JP6046986B2 - Damping damper for structures - Google Patents

Damping damper for structures Download PDF

Info

Publication number
JP6046986B2
JP6046986B2 JP2012247154A JP2012247154A JP6046986B2 JP 6046986 B2 JP6046986 B2 JP 6046986B2 JP 2012247154 A JP2012247154 A JP 2012247154A JP 2012247154 A JP2012247154 A JP 2012247154A JP 6046986 B2 JP6046986 B2 JP 6046986B2
Authority
JP
Japan
Prior art keywords
cylinder member
elastic rubber
valve body
piston rod
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012247154A
Other languages
Japanese (ja)
Other versions
JP2014095422A (en
Inventor
山口 修由
修由 山口
合田 裕一
裕一 合田
田中 健司
健司 田中
貴宏 小泉
貴宏 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBM Co Ltd
Original Assignee
BBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBM Co Ltd filed Critical BBM Co Ltd
Priority to JP2012247154A priority Critical patent/JP6046986B2/en
Publication of JP2014095422A publication Critical patent/JP2014095422A/en
Application granted granted Critical
Publication of JP6046986B2 publication Critical patent/JP6046986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、建築物や橋梁等の構造物の地震時の振動を抑制する構造物用制振ダンパーに関し、特に地震の際の構造物の大きな変位に対して効率良く地震エネルギーを吸収することが可能な流体圧及び弾性ゴムの変形を利用した構造物用制振ダンパーに関する。   The present invention relates to a vibration damper for a structure that suppresses vibrations of structures such as buildings and bridges during an earthquake, and in particular, can efficiently absorb seismic energy against a large displacement of the structure during an earthquake. The present invention relates to a vibration damper for a structure using possible fluid pressure and elastic rubber deformation.

構造物用制振ダンパーとしてオイルダンパー、エアーダンパーや粘弾性ダンパー等が知られている。   Oil dampers, air dampers, viscoelastic dampers, and the like are known as structural vibration dampers.

特許第2541073号公報Japanese Patent No. 2541073 特許第2566833号公報Japanese Patent No. 2568833

従来のオイルダンパーやエアーダンパーは、構造が複雑であり、コストも高く、点検、補修、部品取り換え等のメンテナンスの回数が多いという問題を有する。粘弾性ダンパー等の弾性体の変形による振動吸収機能を有する制振ダンパーは、構造が簡単でメンテナンスも容易であるという利点を有する。しかし、地震時に構造物には方向の異なる大きな変位が作用し、構造物の相対変位する2つの構造にそれぞれ一端を固定したシリンダー部材とピストン部材の軸方向の変位にぶれが生じ、その結果、装置の一部に荷重が集中して装置自体を破壊する恐れがある。また、従来のオイルダンパーやエアーダンパーは,シリンダー内部を密閉するために,シリンダー先端の蓋に設けた穴の内周部とロッド外周部の間で,シール材等を用いて密閉しまた滑動可能としている。ダンパーの外部に露出したピストンロッドの外周部には,外気によって錆びが生じやすい。ロッドの外周部表面に錆びによって凸凹が生じた場合には,密閉および滑動の役割を担うシール材が,ロッド外周部の凸凹によって容易に削られて破損する。その結果,ダンパーの密閉性が失われる。この障害を取り除くために,従来のダンパーではロッド外周部の錆を,定期的に除去するメンテナンスが必要となるという問題を有する。   Conventional oil dampers and air dampers have a complicated structure, a high cost, and a large number of maintenance such as inspection, repair, and parts replacement. A damping damper having a vibration absorbing function by deformation of an elastic body such as a viscoelastic damper has an advantage that the structure is simple and maintenance is easy. However, a large displacement with different directions acts on the structure during the earthquake, and the axial displacement of the cylinder member and the piston member each having one end fixed to the two structures where the structure is relatively displaced occurs. The load may concentrate on a part of the device and the device itself may be destroyed. In addition, conventional oil dampers and air dampers can be sealed and slid with a sealant etc. between the inner periphery of the hole provided in the lid on the cylinder tip and the outer periphery of the rod to seal the inside of the cylinder. It is said. Rust is likely to occur on the outer periphery of the piston rod exposed outside the damper due to outside air. If the surface of the outer periphery of the rod becomes uneven, the sealing material that plays the role of sealing and sliding is easily scraped and damaged by the unevenness of the outer periphery of the rod. As a result, the sealability of the damper is lost. In order to remove this obstacle, the conventional damper has a problem that maintenance for periodically removing rust on the outer periphery of the rod is required.

