い側の下向端エッジとCR表面との間にピニング放電が生じると同時に、CRから遠い側の上向端エッジからは気中放電が生じる。この大気中に放出された空間電荷がCRに近い側の下向端エッジのピニング放電を妨げているものと解釈している。ブレード電極からCRに向けて放電現象が生じると、放電に誘導された風速数十mの強いイオン風がCRに向けて吹くことになるので、このイオン風によってCRから遠い側の上向端エッジから大気中に放出された空間電荷はCRに近い側の下向端エッジ周りの電界域に風送されることになり、この同極性の空間電荷は電場を乱して放電能力の低下を招いていると考察している。   This is because a pinning discharge is generated between the downward end edge near the CR and the CR surface, and an air discharge is generated from the upward end edge far from the CR. It is interpreted that the space charge released into the atmosphere prevents pinning discharge at the downward edge near the CR. When a discharge phenomenon occurs from the blade electrode toward the CR, a strong ion wind with a wind speed of several tens of meters induced by the discharge blows toward the CR. The space charge released from the air into the atmosphere is blown to the electric field around the downward edge near the CR, and this space charge of the same polarity disturbs the electric field and causes a decrease in discharge capability. I think.

その結果、高い印加電圧が必要となり、スパーク放電トラブルが頻発し易く、且つ高速安定生産が達成できないという弊害があった。   As a result, a high applied voltage is required, spark discharge troubles are likely to occur frequently, and high-speed stable production cannot be achieved.

特公昭63−20688号公報Japanese Patent Publication No. 63-20688

本発明は、帯状のブレード電極固有の放電障害を解消し、低電圧で安定したピニング放電を維持することで、CRを高速化しても均一な結晶化を有するキャストシートを安定して製膜することが可能となり、厚み均一性に優れたプラスチックフィルムを工業的に高速度に生産する方法を提供するものである。   The present invention eliminates the discharge obstruction inherent to the belt-like blade electrode and maintains a stable pinning discharge at a low voltage, thereby stably forming a cast sheet having uniform crystallization even when the CR speed is increased. Therefore, the present invention provides a method for industrially producing a plastic film excellent in thickness uniformity at a high speed.

本発明者等はこのような課題を解決するために鋭意検討した結果、静電密着法におけるブレード電極固有の放電現象について究明し、ブレード電極のCRから遠い側の上向端エッジで起きている気中放電を阻止(または極力抑制)することで、ブレード電極本来の低電圧易放電能力を発揮させ、CRの高速化に対応した密着力が確保できるという事実を見出し本発明に到達した。   As a result of intensive studies to solve such problems, the present inventors have investigated the discharge phenomenon inherent to the blade electrode in the electrostatic contact method, and occurred at the upper edge of the blade electrode far from the CR. The inventors have found the fact that by blocking (or suppressing as much as possible) the air discharge, the blade electrode's inherent low-voltage easy-discharging capability can be exhibited and the adhesion force corresponding to the high-speed CR can be secured, and the present invention has been achieved.

すなわち、本発明の要旨は、ダイよりシート状に溶融押出成形された樹脂を回転冷却ロール表面に押出し、ブレード状の放電電極に高電圧を印加して、回転冷却ロール表面に密着させるシート冷却成形方法において、放電電極の冷却ロールから遠い側の上向端エッジから放電させないことにある。   That is, the gist of the present invention is a sheet cooling molding in which a resin melt-extruded in a sheet form from a die is extruded onto the surface of a rotating cooling roll, and a high voltage is applied to a blade-shaped discharge electrode to adhere to the surface of the rotating cooling roll. In the method, the discharge electrode is not discharged from the upward end edge on the side far from the cooling roll.

本発明によれば、放電電極の断面における巾方向に沿った中心線の傾き角が、シート状溶融体が冷却ロールと接する接点を通る冷却ロールの法線に対して0〜±20°の範囲であることが好ましい。   According to the present invention, the inclination angle of the center line along the width direction in the cross section of the discharge electrode is in the range of 0 to ± 20 ° with respect to the normal line of the cooling roll passing through the contact point where the sheet-like melt contacts the cooling roll. It is preferable that

また本発明によれば、放電電極の温度が350〜400℃の範囲であることが好ましい。   Further, according to the present invention, the temperature of the discharge electrode is preferably in the range of 350 to 400 ° C.

