JP6287687B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP6287687B2
JP6287687B2 JP2014170847A JP2014170847A JP6287687B2 JP 6287687 B2 JP6287687 B2 JP 6287687B2 JP 2014170847 A JP2014170847 A JP 2014170847A JP 2014170847 A JP2014170847 A JP 2014170847A JP 6287687 B2 JP6287687 B2 JP 6287687B2
Authority
JP
Japan
Prior art keywords
composite oxide
phase
osc
exhaust gas
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014170847A
Other languages
Japanese (ja)
Other versions
JP2016044108A (en
Inventor
充 南
充 南
悠生 青木
悠生 青木
諭 長尾
諭 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014170847A priority Critical patent/JP6287687B2/en
Publication of JP2016044108A publication Critical patent/JP2016044108A/en
Application granted granted Critical
Publication of JP6287687B2 publication Critical patent/JP6287687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、セリウム(Ce)、ランタン(La)及びジルコニウム(Zr)を含む複合酸化物及び該複合酸化物を用いた排ガス浄化用触媒に関する。   The present invention relates to a composite oxide containing cerium (Ce), lanthanum (La), and zirconium (Zr), and an exhaust gas purifying catalyst using the composite oxide.

自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害成分が含まれており、これらの有害成分は排ガス浄化用触媒によって浄化されてから大気中に放出されている。従来、この排ガス浄化用触媒には、CO、HCの酸化とNOの還元とを同時に行う三元触媒が用いられており、三元触媒としては、アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)、チタニア(TiO)等の多孔質酸化物担体に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持したものが広く用いられている。 Exhaust gas discharged from internal combustion engines such as automobiles contains harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ). After being purified by the catalyst for use, it is released into the atmosphere. Conventionally, a three-way catalyst that simultaneously performs oxidation of CO and HC and reduction of NO x is used as the exhaust gas purification catalyst. As the three-way catalyst, alumina (Al 2 O 3 ), silica (SiO 2 ) 2 ), porous oxide carriers such as zirconia (ZrO 2 ), titania (TiO 2 ), etc., on which a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) is supported are widely used. .

このような三元触媒を用いて効率的に排ガス中の上記有害成分を浄化するためには、内燃機関に供給される混合気の、空気と燃料の比率である空燃比(A/F)が理論空燃比(ストイキ)近傍でなければならない。しかし、実際の空燃比は、自動車の走行条件等によって、ストイキを中心に、リッチ(燃料過剰:A/F<14.7)又はリーン(酸素過剰:A/F>14.7)になり、これに対応して排ガスもリッチ又はリーンになる。   In order to efficiently purify the harmful components in the exhaust gas using such a three-way catalyst, the air-fuel ratio (A / F), which is the ratio of air to fuel, of the air-fuel mixture supplied to the internal combustion engine is set. Must be near stoichiometric air-fuel ratio (stoichiometric). However, the actual air-fuel ratio becomes rich (excess fuel: A / F <14.7) or lean (excess oxygen: A / F> 14.7), mainly due to stoichiometry, depending on the driving conditions of the automobile, Correspondingly, the exhaust gas becomes rich or lean.

近年では、排ガス中の酸素濃度の変動に対して三元触媒の排ガス浄化能を高めるために、酸素吸蔵能(OSC:Oxygen Storage Capacity)を有する無機材料であるOSC材が排ガス浄化用触媒の担体として用いられている。セリウムの酸化物は優れた酸素吸蔵能を有することが知られており、OSC材として広く用いられてきた。   In recent years, an OSC material, which is an inorganic material having an oxygen storage capacity (OSC), has been used as a carrier for an exhaust gas purification catalyst in order to enhance the exhaust gas purification performance of a three-way catalyst against fluctuations in oxygen concentration in the exhaust gas. It is used as. Cerium oxide is known to have an excellent oxygen storage capacity and has been widely used as an OSC material.

排ガス浄化用触媒にOSC材として用いられるセリウムの酸化物として、特許文献1には、セリウム(III)化合物とジルコニウム(IV)化合物との混合物又は共沈物を不活性又は非酸化性雰囲気下に加熱し、熱分解して、セリウム(III)−ジルコニウム(IV)複合酸化物を形成し、次いで、これを酸化性雰囲気下に加熱することを特徴とする排ガス浄化用助触媒のためのセリア−ジルコニア複合酸化物の製造方法が記載されている。   As an oxide of cerium used as an OSC material for an exhaust gas purification catalyst, Patent Document 1 discloses a mixture or coprecipitate of a cerium (III) compound and a zirconium (IV) compound in an inert or non-oxidizing atmosphere. Ceria for exhaust gas purification co-catalyst characterized by heating and pyrolysis to form a cerium (III) -zirconium (IV) composite oxide and then heating it in an oxidizing atmosphere A method for producing a zirconia composite oxide is described.

また、特許文献2には、CeとZrとを含む複合酸化物であって、Ceの価数が3価の時、以下の組成式:(Ce1−x−y,RE,AE(Zr1−y,M(REはCe以外の希土類イオンの少なくとも1種類、AEはCa、Sr、Baの少なくとも1種類、MはNb、Taの少なくとも1種類、0≦x≦0.9、0≦y≦0.9、0.4≦x+y≦0.9)で表されるパイロクロア構造を有することを特徴とする複合酸化物が記載されている。特許文献2には、複合酸化物のCe1mol当りの酸素吸蔵能が優れていたことが記載されている。 Patent Document 2 discloses a composite oxide containing Ce and Zr, and when the valence of Ce is trivalent, the following composition formula: (Ce 1-xy , RE x , AE y ) 2 (Zr 1-y , M y ) 2 O 7 (RE is at least one rare earth ion other than Ce, AE is at least one of Ca, Sr, and Ba, M is at least one of Nb and Ta, 0 ≦ A composite oxide having a pyrochlore structure represented by x ≦ 0.9, 0 ≦ y ≦ 0.9, 0.4 ≦ x + y ≦ 0.9) is described. Patent Document 2 describes that the oxygen storage capacity per 1 mol of Ce of the composite oxide was excellent.

近年、自動車用の排ガス浄化用触媒について、省資源、コストダウン及びエンジン性能の改良等のために、触媒の貴金属使用量を低減することや触媒の圧損を低減することが求められている。しかし、貴金属の使用量を低減すると触媒の酸素吸蔵能が低下するため、OSC材の性能をさらに向上させることが望まれている。また、エンジン性能に悪影響を与える触媒の圧損を低減するために各種技術の開発が進められており、触媒体格を低減させることがその一つとして挙げられる。触媒体格を低減させることによって、OSC材の使用量を減少させることも可能になり、自動車の軽量化にもつながるため、コストを低減することもできる。従って、排ガス浄化用触媒の担体として用いられるOSC材の単位重量当りの酸素吸蔵能を高めることが求められている。   In recent years, regarding exhaust gas purification catalysts for automobiles, it has been required to reduce the amount of noble metal used in the catalyst and the pressure loss of the catalyst in order to save resources, reduce costs, improve engine performance, and the like. However, if the amount of noble metal used is reduced, the oxygen storage capacity of the catalyst is lowered, so that it is desired to further improve the performance of the OSC material. In addition, various technologies have been developed in order to reduce the pressure loss of the catalyst that adversely affects the engine performance, and one example is to reduce the catalyst size. By reducing the catalyst size, it is possible to reduce the amount of OSC material used, leading to a reduction in the weight of the automobile, and thus the cost can be reduced. Therefore, it is required to increase the oxygen storage capacity per unit weight of the OSC material used as a carrier for the exhaust gas purification catalyst.