本発明は、従来技術の持つ問題を解決する、構造が簡単で、製造が容易で複雑な弁構造を用いること無く、ピストンロッド外周部の錆によってシリンダーの密閉性が失われることが無く、流体圧による地震エネルギー吸収と弾性ゴムの弾性変形による地震エネルギー吸収を可能とする構造物用制振ダンパーを提供することを目的とする。   The present invention solves the problems of the prior art, has a simple structure, is easy to manufacture, does not use a complicated valve structure, and does not lose the sealing performance of the cylinder due to rust on the outer periphery of the piston rod. An object of the present invention is to provide a damping damper for a structure that can absorb seismic energy by pressure and seismic energy by elastic deformation of elastic rubber.

本発明の構造物用制振ダンパーは、前記課題を解決するために、地震時に相対変位する一方の構造体に固定される一端が閉じ、他端が開口したシリンダー部材と、他方の構造体に固定され、前記シリンダー部材の開口から内部に伸び、前記シリンダー部材との間で相対変位可能に配置され、先端に前記シリンダー部材の内径とほぼ同じ外径を有し、流通路を形成した弁体を備えたピストンロッドと、前記弁体から所定間隔をおいたピストンロッドの外周面にその内周面が固定され前記シリンダー部材内周面にその外周面が固定される弾性ゴム体と、前記弾性ゴム体と前記弁体との間に、外周部が前記シリンダー部材内周面に固定され内周部が前記ピストンロッド外周部と摺動可能に配置したリング状隔壁部材と、を備え、前記リング状隔壁部材と前記シリンダー部材の閉じられた一端間を密封空間とし、前記シリンダー部材と前記ピストンロッドの相対変位に対して、シリンダー部材の密封空間内流体の前記弁体に形成された流通路を通しての流体移動抵抗及び前記弾性ゴム体の弾性変形により地震エネルギーを吸収することを特徴とする。
In order to solve the above problems, the structural vibration damper of the present invention has a cylinder member that is fixed to one structure that is relatively displaced during an earthquake, closed at one end, and opened at the other end, and the other structure. A valve body that is fixed, extends inward from the opening of the cylinder member, is disposed so as to be relatively displaceable with the cylinder member, has an outer diameter substantially the same as the inner diameter of the cylinder member at the tip, and forms a flow passage an elastic rubber body and the piston rod, in which the inner circumferential surface is fixed its outer peripheral surface the cylinder member inner peripheral surface to the outer peripheral surface of the piston rod at a predetermined distance from said valve body is fixed with the said elastic A ring-shaped partition member in which an outer peripheral portion is fixed to the inner peripheral surface of the cylinder member and an inner peripheral portion is slidably arranged with the outer peripheral portion of the piston rod, between the rubber body and the valve body; Partition wall And a closed end of the cylinder member as a sealed space, and the fluid movement through the flow passage formed in the valve body of the fluid in the sealed space of the cylinder member with respect to the relative displacement of the cylinder member and the piston rod Seismic energy is absorbed by resistance and elastic deformation of the elastic rubber body.

また、本発明の構造物用制振ダンパーは、前記弾性ゴム体を高減衰性ゴムとすることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that the elastic rubber body is made of a high damping rubber.

また、本発明の構造物用制振ダンパーは、前記シリンダー部材の前記弾性ゴム体を固定する部分の内径を他の部分の内径より大きくすることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that an inner diameter of a portion of the cylinder member to which the elastic rubber body is fixed is made larger than an inner diameter of another portion.

また、本発明の構造物用制振ダンパーは、前記シリンダー部材と前記ピストンロッド間の密封空間に封入される流体を気体とすることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that a fluid sealed in a sealed space between the cylinder member and the piston rod is a gas.

また、本発明の構造物用制振ダンパーは、前記シリンダー部材と前記ピストンロッド間の密封空間に封入される流体を液体とすることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that a fluid sealed in a sealed space between the cylinder member and the piston rod is a liquid.

また、本発明の構造物用制振ダンパーは、前記流通路が前記弁体を貫通する小孔であることを特徴とする。   Moreover, the vibration damper for a structure of the present invention is characterized in that the flow passage is a small hole penetrating the valve body.

また、本発明の構造物用制振ダンパーは、前記流通路が前記弁体の外周に形成した切欠であることを特徴とする。   In the vibration damper for a structure of the present invention, the flow passage is a notch formed in the outer periphery of the valve body.