上記の方法で冷却成形されたキャストシートを延伸することでプラスチックフィルムを得ることができる。   A plastic film can be obtained by stretching the cast sheet cooled and molded by the above method.

本発明によれば、ブレード電極の上向端エッジからの気中放電を阻止することで、下向端エッジのピニング放電能力を大幅に改善することができ、CR高速化に対応した電荷析出が可能となる。   According to the present invention, by preventing air discharge from the upper end edge of the blade electrode, the pinning discharge capability of the lower end edge can be greatly improved, and charge deposition corresponding to CR speeding up can be achieved. It becomes possible.

従って、シート状溶融体の均一な冷却成形を可能にし、均一な結晶化を有するキャストシートを高速に製膜することができる。結果として延伸プラスチックフィルムの高生産性と操業の安定性、更に高品質、特に厚み均一性、透明性、表面平滑度、収縮特性などの物性向上を図ることが可能となる。   Therefore, uniform cooling molding of the sheet-like melt can be performed, and a cast sheet having uniform crystallization can be formed at high speed. As a result, it is possible to improve the physical properties such as high productivity and operational stability of the stretched plastic film, and further high quality, particularly thickness uniformity, transparency, surface smoothness, shrinkage characteristics and the like.

本発明の実施の形態のプラスチックフィルムの製造方法を示す側面図である。It is a side view which shows the manufacturing method of the plastic film of embodiment of this invention. 本発明におけるブレード電極とブロック電極の配置を示す側面図である。It is a side view which shows arrangement | positioning of the blade electrode and block electrode in this invention.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は、本発明のプラスチックフィルムの製造方法の実施の形態を示す側面図である。Tダイ1よりシート状溶融体2をCR3の表面に押し出し、CR3と接する接点近くにシート状溶融体2の巾方向に配置した帯状の放電電極(ブレード電極)4に高電圧を印加し、それによってシート状溶融体2に静電荷を付与してCR3表面に押し付け、冷却固化させる。帯状の放電電極4は、巾方向の一端に下向端エッジ4−1を有するとともに、その他端に上向端エッジ4−2を有する。   FIG. 1 is a side view showing an embodiment of a method for producing a plastic film of the present invention. A sheet-like melt 2 is extruded from the T-die 1 onto the surface of the CR 3, and a high voltage is applied to the strip-shaped discharge electrode (blade electrode) 4 disposed in the width direction of the sheet-like melt 2 near the contact point in contact with the CR 3. Thus, an electrostatic charge is imparted to the sheet-like melt 2 and pressed against the CR3 surface to be cooled and solidified. The strip-shaped discharge electrode 4 has a downward end edge 4-1 at one end in the width direction and an upward end edge 4-2 at the other end.

本発明では、放電電極4のCR3に近い側の下向端エッジ4−1からのみ放電させ、CR3から遠い側の上向端エッジ4−2から放電させないことが最も重要である。本発明において、「放電させない」とは、まったく放電させないことと、本発明の目的を達成できる範囲内でのわずかな放電は許容することとの両者を含む概念である。   In the present invention, it is most important that the discharge is performed only from the downward end edge 4-1 on the side close to CR3 of the discharge electrode 4 and not from the upward end edge 4-2 on the side far from CR3. In the present invention, “do not discharge” is a concept including both not discharging at all and allowing a slight discharge within a range in which the object of the present invention can be achieved.

CR3から遠い側の上向端エッジ4−2から放電させない方策としては、図1に示すように、放電電極4の上向端エッジ4−2をブロック電極5で挟み、接触させて放電電極4と同じ電位にすることが挙げられる。これによって、上向端エッジ4−2からの放電を阻止できる。   As a measure not to discharge from the upward edge 4-2 on the side far from the CR3, as shown in FIG. 1, the upward edge 4-2 of the discharge electrode 4 is sandwiched between the block electrodes 5 and brought into contact with the discharge electrode 4 as shown in FIG. And the same potential. As a result, discharge from the upward edge 4-2 can be prevented.