特開平11−165067号公報Japanese Patent Laid-Open No. 11-165067 特開2005−231951号公報JP 2005-231951 A

上記のように、排ガス浄化用触媒の担体にOSC材として用いられる複合酸化物について、省資源、コストダウン及びエンジン性能の改良等のため、触媒の貴金属使用量の低減や触媒圧損の低減が求められているが、従来の排ガス浄化用触媒では、触媒の担体の単位重量当りの酸素吸蔵能について改善の余地がある。   As described above, the composite oxide used as the OSC material for the exhaust gas purification catalyst carrier is required to reduce the amount of precious metal used in the catalyst and reduce the catalyst pressure loss in order to save resources, reduce costs and improve engine performance. However, conventional exhaust gas purifying catalysts have room for improvement in oxygen storage capacity per unit weight of catalyst support.

従って、本発明は、単位重量当りの酸素吸蔵能が向上した、Ceを含む複合酸化物を提供することを目的とする。   Accordingly, an object of the present invention is to provide a composite oxide containing Ce having an improved oxygen storage capacity per unit weight.

本発明者らは、上記課題を解決するための手段を種々検討した結果、Ce、La及びZrを含むパイロクロア構造を有する複合酸化物のCeの組成比を特定することによって、該複合酸化物の単位重量当りの酸素吸蔵能を向上させることができることを見出し、本発明を完成した。   As a result of various studies on means for solving the above problems, the present inventors have identified the composition ratio of Ce of the composite oxide having a pyrochlore structure containing Ce, La, and Zr. It has been found that the oxygen storage capacity per unit weight can be improved, and the present invention has been completed.

すなわち、本発明の要旨は以下の通りである。
(1)Ce、La及びZrを含み、式Aで表されるパイロクロア構造を有する複合酸化物であって、AサイトがCe及びLaからなり、BサイトがZrを含み、AサイトのCeの組成比が0.6〜0.8である複合酸化物。
(2)AサイトのCeの組成比が0.65〜0.75であり、Laの組成比が1.25〜1.35である(1)の複合酸化物。
(3)(1)又は(2)の複合酸化物に貴金属を担持した排ガス浄化用触媒。
That is, the gist of the present invention is as follows.
(1) A composite oxide containing Ce, La and Zr and having a pyrochlore structure represented by the formula A 2 B 2 O 7 , wherein the A site consists of Ce and La, the B site contains Zr, and A A composite oxide having a Ce composition ratio of 0.6 to 0.8.
(2) The composite oxide according to (1), wherein the composition ratio of Ce at the A site is 0.65 to 0.75 and the composition ratio of La is 1.25 to 1.35.
(3) An exhaust gas purifying catalyst in which a noble metal is supported on the composite oxide of (1) or (2).

本発明により、単位重量当りの酸素吸蔵能が向上した、Ceを含む複合酸化物を提供することが可能となる。   According to the present invention, it is possible to provide a composite oxide containing Ce with improved oxygen storage capacity per unit weight.

図1は、実施例1、2及び比較例1−4の複合酸化物の初期品及び耐久品のI値を示す図である。FIG. 1 is a diagram showing I values of initial and durable composite oxides of Examples 1 and 2 and Comparative Example 1-4. 図2は、実施例1、2及び比較例1−3の複合酸化物の単位重量当りのOSCを示す図である。FIG. 2 is a diagram showing the OSC per unit weight of the composite oxides of Examples 1 and 2 and Comparative Example 1-3. 図3は、実施例1、2及び比較例1−3の複合酸化物の耐久後のI値とCe利用率の関係を示す図である。FIG. 3 is a graph showing the relationship between the I value after durability of the composite oxides of Examples 1 and 2 and Comparative Example 1-3 and the Ce utilization rate. 図4は、実施例1、2及び比較例1−3の複合酸化物のCe量と耐久後のI値の関係を示す図である。FIG. 4 is a graph showing the relationship between the Ce amount of the composite oxides of Examples 1 and 2 and Comparative Example 1-3 and the I value after durability. 図5は、実施例1、2及び比較例1−3の複合酸化物のCe量とOSC理論値の関係を示す図である。FIG. 5 is a graph showing the relationship between the Ce content of the composite oxides of Examples 1 and 2 and Comparative Example 1-3 and the OSC theoretical value. 図6は、実施例において、一般解式より求めた複合酸化物のCe量と、耐久後の単位重量当りのOSCの関係を示す図である。FIG. 6 is a graph showing the relationship between the amount of Ce of the composite oxide obtained from the general solution and the OSC per unit weight after durability in the examples.

以下、本発明の好ましい実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明は、セリウム(Ce)、ランタン(La)及びジルコニウム(Zr)を含む、式Aで表されるパイロクロア構造を有する複合酸化物に関する。本発明の複合酸化物は、式AのAサイトがCe及びLaからなり、他の元素を含まない。本発明の複合酸化物は、式AのBサイトがZrを含む。 The present invention relates to a composite oxide having a pyrochlore structure represented by the formula A 2 B 2 O 7 containing cerium (Ce), lanthanum (La), and zirconium (Zr). In the composite oxide of the present invention, the A site of the formula A 2 B 2 O 7 is composed of Ce and La and does not contain other elements. In the composite oxide of the present invention, the B site of the formula A 2 B 2 O 7 contains Zr.

本発明の複合酸化物において、パイロクロア構造を有するとは、式Aで表される構造を有し、Ce、La及びZrによるパイロクロア型の規則配列構造を有する結晶相(パイロクロア相)が構成されていることを意味する。パイロクロア相は酸素欠陥サイトを有し、そのサイトに酸素原子が入り込むことでパイロクロア相は、式A8−α(αはLaの原子組成/2である)で表されるκ相に相変化する。一方、κ相は酸素原子を放出することによりパイロクロア相に相変化することができる。本発明のCe、La及びZrを含む複合酸化物の酸素吸蔵能は、パイロクロア相とκ相との間で相互に相変化して酸素を吸放出することによるものである。パイロクロア相の複合酸化物を排ガス浄化用触媒のOSC材として用いる場合、リッチ時にはパイロクロア相に変化し、リーン時にはκ相に変化することになる。 In the composite oxide of the present invention, having a pyrochlore structure means a crystal phase (pyrochlore phase) having a structure represented by the formula A 2 B 2 O 7 and having a pyrochlore type ordered arrangement structure of Ce, La and Zr. ) Is configured. The pyrochlore phase has an oxygen defect site, and oxygen atoms enter the site, whereby the pyrochlore phase is expressed by the formula A 2 B 2 O 8-α (α is the atomic composition of La / 2). Phase change. On the other hand, the κ phase can change into a pyrochlore phase by releasing oxygen atoms. The oxygen storage capacity of the composite oxide containing Ce, La and Zr of the present invention is due to the absorption and release of oxygen by mutually changing the phase between the pyrochlore phase and the κ phase. When the composite oxide of the pyrochlore phase is used as the OSC material of the exhaust gas purification catalyst, it changes to the pyrochlore phase when rich and changes to the κ phase when lean.