地震時に相対変位する一方の構造体に固定される一端が閉じ、他端が開口したシリンダー部材と、他方の構造体に固定され、前記シリンダー部材の開口から内部に伸び、前記シリンダー部材との間で相対変位可能に配置され、先端に前記シリンダー部材の内径とほぼ同じ外径を有し、流通路を形成した弁体を備えたピストンロッドと、前記弁体から所定間隔をおいたピストンロッドの外周面にその内周面が固定され前記シリンダー部材内周面にその外周面が固定される弾性ゴム体と、前記弾性ゴム体と前記弁体との間に、外周部が前記シリンダー部材内周面に固定され内周部が前記ピストンロッド外周部と摺動可能に配置したリング状隔壁部材と、を備え、前記リング状隔壁部材と前記シリンダー部材の閉じられた一端間を密封空間とし、前記シリンダー部材と前記ピストンロッドの相対変位に対して、シリンダー部材の密封空間内流体の前記弁体に形成された流通路を通しての流体移動抵抗及び前記弾性ゴム体の弾性変形により地震エネルギーを吸収することで、複雑な弁制御機構を設けること無く構造が簡単で部品点数が少なく、弾性ゴム体がシール材として機能するのでシール材を用いなくても済み、効率良く地震エネルギーを減衰することが可能な流体圧を利用したダンパー構造を提供することが可能となり、シリンダー部材内密封空間の体積を弾性ゴム体の変形に拘わらず一定とし地震エネルギーの減衰性を向上することが可能となる。
弾性ゴム体を高減衰性ゴムとすることで、地震エネルギーの減衰性能を向上することが可能となる。
シリンダー部材の弾性ゴム体を固定する部分の内径を他の部分の内径より大きくすることで、弾性ゴム体の体積を大きくすることで弾性ゴムの変形による地震エネルギーの減衰性を向上することが可能となる。
シリンダー部材の密封空間に封入される流体を気体とすることで、気体は圧縮性流体であるので流通路を通しての流体移動抵抗に加え、気体の圧縮、膨張によるクッション効果により地震エネルギーの吸収に利用することが可能となる。
シリンダー部材の密封空間に封入される流体を液体とすることで、複雑な弁制御をすることなく、流通路の液体移動抵抗を考慮するだけで構造が簡単な液体ダンパーとすることが可能となる。
流通路が弁体を貫通する小孔であることで、構造が簡単な流体移動抵抗手段とすることが可能となる。
流通路が弁体の外周に形成した切欠であることで、構造が簡単な流体移動抵抗手段とすることが可能となる。
One end fixed to one structure that is relatively displaced in the event of an earthquake is closed, the other end is open, and the other end is fixed to the other structure. A piston rod having a valve body having a flow path formed at the tip thereof and having an outer diameter substantially the same as the inner diameter of the cylinder member, and a piston rod spaced a predetermined distance from the valve body. An elastic rubber body whose inner peripheral surface is fixed to the outer peripheral surface and whose outer peripheral surface is fixed to the inner peripheral surface of the cylinder member, and an outer peripheral portion between the elastic rubber body and the valve body is the inner peripheral surface of the cylinder member. comprising a ring-shaped partition wall member peripheral section is fixed to a surface is arranged slidably with said piston rod outer peripheral portion, between closed one end of said cylinder member and said ring-shaped partition wall member and the sealing space, before Absorbing seismic energy by relative fluid displacement resistance through the flow passage formed in the valve body of the fluid in the sealed space of the cylinder member and elastic deformation of the elastic rubber body with respect to relative displacement between the cylinder member and the piston rod. With no complicated valve control mechanism, the structure is simple, the number of parts is small, and the elastic rubber body functions as a sealing material, so there is no need to use a sealing material, and the seismic energy can be attenuated efficiently. It is possible to provide a damper structure using fluid pressure, and it is possible to improve the seismic energy attenuation by keeping the volume of the sealed space in the cylinder member constant regardless of the deformation of the elastic rubber body.
By making the elastic rubber body a highly attenuating rubber, it is possible to improve the attenuation performance of seismic energy.
By making the inner diameter of the part that fixes the elastic rubber body of the cylinder member larger than the inner diameter of other parts, it is possible to increase the damping capacity of the seismic energy due to deformation of the elastic rubber by increasing the volume of the elastic rubber body. It becomes.
By making the fluid enclosed in the sealed space of the cylinder member a gas, the gas is a compressible fluid, so in addition to the resistance to fluid movement through the flow path, it is used for absorbing earthquake energy by the cushion effect due to the compression and expansion of the gas It becomes possible to do.
By making the fluid sealed in the sealed space of the cylinder member a liquid, it is possible to provide a liquid damper with a simple structure only by considering the liquid movement resistance of the flow path without complicated valve control. .
Since the flow passage is a small hole penetrating the valve body, a fluid movement resistance means having a simple structure can be provided.
Since the flow passage is a notch formed on the outer periphery of the valve body, a fluid movement resistance means having a simple structure can be provided.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の構造物用制振ダンパーの実施の形態を図により説明する。図1、図2は、構造物用制振ダンパーの一実施形態を示す図である。   An embodiment of a structural vibration damper of the present invention will be described with reference to the drawings. 1 and 2 are views showing an embodiment of a vibration damper for a structure.