本発明に用いられるブロック電極5としては、断面形状が円形、半円形、楕円形、長円形、流線形、丸コの字形、多角形などのものが挙げられるが、特に限定するものではない。ブロック電極5の表面には鋭利な角がないように角を丸めた形状を選択する必要がある。尚且つ、ブロック電極5の断面の曲率半径を放電電極4の両端エッジ4−1、4−2の曲率半径より大きくすることでより有効に放電を阻止できる。   Examples of the block electrode 5 used in the present invention include, but are not particularly limited to, a cross-sectional shape that is circular, semicircular, elliptical, oval, streamlined, round U-shaped, or polygonal. It is necessary to select a shape with rounded corners so that there are no sharp corners on the surface of the block electrode 5. In addition, by making the radius of curvature of the cross section of the block electrode 5 larger than the radius of curvature of both end edges 4-1 and 4-2 of the discharge electrode 4, discharge can be more effectively prevented.

ブロック電極5の曲率半径を余り大きく採るとブロック電極5の断面そのものが大きくなってしまうので、ブロック電極5からの放電は阻止できるが、電極5近傍の風の流れを妨げることになり、モノマーガスの滞留などを招くので好ましくない。理論的には曲率半径の2乗に反比例して放電能力は低下するので余り大きくする必要はない。ブロック電極5の曲率半径は、両端エッジ4−1、4−2の先端の曲率半径の10倍以上、より好ましくは30倍以上が好ましい。ブロック電極5は、このブロック電極5を固定・支持するエンジニアリング設計上適切な形・大きさを選択すればよい。   If the radius of curvature of the block electrode 5 is too large, the cross section itself of the block electrode 5 becomes large, so that the discharge from the block electrode 5 can be prevented, but the flow of wind in the vicinity of the electrode 5 is hindered, and the monomer gas This is not preferable because it causes a stagnation. Theoretically, the discharge capacity decreases in inverse proportion to the square of the radius of curvature, so it is not necessary to make it too large. The radius of curvature of the block electrode 5 is preferably at least 10 times, more preferably at least 30 times the radius of curvature of the ends of the end edges 4-1 and 4-2. The block electrode 5 may be selected in an appropriate shape and size for engineering design for fixing and supporting the block electrode 5.

ブロック電極5に用いる金属材料としては、例えば、銅合金、ニッケル、鋼、ステンレス、タングステン、アモルファス合金などが挙げられるが、これらに限定するものではない。ただし、表面酸化で著しく導電性が低下する材料は好ましくない。   Examples of the metal material used for the block electrode 5 include, but are not limited to, copper alloy, nickel, steel, stainless steel, tungsten, and amorphous alloy. However, a material whose conductivity is significantly reduced by surface oxidation is not preferable.

本発明に用いる放電電極4は、断面形状が薄肉広幅のブレード電極である。   The discharge electrode 4 used in the present invention is a blade electrode having a thin and wide cross-sectional shape.

放電電極4の厚みは、0.02mm以上0.20mm以下が最適である。厚みが薄い方が易放電能力に優れているが、0.02mm未満ではエッジが傷付き易く取扱が難しくなるので好ましくない。逆に厚みが0.20mmを超えると放電開始電圧が高く、放電電極4自身の放電能力が低いために、CR製膜速度の高速化が達成できない。   The thickness of the discharge electrode 4 is optimally 0.02 mm or more and 0.20 mm or less. The thinner the thickness, the better the easy discharge capability. However, if the thickness is less than 0.02 mm, the edge is easily scratched and the handling becomes difficult. On the other hand, if the thickness exceeds 0.20 mm, the discharge starting voltage is high, and the discharge capability of the discharge electrode 4 itself is low, so that the CR film forming speed cannot be increased.