本発明の複合酸化物の結晶相は、X線回折(XRD)測定により判別することができる。XRDパターンにおいて、2θ=14°付近の回折線は規則相(κ相)の(111)面に帰属する回折線であり、2θ=29°付近の回折線は規則相の(222)面に帰属する回折線である。本発明では、(111)面に帰属する回折線の(222)面に帰属する回折線に対する強度の比((111)回折線の強度/(222)回折線の強度)をI値とし、I値を規則相の耐久性(維持率)を示す指標として用いる。   The crystal phase of the composite oxide of the present invention can be determined by X-ray diffraction (XRD) measurement. In the XRD pattern, diffraction lines near 2θ = 14 ° are diffraction lines belonging to the (111) plane of the regular phase (κ phase), and diffraction lines near 2θ = 29 ° belong to the (222) plane of the regular phase. Diffraction lines. In the present invention, the ratio of the intensity of the diffraction line belonging to the (111) plane to the diffraction line belonging to the (222) plane (the intensity of the (111) diffraction line / the intensity of the (222) diffraction line) is defined as I value. The value is used as an index indicating the durability (maintenance rate) of the ordered phase.

本発明の複合酸化物において、AサイトのCeの組成比は0.6〜0.8であり、好ましくは、0.65〜0.75である。本発明の複合酸化物は、AサイトのCeの組成比を0.6〜0.8にすることによって、複合酸化物の単位重量当りの酸素吸蔵能が向上するため、触媒体格の低減及び触媒圧損の低減が達成され、さらに、OSC材の使用量も減少させることができるため、コストの面でも優れる。   In the composite oxide of the present invention, the composition ratio of Ce at the A site is 0.6 to 0.8, preferably 0.65 to 0.75. In the composite oxide of the present invention, the oxygen storage capacity per unit weight of the composite oxide is improved by setting the composition ratio of Ce at the A site to 0.6 to 0.8. Reduction in pressure loss is achieved, and furthermore, the amount of OSC material used can be reduced, which is excellent in terms of cost.

本発明の複合酸化物において、AサイトのLaの組成比は、Ceの組成比に対応して1.2〜1.4であり、好ましくは1.25〜1.35である。本発明の複合酸化物では、AサイトがLaを含むことによって、規則相のパイロクロア相の耐久性が向上し、Ceの利用率が向上する。   In the composite oxide of the present invention, the composition ratio of La at the A site is 1.2 to 1.4, preferably 1.25 to 1.35, corresponding to the composition ratio of Ce. In the composite oxide of the present invention, when the A site contains La, durability of the ordered pyrochlore phase is improved, and Ce utilization is improved.

本発明の複合酸化物において、Zrを含むBサイトの組成比は2である。BサイトはZr以外の金属元素を含むこともできる。Zr以外の金属元素としては、Ti、Fe、Y、Nb、Hf等を挙げることができる。   In the composite oxide of the present invention, the composition ratio of the B site containing Zr is 2. The B site can also contain a metal element other than Zr. Examples of metal elements other than Zr include Ti, Fe, Y, Nb, and Hf.

本発明の複合酸化物は、好ましくは、式CeLa2−xZr(式中、xは0.6〜0.8であり、好ましくは0.65〜0.75である)で表されるパイロクロア構造を有する複合酸化物である。 The composite oxide of the present invention preferably has the formula Ce x La 2-x Zr 2 O 7 (wherein x is 0.6 to 0.8, preferably 0.65 to 0.75). A composite oxide having a pyrochlore structure represented by

本発明の複合酸化物は、上記のCe及びLaの組成比とすることにより、Laの置換量の増大に伴い、規則相のパイロクロア相の耐久性が向上し、Ce利用率が向上して酸素吸蔵能が向上する効果と、La置換量の増大に伴い、単位重量当りのCe量が減少し、酸素吸蔵能が低下する影響とのバランスが最適化されている。これによって、本発明の複合酸化物は、Ce及びLaの組成比がこの範囲にない複合酸化物と比較して、単位重量当りの酸素吸蔵能が優れる。   By setting the composition ratio of Ce and La in the composite oxide of the present invention, the durability of the ordered pyrochlore phase is improved as the amount of substitution of La is increased, and the Ce utilization rate is improved. The balance between the effect of improving the storage capacity and the effect of decreasing the amount of Ce per unit weight and decreasing the oxygen storage capacity as the La substitution amount increases is optimized. As a result, the composite oxide of the present invention is superior in oxygen storage capacity per unit weight as compared with a composite oxide in which the composition ratio of Ce and La is not in this range.

ここで、本発明の複合酸化物において、Laの置換量が増大することにより規則相のパイロクロア相の耐久性が向上するのは、(1)3価のLaが置換固溶することにより、κ相でも酸素欠陥が生じ、Ce、Zrサイトの酸素配位数に差が生じるため、(2)Ceサイトにイオンサイズの大きい3価のLaが置換することによるため、(3)安定相であるLaZrに組成が近づくため等の理由が可能性として考えられる。 Here, in the composite oxide of the present invention, the durability of the ordered pyrochlore phase is improved by increasing the substitution amount of La. (1) The trivalent La is substituted and dissolved, and κ Oxygen vacancies also occur in the phase, resulting in a difference in the number of oxygen coordination at the Ce and Zr sites. (2) Since trivalent La having a large ion size is substituted at the Ce site, (3) a stable phase A possible reason is that the composition is close to La 2 Zr 2 O 7 .

本発明の複合酸化物は、幅広い温度範囲にわたって優れた酸素吸蔵能を発揮することができるが、好ましくは、350℃〜550℃程度の低・中温域で用いられる。   The composite oxide of the present invention can exhibit excellent oxygen storage capacity over a wide temperature range, but is preferably used in a low / medium temperature range of about 350 ° C. to 550 ° C.

本発明のパイロクロア構造を有する複合酸化物は、固相法、液相法、アルコキシド法等の通常の方法で製造することができる。例えば、本発明の複合酸化物は、セリウム化合物、ジルコニウム化合物及びランタン化合物の水溶液と、錯形成剤の水溶液とを混合し、乾燥してCe、La及びZrを含む生成物を析出させた後、還元性雰囲気にて焼成を行うことによって製造される。セリウム化合物、ジルコニウム化合物及びランタン化合物は、非水溶剤、例えば、アルコールや有機カルボン酸エステルの溶液として用いることもできる。   The composite oxide having a pyrochlore structure of the present invention can be produced by a usual method such as a solid phase method, a liquid phase method, or an alkoxide method. For example, in the composite oxide of the present invention, an aqueous solution of a cerium compound, a zirconium compound and a lanthanum compound and an aqueous solution of a complexing agent are mixed and dried to precipitate a product containing Ce, La and Zr. Manufactured by firing in a reducing atmosphere. A cerium compound, a zirconium compound, and a lanthanum compound can also be used as a solution of a non-aqueous solvent, for example, an alcohol or an organic carboxylic acid ester.