構造物用制振ダンパー1は、建築物や橋梁等の構造物の一方の構造体に連結される一端が閉じ他端が開口したシリンダー部材2と、他方の構造体に連結するピストンロッド3を備えている。ピストンロッド3は、シリンダー部材1の開口からその内部に伸び、シリンダー部材2に対して相対変位可能に配置される。   The structure damping damper 1 includes a cylinder member 2 having one end connected to one structure of a structure such as a building or a bridge and having the other end opened, and a piston rod 3 connected to the other structure. I have. The piston rod 3 extends from the opening of the cylinder member 1 to the inside thereof, and is disposed so as to be relatively displaceable with respect to the cylinder member 2.

シリンダー部材2は、断面円形の部材で、閉じた側の端部には一方の構造体に連結するためのシリンダー側取付部材4が固定される。   The cylinder member 2 is a member having a circular cross section, and a cylinder side mounting member 4 for connection to one structure is fixed to an end portion on the closed side.

ピストンロッド3の一端部には、他方の構造体に連結するためのピストンロッド側取付部材5が固定される。ピストンロッド3の他端部には、シリンダー部材2の内径とほぼ同じ外径の弁体6が形成される。   A piston rod side mounting member 5 for connecting to the other structure is fixed to one end of the piston rod 3. A valve body 6 having an outer diameter substantially the same as the inner diameter of the cylinder member 2 is formed at the other end of the piston rod 3.

ピストンロッド3の弁体6の後部外周部とシリンダー部材2の内壁間に弾性ゴム体7が固定される。一端が閉じられたシリンダー部材2とピストンロッド3の弁体6の後部外周部とシリンダー部材2の内壁間に固定される弾性ゴム体7により、シリンダー部材2の閉じた側と弁体6間の空間Aと、弁体6と弾性ゴム体7間の空間Bは、外部から密封状態にする。弾性ゴム体7がシール材として機能するのでシール材が必要でなくなる。   An elastic rubber body 7 is fixed between the rear outer peripheral portion of the valve body 6 of the piston rod 3 and the inner wall of the cylinder member 2. An elastic rubber body 7 is fixed between the cylinder member 2 with one end closed and the rear outer peripheral portion of the valve body 6 of the piston rod 3 and the inner wall of the cylinder member 2, and between the closed side of the cylinder member 2 and the valve body 6. The space A and the space B between the valve body 6 and the elastic rubber body 7 are sealed from the outside. Since the elastic rubber body 7 functions as a sealing material, no sealing material is required.

ピストンロッド3外周部とシリンダー部材2内壁部への弾性ゴム体7の固定は、加硫一体成形により実施する。加硫一体成形による固定は、鋼材とゴムとの接着部の劣化が防止され、密封状態を長期間維持することが可能となる。また,弾性ゴム体7はシリンダー部材2とピストンロッド3が相対変位した場合に弾性変形するために,従来のダンパーにおけるシール材が必要でないために,ピストンロッド3外周部の錆びによってシリンダー部材2の密閉性が失われることがない。   The elastic rubber body 7 is fixed to the outer periphery of the piston rod 3 and the inner wall of the cylinder member 2 by vulcanization integral molding. Fixing by vulcanization integral molding prevents deterioration of the bonded portion between the steel material and rubber, and allows the sealed state to be maintained for a long period of time. Further, since the elastic rubber body 7 is elastically deformed when the cylinder member 2 and the piston rod 3 are displaced relative to each other, no seal material is required in the conventional damper. Sealing is not lost.

図3、図4に示すように、弁体6には、空間A,Bと連通する流通路が形成される。図3に示される実施形態では、流通路は弁体6を貫通する小孔8として形成される。図4に示される実施形態では、流通路は弁体6の外周に切欠9として形成される。   As shown in FIGS. 3 and 4, the valve body 6 is formed with a flow passage communicating with the spaces A and B. In the embodiment shown in FIG. 3, the flow passage is formed as a small hole 8 that penetrates the valve body 6. In the embodiment shown in FIG. 4, the flow passage is formed as a notch 9 on the outer periphery of the valve body 6.

シリンダー部材2内に封入される流体として空気等の気体を選択した場合の本発明の作用を説明する。地震時、構造物に作用する変位により、一方の構造部に連結されたシリンダー部材2と他方の構造部に連結されたピストンロッド3は互いに相対変位する。   The operation of the present invention when a gas such as air is selected as the fluid sealed in the cylinder member 2 will be described. Due to the displacement acting on the structure during the earthquake, the cylinder member 2 connected to one structure part and the piston rod 3 connected to the other structure part are displaced relative to each other.

シリンダー部材2とピストンロッド3が図1に示す状態から図2に示す矢印方向に相対変位した場合について説明する。ピストンロッド2の矢印方向への相対変位により弁体6も矢印方向に移動する。その結果、空間B内の気体は圧縮されその体積が減少し圧力が増加する。一方、空間A内の気体は膨張しその体積が増加し圧力が減少する。その結果、圧力の高い空間B内の気体は、弁体6に形成した流通路8から圧力の低い空間Aに流れる。流通路8の形状は、図3、図4に示す小孔8aでも切欠き8bでも良いが、流通路8から気体が流れる際の流体移動抵抗による地震エネルギーの減衰性を考慮し、流通路8の口径、形状、数等を設定する。   A case where the cylinder member 2 and the piston rod 3 are relatively displaced from the state shown in FIG. 1 in the arrow direction shown in FIG. 2 will be described. Due to the relative displacement of the piston rod 2 in the direction of the arrow, the valve body 6 also moves in the direction of the arrow. As a result, the gas in the space B is compressed, its volume decreases, and the pressure increases. On the other hand, the gas in the space A expands, its volume increases, and its pressure decreases. As a result, the gas in the high-pressure space B flows from the flow passage 8 formed in the valve body 6 to the low-pressure space A. The shape of the flow passage 8 may be the small hole 8a or the notch 8b shown in FIGS. 3 and 4, but considering the attenuation of seismic energy due to the fluid movement resistance when the gas flows from the flow passage 8, the flow passage 8 Set the aperture, shape, number, etc.

シリンダー部材2とピストンロッド3の相対変位に伴い、弾性ゴム体7が図のように弾性変形する。このように、シリンダー部材2とピストンロッド3の相対変位に伴い空間A、空間B内の気体の圧縮、膨張によるクッション効果、流通路8を通しての気体の移動の際の流体移動抵抗により地震エネルギーが減衰され、さらに、シリンダー部材2内を密封する弾性ゴム体7の弾性変形により地震エネルギーを減衰する。弾性ゴム体7を高減衰性ゴムとすることにより、地震エネルギーの減衰性能を向上することが可能となる。   With the relative displacement between the cylinder member 2 and the piston rod 3, the elastic rubber body 7 is elastically deformed as shown. As described above, the seismic energy is caused by the cushioning effect due to the compression and expansion of the gas in the space A and the space B according to the relative displacement of the cylinder member 2 and the piston rod 3 and the fluid movement resistance when the gas moves through the flow passage 8. Further, the seismic energy is attenuated by elastic deformation of the elastic rubber body 7 which is attenuated and seals the inside of the cylinder member 2. By making the elastic rubber body 7 a high-damping rubber, it is possible to improve the damping performance of seismic energy.

シリンダー部材2内に封入される流体としてオイル等の液体を選択した場合の本発明の作用を説明する。地震時、構造物に作用する変位により、一方の構造部に連結されたシリンダー部材2と他方の構造部に連結されたピストンロッド3は互いに相対変位する。   The operation of the present invention when a liquid such as oil is selected as the fluid sealed in the cylinder member 2 will be described. Due to the displacement acting on the structure during the earthquake, the cylinder member 2 connected to one structure part and the piston rod 3 connected to the other structure part are displaced relative to each other.

シリンダー部材2とピストンロッド3が図1に示す状態から図2に示す矢印方向に相対変位した場合について説明する。ピストンロッド2の矢印方向への相対変位により弁体6も矢印方向に移動する。その結果、空間B内の液体は、弁体6に形成した流通路8から空間Aに流れる。流通路8の形状は、図3、図4に示す小孔8aでも切欠き8bでも良いが、流通路8から液体が流れる際の流体移動抵抗による地震エネルギーの減衰性を考慮し、流通路8の口径、形状、数等を設定する。液体は気体と相違し非圧縮性流体であるため、液体の流通路8を通しての流体移動抵抗は、気体の場合に比較し精密な設定が必要である。   A case where the cylinder member 2 and the piston rod 3 are relatively displaced from the state shown in FIG. 1 in the arrow direction shown in FIG. 2 will be described. Due to the relative displacement of the piston rod 2 in the direction of the arrow, the valve body 6 also moves in the direction of the arrow. As a result, the liquid in the space B flows into the space A from the flow passage 8 formed in the valve body 6. The shape of the flow path 8 may be the small hole 8a or the notch 8b shown in FIGS. 3 and 4, but in consideration of the attenuation of seismic energy due to fluid movement resistance when liquid flows from the flow path 8, the flow path 8 Set the aperture, shape, number, etc. Since a liquid is an incompressible fluid unlike a gas, the fluid movement resistance through the liquid flow path 8 needs to be set more precisely than in the case of a gas.