また放電電極4の巾は、5mm以上20mm以下が好ましい。巾が5mmよりも狭いとブロック電極5が形成する電界の影響を受け低電圧域の放電が不安定となるため、好ましくない。逆に巾が20mmより広いと放電電極4に均等に張力を与え架設する装置が大掛かりとなり、好ましくない。   The width of the discharge electrode 4 is preferably 5 mm or more and 20 mm or less. If the width is less than 5 mm, the discharge in the low voltage region becomes unstable due to the influence of the electric field formed by the block electrode 5, which is not preferable. On the other hand, if the width is larger than 20 mm, an apparatus that applies tension to the discharge electrode 4 evenly and installs it becomes undesirably large.

放電電極4は下向端4−1、上向端4−2の両端エッジは角のない丸く研磨されたものがよい。両端エッジの加工寸法精度に優れた圧延加工された極細平丸線を用いるとよい。帯状に裁断した状態のままでは角に返りやバリがあるので局部的に集中放電が発生して先端エッジの金属昇華やスパーク溶断が起きるので好ましくない。   As for the discharge electrode 4, the both ends of the downward end 4-1 and the upward end 4-2 should be rounded without corners. It is advisable to use an extremely fine flat round wire that has been rolled and has excellent processing dimensional accuracy at both ends. If the belt is cut into a strip shape, it is not preferable because there is a return to the corner and burrs, so that concentrated discharge occurs locally and metal sublimation and spark fusing occur at the leading edge.

図2は、放電電極4の上向端エッジ4−2をブロック電極5に差し込んだ構造のもの[図2(a)(c)]と、上向端エッジ4−2の先端をブロック電極5に接触させた構造のもの[図2(b)(c)]とを示している。上向端エッジ4−2の先端をブロック電極5に接触させることでも充分気中放電を阻止できる。尚、ブロック電極5は大地アースからは絶縁し電気的に非接地状態である。   2 shows a structure in which the upper end edge 4-2 of the discharge electrode 4 is inserted into the block electrode 5 [FIGS. 2 (a) and (c)], and the tip of the upper end edge 4-2 is the block electrode 5. [FIG. 2 (b) (c)]. The air discharge can be sufficiently prevented by bringing the tip of the upward edge 4-2 into contact with the block electrode 5. The block electrode 5 is insulated from the earth ground and is not electrically grounded.

次に本発明では、放電電極4の断面における巾方向に沿った中心線6の傾き角θが、シート状溶融体2がCR3と接する接点8を通るCR3の法線7に対して0〜±20°の範囲であることが好ましい。   Next, in the present invention, the inclination angle θ of the center line 6 along the width direction in the cross section of the discharge electrode 4 is 0 to ±± with respect to the normal line 7 of CR3 passing through the contact point 8 where the sheet-like melt 2 is in contact with CR3. A range of 20 ° is preferred.

ブレード電極である放電電極4とCR3との間の放電特性は、放電電極4の断面の巾方向中心線6とCR3の法線7とが成す傾き角θに依存する。   The discharge characteristics between the discharge electrode 4 which is a blade electrode and CR3 depend on the inclination angle θ formed by the center line 6 in the width direction of the cross section of the discharge electrode 4 and the normal line 7 of CR3.

図2(a)(c)に示すように放電電極4の上向端エッジ4−2をブロック電極5に差し込む構造のものは、CR3の法線7に対して対称な構造となり、傾き角θが0°の放電電極4をCR3表面に対して垂直に立てた状態が最も低電圧で高放電電流となる最大放電能力を示し、傾き角θを±どちら側に傾けてもθと共に放電能力は低下減衰する特性がある。この傾き角θが0〜±20°の範囲であれば、放電能力を95%以上保持できるので実質的には問題にならないので許容できる。   As shown in FIGS. 2A and 2C, the structure in which the upper end edge 4-2 of the discharge electrode 4 is inserted into the block electrode 5 has a symmetric structure with respect to the normal line 7 of CR3, and the inclination angle θ The state in which the discharge electrode 4 of 0 ° is perpendicular to the CR3 surface shows the maximum discharge capability at the lowest voltage and high discharge current. It has a characteristic of decreasing and attenuating. If the inclination angle θ is in the range of 0 to ± 20 °, the discharge capacity can be maintained at 95% or more, which is acceptable since it is not substantially a problem.