セリウム化合物としては、例えば、硝酸セリウム、硝酸二アンモニウムセリウム等の硝酸塩、硫酸セリウム等の硫酸塩、塩化セリウム等の塩化物等の水溶性化合物を用いることができる。また、ジルコニウム化合物としては、オキシ硝酸ジルコニウム等の硝酸塩、硫酸ジルコニウム等の硫酸塩、オキシ塩化ジルコニウム等の塩化物等の水溶性化合物を用いることができる。また、ランタン化合物としては硝酸ランタン等の硝酸塩、硫酸ランタン等の硫酸塩、塩化ランタン等の塩化物等の水溶性化合物を用いることができる。   Examples of the cerium compound include water-soluble compounds such as nitrates such as cerium nitrate and diammonium cerium nitrate, sulfates such as cerium sulfate, and chlorides such as cerium chloride. Further, as the zirconium compound, water-soluble compounds such as nitrates such as zirconium oxynitrate, sulfates such as zirconium sulfate, and chlorides such as zirconium oxychloride can be used. As the lanthanum compound, water-soluble compounds such as nitrates such as lanthanum nitrate, sulfates such as lanthanum sulfate, and chlorides such as lanthanum chloride can be used.

錯形成剤としては、特に限定されずに、例えば、有機カルボン酸、有機スルホン酸、β−ジケトン、シクロポリエン、アルコール等を挙げることができる。有機カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、クエン酸、酒石酸、アミノ酢酸等を挙げることができるが、クエン酸が好ましい。有機スルホン酸としては、例えば、ベンゼンスルホン酸やp−トルエンスルホン酸等を挙げることができる。β−ジケトンとしては、例えば、アセチルアセトン等を挙げることができる。シクロポリエンとしては、例えば、シクロオクタテトラエンやシクロペンタジエン等を挙げることができる。アルコールとしては、例えば、ブチルアルコールのようなアルキルアルコールを挙げることができる。   The complexing agent is not particularly limited, and examples thereof include organic carboxylic acids, organic sulfonic acids, β-diketones, cyclopolyenes, alcohols and the like. Examples of the organic carboxylic acid include formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, citric acid, tartaric acid, aminoacetic acid and the like. Is preferred. Examples of the organic sulfonic acid include benzenesulfonic acid and p-toluenesulfonic acid. Examples of β-diketone include acetylacetone. Examples of cyclopolyene include cyclooctatetraene and cyclopentadiene. Examples of the alcohol include alkyl alcohols such as butyl alcohol.

セリウム化合物、ジルコニウム化合物及びランタン化合物の水溶液と、錯形成剤の水溶液との混合により沈殿物が生成した場合には、この沈殿物をろ過した後に乾燥してもよい。   When a precipitate is formed by mixing an aqueous solution of a cerium compound, a zirconium compound and a lanthanum compound and an aqueous solution of a complexing agent, the precipitate may be filtered and dried.

セリウム化合物、ジルコニウム化合物及びランタン化合物の水溶液と、錯形成剤の水溶液との混合溶液の乾燥は、通常、50℃〜80℃で5時間〜48時間行うことができる。   Drying of a mixed solution of an aqueous solution of a cerium compound, a zirconium compound and a lanthanum compound and an aqueous solution of a complexing agent can be usually performed at 50 to 80 ° C. for 5 to 48 hours.

Ce、La及びZrを含む生成物の焼成は、通常、還元性雰囲気下にて、600℃〜1500℃で2時間〜10時間加熱保持することで行うことができる。還元性雰囲気は不活性ガス雰囲気又は非酸化性雰囲気とすることもできるが、H、CO等の還元性ガスを含む雰囲気とすることが好ましい。 Calcination of the product containing Ce, La and Zr can be usually performed by heating and holding at 600 ° C. to 1500 ° C. for 2 hours to 10 hours in a reducing atmosphere. The reducing atmosphere can be an inert gas atmosphere or a non-oxidizing atmosphere, but is preferably an atmosphere containing a reducing gas such as H 2 or CO.

パイロクロア構造を有する複合酸化物は、大気中や酸素雰囲気等の酸化雰囲気下で500℃〜1000℃で1時間〜10時間保持することにより、Ceの価数が4価になったκ相の複合酸化物にすることができる。   The composite oxide having a pyrochlore structure is a composite of κ phase in which the valence of Ce becomes tetravalent by holding at 500 ° C. to 1000 ° C. for 1 hour to 10 hours in an oxidizing atmosphere such as air or an oxygen atmosphere. It can be an oxide.

本発明の複合酸化物は、自らを担体として貴金属を担持することにより、自動車等の排ガス浄化用触媒とすることができる。よって本発明は、上記複合酸化物に貴金属を担持した排ガス浄化用触媒にも関する。本発明の排ガス浄化用触媒は、主触媒として白金族貴金属を含むことが好ましい。白金族貴金属としては、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)及び白金(Pt)が挙げられ、特にRh、Pt及びPdを用いることが好ましい。その担持量は従来の排ガス浄化用触媒と同様でよいが、排ガス浄化用触媒に対して0.01重量%〜5重量%であることが好ましい。本発明の排ガス浄化用触媒は、担体として本発明の複合酸化物以外の担体材料を含んでいてもよい。本発明の複合酸化物以外の担体材料としては、多孔質であり、かつ、耐熱性に優れた金属酸化物が挙げられ、例えば、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、又はこれらの金属酸化物を主成分とした複合酸化物等を用いることができる。本発明の排ガス浄化用触媒において、担持方法は、吸着担持法、吸水担持法等従来の担持法を利用することができる。 The composite oxide of the present invention can be used as an exhaust gas purifying catalyst for automobiles or the like by supporting a noble metal by itself as a carrier. Therefore, the present invention also relates to an exhaust gas purification catalyst in which a noble metal is supported on the composite oxide. The exhaust gas purifying catalyst of the present invention preferably contains a platinum group noble metal as a main catalyst. Examples of the platinum group noble metal include ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt), and it is particularly preferable to use Rh, Pt, and Pd. . The supported amount may be the same as that of the conventional exhaust gas purifying catalyst, but is preferably 0.01% by weight to 5% by weight with respect to the exhaust gas purifying catalyst. The exhaust gas purifying catalyst of the present invention may contain a support material other than the composite oxide of the present invention as a support. Examples of the carrier material other than the composite oxide of the present invention include metal oxides that are porous and have excellent heat resistance. For example, aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), or composite oxides mainly composed of these metal oxides can be used. In the exhaust gas purifying catalyst of the present invention, a conventional supporting method such as an adsorption supporting method or a water absorbing supporting method can be used as the supporting method.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

(実施例1)
Ce0.7La1.3Zr7.35(κ相)の調製
硝酸二アンモニウムセリウム(IV)7mmol/純水5ml、オキシ硝酸ジルコニウム20mmol/純水10ml及び硝酸ランタン13mmol/純水10mlの各水溶液を調製し、これらの水溶液を混合し、撹拌した。クエン酸40mmol/純水10mlの水溶液を調製し、調製したクエン酸溶液に、上記のCe塩、Zr塩及びLa塩の混合溶液を加え、300rpmで30分間撹拌した。撹拌中に、この溶液を約60℃で加熱し、水分を蒸発させた。この溶液の粘性が高くなり、撹拌子の回転数に乱れが出てきたのを確認した後、溶液を真空乾燥器に移し、60℃で1晩真空乾燥した。乾燥して析出した生成物を粉砕した後、これをガラス容器に移し、ホットプレート上で加熱した。加熱は、150℃から開始し、10℃ずつ昇温して、硝酸塩が分解するまで昇温した(本試料は190℃で分解した)。得られたCe、Zr及びLaを含む生成物を電気炉にて600℃で5時間焼成し、Ce、Zr及びLaの複合酸化物を得た。得られた複合酸化物を管状路に移し、5%H/Arバランスガスを流速1L/分で2時間流通させた。その後、5%H/Arバランスガスを流速300mL/分で流しながら、電気炉を室温から1300℃まで2時間10分かけて昇温し、1300℃で3時間保持して複合酸化物を焼成した。その後、熱源を切り、自然放熱させて、式Ce0.7La1.3Zrで表されるパイロクロア相の複合酸化物を得た。パイロクロア相の複合酸化物の一部をXRD分析に供試し、初期のパイロクロア相の複合酸化物の回折パターンを測定した。
Example 1
Preparation of Ce 0.7 La 1.3 Zr 2 O 7.35 (κ phase) Diammonium cerium (IV) nitrate 7 mmol / pure water 5 ml, zirconium oxynitrate 20 mmol / pure water 10 ml and lanthanum nitrate 13 mmol / pure water 10 ml Each aqueous solution was prepared, and these aqueous solutions were mixed and stirred. An aqueous solution of citric acid 40 mmol / pure water 10 ml was prepared, and the mixed solution of the Ce salt, Zr salt and La salt was added to the prepared citric acid solution, and the mixture was stirred at 300 rpm for 30 minutes. While stirring, the solution was heated at about 60 ° C. to evaporate the water. After confirming that the viscosity of the solution became high and the rotational speed of the stirring bar was disturbed, the solution was transferred to a vacuum dryer and vacuum-dried at 60 ° C. overnight. The dried and precipitated product was pulverized and then transferred to a glass container and heated on a hot plate. Heating was started at 150 ° C., and the temperature was increased by 10 ° C. until the nitrate was decomposed (this sample decomposed at 190 ° C.). The obtained product containing Ce, Zr and La was baked in an electric furnace at 600 ° C. for 5 hours to obtain a composite oxide of Ce, Zr and La. The obtained composite oxide was transferred to a tubular channel, and 5% H 2 / Ar balance gas was circulated at a flow rate of 1 L / min for 2 hours. Then, while flowing 5% H 2 / Ar balance gas at a flow rate of 300 mL / min, the electric furnace was heated from room temperature to 1300 ° C. over 2 hours and 10 minutes and held at 1300 ° C. for 3 hours to sinter the composite oxide did. Thereafter, the heat source was turned off and naturally dissipated to obtain a composite oxide of a pyrochlore phase represented by the formula Ce 0.7 La 1.3 Zr 2 O 7 . A part of the pyrochlore phase composite oxide was subjected to XRD analysis, and the diffraction pattern of the initial pyrochlore phase composite oxide was measured.

得られたパイロクロア相の複合酸化物を電気炉にて、大気中、550℃で2時間焼成して、式Ce0.7La1.3Zr7.35で表されるκ相の複合酸化物を得た。κ相の複合酸化物の一部をXRD分析に供試し、初期のκ相の複合酸化物の回折パターンを測定した。また、κ相の複合酸化物を空気中、1000℃で5時間耐久し、この耐久品についてXRD分析及びOSC測定を実施した。 The obtained pyrochlore phase composite oxide was baked in an electric furnace in the atmosphere at 550 ° C. for 2 hours to form a composite of κ phase represented by the formula Ce 0.7 La 1.3 Zr 2 O 7.35. An oxide was obtained. A part of the κ-phase composite oxide was subjected to XRD analysis, and the diffraction pattern of the initial κ-phase composite oxide was measured. In addition, the composite oxide of κ phase was durable in air at 1000 ° C. for 5 hours, and XRD analysis and OSC measurement were performed on this durable product.

(実施例2)
Ce0.8La1.2Zr7.4(κ相)の調製
金属塩の使用量を、硝酸二アンモニウムセリウム(IV)7mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン13mmolから、硝酸二アンモニウムセリウム(IV)8mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン12mmolとした以外は実施例1と同様にして、式Ce0.8La1.2Zrで表されるパイロクロア相の複合酸化物及び式Ce0.8La1.2Zr7.4で表されるκ相の複合酸化物を得て、各々XRD分析を行い、また、得られたκ相の複合酸化物を空気中、1000℃で5時間耐久し、この耐久品についてXRD分析及びOSC測定を実施した。
(Example 2)
Preparation of Ce 0.8 La 1.2 Zr 2 O 7.4 (κ phase) The amount of metal salt used was changed from 7 mmol of diammonium cerium (IV) nitrate, 20 mmol of zirconium oxynitrate and 13 mmol of lanthanum nitrate to diammonium cerium nitrate. (IV) Pyrochlore phase complex oxide and formula represented by the formula Ce 0.8 La 1.2 Zr 2 O 7 in the same manner as in Example 1 except that 8 mmol, zirconium oxynitrate 20 mmol and lanthanum nitrate 12 mmol were used. A composite oxide of κ phase represented by Ce 0.8 La 1.2 Zr 2 O 7.4 was obtained, each was subjected to XRD analysis, and the obtained composite oxide of κ phase was 1000 in the air. Durability was performed at 5 ° C. for 5 hours, and XRD analysis and OSC measurement were performed on the durable product.

(比較例1)
CeZr(κ相)の調製
金属塩の使用量を、硝酸二アンモニウムセリウム(IV)7mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン13mmolから、硝酸二アンモニウムセリウム(IV)20mmol、オキシ硝酸ジルコニウム20mmolとした以外は実施例1と同様にして、式CeZrで表されるパイロクロア相の複合酸化物及び式CeZrで表されるκ相の複合酸化物を得て、各々XRD分析を行い、また、得られたκ相の複合酸化物を空気中、1000℃で5時間耐久し、この耐久品についてXRD分析及びOSC測定を実施した。
(Comparative Example 1)
Preparation of Ce 2 Zr 2 O 8 (κ phase) The amount of metal salt used was 7 mmol of diammonium cerium (IV) nitrate, 20 mmol of zirconium oxynitrate and 13 mmol of lanthanum nitrate, 20 mmol of diammonium cerium (IV) nitrate, zirconium oxynitrate A composite oxide of a pyrochlore phase represented by the formula Ce 2 Zr 2 O 7 and a composite oxide of a κ phase represented by the formula Ce 2 Zr 2 O 8 were obtained in the same manner as in Example 1 except that the amount was 20 mmol. Then, XRD analysis was performed, and the obtained composite oxide of κ phase was durable in air at 1000 ° C. for 5 hours, and XRD analysis and OSC measurement were performed on this durable product.

(比較例2)
CeLaZr7.5(κ相)の調製
金属塩の使用量を、硝酸二アンモニウムセリウム(IV)7mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン13mmolから、硝酸二アンモニウムセリウム(IV)10mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン10mmolとした以外は実施例1と同様にして、式CeLaZrで表されるパイロクロア相の複合酸化物及び式CeLaZr7.5で表されるκ相の複合酸化物を得て、各々XRD分析を行い、また、得られたκ相の複合酸化物を空気中、1000℃で5時間耐久し、この耐久品についてXRD分析及びOSC測定を実施した。
(Comparative Example 2)
Preparation of CeLaZr 2 O 7.5 (κ phase) The amount of metal salt used was 7 mmol of diammonium cerium (IV) nitrate, 20 mmol of zirconium oxynitrate and 13 mmol of lanthanum nitrate, 10 mmol of diammonium cerium (IV) nitrate, zirconium oxynitrate A composite oxide of pyrochlore phase represented by the formula CeLaZr 2 O 7 and a composite oxide of κ phase represented by the formula CeLaZr 2 O 7.5 are the same as in Example 1 except that 20 mmol and 10 mmol of lanthanum nitrate were used. Each was subjected to XRD analysis, and the obtained composite oxide of κ phase was durable in air at 1000 ° C. for 5 hours, and XRD analysis and OSC measurement were performed on this durable product.

(比較例3)
Ce0.5La1.5Zr7.25(κ相)の調製
金属塩の使用量を、硝酸二アンモニウムセリウム(IV)7mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン13mmolから、硝酸二アンモニウムセリウム(IV)5mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン15mmolとした以外は実施例1と同様にして、式Ce0.5La1.5Zrで表されるパイロクロア相の複合酸化物及び式Ce0.5La1.5Zr7.25で表されるκ相の複合酸化物を得て、各々XRD分析を行い、また、得られたκ相の複合酸化物を空気中、1000℃で5時間耐久し、この耐久品についてXRD分析及びOSC測定を実施した。
(Comparative Example 3)
Preparation of Ce 0.5 La 1.5 Zr 2 O 7.25 (κ phase) The amount of the metal salt was changed from 7 mmol of diammonium cerium (IV) nitrate, 20 mmol of zirconium oxynitrate and 13 mmol of lanthanum nitrate to diammonium cerium nitrate. (IV) Pyrochlore phase composite oxide and formula represented by the formula Ce 0.5 La 1.5 Zr 2 O 7 in the same manner as in Example 1 except that 5 mmol, zirconium oxynitrate 20 mmol and lanthanum nitrate 15 mmol were used. A composite oxide of κ phase represented by Ce 0.5 La 1.5 Zr 2 O 7.25 was obtained, each was subjected to XRD analysis, and the obtained composite oxide of κ phase was 1000 in the air. Durability was performed at 5 ° C. for 5 hours, and XRD analysis and OSC measurement were performed on the durable product.

(比較例4)
LaZr(パイロクロア相)の調製
金属塩の使用量を、硝酸二アンモニウムセリウム(IV)7mmol、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン13mmolから、オキシ硝酸ジルコニウム20mmol及び硝酸ランタン20mmolとした以外は実施例1と同様にして、式LaZrで表されるパイロクロア相の複合酸化物を得て、初期品及び空気中、1000℃で5時間耐久した耐久品について、XRD分析及びOSC測定を実施した。比較例4の複合酸化物は酸素吸蔵能を有していないが、パイロクロア相の耐久性の比較試料とした。
(Comparative Example 4)
Preparation of La 2 Zr 2 O 7 (pyrochlore phase) The amount of metal salt used was changed from 7 mmol of diammonium cerium (IV) nitrate, 20 mmol of zirconium oxynitrate and 13 mmol of lanthanum nitrate to 20 mmol of zirconium oxynitrate and 20 mmol of lanthanum nitrate. In the same manner as in Example 1, a pyrochlore phase composite oxide represented by the formula La 2 Zr 2 O 7 was obtained, and XRD analysis and OSC were performed on the initial product and the durable product that was durable in air at 1000 ° C. for 5 hours. Measurements were performed. The composite oxide of Comparative Example 4 did not have oxygen storage capacity, but was used as a comparative sample for durability of the pyrochlore phase.

実施例1、2及び比較例1−4の複合酸化物のCe、La、Zr組成分析は下記のNa溶融−ICP分析法で実施した。 The Ce, La, and Zr composition analyzes of the composite oxides of Examples 1 and 2 and Comparative Example 1-4 were performed by the following Na 2 O 2 melting-ICP analysis method.

[Ce、La、Zr組成分析]
試料0.1gを秤量し、融解剤のNa 2gを試料に加え、400℃に加熱した電気炉に入れた。電気炉を昇温し、試料を800℃で30分間加熱して溶融させた。得られた溶融物をビーカーに移し、HCl(1+1)40mlを添加し、ヒーター上で加熱溶解させた。これを100mlに定容し、ICP分析を行った。ICP分析は3回行った。
[Ce, La, Zr composition analysis]
A 0.1 g sample was weighed and 2 g of the melting agent Na 2 O 2 was added to the sample and placed in an electric furnace heated to 400 ° C. The electric furnace was heated and the sample was heated at 800 ° C. for 30 minutes to melt. The obtained melt was transferred to a beaker, 40 ml of HCl (1 + 1) was added, and the mixture was heated and dissolved on a heater. The volume was adjusted to 100 ml and ICP analysis was performed. ICP analysis was performed three times.

(試験例1)
実施例1、2、比較例1−3のκ相及び比較例4のパイロクロア相の複合酸化物の初期品及び耐久品(空気中、1000℃で5時間耐久)のXRD分析を行った。複合酸化物(κ相)のXRDパターンにおいて、2θ=14°付近の(111)面に帰属する回折線は、規則相の倍周期を表す回折線の一つである。測定した各試料のXRDパターンにおいて、規則相(κ相)の(111)面に帰属する回折線である2θ=14°付近の回折線の強度の、規則相の(222)面に帰属する回折線である2θ=29°付近の回折線の強度に対する比((111)回折線の強度/(222)回折線の強度)をI値として算出した。I値は規則相の耐久性(維持率)を示す指標とすることができる。結果を表1及び図1に示す。
(Test Example 1)
The XRD analysis of the initial product and durable product (durability in air at 1000 ° C. for 5 hours) of the composite oxides of the κ phase of Examples 1 and 2 and Comparative Example 1-3 and the pyrochlore phase of Comparative Example 4 was performed. In the XRD pattern of the complex oxide (κ phase), the diffraction line belonging to the (111) plane near 2θ = 14 ° is one of the diffraction lines representing the double period of the regular phase. In the measured XRD pattern of each sample, the diffraction attributed to the (222) plane of the ordered phase having the intensity of the diffraction line near 2θ = 14 °, which is the diffraction line attributed to the (111) plane of the ordered phase (κ phase). A ratio ((111) diffraction line intensity / (222) diffraction line intensity) to the intensity of the diffraction line near 2θ = 29 °, which is a line, was calculated as an I value. The I value can be used as an index indicating the durability (maintenance rate) of the ordered phase. The results are shown in Table 1 and FIG.

Figure 0006287687
Figure 0006287687

表1及び図1より、実施例1、2の複合酸化物の耐久後のI値は、比較例1、2のものより大きいが、比較例3、4のものより小さかったことが示された。また、Laの置換量の増加とともに、耐久後のI値が増大し、規則相が維持されるが、La=1.5(比較例3)以上ではほぼ一定のI値となることが示された。   From Table 1 and FIG. 1, it was shown that the I value after durability of the composite oxides of Examples 1 and 2 was larger than that of Comparative Examples 1 and 2, but smaller than that of Comparative Examples 3 and 4. . Further, as the substitution amount of La increases, the post-endurance I value increases and the ordered phase is maintained, but it is shown that the La value is almost constant at La = 1.5 (Comparative Example 3) or more. It was.

