JP6289888B2 - Damping damper for structures - Google Patents

Damping damper for structures Download PDF

Info

Publication number
JP6289888B2
JP6289888B2 JP2013253832A JP2013253832A JP6289888B2 JP 6289888 B2 JP6289888 B2 JP 6289888B2 JP 2013253832 A JP2013253832 A JP 2013253832A JP 2013253832 A JP2013253832 A JP 2013253832A JP 6289888 B2 JP6289888 B2 JP 6289888B2
Authority
JP
Japan
Prior art keywords
cylinder member
fixed
elastic rubber
rubber body
piston rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013253832A
Other languages
Japanese (ja)
Other versions
JP2015113846A (en
Inventor
合田 裕一
裕一 合田
田中 健司
健司 田中
貴宏 小泉
貴宏 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBM Co Ltd
Original Assignee
BBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBM Co Ltd filed Critical BBM Co Ltd
Priority to JP2013253832A priority Critical patent/JP6289888B2/en
Publication of JP2015113846A publication Critical patent/JP2015113846A/en
Application granted granted Critical
Publication of JP6289888B2 publication Critical patent/JP6289888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建築物や橋梁等の構造物の地震時の振動を抑制する構造物用制振ダンパーに関し、特に地震の際の構造物の大きな変位に対して効率良く地震エネルギーを吸収することが可能な弾性ゴムの変形を利用した構造物用制振ダンパーに関する。   The present invention relates to a vibration damper for a structure that suppresses vibrations of structures such as buildings and bridges during an earthquake, and in particular, can efficiently absorb seismic energy against a large displacement of the structure during an earthquake. The present invention relates to a vibration damper for a structure using a possible deformation of elastic rubber.

構造物用制振ダンパーとしてオイルダンパー、エアーダンパーや粘弾性ダンパー、弾性ゴムダンパーが知られている。   Oil dampers, air dampers, viscoelastic dampers, and elastic rubber dampers are known as damping dampers for structures.

特許第2541073号公報Japanese Patent No. 2541073 特許第2566833号公報Japanese Patent No. 2568833

オイルダンパーやエアーダンパーは、温度依存性がなく、高速時のエネルギー吸収性に優れ、繰り返しの変形に強いという利点を有するが、低速時の性能が低く、密閉性が必要で、液漏れが発生しやすいという問題がある。また、オイルダンパーやエアーダンパーは,シリンダー内部を密閉するために,シリンダー先端の蓋に設けた穴の内周部とロッド外周部の間で,シール材等を用いて密閉しまた滑動可能としている。ダンパーの外部に露出したピストンロッドの外周部には,外気によって錆びが生じやすい。ロッドの外周部表面に錆びによって凸凹が生じた場合には,密閉および滑動の役割を担うシール材が,ロッド外周部の凸凹によって容易に削られて破損する。その結果,ダンパーの密閉性が失われる。この障害を取り除くために,従来のダンパーではロッド外周部の錆を,定期的に除去するメンテナンスが必要となるという問題を有する。   Oil dampers and air dampers have the advantage that they are not temperature dependent, have excellent energy absorption at high speeds, and are resistant to repeated deformation, but have low performance at low speeds, require tightness, and liquid leakage occurs. There is a problem that it is easy to do. Oil dampers and air dampers are sealed and slidable with a sealant between the inner periphery of the hole in the lid on the cylinder tip and the outer periphery of the rod to seal the inside of the cylinder. . Rust is likely to occur on the outer periphery of the piston rod exposed outside the damper due to outside air. If the surface of the outer periphery of the rod becomes uneven, the sealing material that plays the role of sealing and sliding is easily scraped and damaged by the unevenness of the outer periphery of the rod. As a result, the sealability of the damper is lost. In order to remove this obstacle, the conventional damper has a problem that maintenance for periodically removing rust on the outer periphery of the rod is required.

粘弾性ダンパー等の弾性体の変形による振動吸収機能を有する制振ダンパーは、構造が簡単でメンテナンスも容易であるという利点を有する。しかし、地震時に構造物には方向の異なる大きな変位が作用し、構造物の相対変位する2つの構造にそれぞれ一端を固定したシリンダー部材とピストン部材の軸方向の変位にぶれが生じ、その結果、装置の一部に荷重が集中して装置自体を破壊する恐れがある。   A damping damper having a vibration absorbing function by deformation of an elastic body such as a viscoelastic damper has an advantage that the structure is simple and maintenance is easy. However, a large displacement with different directions acts on the structure during the earthquake, and the axial displacement of the cylinder member and the piston member each having one end fixed to the two structures where the structure is relatively displaced occurs. The load may concentrate on a part of the device and the device itself may be destroyed.

弾性ゴムの弾性変形によるダンパーは、ゴムの組成を変えることにより性能を変化することができ、繰り返し変形に強いという利点を有するが、変形性能に限界があり、温度依存性があるという問題を有する。   Damper by elastic deformation of elastic rubber can change performance by changing the composition of rubber and has the advantage of being strong against repeated deformation, but has the problem that there is a limit on deformation performance and temperature dependency .

本発明は、従来技術の持つ問題を解決する、構造が簡単で、製造が容易で弾性ゴムダンパーの持つ欠点を補い、効率良く地震エネルギー吸収を可能とする構造物用制振ダンパーを提供することを目的とする。   The present invention provides a structure damping damper that solves the problems of the prior art, has a simple structure, is easy to manufacture, compensates for the disadvantages of an elastic rubber damper, and can efficiently absorb seismic energy. With the goal.