他方、図2(b)(d)に示すように放電電極4の上向端エッジ4−2の先端をブロック電極5に接触させる構造のものは、図示のようにCR3の法線7に対して非対称になるので、CR3に近い側の下向端エッジ4−1の先端を基点にCR3の法線に対してやや傾けた位置に最大放電能力を示す角度がある。その最大放電能力が得られる傾き角θで使用することが最も望ましい。この傾き角θも0〜±20°の範囲である。これは放電電極4の下向端エッジ4−1の先端で合流するイオン風の強度と向きが影響しているものと考えている。   On the other hand, as shown in FIGS. 2B and 2D, the structure in which the tip of the upper end edge 4-2 of the discharge electrode 4 is in contact with the block electrode 5 is as shown in FIG. Therefore, there is an angle indicating the maximum discharge capacity at a position slightly inclined with respect to the normal line of CR3 with the tip of the downward end edge 4-1 on the side close to CR3 as a base point. It is most desirable to use at an inclination angle θ that provides the maximum discharge capability. This inclination angle θ is also in the range of 0 to ± 20 °. This is considered to be due to the influence of the intensity and direction of the ion wind that merges at the tip of the downward edge 4-1 of the discharge electrode 4.

本発明では、放電電極4は、350℃以上400℃未満の温度に加熱するとよい。   In the present invention, the discharge electrode 4 is preferably heated to a temperature of 350 ° C. or higher and lower than 400 ° C.

モノマーやオリゴマーなどの低分子量物の電極凝縮をさせないためには少なくとも350℃以上に加熱することが好ましく、尚且つ低電圧易放電特性を得るには、更に高温域が好ましいが、400℃以上になると電極4を構成する金属の酸化劣化が著しくなり、逆に電極4の寿命を短くしてしまうのでよくない。   In order to prevent electrode condensation of low molecular weight substances such as monomers and oligomers, it is preferable to heat at least 350 ° C. or higher, and in order to obtain low voltage and easy discharge characteristics, a higher temperature range is preferable, but 400 ° C. or higher. Then, the oxidative deterioration of the metal constituting the electrode 4 becomes remarkable, and conversely, the life of the electrode 4 is shortened.

放電電極4の加熱方法としては、例えば、熱体であるニクロム線とマグネシウム化合物などの充填材を特殊金属管などで覆ったシーズヒータを直接ガード電極として使用する方法や、またはシーズヒータをガード電極に仕込んで加熱するなどの方法がある。これによって、放電電極4を高温に維持することができる。   As a heating method of the discharge electrode 4, for example, a method in which a sheathed heater in which a filler such as a nichrome wire and a magnesium compound, which is a hot body, is covered with a special metal tube is used directly as a guard electrode, or a sheathed heater is used as a guard electrode. There are methods such as charging and heating. Thereby, the discharge electrode 4 can be maintained at a high temperature.

本発明では、冷却成形されたキャストシートを延伸・熱処理することで延伸プラスチックフィルムを得ることができる。   In the present invention, a stretched plastic film can be obtained by stretching and heat-treating a cast sheet that has been cooled and molded.

その延伸方法としては、縦または横一軸延伸、逐次二軸延伸、同時二軸延伸など挙げることができる。特に配向結晶化フィルムが得られる逐次二軸延伸、同時二軸延伸を適用することが好ましい。   Examples of the stretching method include longitudinal or lateral uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching. In particular, it is preferable to apply sequential biaxial stretching and simultaneous biaxial stretching to obtain an oriented crystallized film.

本発明でいうプラスチックとは、静電密着法が適応できる樹脂であれば特に限定はしない。   The plastic used in the present invention is not particularly limited as long as it is a resin to which the electrostatic contact method can be applied.