また、Laの置換量と、XRDパターンの(111)、(222)のd値間との関係が比例関係にあり、Vegard則が成立していたことから、LaがCeサイトに置換されていることが確認された。   In addition, since the relationship between the amount of substitution of La and the d values of (111) and (222) of the XRD pattern is proportional, and the Vegard rule is established, La is substituted for the Ce site. It was confirmed.

(試験例2)
実施例1、2及び比較例1−3のκ相の複合酸化物を排ガス浄化用触媒に用いて酸素吸蔵能(OSC)を測定した。測定試料として、実施例1、2及び比較例1−3のκ相の複合酸化物の耐久品1gと、1重量%Pt/Al(Alの比表面積(SSA):100m/g)1gとを物理的に混合したもの2gを用いた。
(Test Example 2)
The oxygen storage capacity (OSC) was measured using the κ-phase composite oxides of Examples 1 and 2 and Comparative Example 1-3 as exhaust gas purifying catalysts. As a measurement sample, 1 g of the composite oxide of κ phase of Examples 1 and 2 and Comparative Example 1-3 and 1 wt% Pt / Al 2 O 3 (specific surface area (SSA) of Al 2 O 3 : 100 m) 2 / g) 2 g of 1 g physically mixed was used.

測定条件は下記の通りである:
測定ガス流量:10L/分にて一酸化炭素(CO)2容量%のガス(バランスガスは窒素)と、酸素(O)1容量%のガス(バランスガスは窒素)を2分間サイクルで3回パルス導入させた。
測定温度:400℃、500℃
OSCデータ:3回目のCOガスのパルス導入時に、2分間のCO生成量から吸蔵されたO分子のmol数を計算し、OSCとした。
The measurement conditions are as follows:
Measurement gas flow rate: Carbon dioxide (CO) 2 volume% gas (balance gas is nitrogen) and oxygen (O 2 ) 1 volume% gas (balance gas is nitrogen) at a rate of 10 L / min. The pulse was introduced twice.
Measurement temperature: 400 ° C, 500 ° C
OSC data: At the time of introducing the third CO gas pulse, the number of moles of O 2 molecules occluded was calculated from the amount of CO 2 produced for 2 minutes and used as OSC.

耐久後の複合酸化物1g当りのOSCを表2及び図2に示す。

Figure 0006287687
The OSC per gram of the composite oxide after durability is shown in Table 2 and FIG.
Figure 0006287687

表2及び図2より、実施例1、2の複合酸化物を用いた排ガス浄化用触媒は、400℃、500℃のいずれの温度においても、OSC材(複合酸化物)1g当りの2分間のOSCが優れていた。   From Table 2 and FIG. 2, the exhaust gas purifying catalyst using the composite oxides of Examples 1 and 2 is 2 minutes per gram of OSC material (composite oxide) at both 400 ° C. and 500 ° C. OSC was excellent.

次に、式CeLa2−xZrで表される複合酸化物のCe量と耐久後の単位重量当りの酸素吸蔵能との関係を下記のようにして求めた。 Next, the relationship between the Ce content of the composite oxide represented by the formula Ce x La 2 -x Zr 2 O 7 and the oxygen storage capacity per unit weight after durability was determined as follows.

複合酸化物の耐久後の単位重量当りのOSCは、下記式(I):
耐久後の単位重量当りのOSC=Ce利用率×OSC理論値 (I)
で表される。
The OSC per unit weight after durability of the composite oxide is represented by the following formula (I):
OSC per unit weight after endurance = Ce utilization factor x OSC theoretical value (I)
It is represented by

まず、Ce利用率を耐久後のI値に対する関係式として求めた。I値は規則相の維持率の程度を示す。   First, the Ce utilization was determined as a relational expression for the I value after durability. The I value indicates the degree of regular phase maintenance rate.

実施例1、2及び比較例1−3の複合酸化物のCe利用率について、各試料の複合酸化物1g当りのOSC理論値(Ceが100%OSCに使用された場合のOSC)を計算し、OSC実測値(400℃、500℃)の理論値に対する割合(実測値/理論値)を算出することで求めた。結果を表3に示す。   Regarding the Ce utilization ratio of the composite oxides of Examples 1 and 2 and Comparative Example 1-3, the theoretical value of OSC per gram of composite oxide of each sample (OSC when Ce was used for 100% OSC) was calculated. The ratio (actual value / theoretical value) of the OSC actual value (400 ° C., 500 ° C.) to the theoretical value was calculated. The results are shown in Table 3.

Figure 0006287687
Figure 0006287687

各試料の耐久後のI値とCe利用率との関係を図3に示す。図3より、I値とCe利用率は比例関係にあり、パイロクロア構造が維持されるとCeの利用率が高くなることが示された。これは、パイロクロア相には酸素欠陥が存在するので、Ceの酸化・還元に伴う酸素の吸蔵・放出が容易に起こり、バルク内の拡散速度が速いためであると考えられる。   The relationship between the I value after the durability of each sample and the Ce utilization rate is shown in FIG. FIG. 3 shows that the I value and the Ce utilization rate are in a proportional relationship, and that the Ce utilization rate increases when the pyrochlore structure is maintained. This is considered to be because oxygen defects are present in the pyrochlore phase, so that oxygen is readily occluded / released due to the oxidation / reduction of Ce, and the diffusion rate in the bulk is high.

図3より、400℃におけるCe利用率は、下記式(II):
Ce利用率(y)=9.3768×I値(x)−0.0217 (II)
で表され、500℃におけるCe利用率は、下記式(III):
Ce利用率(y)=15.671×I値(x)+0.0012 (III)
で表される。
From FIG. 3, the Ce utilization rate at 400 ° C. is represented by the following formula (II):
Ce utilization rate (y) = 9.3768 × I value (x) −0.0217 (II)
The Ce utilization at 500 ° C. is represented by the following formula (III):
Ce utilization rate (y) = 15.671 × I value (x) +0.0012 (III)
It is represented by

次に、耐久後のI値とCe量の関係を図4に示す。図4より、耐久後のI値は、Ce量を変数とする下記指数関数式(IV):
耐久後のI値(y)=0.0396exp(−1.162×x) (IV)
で近似することができる。
Next, the relationship between the I value after endurance and the Ce amount is shown in FIG. From FIG. 4, the I value after endurance is the following exponential function formula (IV) with Ce amount as a variable:
I value after endurance (y) = 0.0396exp (−1.162 × x) (IV)
Can be approximated by

また、複合酸化物の単位重量当りのOSC理論値とCe量の関係を図5に示す。図5より、OSC理論値は下記式(V):
OSC理論値=427.32×x+3.3947 (V)
で表される。
FIG. 5 shows the relationship between the OSC theoretical value per unit weight of the composite oxide and the Ce amount. From FIG. 5, the OSC theoretical value is the following formula (V):
OSC theoretical value = 427.32 × x + 3.3947 (V)
It is represented by

式(I)の複合酸化物の耐久後の単位重量当りのOSCは、式(II)〜(V)から、
OSC=[a(0.0396exp(−1.162×x)+b]×[427.32×x+3.3947]
(a、bは、図3に示される400℃、500℃についての各式における係数である)
で表される。この式から計算した複合酸化物の耐久後の単位重量当りのOSCと、Ce量との関係を、400℃及び500℃の各温度について図6に示す。図6より、Ce=0.6〜0.8の組成比で、耐久後の単位重量当りのOSCが優れており、特に、400℃では、この範囲の組成比で単位重量当りのOSCが最大となったことが示された。
The OSC per unit weight after endurance of the composite oxide of the formula (I) is calculated from the formulas (II) to (V):
OSC = [a (0.0396exp (−1.162 × x) + b] × [427.32 × x + 3.3947]
(A and b are coefficients in the respective equations for 400 ° C. and 500 ° C. shown in FIG. 3)
It is represented by FIG. 6 shows the relationship between the OSC per unit weight after endurance of the composite oxide calculated from this equation and the Ce amount at 400 ° C. and 500 ° C., respectively. From FIG. 6, the OSC per unit weight after endurance is excellent at a composition ratio of Ce = 0.6 to 0.8. Particularly, at 400 ° C., the OSC per unit weight is maximum at this composition ratio. It was shown that it became.