本発明の構造物用制振ダンパーは、前記課題を解決するために、地震時に相対変位する一方の構造体に固定される一端が閉じ、他端が開口したシリンダー部材と、他方の構造体に固定され、前記シリンダー部材の開口から内部に伸び、前記シリンダー部材との間で相対変位可能に配置され、先端に前記シリンダー部材の内径とほぼ同じ外径を有し、流通路を形成した弁体を備えたピストンロッドと、前記弁体から所定間隔をおいた前記ピストンロッド外周面にその内周面が固定され前記シリンダー部材内周面にその外周面が固定される弾性ゴム体と、前記ピストンロッド外周と前記シリンダー部材内周面に固定され一定以上の負荷により破断する剛性部材と、前記弾性ゴム体と前記弁体との間に外周部が前記シリンダー部材内周面に固定されたその内周部が前記ピストンロッド外周部と摺動可能に配置され、自身と前記シリンダー部材の閉じられた一端間を密封空間とするリング状隔壁部材と、を備えることを特徴とする。
In order to solve the above problems, the structural vibration damper of the present invention has a cylinder member that is fixed to one structure that is relatively displaced during an earthquake, closed at one end, and opened at the other end, and the other structure. A valve body that is fixed, extends inward from the opening of the cylinder member, is disposed so as to be relatively displaceable with the cylinder member, has an outer diameter substantially the same as the inner diameter of the cylinder member at the tip, and forms a flow passage A piston rod comprising: an elastic rubber body whose inner peripheral surface is fixed to the piston rod outer peripheral surface spaced a predetermined distance from the valve body and whose outer peripheral surface is fixed to the cylinder member inner peripheral surface; and the piston An outer peripheral portion is fixed to the inner peripheral surface of the cylinder member between a rigid member that is fixed to the outer periphery of the rod and the inner peripheral surface of the cylinder member and breaks when a load exceeds a certain level, and the elastic rubber body and the valve body. The inner peripheral portions are arranged slidably with said piston rod outer periphery, characterized in that it comprises a ring-shaped partition wall member to seal the space between one end closed and its of the cylinder member.

また、本発明の構造物用制振ダンパーは、前記弾性ゴム体を高減衰性ゴムとすることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that the elastic rubber body is made of a high damping rubber.

また、本発明の構造物用制振ダンパーは、前記シリンダー部材の前記弾性ゴム体を固定する部分の内径を他の部分の内径より大きくすることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that an inner diameter of a portion of the cylinder member to which the elastic rubber body is fixed is made larger than an inner diameter of another portion.

また、本発明の構造物用制振ダンパーは、先端が閉じ前記弁体が摺動するシリンダー部材と、前記弾性ゴム体が固定されるシリンダー部材と、前記剛性部材が固定されるシリンダー部材をそれぞれ別体とし、夫々のシリンダー部材の長さや内径が異なるように形成して各シリンダー部材を連結固定することを特徴とする。   Further, the vibration damper for a structure of the present invention includes a cylinder member whose tip is closed and the valve body slides, a cylinder member to which the elastic rubber body is fixed, and a cylinder member to which the rigid member is fixed. Separately, the cylinder members are formed to have different lengths and inner diameters, and the cylinder members are connected and fixed.