例えば、ポリエチレンテレフタレートで代表されるポリエステル系樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ナイロン6、ナイロン66などのポリアミド系樹脂などの単独重合体や、これらの混合物、共重合体などが挙げられる。   Examples thereof include homopolymers such as polyester resins typified by polyethylene terephthalate, polyolefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 66, and mixtures and copolymers thereof.

またこれらの樹脂には公知の添加剤、たとえば安定剤、酸化防止剤、充填剤、滑剤、帯電防止剤、ブロッキング防止剤、着色剤などを含有させてもよい。   These resins may contain known additives such as stabilizers, antioxidants, fillers, lubricants, antistatic agents, antiblocking agents, colorants and the like.

本発明の方法は、特に厚み精度、光学的歪みについての要求が厳しいポリエステル系二軸延伸フィルム用の未延伸シート成形に極めて有用である。   The method of the present invention is extremely useful for forming an unstretched sheet for a polyester biaxially stretched film, which has particularly strict requirements for thickness accuracy and optical distortion.

以下の実施例、比較例において用いた下記の特性値は、それぞれ次の方法により測定した。   The following characteristic values used in the following examples and comparative examples were measured by the following methods, respectively.

(1)フィルム厚さ変動量
フィルムの巾方向をTD方向、フィルムの流れ方向をMD方向と称する。
(1) Film thickness fluctuation amount The width direction of the film is referred to as the TD direction, and the flow direction of the film is referred to as the MD direction.

走行フィルムについて、赤外線厚み計でTD方向の厚みを巾25mmピッチに測定し、更にMD方向に100mピッチに40回測定した。TD方向の各測定点におけるMD方向40点の最大偏差値をその点の厚さムラとした。   About the running film, the thickness of the TD direction was measured with the width | variety 25mm pitch with the infrared thickness meter, and also measured 40 times at 100m pitch in MD direction. The maximum deviation value at 40 points in the MD direction at each measurement point in the TD direction was defined as the thickness unevenness at that point.

尚、赤外線厚み計には、NDCインフラレッドエンジニアリング社製(赤外線透過型センサTFG710)を使用した。   In addition, NDC infra red engineering company make (infrared transmission type sensor TFG710) was used for the infrared thickness meter.

(2)偏光歪み検査装置によるエアーカミ欠点の評価
直交偏光板(偏光子/検光子)間にキャストシートを挿入し、検光子を回転させながら観察した。
下記の基準によって評価を行った。
○:エアーカミ欠点がまったく観察されず良好
△:エアーカミ欠点の観察限界
×:エアーカミ欠点が観察され不良
(2) Evaluation of Air Claw Defects Using a Polarization Distortion Inspection Device A cast sheet was inserted between crossed polarizing plates (polarizer / analyzer) and observed while rotating the analyzer.
Evaluation was performed according to the following criteria.
◯: Air flaw defects are not observed at all and good △: Observation limit of air flaw defects ×: Air flaw defects are observed and defective

次に、本発明を実施例によって具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

実施例1
押出機に巾600mmのTダイを取付け、押出温度280℃で、平均粒径1.0μmのシリカを0.1質量%含有するポリエチレンテレフタレート樹脂(相対粘度1.38)をシート状に押し出し、表面温度20℃に温調したCR上に静電密着法で密着させて、巾520mm、厚さ195μmの無配向キャストシートを冷却成形した。
Example 1
A T-die having a width of 600 mm was attached to the extruder, and a polyethylene terephthalate resin (relative viscosity 1.38) containing 0.1% by mass of silica having an average particle diameter of 1.0 μm was extruded into a sheet at an extrusion temperature of 280 ° C. A non-oriented cast sheet having a width of 520 mm and a thickness of 195 μm was cooled and formed on the CR adjusted to a temperature of 20 ° C. by an electrostatic adhesion method.