シリンダー部材2とピストンロッド3の相対変位に伴い、弾性ゴム体7が図のように弾性変形する。このように、シリンダー部材2とピストンロッド3の相対変位に伴い流通路8を通しての液体の移動の際の流体移動抵抗により地震エネルギーが減衰され、さらに、シリンダー部材2内を密封する弾性ゴム体7の弾性変形により地震エネルギーを減衰する。弾性ゴム体7を高減衰性ゴムとすることにより、地震エネルギーの吸収性能を向上することが可能となる。   With the relative displacement between the cylinder member 2 and the piston rod 3, the elastic rubber body 7 is elastically deformed as shown. In this way, the seismic energy is attenuated by the fluid movement resistance when the liquid moves through the flow passage 8 in accordance with the relative displacement between the cylinder member 2 and the piston rod 3, and further, the elastic rubber body 7 that seals the inside of the cylinder member 2. Seismic energy is attenuated by elastic deformation of By making the elastic rubber body 7 a high-damping rubber, it is possible to improve the seismic energy absorption performance.

図5に示される構造物用制振ダンパーの実施形態では、シリンダー部材2内の弾性ゴム体7と弁体6との間に、外周部がシリンダー部材2内周面に固定されたリング状隔壁部材9をその内周部がピストンロッド3外周部に対して摺動可能に配置する。図1、図2に示される実施形態では、弾性ゴム体7の変形によりシリンダー部材内の密封空間A+Bの体積が若干変化する。シリンダー部材2内の密封空間の体積の変化は、流体ダンパーの地震エネルギーの減衰性に少し影響する。図5に示される実施形態では、リング状隔壁部材9を配置することで、シリンダー部材2内の密封空間の体積を一定として流体ダンパーの地震エネルギー減衰性を保持する。リング状隔壁部材9の材質としては硬質ゴム等とする。   In the embodiment of the structural vibration damper shown in FIG. 5, a ring-shaped partition wall whose outer peripheral portion is fixed to the inner peripheral surface of the cylinder member 2 between the elastic rubber body 7 and the valve body 6 in the cylinder member 2. The member 9 is arranged so that its inner peripheral portion can slide with respect to the outer peripheral portion of the piston rod 3. In the embodiment shown in FIGS. 1 and 2, the volume of the sealed space A + B in the cylinder member slightly changes due to the deformation of the elastic rubber body 7. The change in the volume of the sealed space in the cylinder member 2 slightly affects the seismic energy attenuation of the fluid damper. In the embodiment shown in FIG. 5, the ring-shaped partition member 9 is arranged to keep the volume of the sealed space in the cylinder member 2 constant and to maintain the seismic energy attenuation of the fluid damper. The material of the ring-shaped partition member 9 is hard rubber or the like.

図6(a)(b)に示される実施形態は、シリンダー部材2の弾性ゴム体7の配置部分の内径Kを他のシリンダー部材2の部分の内径kより大きくする。図6(a)に示される実施形態では、弾性ゴム体7の配置するシリンダー部材2の内壁部を削り薄肉部2aとしその内径Kを、シリンダー部材2の他の部分の内径kより大きくしている。また、図6(b)に示される実施形態は、弾性ゴム体7を配置するシリンダー部材2bの内径Kとし、シリンダー部材2bの先端に連結されるシリンダー部材2cの外径をKとし、内径kをシリンダー部材2bの内径Kより小さくしている。シリンダー部材2の弾性ゴム体7の配置部分の内径Kを他の部分の内径kより大きくすることにより、配置する弾性ゴム体7の体積を増加させ、弾性ゴム体7の変形による地震エネルギーの減衰性能を向上することが可能となる。   In the embodiment shown in FIGS. 6A and 6B, the inner diameter K of the portion where the elastic rubber body 7 of the cylinder member 2 is arranged is made larger than the inner diameter k of the portion of the other cylinder member 2. In the embodiment shown in FIG. 6A, the inner wall portion of the cylinder member 2 on which the elastic rubber body 7 is arranged is scraped into a thin-walled portion 2a, and its inner diameter K is made larger than the inner diameter k of other portions of the cylinder member 2. Yes. In the embodiment shown in FIG. 6B, the inner diameter K of the cylinder member 2b on which the elastic rubber body 7 is arranged is set as K, the outer diameter of the cylinder member 2c connected to the tip of the cylinder member 2b is set as K, and the inner diameter k. Is smaller than the inner diameter K of the cylinder member 2b. By making the inner diameter K of the arrangement part of the elastic rubber body 7 of the cylinder member 2 larger than the inner diameter k of the other part, the volume of the elastic rubber body 7 to be arranged is increased and the seismic energy is attenuated by the deformation of the elastic rubber body 7. The performance can be improved.

図7(a)(b)に示される実施形態は、構造物の設置個所の相違により制振ダンパーの長さが異なるケースに対応するものである。図7(a)に示すように、弾性ゴム体7を配置するシリンダー部材2dに対して、長さの異なるシリンダー部材2e,2fを複数用意する。構造物の設置個所の制振ダンパーの長さに応じて複数の長さの異なるシリンダー部材2e,2fから所望の長さのシリンダー部材を選択し、弾性ゴム体7を配置したシリンダー部材2dと連結固定する。   The embodiment shown in FIGS. 7 (a) and 7 (b) corresponds to a case where the length of the vibration damper is different due to the difference in the installation location of the structure. As shown in FIG. 7A, a plurality of cylinder members 2e and 2f having different lengths are prepared for the cylinder member 2d on which the elastic rubber body 7 is disposed. A cylinder member having a desired length is selected from a plurality of cylinder members 2e and 2f having different lengths according to the length of the vibration damper at the place where the structure is installed, and connected to the cylinder member 2d in which the elastic rubber body 7 is disposed. Fix it.

以上のように本発明の構造物用制振ダンパーによれば、弾性ゴム体により密封された空間内流体の前記弁体に形成された流通路を通しての流体移動抵抗及び前記弾性ゴム体性変形により地震エネルギーを減衰することで、複雑な弁制御機構を設けること無く構造が簡単で部品点数が少なく効率良く地震エネルギーを減衰することが可能な流体圧を利用したダンパー構造を提供することが可能となる。   As described above, according to the vibration damper for a structure of the present invention, due to the fluid movement resistance through the flow passage formed in the valve body of the fluid in the space sealed by the elastic rubber body and the elastic rubber body deformation. By dampening seismic energy, it is possible to provide a damper structure using fluid pressure that can easily damp seismic energy with a simple structure and a small number of parts without providing a complicated valve control mechanism. Become.

1:構造物用制振ダンパー、2:シリンダー部材、3:ピストンロッド、4:シリンダー側取付部材、5:ピストンロッド側取付部材、6:弁体、7:弾性ゴム体、8:流通路、8a:小孔、8b:切欠き、9:リング状隔壁部材   1: Damping damper for structure, 2: cylinder member, 3: piston rod, 4: cylinder side mounting member, 5: piston rod side mounting member, 6: valve body, 7: elastic rubber body, 8: flow passage, 8a: small hole, 8b: notch, 9: ring-shaped partition member

Claims (7)

地震時に相対変位する一方の構造体に固定される一端が閉じ、他端が開口したシリンダー部材と、
他方の構造体に固定され、前記シリンダー部材の開口から内部に伸び、前記シリンダー部材との間で相対変位可能に配置され、先端に前記シリンダー部材の内径とほぼ同じ外径を有し、流通路を形成した弁体を備えたピストンロッドと、
前記弁体から所定間隔をおいたピストンロッドの外周面にその内周面が固定され前記シリンダー部材内周面にその外周面が固定される弾性ゴム体と、
前記弾性ゴム体と前記弁体との間に、外周部が前記シリンダー部材内周面に固定され内周部が前記ピストンロッド外周部と摺動可能に配置したリング状隔壁部材と、
を備え、
前記リング状隔壁部材と前記シリンダー部材の閉じられた一端間を密封空間とし、前記シリンダー部材と前記ピストンロッドの相対変位に対して、シリンダー部材の密封空間内流体の前記弁体に形成された流通路を通しての流体移動抵抗及び前記弾性ゴム体の弾性変形により地震エネルギーを吸収することを特徴とする構造物用制振ダンパー。
A cylinder member with one end fixed to one structure that is relatively displaced during an earthquake closed and the other end opened;
Fixed to the other structure, extends inwardly from the opening of the cylinder member, is disposed so as to be relatively displaceable with the cylinder member, and has an outer diameter substantially equal to the inner diameter of the cylinder member at the tip, A piston rod having a valve body formed with
An elastic rubber body whose inner peripheral surface is fixed to the outer peripheral surface of the piston rod spaced a predetermined distance from the valve body, and whose outer peripheral surface is fixed to the inner peripheral surface of the cylinder member;
Between the elastic rubber body and the valve body, a ring-shaped partition member in which an outer peripheral part is fixed to the inner peripheral surface of the cylinder member and an inner peripheral part is slidably arranged with the outer peripheral part of the piston rod;
With
The closed end of the ring-shaped partition member and the cylinder member is used as a sealed space, and the flow formed in the valve body of the fluid in the sealed space of the cylinder member with respect to relative displacement between the cylinder member and the piston rod. A damping damper for a structure, which absorbs seismic energy by fluid movement resistance through a road and elastic deformation of the elastic rubber body.
前記弾性ゴム体を高減衰性ゴムとすることを特徴とする請求項1に記載の構造物用制振ダンパー。   The structure damping damper for a structure according to claim 1, wherein the elastic rubber body is a high damping rubber. 前記シリンダー部材の前記弾性ゴム体を固定する部分の内径を他の部分の内径より大きくすることを特徴とする請求項1または2に記載の構造物用制振ダンパー。   The structure damping damper according to claim 1 or 2, wherein an inner diameter of a portion of the cylinder member to which the elastic rubber body is fixed is made larger than an inner diameter of another portion. 前記シリンダー部材の密封空間に封入される流体を気体とすることを特徴とする請求項1ないし3のいずれか1項に記載の構造物用制振ダンパー。   The structure damper according to any one of claims 1 to 3, wherein the fluid sealed in the sealed space of the cylinder member is a gas. 前記シリンダー部材の密封空間に封入される流体を液体とすることを特徴とする請求項1ないし3のいずれか1項に記載の構造物用制振ダンパー。   The structure damper according to any one of claims 1 to 3, wherein the fluid sealed in the sealed space of the cylinder member is a liquid. 前記流通路が前記弁体を貫通する小孔であることを特徴とする請求項1ないし5のいずれか1項に記載の構造物用制振ダンパー。   The structure damper according to any one of claims 1 to 5, wherein the flow passage is a small hole penetrating the valve body. 前記流通路が前記弁体の外周に形成した切欠きであることを特徴とする請求項1ないし5のいずれか1項に記載の構造物用制振ダンパー。   The structure damper according to any one of claims 1 to 5, wherein the flow passage is a notch formed in an outer periphery of the valve body.
JP2012247154A 2012-11-09 2012-11-09 Damping damper for structures Active JP6046986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247154A JP6046986B2 (en) 2012-11-09 2012-11-09 Damping damper for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247154A JP6046986B2 (en) 2012-11-09 2012-11-09 Damping damper for structures

Publications (2)

Publication Number Publication Date
JP2014095422A JP2014095422A (en) 2014-05-22
JP6046986B2 true JP6046986B2 (en) 2016-12-21

Family

ID=50938655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247154A Active JP6046986B2 (en) 2012-11-09 2012-11-09 Damping damper for structures

Country Status (1)

Country Link
JP (1) JP6046986B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358838B2 (en) * 2014-04-14 2018-07-18 株式会社ビービーエム Damping damper for structures
JP6471994B2 (en) * 2014-10-29 2019-02-20 国立研究開発法人建築研究所 Damping damper for structures
CN105138798B (en) * 2015-09-18 2018-09-11 中铁大桥科学研究院有限公司 A kind of pendulum-type eddy current tuned mass damper that realizing structural vibration reduction and method
KR101689313B1 (en) * 2015-12-16 2016-12-23 주식회사 케이오비에이 Shock absorber by viscoelastic fluid
CN106758766B (en) * 2016-11-10 2019-02-12 中铁大桥勘测设计院集团有限公司 A kind of bridge being equipped with viscous damper
KR101777548B1 (en) * 2017-07-10 2017-09-26 박석암 A cushioning cylinder, and wave dissipating block structure using the same, and construction method thereof
CN113719571B (en) * 2021-09-08 2023-03-28 宁波鸿裕工业有限公司 Vibration damper
CN114810925B (en) * 2022-05-06 2023-05-09 同济大学 Connecting device of smoothing reactor for gas damping

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056892U (en) * 1973-09-25 1975-05-28
US4032126A (en) * 1976-03-29 1977-06-28 Laughlin William N Shock absorbing apparatus
JPH0861312A (en) * 1994-08-23 1996-03-08 Fujitsu Ltd Free-stroke cylinder
JP3998277B2 (en) * 1995-01-25 2007-10-24 本田技研工業株式会社 Motorcycle front fork
JPH11210815A (en) * 1998-01-27 1999-08-03 Yokohama Rubber Co Ltd:The Base isolation supporting device of structure
JP2002115738A (en) * 2000-10-10 2002-04-19 Kayaba Ind Co Ltd Gas spring

Also Published As

Publication number Publication date
JP2014095422A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6046986B2 (en) Damping damper for structures
JP6289888B2 (en) Damping damper for structures
JP5620596B1 (en) Structure damping device
JP4865478B2 (en) Elastic bearing with hydraulic damper
JP5886721B2 (en) Damping damper for structures
WO2016148584A1 (en) An energy transfer apparatus and method of use
JP2017053135A (en) Vibration control structure of building
JP2011112216A (en) Base isolation system
US20080230334A1 (en) Vibration damper with amplitude-selective damping force
JP6358838B2 (en) Damping damper for structures
JP6471994B2 (en) Damping damper for structures
JP6501887B2 (en) Cylinder device
KR101562747B1 (en) Hydraulic snubber
DE102019134646B3 (en) Additional spring for a wheel suspension of a motor vehicle
JP6567267B2 (en) Structure damping device
JP5246495B2 (en) Hydraulic buffer
TWI632307B (en) Gas-assisted hydraulic damper
JP5112609B2 (en) Hydraulic shock absorber
JP5330288B2 (en) Shock absorber with air spring
KR101556333B1 (en) Fluid damper
JPH1194001A (en) Damper device
JP4579760B2 (en) Seismic isolation structure
KR102024442B1 (en) Fluid Daper For Earthquake-proof
JP2010255850A (en) Damper device
JP5140486B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6046986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250