地震時に相対変位する一方の構造体に固定される一端が閉じ、他端が開口したシリンダー部材と、他方の構造体に固定され、前記シリンダー部材の開口から内部に伸び、前記シリンダー部材との間で相対変位可能に配置され、先端に前記シリンダー部材の内径とほぼ同じ外径を有し、流通路を形成した弁体を備えたピストンロッドと、前記弁体から所定間隔をおいた前記ピストンロッド外周面にその内周面が固定され前記シリンダー部材内周面にその外周面が固定される弾性ゴム体と、前記ピストンロッド外周と前記シリンダー部材内周面に固定され一定以上の負荷により破断する剛性部材と、前記弾性ゴム体と前記弁体との間に外周部が前記シリンダー部材内周面に固定されたその内周部が前記ピストンロッド外周部と摺動可能に配置され、自身と前記シリンダー部材の閉じられた一端間を密封空間とするリング状隔壁部材と、を備えることで、1本のピストンロッドに複数の異なるダンパー機能を配置することができる。そして、異なるダンパー機能の其々が持つ欠点を他のダンパー機能が補填して効率良く地震エネルギーを吸収することが可能となり、シリンダー部材内密封空間の体積を弾性ゴム体の変形に拘わらず一定とし地震エネルギーの減衰性を向上することが可能となる。
弾性ゴム体を高減衰性ゴムとすることで、地震エネルギーの減衰性能を向上することが可能となる。
シリンダー部材の弾性ゴム体を固定する部分の内径を他の部分の内径より大きくすることで、弾性ゴム体の体積を大きくすることで弾性ゴムの変形による地震エネルギーの減衰性を向上することが可能となる。
先端が閉じ弁体が摺動するシリンダー部材と、弾性ゴム体が固定されるシリンダー部材と、剛性部材が固定されるシリンダー部材をそれぞれ別体とし、夫々のシリンダー部材の長さや内径が異なるように形成して各シリンダー部材を連結固定することで、弾性ゴム体を固定するシリンダー部材の内径を大きくして弾性ゴム体の弾性変形量を大きくしたり、設置場所に応じてシリンダー部材の長さを調整することが可能となる。
One end fixed to one structure that is relatively displaced in the event of an earthquake is closed, the other end is open, and the other end is fixed to the other structure. And a piston rod having a valve body having an outer diameter substantially the same as the inner diameter of the cylinder member at the tip and forming a flow passage, and the piston rod spaced a predetermined distance from the valve body An elastic rubber body having an inner peripheral surface fixed to the outer peripheral surface and an outer peripheral surface fixed to the inner peripheral surface of the cylinder member, and fixed to the outer periphery of the piston rod and the inner peripheral surface of the cylinder member and fractured by a load exceeding a certain level. a rigid member, wherein the inner peripheral portion thereof is slidably disposed in said piston rod outer peripheral portion of the outer peripheral portion is fixed to the cylinder member inner peripheral surface between the elastic rubber body and said valve body A ring-shaped partition member between closed one end of itself and the cylinder member and the sealed space, by providing the can be arranged a plurality of different damper function to one of the piston rod. In addition, it is possible to efficiently absorb the seismic energy by compensating for the disadvantages of each of the different damper functions, and to make the volume of the sealed space in the cylinder member constant regardless of the deformation of the elastic rubber body. Seismic energy attenuation can be improved.
By making the elastic rubber body a highly attenuating rubber, it is possible to improve the attenuation performance of seismic energy.
By making the inner diameter of the part that fixes the elastic rubber body of the cylinder member larger than the inner diameter of other parts, it is possible to increase the damping capacity of the seismic energy due to deformation of the elastic rubber by increasing the volume of the elastic rubber body. It becomes.
The cylinder member with the tip closed and the valve body sliding, the cylinder member to which the elastic rubber body is fixed, and the cylinder member to which the rigid member is fixed are separated, so that the length and inner diameter of each cylinder member are different. By forming and connecting and fixing each cylinder member, the inner diameter of the cylinder member that fixes the elastic rubber body is increased to increase the amount of elastic deformation of the elastic rubber body, or the length of the cylinder member can be increased depending on the installation location. It becomes possible to adjust.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の構造物用制振ダンパーの実施の形態を図により説明する。図1は、構造物用制振ダンパーの一実施形態を示す図である。   An embodiment of a structural vibration damper of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an embodiment of a structure damping damper.

構造物用制振ダンパー1は、建築物や橋梁等の構造物の一方の構造体に連結される一端が閉じ他端が開口したシリンダー部材2と、他方の構造体に連結するピストンロッド3を備えている。ピストンロッド3は、シリンダー部材2の開口からその内部に伸び、シリンダー部材2に対して相対変位可能に配置される。   The structure damping damper 1 includes a cylinder member 2 having one end connected to one structure of a structure such as a building or a bridge and having the other end opened, and a piston rod 3 connected to the other structure. I have. The piston rod 3 extends from the opening of the cylinder member 2 to the inside thereof, and is disposed so as to be relatively displaceable with respect to the cylinder member 2.

シリンダー部材2は、断面円形の部材で、閉じた側の端部には一方の構造体に連結するためのシリンダー側取付部材4が固定される。   The cylinder member 2 is a member having a circular cross section, and a cylinder side mounting member 4 for connection to one structure is fixed to an end portion on the closed side.

ピストンロッド3の一端部には、他方の構造体に連結するためのピストンロッド側取付部材5が固定される。ピストンロッド3の他端部には、シリンダー部材2の内径とほぼ同じ外径の弁体6が形成される。   A piston rod side mounting member 5 for connecting to the other structure is fixed to one end of the piston rod 3. A valve body 6 having an outer diameter substantially the same as the inner diameter of the cylinder member 2 is formed at the other end of the piston rod 3.

ピストンロッド3の弁体6の後部外周部とシリンダー部材2の内壁間に弾性ゴム体7が固定される。一端が閉じられたシリンダー部材2とピストンロッド3の弁体6の後部外周部とシリンダー部材2の内壁間に固定される弾性ゴム体7により、シリンダー部材2の閉じた側と弁体6間の空間Aと、弁体6と弾性ゴム体7間の空間Bは、外部から密封状態にする。弾性ゴム体7がシール材として機能するのでシール材が必要でなくなる。   An elastic rubber body 7 is fixed between the rear outer peripheral portion of the valve body 6 of the piston rod 3 and the inner wall of the cylinder member 2. An elastic rubber body 7 is fixed between the cylinder member 2 with one end closed and the rear outer peripheral portion of the valve body 6 of the piston rod 3 and the inner wall of the cylinder member 2, and between the closed side of the cylinder member 2 and the valve body 6. The space A and the space B between the valve body 6 and the elastic rubber body 7 are sealed from the outside. Since the elastic rubber body 7 functions as a sealing material, no sealing material is required.

ピストンロッド3外周部とシリンダー部材2内壁部への弾性ゴム体7の固定は、加硫一体成形により実施する。加硫一体成形による固定は、鋼材とゴムとの接着部の劣化が防止され、密封状態を長期間維持することが可能となる。また,弾性ゴム体7はシリンダー部材2とピストンロッド3が相対変位した場合に弾性変形するために,従来のダンパーにおけるシール材が必要でないために,ピストンロッド3外周部の錆びによってシリンダー部材2の密閉性が失われることがない。   The elastic rubber body 7 is fixed to the outer periphery of the piston rod 3 and the inner wall of the cylinder member 2 by vulcanization integral molding. Fixing by vulcanization integral molding prevents deterioration of the bonded portion between the steel material and rubber, and allows the sealed state to be maintained for a long period of time. Further, since the elastic rubber body 7 is elastically deformed when the cylinder member 2 and the piston rod 3 are displaced relative to each other, no seal material is required in the conventional damper. Sealing is not lost.