このとき、シート状溶融体のCR接点近くに、放電電極として厚み0.05mm巾7mmのステンレス製の平丸線を、シート状溶融体上部の巾方向に平行に架設した。このとき放電電極断面の中心線の傾き角θは0°にセットし、放電電極の下向端からCR表面までの間隔は5mmにした。ステンレス製φ5mmのブロック電極のスリットに、放電電極の上向端を差込む状態で接触させた。更にブロック電極をヒータ加熱し、放電電極の温度を400℃に制御した。   At this time, a flat round wire made of stainless steel having a thickness of 0.05 mm and a width of 7 mm as a discharge electrode was installed near the CR contact point of the sheet-like melt in parallel with the width direction of the upper part of the sheet-like melt. At this time, the inclination angle θ of the center line of the discharge electrode cross section was set to 0 °, and the distance from the lower end of the discharge electrode to the CR surface was set to 5 mm. The upper end of the discharge electrode was brought into contact with the slit of a stainless φ5 mm block electrode. Further, the block electrode was heated with a heater, and the temperature of the discharge electrode was controlled at 400 ° C.

放電電極には直流高圧安定化電源を接続し、+7kVの直流電圧を印加し、CR表面速度は80m/minとした。このとき、シートとCR表面との間にエアーカミが発生することなく、また火花放電も発生せずに安定した製膜が可能であった。   A DC high-voltage stabilized power source was connected to the discharge electrode, a DC voltage of +7 kV was applied, and the CR surface speed was 80 m / min. At this time, air film was not generated between the sheet and the CR surface, and stable film formation was possible without generating spark discharge.

次いでこのキャストシートを縦及び横方向に延伸倍率各4倍に二軸延伸した後、220℃で熱固定し、厚み12μmの二軸延伸ポリエチレンテレフタレートフィルムとした。厚み及び光学的均一性に優れたフィルムが得られた。   Next, the cast sheet was biaxially stretched in the longitudinal and lateral directions at a stretching ratio of 4 times, and then heat-set at 220 ° C. to obtain a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm. A film excellent in thickness and optical uniformity was obtained.

このときのキャストシートのエアーカミ欠点観察結果とMD厚さ変動量の測定結果を表1に示した。   Table 1 shows the results of observation of the air sheet defect of the cast sheet and the measurement result of the MD thickness variation.

比較例
ブロック電極を取り除いた以外は実施例1と同一条件で製膜した。エアーカミ欠点の発生が著しく、スパーク放電が頻発するので、CR速度を60m/minまで下げざるを得なかった。このときの結果を表1に比較して示した。
Comparative Example A film was formed under the same conditions as in Example 1 except that the block electrode was removed. The occurrence of air nick defects was remarkable and spark discharge occurred frequently, so the CR speed had to be reduced to 60 m / min. The results at this time are shown in comparison with Table 1.

実施例2
放電電極断面の中心線の傾き角θをTダイ側に+25°傾けた以外は実施例1と同一条件で製膜した。エアーカミ欠点が間欠的に観察され、CR速度70m/minまで下げざるを得なかった。このときの結果を表1に比較して示した。
Example 2
A film was formed under the same conditions as in Example 1 except that the inclination angle θ of the center line of the discharge electrode cross section was inclined + 25 ° toward the T die. Air flaw defects were observed intermittently and had to be lowered to a CR speed of 70 m / min. The results at this time are shown in comparison with Table 1.

実施例3
ブロック電極のヒータ加熱を止めた以外は実施例1と同一条件で製膜した。生産開始初期は安定していたものの16時間経過以降モノマー異物欠点の発生が多発し、一旦生産ラインを停止して電極周りのモノマー掃除を実施せざるを得なかった。
Example 3
A film was formed under the same conditions as in Example 1 except that the heater heating of the block electrode was stopped. Although stable at the beginning of production, monomer foreign matter defects frequently occurred after the lapse of 16 hours, and the production line had to be temporarily stopped to clean the monomer around the electrodes.