以上より、実施例1、2の複合酸化物は、比較例3、4のものと比較して、規則相の耐久性が劣るが、複合酸化物中のCe量は多い。また、実施例1、2の複合酸化物は、比較例1、2のものと比較して、複合酸化物中のCe量は少ないが、規則相の耐久性が高く、Ceの利用率が高い。   As described above, the composite oxides of Examples 1 and 2 are inferior in the durability of the ordered phase as compared with those of Comparative Examples 3 and 4, but the amount of Ce in the composite oxide is large. In addition, the composite oxides of Examples 1 and 2 have less Ce content in the composite oxide than those of Comparative Examples 1 and 2, but the ordered phase has high durability and Ce utilization is high. .

実施例1、2の複合酸化物は、Ceサイトの一部をLaで置換することにより、規則相のパイロクロア相の耐久性が向上し、Ce利用率が向上して酸素吸蔵能が向上する効果と、Laで置換することにより、単位重量当りのCe量が減少し、酸素吸蔵能が低下する影響とのバランスが最適化されているため、比較例1−3のものと比べて、耐久後の単位重量当りのOSCが最大となったと考えられる。   In the composite oxides of Examples 1 and 2, by replacing part of the Ce site with La, durability of the ordered pyrochlore phase is improved, Ce utilization is improved, and oxygen storage capacity is improved. And by replacing with La, the balance between the effect of reducing the amount of Ce per unit weight and reducing the oxygen storage capacity is optimized. It is considered that the OSC per unit weight became the maximum.

本発明の排ガス浄化用触媒を用いることにより、単位重量当りのOSC性能が向上した排ガス浄化用触媒を提供することが可能となる。   By using the exhaust gas purifying catalyst of the present invention, it is possible to provide an exhaust gas purifying catalyst having improved OSC performance per unit weight.

Claims (3)

Ce、La及びZrを含み、式Aで表されるパイロクロア構造を有する複合酸化物であって、AサイトがCe及びLaからなり、BサイトがZrを含み、AサイトのCeの組成比が0.6〜0.8である複合酸化物。 A composite oxide containing a pyrochlore structure represented by the formula A 2 B 2 O 7 , comprising Ce, La and Zr, wherein the A site comprises Ce and La, the B site comprises Zr, and the Ce of the A site A composite oxide having a composition ratio of 0.6 to 0.8. AサイトのCeの組成比が0.65〜0.75であり、Laの組成比が1.25〜1.35である請求項1の複合酸化物。   The composite oxide according to claim 1, wherein the composition ratio of Ce at the A site is 0.65 to 0.75, and the composition ratio of La is 1.25 to 1.35. 請求項1又は2の複合酸化物に貴金属を担持した排ガス浄化用触媒。   An exhaust gas purifying catalyst comprising a noble metal supported on the composite oxide according to claim 1 or 2.
JP2014170847A 2014-08-25 2014-08-25 Exhaust gas purification catalyst Active JP6287687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170847A JP6287687B2 (en) 2014-08-25 2014-08-25 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170847A JP6287687B2 (en) 2014-08-25 2014-08-25 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2016044108A JP2016044108A (en) 2016-04-04
JP6287687B2 true JP6287687B2 (en) 2018-03-07

Family

ID=55634999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170847A Active JP6287687B2 (en) 2014-08-25 2014-08-25 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6287687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718386B2 (en) * 2017-01-12 2020-07-08 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP6630305B2 (en) * 2017-03-14 2020-01-15 株式会社豊田中央研究所 Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP7091278B2 (en) * 2019-03-29 2022-06-27 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using it, and solid oxide fuel cell using it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696416B2 (en) * 2001-07-25 2011-06-08 住友金属鉱山株式会社 Photocatalyst having catalytic activity in the visible light region
JP2005231951A (en) * 2004-02-19 2005-09-02 Tosoh Corp Multiple oxide and catalyst for purification of exhaust gas
JP5131053B2 (en) * 2008-06-24 2013-01-30 トヨタ自動車株式会社 Precious metal supported catalyst and catalyst device
JP2011101839A (en) * 2009-11-10 2011-05-26 Mazda Motor Corp Exhaust gas purifying catalyst
US9539542B2 (en) * 2011-02-01 2017-01-10 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying exhaust gas
CN102659403A (en) * 2012-05-31 2012-09-12 北京科技大学 Ceramic material for high-temperature-resistant thermal barrier coating and preparation method thereof
CN103787659A (en) * 2013-12-26 2014-05-14 浙江大学 Solid solution type [La(2-x)Gdx] [Zr(2-y)Cey]O7 heat insulating ceramic and preparation method thereof
JP2015182932A (en) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 Cerium-zirconium type complex oxide and production method thereof

Also Published As

Publication number Publication date
JP2016044108A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP5216189B2 (en) Exhaust gas purification catalyst
JP5194397B2 (en) Exhaust gas purification catalyst and method for producing the same
KR101286799B1 (en) Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis
JP5459927B2 (en) Exhaust gas purification catalyst
KR101050861B1 (en) Compositions based on zirconium oxide and cerium oxide having high reducing ability and stable specific surface area, methods for their preparation, and use in exhaust gas treatment
JP5889756B2 (en) Exhaust gas purification catalyst carrier
JP2005170774A (en) Compound oxide, method for producing the same, and exhaust gas cleaning catalyst
JP6906624B2 (en) Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
US20190126248A1 (en) Exhaust gas purifying catalyst
JPS63116741A (en) Catalyst for purifying exhaust gas
US11383224B2 (en) Ceria-containing mixed oxides for oxygen storage
JP2005231951A (en) Multiple oxide and catalyst for purification of exhaust gas
WO2017179679A1 (en) Exhaust gas cleaning catalyst, exhaust gas cleaning method, and exhaust gas cleaning system
JPWO2007052821A1 (en) Catalyst carrier particles, exhaust gas purification catalyst, and production method thereof
WO2014027308A1 (en) Ceria-zirconia-mixed oxide particles and process for their production by pyrolysis
JP6287687B2 (en) Exhaust gas purification catalyst
WO2006134976A1 (en) Catalyst for exhaust gas purification
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
JP2010030823A (en) Compound oxide and catalyst containing the compound oxide for cleaning exhaust gas
JP2008230937A (en) Compound oxide and compound oxide carrier, and method for producing catalyst for exhaust gas clarification using them
JP2001232199A (en) Exhaust gas cleaning catalyst
JP6889012B2 (en) Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this
JP2009220044A (en) Catalyst for cleaning exhaust gas
KR20190125086A (en) Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151