図4、図5に示すように、弁体6には、空間A,Bと連通する流通路が形成される。図4に示される実施形態では、流通路は弁体6を貫通する小孔8として形成される。図5に示される実施形態では、流通路は弁体6の外周に切欠9として形成される。   As shown in FIGS. 4 and 5, the valve body 6 is formed with a flow passage communicating with the spaces A and B. In the embodiment shown in FIG. 4, the flow passage is formed as a small hole 8 that penetrates the valve body 6. In the embodiment shown in FIG. 5, the flow passage is formed as a notch 9 on the outer periphery of the valve body 6.

図1に示されるように、弾性ゴム体7の後部に複数のロッド状の剛性部材10が一端をピストンロッド3に固定手段11を介して固定され、他端をシリンダー部材2に固定手段12を介して固定される。剛性部材10は、樹脂又はアルミ等の金属性で、耐力性能の上限が設定されている。つまり、一定値以下の負荷に対しては剛性部材10が抵抗するが、一定値以上の負荷に対しては剛性部材10が破断してそのエネルギーを吸収する機能を有する。図1において剛性部材10は弾性ゴム体7の後部に配置されているが、図2に弾性ゴム体7の前部に配置しても良い。   As shown in FIG. 1, a plurality of rod-like rigid members 10 are fixed to the piston rod 3 via fixing means 11 at the rear part of the elastic rubber body 7, and the other end is fixed to the cylinder member 2 with fixing means 12. Fixed through. The rigid member 10 is made of metal such as resin or aluminum, and an upper limit of the proof stress performance is set. In other words, the rigid member 10 resists a load below a certain value, but has a function of breaking the rigid member 10 and absorbing its energy against a load above a certain value. In FIG. 1, the rigid member 10 is disposed at the rear portion of the elastic rubber body 7, but may be disposed at the front portion of the elastic rubber body 7 in FIG.

図1,2に示される実施形態では、シリンダー部材2を複数に分割したものである。一端が閉じ弁体6が摺動するシリンダー部材2aと、弾性ゴム体7が配置されるシリンダー部材2bと、剛性部材10を配置したシリンダー部材2cを夫々別体として形成し、連結固定する。この実施形態では、弾性ゴム体7を固定するシリンダー部材2bの内径を、弁体6が摺動するシリンダー部材2aの内径より大きくしている。その結果、弾性ゴム体7の弾性変形量を大きくすることができる。また、各シリンダー部材2a、2b、2cの長さを調節して、設置場所に応じたシリンダー部材の長さに設定することが可能となる。   In the embodiment shown in FIGS. 1 and 2, the cylinder member 2 is divided into a plurality of parts. The cylinder member 2a with one end closed and the valve body 6 sliding thereon, the cylinder member 2b on which the elastic rubber body 7 is arranged, and the cylinder member 2c on which the rigid member 10 is arranged are formed separately and connected and fixed. In this embodiment, the inner diameter of the cylinder member 2b for fixing the elastic rubber body 7 is made larger than the inner diameter of the cylinder member 2a on which the valve body 6 slides. As a result, the elastic deformation amount of the elastic rubber body 7 can be increased. Moreover, it becomes possible to set the length of each cylinder member 2a, 2b, 2c to the length of the cylinder member according to an installation place.

図1、図2に示される実施形態では、シリンダー部材2内の弾性ゴム体7と弁体6との間に、外周部がシリンダー部材2内周面に固定されたリング状隔壁部材9をその内周部がピストンロッド3外周部に対して摺動可能に配置する。弾性ゴム体7の変形によりシリンダー部材内の密封空間A+Bの体積が若干変化する。シリンダー部材2内の密封空間の体積の変化は、流体ダンパーの地震エネルギーの減衰性に少し影響する。図1.2に示される実施形態では、リング状隔壁部材9を配置することで、シリンダー部材2内の密封空間の体積を一定として流体ダンパーの地震エネルギー減衰性を保持する。リング状隔壁部材9の材質としては硬質ゴム等とする。   In the embodiment shown in FIGS. 1 and 2, a ring-shaped partition wall member 9 having an outer peripheral portion fixed to the inner peripheral surface of the cylinder member 2 is provided between the elastic rubber body 7 and the valve body 6 in the cylinder member 2. The inner peripheral portion is disposed so as to be slidable with respect to the outer peripheral portion of the piston rod 3. Due to the deformation of the elastic rubber body 7, the volume of the sealed space A + B in the cylinder member changes slightly. The change in the volume of the sealed space in the cylinder member 2 slightly affects the seismic energy attenuation of the fluid damper. In the embodiment shown in FIG. 1.2, by arranging the ring-shaped partition wall member 9, the volume of the sealed space in the cylinder member 2 is made constant, and the seismic energy attenuation of the fluid damper is maintained. The material of the ring-shaped partition member 9 is hard rubber or the like.