Figure 2014030933
Figure 2014030933

1 Tダイ
2 シート状溶融体
3 キャスティングロール(CR)
4 放電電極(ブレード状電極)
4−1 下向端エッジ
4−2 上向端エッジ
5 ブロック電極
1 T-die 2 Sheet-like melt 3 Casting roll (CR)
4 Discharge electrode (blade electrode)
4-1 Downward edge 4-2 Upward edge 5 Block electrode

Claims (4)

ダイよりシート状に溶融押出成形された樹脂を回転冷却ロール表面に押出し、ブレード状の放電電極に高電圧を印加して、回転冷却ロール表面に密着させるシートの冷却成形方法において、放電電極の冷却ロールから遠い側の上向端エッジから放電させないことを特徴とするプラスチックフィルムの製造方法。   In a cooling method for a sheet in which a resin melt-extruded in a sheet form from a die is extruded onto the surface of a rotating cooling roll, and a high voltage is applied to the blade-shaped discharge electrode so as to adhere to the surface of the rotating cooling roll. A method for producing a plastic film, characterized by not discharging from an upward end edge far from the roll. 放電電極の断面における巾方向に沿った中心線の傾き角が、シート状溶融体が冷却ロールと接する接点を通る冷却ロールの法線に対して0〜±20°の範囲であることを特徴とする請求項1記載のプラスチックフィルムの製造方法。   The inclination angle of the center line along the width direction in the cross section of the discharge electrode is in the range of 0 to ± 20 ° with respect to the normal line of the cooling roll passing through the contact point where the sheet-like melt contacts the cooling roll. The method for producing a plastic film according to claim 1. 放電電極の温度が350〜400℃の範囲であることを特徴とする請求項1または2記載のプラスチックフィルムの製造方法。   The method for producing a plastic film according to claim 1 or 2, wherein the temperature of the discharge electrode is in the range of 350 to 400 ° C. 請求項1から3までのいずれか1項に記載の方法で冷却成形されたキャストシートを更に延伸することを特徴とするプラスチックフィルムの製造方法。   A method for producing a plastic film, comprising: further stretching a cast sheet cooled and molded by the method according to any one of claims 1 to 3.
JP2012171547A 2012-08-02 2012-08-02 Method for producing plastic film Pending JP2014030933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171547A JP2014030933A (en) 2012-08-02 2012-08-02 Method for producing plastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171547A JP2014030933A (en) 2012-08-02 2012-08-02 Method for producing plastic film

Publications (1)

Publication Number Publication Date
JP2014030933A true JP2014030933A (en) 2014-02-20

Family

ID=50281158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171547A Pending JP2014030933A (en) 2012-08-02 2012-08-02 Method for producing plastic film

Country Status (1)

Country Link
JP (1) JP2014030933A (en)

Similar Documents

Publication Publication Date Title
JP6269062B2 (en) Film roll
JP2000263642A (en) Manufacture of biaxially oriented polyester film
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
EP0026028B1 (en) Apparatus and process for extruding and quenching a thermoplastics film
JP2014030933A (en) Method for producing plastic film
JP4289323B2 (en) Manufacturing method of polyamide resin film roll
JP6087550B2 (en) Microporous film and wound lithium ion battery using the same
JP5557473B2 (en) Method and apparatus for manufacturing plastic film
JP2004160819A (en) Manufacturing method for optical film
KR950005725B1 (en) Manufacturing method for thermoplastic polyester film
JPH08281794A (en) Thermoplastic resin film excellent in thickness uniformity and production thereof
JP6834572B2 (en) Manufacturing method of optical film
TW386053B (en) Manufacture of thermoplastic resin sheet and production equipment
JP7287240B2 (en) film roll
EP0928676A1 (en) Method and apparatus for producing thermoplastic resin sheet
JP2001219460A (en) Method for manufacturing polyamide film
JP2002301762A (en) Manufacturing method for biaxially oriented polyester film
JP3548346B2 (en) Cooling device for molten resin sheet
JP2003127207A (en) Method for manufacturing thermoplastic resin sheet
JP4810747B2 (en) Method for producing biaxially stretched polyester film
JP2000296528A (en) Manufacture of thermoplastic resin sheet
JP2000301595A (en) Apparatus and method for molding molten polymer sheet
JP2001334565A (en) Method for manufacturing polyamide resin sheet
JPH09286054A (en) Production of biaxially stretched polyamide film
JP2007015188A (en) Manufacturing method of polyamide type mixed resin film roll