図6に示される実施形態は、シリンダー部材2の弾性ゴム体7の配置部分の内径Kを他のシリンダー部材2の部分の内径kより大きくする。図7に示される実施形態では、弾性ゴム体7を配置するシリンダー部材2の内壁部を削り薄肉部2dとしその内径Kを、シリンダー部材2の他の部分の内径kより大きくしている。また、図3に示される実施形態は、弾性ゴム体7を配置するシリンダー部材2bの内径を、弁体6が摺動するシリンダー部材2aの内径より大きくしている。シリンダー部材2の弾性ゴム体7の配置部分の内径を他の部分の内径より大きくすることにより、配置する弾性ゴム体7の体積を増加させ、弾性ゴム体7の変形による地震エネルギーの減衰性能を向上することが可能となる。   In the embodiment shown in FIG. 6, the inner diameter K of the arrangement part of the elastic rubber body 7 of the cylinder member 2 is made larger than the inner diameter k of the part of the other cylinder member 2. In the embodiment shown in FIG. 7, the inner wall portion of the cylinder member 2 on which the elastic rubber body 7 is disposed is scraped to form a thin-walled portion 2 d, and the inner diameter K thereof is larger than the inner diameter k of other portions of the cylinder member 2. In the embodiment shown in FIG. 3, the inner diameter of the cylinder member 2 b on which the elastic rubber body 7 is arranged is made larger than the inner diameter of the cylinder member 2 a on which the valve body 6 slides. By making the inner diameter of the elastic rubber body 7 of the cylinder member 2 larger than the inner diameter of other parts, the volume of the elastic rubber body 7 to be arranged is increased, and the seismic energy attenuation performance due to deformation of the elastic rubber body 7 is increased. It becomes possible to improve.

図7は、ピストンロッド3とシリンダー部材2が矢印方向に相対変位した場合を示す図である。剛性部材10は、耐力性能の上限が設定されおり、一定値以下の負荷に対しては剛性部材10が抵抗するが、一定値以上の負荷に対しては剛性部材10が破断してそのエネルギーを吸収する。図8では、一定以上の負荷により剛性部材10が破断した状態を示す。   FIG. 7 is a view showing a case where the piston rod 3 and the cylinder member 2 are relatively displaced in the direction of the arrow. The rigid member 10 has an upper limit of the proof stress performance, and the rigid member 10 resists a load of a certain value or less, but the rigid member 10 breaks and absorbs its energy for a load of a certain value or more. Absorb. FIG. 8 shows a state in which the rigid member 10 is broken by a certain load or more.

シリンダー部材2内に封入される流体として空気等の気体を選択した場合の本発明の作用を説明する。ピストンロッド2の矢印方向への相対変位により弁体6も矢印方向に移動する。その結果、空間A内の気体は圧縮されその体積が減少し圧力が増加する。一方、空間B内の気体は膨張しその体積が増加し圧力が減少する。その結果、圧力の高い空間A内の気体は、弁体6に形成した流通路8から圧力の低い空間Bに流れる。流通路8の形状は、図3、図4に示す小孔8aでも切欠き8bでも良いが、流通路8から気体が流れる際の流体移動抵抗による地震エネルギーの減衰性を考慮し、流通路8の口径、形状、数等を設定する。   The operation of the present invention when a gas such as air is selected as the fluid sealed in the cylinder member 2 will be described. Due to the relative displacement of the piston rod 2 in the direction of the arrow, the valve body 6 also moves in the direction of the arrow. As a result, the gas in the space A is compressed, its volume decreases, and the pressure increases. On the other hand, the gas in the space B expands, its volume increases, and the pressure decreases. As a result, the gas in the high-pressure space A flows from the flow passage 8 formed in the valve body 6 to the low-pressure space B. The shape of the flow passage 8 may be the small hole 8a or the notch 8b shown in FIGS. 3 and 4, but considering the attenuation of seismic energy due to the fluid movement resistance when the gas flows from the flow passage 8, the flow passage 8 Set the aperture, shape, number, etc.

シリンダー部材2とピストンロッド3の相対変位に伴い、弾性ゴム体7が図7に示すように弾性変形する。このように、シリンダー部材2とピストンロッド3の相対変位に伴い空間A、空間B内の気体の圧縮、膨張によるクッション効果、流通路8を通しての気体の移動の際の流体移動抵抗により地震エネルギーが減衰され、さらに、シリンダー部材2内を密封する弾性ゴム体7の弾性変形により地震エネルギーを減衰する。弾性ゴム体7を高減衰性ゴムとすることにより、地震エネルギーの減衰性能を向上することが可能となる。   With the relative displacement between the cylinder member 2 and the piston rod 3, the elastic rubber body 7 is elastically deformed as shown in FIG. As described above, the seismic energy is caused by the cushioning effect due to the compression and expansion of the gas in the space A and the space B according to the relative displacement of the cylinder member 2 and the piston rod 3 and the fluid movement resistance when the gas moves through the flow passage 8. Further, the seismic energy is attenuated by elastic deformation of the elastic rubber body 7 which is attenuated and seals the inside of the cylinder member 2. By making the elastic rubber body 7 a high-damping rubber, it is possible to improve the damping performance of seismic energy.

図7は、ピストンロッド3とシリンダー部材2が矢印方向に相対変位した場合を示す図である。剛性部材10は、耐力性能の上限が設定されおり、一定値以下の負荷に対しては剛性部材10が抵抗するが、一定値以上の負荷に対しては剛性部材10が破断してそのエネルギーを吸収する。図7では、一定以上の負荷により剛性部材10が破断した状態を示す。   FIG. 7 is a view showing a case where the piston rod 3 and the cylinder member 2 are relatively displaced in the direction of the arrow. The rigid member 10 has an upper limit of the proof stress performance, and the rigid member 10 resists a load of a certain value or less, but the rigid member 10 breaks and absorbs its energy for a load of a certain value or more. Absorb. FIG. 7 shows a state in which the rigid member 10 is broken by a certain load or more.

図8によりシリンダー部材2内に封入される流体としてオイル等の液体を選択した場合の本発明の作用を説明する。地震時、構造物に作用する変位により、一方の構造部に連結されたシリンダー部材2と他方の構造部に連結されたピストンロッド3は互いに相対変位する。ピストンロッド2の矢印方向への相対変位により弁体6も矢印方向に移動する。その結果、空間B内の液体は、弁体6に形成した流通路8から空間Aに流れる。流通路8の形状は、図3、図4に示す小孔8aでも切欠き8bでも良いが、流通路8から液体が流れる際の流体移動抵抗による地震エネルギーの減衰性を考慮し、流通路8の口径、形状、数等を設定する。液体は気体と相違し非圧縮性流体であるため、液体の流通路8を通しての流体移動抵抗は、気体の場合に比較し精密な設定が必要である。   The operation of the present invention when a liquid such as oil is selected as the fluid sealed in the cylinder member 2 will be described with reference to FIG. Due to the displacement acting on the structure during the earthquake, the cylinder member 2 connected to one structure part and the piston rod 3 connected to the other structure part are displaced relative to each other. Due to the relative displacement of the piston rod 2 in the direction of the arrow, the valve body 6 also moves in the direction of the arrow. As a result, the liquid in the space B flows into the space A from the flow passage 8 formed in the valve body 6. The shape of the flow path 8 may be the small hole 8a or the notch 8b shown in FIGS. 3 and 4, but in consideration of the attenuation of seismic energy due to fluid movement resistance when liquid flows from the flow path 8, the flow path 8 Set the aperture, shape, number, etc. Since a liquid is an incompressible fluid unlike a gas, the fluid movement resistance through the liquid flow path 8 needs to be set more precisely than in the case of a gas.

剛性部材10は、耐力性能の上限が設定されおり、一定値以下の負荷に対しては剛性部材10が抵抗するが、一定値以上の負荷に対しては剛性部材10が破断してそのエネルギーを吸収する。図8では、一定以上の負荷により剛性部材10が破断した状態を示す。シリンダー部材2とピストンロッド3の相対変位に伴い、弾性ゴム体7が図8のように弾性変形する。このように、シリンダー部材2とピストンロッド3の相対変位に伴い流通路8を通しての液体の移動の際の流体移動抵抗により地震エネルギーが減衰され、さらに、シリンダー部材2内を密封する弾性ゴム体7の弾性変形により地震エネルギーを減衰する。弾性ゴム体7を高減衰性ゴムとすることにより、地震エネルギーの吸収性能を向上することが可能となる。   The rigid member 10 has an upper limit of the proof stress performance, and the rigid member 10 resists a load of a certain value or less, but the rigid member 10 breaks and absorbs its energy for a load of a certain value or more. Absorb. FIG. 8 shows a state in which the rigid member 10 is broken by a certain load or more. With the relative displacement between the cylinder member 2 and the piston rod 3, the elastic rubber body 7 is elastically deformed as shown in FIG. In this way, the seismic energy is attenuated by the fluid movement resistance when the liquid moves through the flow passage 8 in accordance with the relative displacement between the cylinder member 2 and the piston rod 3, and further, the elastic rubber body 7 that seals the inside of the cylinder member 2. Seismic energy is attenuated by elastic deformation of By making the elastic rubber body 7 a high-damping rubber, it is possible to improve the seismic energy absorption performance.

本発明の構造物用制振ダンパー1は、1本のピストンロッド3に流体圧ダンパー、弾性ゴム体ダンパー及び剛性部材ダンパーと異なるダンパーを直列に配置している。各ダンパーの長所と短所を検討する。   In the structure damping damper 1 of the present invention, a damper different from a fluid pressure damper, an elastic rubber damper, and a rigid member damper is arranged in series on one piston rod 3. Consider the advantages and disadvantages of each damper.

先ず、流体圧ダンパーの長所は、動的強度性能(速度比例)があること、ストロークを大きくできること、温度依存性が少ないこと、高速時のエネルギー吸収性が大きいこと、繰り返し変形に強いこと、エネルギー吸収性能を拡大できること、履歴は丸形で剛性がないので共振しないこと等である。一方、流体圧ダンパーの短所は、低速時又は小変形時の性能が低いこと、密閉性を必要とすること、液漏れが生じやすいこと等である。   First, the advantages of fluid pressure dampers are dynamic strength performance (proportional to speed), large stroke, low temperature dependence, high energy absorption at high speed, resistance to repeated deformation, energy The absorption performance can be expanded, and the history is round and not rigid, so it does not resonate. On the other hand, the disadvantages of the fluid pressure damper are that the performance at low speed or small deformation is low, sealing is required, and liquid leakage is likely to occur.

次に、弾性ゴム体ダンパーの長所は、密閉機能を有すること、静的強度性能(変位比例)があること、ゴム組成で性能を変えやすいこと、繰り返しの変形に強いこと、履歴は紡錘形であること等である。一方、弾性ゴム体ダンパーの短所は、変形性に限界があること、温度依存性があること、ハードニングがあること、エネルギー吸収性に限界があること、剛性があるため共振を防げないこと等である。   Next, the advantages of the elastic rubber body damper are that it has a sealing function, has static strength performance (proportional to displacement), is easy to change performance with rubber composition, is resistant to repeated deformation, and has a spindle shape. And so on. On the other hand, the disadvantages of the elastic rubber body damper are that there is a limit to deformability, temperature dependency, there is hardening, there is a limit to energy absorption, and resonance cannot be prevented because of rigidity, etc. It is.

続いて、剛性部材ダンパーの長所は、静的強度性能(変位比例)があること、小変形時の強度(剛性)を得やすいこと、温度依存性がないこと、塑性変形範囲内でのエネルギー吸収性能が大きいこと、履歴は線形又は矩形であること、剛性部材を破断させることにより耐力性能の上限を設定することができること等である。一方、剛性部材ダンパーの短所は、剛性があるため共振を防げないこと等である。   Next, the advantages of the rigid member damper are that it has static strength performance (proportional to displacement), that it is easy to obtain strength (rigidity) at the time of small deformation, that there is no temperature dependence, and that it absorbs energy within the plastic deformation range. The performance is large, the history is linear or rectangular, the upper limit of the proof stress performance can be set by breaking the rigid member, and the like. On the other hand, a disadvantage of the rigid member damper is that resonance cannot be prevented because of its rigidity.

長所及び短所を有する流体圧ダンパー、弾性ゴム体ダンパー及び剛性部材ダンパーをピストンロッド3に沿って直列に配置した本発明の構造物用制振ダンパー1の作用、効果を検討する。小さな変形の繰り返す等の変位に対しては、小変形時の強度(剛性)を得やすい剛性部材10が抵抗して対応し、低速時又は小変形時の性能が低いという流体圧ダンパーの短所をカバーする。   The action and effect of the structure damping damper 1 of the present invention in which a fluid pressure damper, an elastic rubber body damper, and a rigid member damper having advantages and disadvantages are arranged in series along the piston rod 3 will be examined. The rigid member 10 that easily obtains the strength (rigidity) at the time of small deformation resists the displacement such as repeated small deformations, and the disadvantage of the fluid pressure damper is that the performance at low speed or small deformation is low. Cover.

剛性部材10は、繰り返しの大変形により破断する。剛性部材10が破断するまでの繰り返し変形に時間経過により弾性ゴム体ダンパーの温度が上昇し、弾性ゴム体ダンパーの短所である温度依存性によるエネルギー吸収性能の低下が回復する。   The rigid member 10 is broken by repeated large deformation. The temperature of the elastic rubber body damper rises over time during repeated deformation until the rigid member 10 breaks, and the decrease in energy absorption performance due to temperature dependence, which is a disadvantage of the elastic rubber body damper, is recovered.

剛性部材10の破断後、弾性ゴム体ダンパー及び流体圧ダンパーの長所を生かし、弾性ゴム体7の弾性変形と、弾性ゴム体7により密封された空間内流体の弁体6に形成された流通路8を通しての流体移動抵抗により地震エネルギーを効率良く減衰することが可能となる。   After the rigid member 10 is broken, taking advantage of the elastic rubber body damper and the fluid pressure damper, the elastic deformation of the elastic rubber body 7 and the flow path formed in the valve body 6 of the fluid in the space sealed by the elastic rubber body 7 Seismic energy can be efficiently attenuated by the fluid movement resistance through 8.

1:構造物用制振ダンパー、2:シリンダー部材、3:ピストンロッド、4:シリンダー側取付部材、5:ピストンロッド側取付部材、6:弁体、7:弾性ゴム体、8:流通路、8a:小孔、8b:切欠き、9:リング状隔壁部材,10:剛性部材、11:固定部材、12:固定部材   1: Damping damper for structure, 2: cylinder member, 3: piston rod, 4: cylinder side mounting member, 5: piston rod side mounting member, 6: valve body, 7: elastic rubber body, 8: flow passage, 8a: small hole, 8b: notch, 9: ring-shaped partition member, 10: rigid member, 11: fixing member, 12: fixing member

Claims (4)

地震時に相対変位する一方の構造体に固定される一端が閉じ、他端が開口したシリンダー部材と、
他方の構造体に固定され、前記シリンダー部材の開口から内部に伸び、前記シリンダー部材との間で相対変位可能に配置され、先端に前記シリンダー部材の内径とほぼ同じ外径を有し、流通路を形成した弁体を備えたピストンロッドと、
前記弁体から所定間隔をおいた前記ピストンロッド外周面にその内周面が固定され前記シリンダー部材内周面にその外周面が固定される弾性ゴム体と、
前記ピストンロッド外周と前記シリンダー部材内周面に固定され一定以上の負荷により破断する剛性部材と、
前記弾性ゴム体と前記弁体との間に外周部が前記シリンダー部材内周面に固定されたその内周部が前記ピストンロッド外周部と摺動可能に配置され、自身と前記シリンダー部材の閉じられた一端間を密封空間とするリング状隔壁部材と、
を備えることを特徴とする構造物用制振ダンパー。
A cylinder member with one end fixed to one structure that is relatively displaced during an earthquake closed and the other end opened;
Fixed to the other structure, extends inwardly from the opening of the cylinder member, is disposed so as to be relatively displaceable with the cylinder member, and has an outer diameter substantially equal to the inner diameter of the cylinder member at the tip, A piston rod having a valve body formed with
An elastic rubber body whose inner peripheral surface is fixed to the piston rod outer peripheral surface spaced a predetermined distance from the valve body and whose outer peripheral surface is fixed to the cylinder member inner peripheral surface;
A rigid member that is fixed to the outer periphery of the piston rod and the inner peripheral surface of the cylinder member and is broken by a load of a certain level or more;
Closing of the the outer peripheral portion slidably disposed in the inner peripheral portion which is fixed with the piston rod outer peripheral portion to the cylinder member inner peripheral surface between the elastic rubber body and the valve body, itself and the cylinder member A ring-shaped partition wall member having a sealed space between the formed ends;
A damping damper for a structure, comprising:
前記弾性ゴム体を高減衰性ゴムとすることを特徴とする請求項1に記載の構造物用制振ダンパー。   The structure damping damper for a structure according to claim 1, wherein the elastic rubber body is a high damping rubber. 前記シリンダー部材の前記弾性ゴム体を固定する部分の内径を他の部分の内径より大きくすることを特徴とする請求項1又は2に記載の構造物用制振ダンパー。   The structure damping damper according to claim 1 or 2, wherein an inner diameter of a portion of the cylinder member to which the elastic rubber body is fixed is made larger than an inner diameter of another portion. 先端が閉じ前記弁体が摺動するシリンダー部材と、前記弾性ゴム体が固定されるシリンダー部材とをそれぞれ別体とし、夫々のシリンダー部材の長さや内径が異なるように形成して各シリンダー部材を連結固定することを特徴とする請求項1ないし3のいずれか1項に記載の構造物用制振ダンパー。   The cylinder member with the tip closed and the valve body sliding is separated from the cylinder member to which the elastic rubber body is fixed, and each cylinder member is formed so that the length and inner diameter of each cylinder member are different. The structure damping damper according to any one of claims 1 to 3, wherein the damper is connected and fixed.
JP2013253832A 2013-12-09 2013-12-09 Damping damper for structures Expired - Fee Related JP6289888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013253832A JP6289888B2 (en) 2013-12-09 2013-12-09 Damping damper for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013253832A JP6289888B2 (en) 2013-12-09 2013-12-09 Damping damper for structures

Publications (2)

Publication Number Publication Date
JP2015113846A JP2015113846A (en) 2015-06-22
JP6289888B2 true JP6289888B2 (en) 2018-03-07

Family

ID=53527855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013253832A Expired - Fee Related JP6289888B2 (en) 2013-12-09 2013-12-09 Damping damper for structures

Country Status (1)

Country Link
JP (1) JP6289888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565828A (en) * 2019-08-27 2019-12-13 江苏科技大学 Assembled bending metal damper

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358838B2 (en) * 2014-04-14 2018-07-18 株式会社ビービーエム Damping damper for structures
CN105041949B (en) * 2015-07-24 2016-06-15 南京航空航天大学 Diaphragm type molecule spring vibration isolation buffer
WO2017016405A1 (en) * 2015-07-24 2017-02-02 陈前 Molecular spring vibration isolation buffer
CN105041943B (en) * 2015-07-24 2016-06-15 南京航空航天大学 Bellows molecule spring vibration isolation buffer
CN115199700B (en) * 2022-09-09 2022-11-29 山西润世华新能源技术服务有限公司 Composite tuned damper and wind generating set

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895084U (en) * 1972-02-17 1973-11-13
JPS5056892U (en) * 1973-09-25 1975-05-28
US4032126A (en) * 1976-03-29 1977-06-28 Laughlin William N Shock absorbing apparatus
JPH0861312A (en) * 1994-08-23 1996-03-08 Fujitsu Ltd Free-stroke cylinder
JP3998277B2 (en) * 1995-01-25 2007-10-24 本田技研工業株式会社 Motorcycle front fork
JPH11210815A (en) * 1998-01-27 1999-08-03 Yokohama Rubber Co Ltd:The Base isolation supporting device of structure
JP2002115738A (en) * 2000-10-10 2002-04-19 Kayaba Ind Co Ltd Gas spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565828A (en) * 2019-08-27 2019-12-13 江苏科技大学 Assembled bending metal damper

Also Published As

Publication number Publication date
JP2015113846A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6289888B2 (en) Damping damper for structures
JP6046986B2 (en) Damping damper for structures
JP5620596B1 (en) Structure damping device
KR101653475B1 (en) Damper
WO2013065505A1 (en) Sealing device and damper with sealing device
US20160215552A1 (en) Damping assembly, in particular for a flap of a vehicle
JP5587613B2 (en) Shock absorber dirt shield
JP5886721B2 (en) Damping damper for structures
JP6358838B2 (en) Damping damper for structures
US8393447B2 (en) Vibration damper with amplitude-selective damping force
KR101983482B1 (en) Shock absorber
FI3519717T3 (en) A suspension unit
JP6471994B2 (en) Damping damper for structures
Lee et al. Study of the simulation model of a displacement-sensitive shock absorber of a vehicle by considering the fluid force
EP2369199A2 (en) Progressive damping device for furniture
Sikora Modeling and operational analysis of an automotive shock absorber with a tuned mass damper
JP5246495B2 (en) Hydraulic buffer
JP6567267B2 (en) Structure damping device
KR101556333B1 (en) Fluid damper
JP6985952B2 (en) Buffer
JP2010255850A (en) Damper device
JP4602821B2 (en) Vibration isolator
KR20100012460A (en) Large volume water hammer cushion
KR101833989B1 (en) Linear type one-way damper
KR101710709B1 (en) A viscous damper that prevents leakage of viscous fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees