JP6630305B2 - Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method - Google Patents

Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method Download PDF

Info

Publication number
JP6630305B2
JP6630305B2 JP2017048998A JP2017048998A JP6630305B2 JP 6630305 B2 JP6630305 B2 JP 6630305B2 JP 2017048998 A JP2017048998 A JP 2017048998A JP 2017048998 A JP2017048998 A JP 2017048998A JP 6630305 B2 JP6630305 B2 JP 6630305B2
Authority
JP
Japan
Prior art keywords
core
shell
oxide material
ceria
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017048998A
Other languages
Japanese (ja)
Other versions
JP2018150207A (en
Inventor
熊谷 直樹
直樹 熊谷
森川 彰
彰 森川
田辺 稔貴
稔貴 田辺
真秀 三浦
真秀 三浦
鈴木 宏昌
宏昌 鈴木
俊介 芳我
俊介 芳我
元哉 阿部
元哉 阿部
裕樹 二橋
裕樹 二橋
鈴木 貴博
貴博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Cataler Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Cataler Corp
Priority to JP2017048998A priority Critical patent/JP6630305B2/en
Publication of JP2018150207A publication Critical patent/JP2018150207A/en
Application granted granted Critical
Publication of JP6630305B2 publication Critical patent/JP6630305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面がアルミナ系酸化物で被覆されたセリア−ジルコニア系複合酸化物を含有するコアシェル型酸化物材料、それを用いた排ガス浄化用触媒、及び排ガス浄化方法に関する。   The present invention relates to a core-shell oxide material containing a ceria-zirconia-based composite oxide whose surface is coated with an alumina-based oxide, an exhaust gas-purifying catalyst using the same, and an exhaust gas-purifying method.

従来から、様々な金属酸化物を含有する複合酸化物が排ガス浄化用触媒用の担体や助触媒等として利用されてきた。このような複合酸化物中の金属酸化物としては、雰囲気中の酸素分圧に応じて酸素の吸放出が可能である(酸素吸蔵放出能を持つ)ことから、セリアが好適に用いられてきた。そして、近年では、セリアを含有する様々な種類の複合酸化物が研究されており、種々のセリア−ジルコニア系複合酸化物及びその製造方法が開示されている。   BACKGROUND ART Conventionally, composite oxides containing various metal oxides have been used as a carrier for a catalyst for purifying exhaust gas, a cocatalyst, and the like. As a metal oxide in such a composite oxide, ceria has been suitably used because it can absorb and release oxygen (has an oxygen storage and release capability) according to the oxygen partial pressure in the atmosphere. . In recent years, various kinds of composite oxides containing ceria have been studied, and various ceria-zirconia-based composite oxides and methods for producing the same have been disclosed.

例えば、特開2007−144290号公報(特許文献1)には、セリア等の酸素吸蔵放出材粒子からなる芯部と、ジルコニア、チタニア等の担体酸化物からなる殻部とを備えているコアシェル構造の担体に、少なくともロジウム粒子を含む貴金属粒子が接触している排ガス浄化用触媒が開示されており、ロジウムの酸化が抑制され、酸素吸蔵放出能により触媒活性が向上することも記載されている。   For example, Japanese Patent Application Laid-Open No. 2007-144290 (Patent Document 1) discloses a core-shell structure including a core made of oxygen storage / release material particles such as ceria and a shell made of a carrier oxide such as zirconia and titania. Discloses a catalyst for purifying exhaust gas in which noble metal particles containing at least rhodium particles are in contact with the support described above, and also describes that oxidation of rhodium is suppressed and catalytic activity is improved by oxygen storage / release capability.

また、特開2005−830号公報(特許文献2)には、CeO−ZrO固溶体粒子と、CeO−ZrO固溶体粒子の表面の少なくとも一部を覆うAl層とからなる複合粒子の、少なくともAl層にPt及びPdが担持されている排ガス浄化用触媒が開示されており、貴金属の粒成長が抑制されるとともに、酸素吸蔵放出能が向上することも記載されている。 Japanese Patent Application Laid-Open No. 2005-830 (Patent Document 2) discloses a composite including CeO 2 —ZrO 2 solid solution particles and an Al 2 O 3 layer covering at least a part of the surface of the CeO 2 —ZrO 2 solid solution particles. An exhaust gas purifying catalyst in which Pt and Pd are supported on at least an Al 2 O 3 layer of particles is disclosed, which describes that grain growth of a noble metal is suppressed and oxygen storage / release capability is improved. I have.

さらに、特開2007−69107号公報(特許文献3)には、アルミナ担体と、アルミナ担体の内部に存在するPt、Pd、Rh等の貴金属粒子と、この貴金属粒子に接触しているセリア、ジルコニア等の助触媒粒子とを含む排ガス浄化用触媒が開示されており、アンカー効果により貴金属粒子の凝集が抑制されるため、空燃比の変動下においても高い触媒活性が維持され、触媒の浄化性能の低下が防止されることも記載されている。   Further, Japanese Patent Application Laid-Open No. 2007-69107 (Patent Document 3) discloses an alumina carrier, noble metal particles such as Pt, Pd, and Rh existing inside the alumina carrier, and ceria and zirconia in contact with the noble metal particles. A catalyst for purifying exhaust gas containing co-catalyst particles and the like is disclosed, and aggregation of noble metal particles is suppressed by an anchor effect, so that high catalyst activity is maintained even under fluctuations in air-fuel ratio, and purification performance of the catalyst is improved. It is also described that the reduction is prevented.

また、特開2014−114180号公報(特許文献4)には、セリア−ジルコニア複合酸化物のパイロクロア構造を有する結晶粒子と、この粒子表面に存在するランタナ−ジルコニア複合酸化物のパイロクロア構造を有する結晶とを含み、前記ランタナ−ジルコニア複合酸化物の結晶が少なくとも一部において前記セリア−ジルコニア複合酸化物の結晶粒子表面に固溶している複合酸化物材料が開示されており、高温下においても酸素貯蔵能が低下しにくいことが記載されている。   Japanese Patent Application Laid-Open No. 2014-114180 (Patent Document 4) discloses a crystal particle having a pyrochlore structure of a ceria-zirconia composite oxide and a crystal having a pyrochlore structure of a lantana-zirconia composite oxide present on the particle surface. A composite oxide material in which the crystals of the lantana-zirconia composite oxide are at least partially dissolved as solid solutions on the crystal particle surfaces of the ceria-zirconia composite oxide. It is described that the storage capacity is hardly reduced.

特開2007−144290号公報JP 2007-144290 A 特開2005−830号公報JP-A-2005-830 特開2007−69107号公報JP 2007-69107 A 特開2014−114180号公報JP 2014-114180 A

しかしながら、ジルコニアやチタニアは比較的緻密な酸化物であるため、特許文献1に記載の排ガス浄化用触媒においては、殻部での酸素の拡散性が低く、酸素吸蔵放出速度が遅いという問題があった。また、この排ガス浄化触媒が高温に曝されると、芯部のセリアと殻部のジルコニアとが相互拡散してコアシェル構造が破壊されるため、ロジウムの触媒活性が低下するという問題があった。   However, since zirconia and titania are relatively dense oxides, the exhaust gas purifying catalyst described in Patent Document 1 has a problem that oxygen diffusivity in the shell is low and the oxygen storage / release speed is slow. Was. In addition, when the exhaust gas purifying catalyst is exposed to a high temperature, ceria in the core and zirconia in the shell interdiffuse to destroy the core-shell structure, so that there is a problem in that the catalytic activity of rhodium is reduced.

また、特許文献2〜3に記載の排ガス浄化用触媒においては、CeO−ZrO固溶体粒子や助触媒粒子におけるセリアの酸素利用効率が低く、必ずしも十分に高い酸素吸蔵放出能が得られていなかった。 Further, in the exhaust gas purifying catalysts described in Patent Documents 2 and 3, ceria's oxygen utilization efficiency in CeO 2 -ZrO 2 solid solution particles and cocatalyst particles is low, and a sufficiently high oxygen storage / release capability is not necessarily obtained. Was.

さらに、特許文献4に記載の複合酸化物材料にロジウムを担持した触媒においては、高温に曝された場合に、優れた酸素吸蔵放出能が発現するものの、NOx浄化性能が低下するという問題があることを本発明者らは見出した。   Further, in the catalyst described in Patent Document 4 in which rhodium is supported on a composite oxide material, when exposed to a high temperature, excellent oxygen storage / release capability is exhibited, but there is a problem that NOx purification performance is reduced. The present inventors have found that.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高温に曝された場合であっても、優れた酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))を有し、かつ、優れたNOx浄化性能を発現する排ガス浄化用触媒を得ることが可能な酸化物材料、それを用いた排ガス浄化用触媒、及び排ガス浄化方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the related art, and has excellent oxygen storage / release capacity (OSC) and oxygen storage / release rate (OSC) even when exposed to high temperatures. -R)) and an oxide material capable of obtaining an exhaust gas purification catalyst exhibiting excellent NOx purification performance, an exhaust gas purification catalyst using the same, and an exhaust gas purification method. Aim.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、パイロクロア相及びκ相のうちの少なくとも一方の規則相を有し、所定の粒子径を有するセリア−ジルコニア系固溶体粉末からなるコアの表面を所定の割合でアルミナ系酸化物で被覆することによって、得られたコアシェル型酸化物材料に貴金属が接触している触媒が、高温に曝された場合であっても、優れた酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))を有し、かつ、優れたNOx浄化性能を発現することを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies to achieve the above object, and have at least one ordered phase of a pyrochlore phase and a κ phase, and are composed of a ceria-zirconia-based solid solution powder having a predetermined particle diameter. By coating the surface of the core with the alumina-based oxide at a predetermined ratio, the catalyst in which the noble metal is in contact with the obtained core-shell oxide material has excellent oxygen even when exposed to high temperatures. The inventors have found that they have occlusion and release capabilities (oxygen storage amount (OSC) and oxygen storage and release speed (OSC-r)) and exhibit excellent NOx purification performance, and have completed the present invention.

すなわち、本発明のコアシェル型酸化物材料は、パイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体粉末からなるコアと、該コアの一部の表面に配置されているアルミナ系酸化物からなるシェルとを備え、
前記セリア−ジルコニア系固溶体粉末の体積基準の粒度分布における累積体積が50%となる二次粒子径D50が0.2〜8.0μmであり、
X線光電子分光分析により測定される、前記シェルの表面から深さ3nmの領域におけるAl元素の平均濃度が25〜75at%であ
大気中、1100℃で5時間加熱した後の、CuKαを用いたX線回折測定により得られるX線回折パターンから求められる2θ=14.5°の回折線と2θ=29°の回折線との強度比〔I(14/29)値〕が0.030以上である、
ことを特徴とするものである。
That is, the core-shell oxide material of the present invention is arranged on a core made of a ceria-zirconia-based solid solution powder having at least one ordered phase of a pyrochlore phase and a κ phase, and is disposed on a part of the surface of the core. A shell made of an alumina-based oxide,
A secondary particle diameter D50 at which the cumulative volume in the volume-based particle size distribution of the ceria-zirconia-based solid solution powder becomes 50% is 0.2 to 8.0 µm;
As measured by X-ray photoelectron spectroscopy, the average concentration of Al element in the region of the depth of 3nm from the surface of the shell is Ri 25~75At% der,
After heating at 1100 ° C. for 5 hours in the air, a 2θ = 14.5 ° diffraction line and a 2θ = 29 ° diffraction line obtained from an X-ray diffraction pattern obtained by X-ray diffraction measurement using CuKα were used. The intensity ratio [I (14/29) value] is 0.030 or more;
It is characterized by the following.

このような本発明のコアシェル型酸化物材料においては、前記シェルの含有量が前記コア100質量部に対して0.05〜2.0質量部であることが好ましい。また、前記コアがCe以外の希土類元素を更に含有するものであることが好ましい。さらに、X線光電子分光分析により測定される、前記シェルの表面から深さ3nmの領域におけるAl元素の平均濃度が30〜75at%であることが好ましい。   In such a core-shell oxide material of the present invention, the content of the shell is preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the core. It is preferable that the core further contains a rare earth element other than Ce. Furthermore, it is preferable that the average concentration of the Al element in a region at a depth of 3 nm from the surface of the shell, measured by X-ray photoelectron spectroscopy, is 30 to 75 at%.

また、本発明の排ガス浄化用触媒は、前記本発明のコアシェル型酸化物材料と、該コアシェル型酸化物材料に接触している貴金属とを備えていることを特徴とするものである。さらに、本発明の排ガス浄化方法は、前記本発明の排ガス浄化用触媒に、窒素酸化物を含有する排ガスを接触せしめることを特徴とする。   Further, an exhaust gas purifying catalyst of the present invention includes the core-shell oxide material of the present invention and a noble metal in contact with the core-shell oxide material. Further, the exhaust gas purifying method of the present invention is characterized in that an exhaust gas containing nitrogen oxides is brought into contact with the exhaust gas purifying catalyst of the present invention.

なお、本発明のコアシェル型酸化物材料が、高温に曝された場合であっても優れた酸素吸蔵放出能を有する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明のコアシェル型酸化物材料におけるコアは、パイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体粉末からなるものである。このようなセリア−ジルコニア系固溶体のパイロクロア相(CeZr)は気相中の酸素分圧に応じてκ相(CeZr)との間で相変化を行い、酸素吸蔵放出能を発現する。このようなパイロクロア相とκ相との間の相変化により発現する酸素吸蔵放出能は、蛍石相において発現する酸素吸蔵放出能に比べて、CeOの酸素利用効率が極めて高く、ほぼ理論限界値に達するため、前記規則相を有するセリア−ジルコニア系固溶体粉末は、非常に高い酸素吸蔵量(OSC)とOのバルク拡散速度を示す。このため、前記規則相を有するセリア−ジルコニア系固溶体粉末からなるコアの表面の少なくとも一部がアルミナ系酸化物によって被覆されたとしても、被覆による酸素吸蔵量(OSC)や酸素吸蔵放出速度(OSC−r)の低下が少なく、優れた酸素吸蔵放出能が発現すると推察される。また、本発明のコアシェル型酸化物材料は、1500℃以上の高温で還元処理されるため、通常のセリア−ジルコニア固溶体に比べて、高温安定性に優れており、高温に曝された場合であっても優れた酸素吸蔵放出能が発現すると推察される。 The reason why the core-shell oxide material of the present invention has excellent oxygen storage / release properties even when exposed to a high temperature is not necessarily clear, but the present inventors presume as follows. That is, the core in the core-shell oxide material of the present invention is made of a ceria-zirconia-based solid solution powder having at least one ordered phase of a pyrochlore phase and a κ phase. The pyrochlore phase (Ce 2 Zr 2 O 7 ) of such a ceria-zirconia solid solution undergoes a phase change with the κ phase (Ce 2 Zr 2 O 8 ) according to the oxygen partial pressure in the gas phase. Develops occlusion and release ability. The oxygen storage / release capacity developed by such a phase change between the pyrochlore phase and the κ phase has an extremely high oxygen utilization efficiency of CeO 2 compared to the oxygen storage / release capacity developed in the fluorite phase, and is almost the theoretical limit. In order to reach the value, the ceria-zirconia-based solid solution powder having the ordered phase exhibits a very high oxygen storage capacity (OSC) and a bulk diffusion rate of O 2 . For this reason, even if at least a part of the surface of the core made of the ceria-zirconia-based solid solution powder having the ordered phase is coated with the alumina-based oxide, the oxygen storage amount (OSC) and the oxygen storage-release rate (OSC) due to the coating can be obtained. It is presumed that the decrease in -r) was small and excellent oxygen storage / release capability was exhibited. Further, since the core-shell oxide material of the present invention is reduced at a high temperature of 1500 ° C. or more, it has excellent high-temperature stability as compared with a normal ceria-zirconia solid solution, and is exposed to a high temperature. It is presumed that excellent oxygen storage / release capability is exhibited.

また、本発明のコアシェル型酸化物材料に貴金属を接触させた触媒が、高温に曝された場合であっても優れたNOx浄化性能を発現する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明のコアシェル型酸化物材料に貴金属を接触させた触媒においては、貴金属がコアシェル型酸化物材料のシェル、すなわち、アルミナ系酸化物被覆層に接触しているため、貴金属(特に、ロジウム)の易還元性が向上し、前記規則相を有するセリア−ジルコニア系固溶体粉末からなるコアに貴金属を接触させた場合に比べて、NOx浄化活性が向上すると推察される。さらに、高温に曝された場合であっても貴金属の粒成長が抑制され、NOx浄化活性の低下が抑制されることも、優れたNOx浄化性能を発現する理由の1つであると推察される。   Further, the reason why the catalyst in which the core-shell oxide material of the present invention is brought into contact with a noble metal exhibits excellent NOx purification performance even when exposed to high temperatures is not necessarily clear, but the present inventors have Infer as follows. That is, in the catalyst of the present invention in which the noble metal is brought into contact with the core-shell oxide material, the noble metal is in contact with the shell of the core-shell oxide material, that is, the alumina-based oxide coating layer. It is presumed that the NOx purification activity is improved as compared with the case where the noble metal is brought into contact with the core made of the ceria-zirconia-based solid solution powder having the ordered phase. Further, it is speculated that one of the reasons for exhibiting excellent NOx purification performance is that the grain growth of the noble metal is suppressed even when exposed to a high temperature, and the decrease in NOx purification activity is suppressed. .

本発明によれば、高温に曝された場合であっても、優れた酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))を有し、かつ、優れたNOx浄化性能を発現する排ガス浄化用触媒を得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is exposed to high temperature, it has excellent oxygen storage / release capacity (oxygen storage capacity (OSC) and oxygen storage / release rate (OSC-r)) and excellent NOx. It is possible to obtain an exhaust gas purifying catalyst exhibiting purification performance.

実施例1〜5及び比較例1〜2で得られたコアシェル型酸化物材料粉末のX線回折パターンを示すグラフである。3 is a graph showing an X-ray diffraction pattern of the core-shell oxide material powder obtained in Examples 1 to 5 and Comparative Examples 1 and 2.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments.

先ず、本発明のコアシェル型酸化物材料について説明する。本発明のコアシェル型酸化物材料は、パイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体粉末からなるコアと、該コアの一部の表面に配置されているアルミナ系酸化物からなるシェルとを備えるものであり、前記セリア−ジルコニア系固溶体粉末の体積基準の粒度分布における累積体積が50%となる二次粒子径D50が0.2〜8.0μmであり、X線光電子分光分析により測定される、前記シェルの表面から深さ3nmの領域におけるAl元素の平均濃度が25〜75at%である。このような本発明のコアシェル型酸化物材料は、高温に曝された場合であっても、優れた酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))を有するものである。   First, the core-shell oxide material of the present invention will be described. The core-shell oxide material of the present invention includes a core comprising a ceria-zirconia-based solid solution powder having at least one of a regular phase of a pyrochlore phase and a kappa phase, and an alumina-based powder disposed on a part of the surface of the core. A secondary particle diameter D50 at which the cumulative volume in the volume-based particle size distribution of the ceria-zirconia-based solid solution powder becomes 50% is 0.2 to 8.0 μm; The average concentration of the Al element in a region at a depth of 3 nm from the surface of the shell, measured by linear photoelectron spectroscopy, is 25 to 75 at%. Such a core-shell oxide material of the present invention has excellent oxygen storage / release capacity (oxygen storage capacity (OSC) and oxygen storage / release rate (OSC-r)) even when exposed to high temperatures. Things.

本発明のコアシェル型酸化物材料は、CeとZrとが規則的に配列しているパイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体粉末からなるコアを備えるものである。このような規則相を有するセリア−ジルコニア系固溶体粉末からなるコアを備えるコアシェル型酸化物材料は、蛍石構造を有するセリア−ジルコニア系固溶体よりもバルク内の酸素拡散速度が大きいため、酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))に優れている。また、このような規則相を有するセリア−ジルコニア系固溶体粉末におけるCeとZrとの含有比率としてはモル比(Ce:Zr)で35:65〜65:35が好ましく、45:55〜55:45がより好ましい。モル比(Ce:Zr)が前記範囲から逸脱すると、高温に曝された場合に規則相が再配列により蛍石構造に変化し、酸素吸蔵放出能が低下する傾向にある。   The core-shell oxide material of the present invention includes a core made of a ceria-zirconia-based solid solution powder having at least one ordered phase of a pyrochlore phase and a κ phase in which Ce and Zr are regularly arranged. is there. A core-shell oxide material having a core made of a ceria-zirconia-based solid solution powder having such an ordered phase has a higher oxygen diffusion rate in a bulk than a ceria-zirconia-based solid solution having a fluorite structure. Performance (oxygen storage amount (OSC) and oxygen storage release rate (OSC-r)). Further, the content ratio of Ce and Zr in the ceria-zirconia-based solid solution powder having such an ordered phase is preferably 35:65 to 65:35 in terms of molar ratio (Ce: Zr), and 45:55 to 55:45. Is more preferred. When the molar ratio (Ce: Zr) deviates from the above range, when exposed to a high temperature, the ordered phase changes to a fluorite structure due to rearrangement, and the oxygen storage / release capability tends to decrease.

このような規則相を有するセリア−ジルコニア系固溶体粉末からなるコアには、Ce以外の希土類元素やTi等の添加元素が更に含まれていてもよい。このような添加元素が含まれると、高温に曝された場合の酸素吸蔵放出能の低下が抑制される。また、前記添加元素としては、Sc、Y、La、Pr、Nd、Sm、Gd、Tb、Dy、Yb、Lu、Ti等が挙げられ、中でも、高温に曝された場合の酸素吸蔵放出能の低下が更に抑制されるという観点から、Y、La、Pr、Ndが好ましく、Prがより好ましい。なお、これらの添加元素は1種が単独で含まれていても2種以上が含まれていてもよい。また、前記添加元素は、通常、酸化物としてコアに含まれており、さらに、前記規則相を有するセリア−ジルコニア系固溶体粉末に、固溶、分散等した状態で存在していることが好ましく、前記添加元素による効果を確実に得るためには、固溶していることがより好ましい。   The core made of the ceria-zirconia-based solid solution powder having such an ordered phase may further contain a rare earth element other than Ce or an additional element such as Ti. When such an additional element is contained, a decrease in the oxygen storage / release capability when exposed to a high temperature is suppressed. Examples of the additional element include Sc, Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Yb, Lu, and Ti. Among them, the oxygen storage / release capacity when exposed to high temperatures is particularly preferable. From the viewpoint that the decrease is further suppressed, Y, La, Pr, and Nd are preferable, and Pr is more preferable. These additional elements may be used alone or in combination of two or more. In addition, the additive element is usually contained in the core as an oxide, and further, is preferably present in a solid solution, a dispersed state or the like in the ceria-zirconia-based solid solution powder having the ordered phase, In order to surely obtain the effect of the additional element, it is more preferable that the solid solution is formed.

本発明にかかるコアにおいて、前記添加元素の含有量としては、元素換算で20mol%以下が好ましく、10mol%以下が好ましく、5mol%以下が特に好ましい。前記添加元素の含有量が前記上限を超えると、規則相の耐熱性が低下し、高温に曝された場合に酸素吸蔵放出能が低下する傾向にある。なお、前記添加元素の含有量の下限として特に制限はないが、前記添加元素による効果を確実に得るためには、0.1mol%以上が好ましい。   In the core according to the present invention, the content of the additional element is preferably 20 mol% or less, more preferably 10 mol% or less, and particularly preferably 5 mol% or less in terms of element. If the content of the additional element exceeds the upper limit, the heat resistance of the ordered phase tends to decrease, and the oxygen storage / release capacity tends to decrease when exposed to high temperatures. The lower limit of the content of the additional element is not particularly limited, but is preferably 0.1 mol% or more in order to surely obtain the effect of the additional element.

本発明にかかるコアを形成する前記規則相を有するセリア−ジルコニア系固溶体粉末においては、体積基準の粒度分布における累積体積が50%となる二次粒子径D50が0.2〜8.0μmである。前記二次粒子径D50が前記下限未満になると、パイロクロア相構造及びκ相構造が熱劣化により蛍石構造に変化してCeOの酸素利用効率が減少するため、酸素吸蔵放出能が低下する。他方、前記二次粒子径D50が前記上限を超えると、相対的に比表面積が低下する上に、粒子内部からの酸素の拡散距離が長くなるため、酸素吸蔵放出能、特に、酸素吸蔵放出速度(OSC−r)が低下する。このような前記規則相を有するセリア−ジルコニア系固溶体粉末の前記二次粒子径D50としては、より高い酸素吸蔵放出能が発現するという観点から、1.0〜7.5μmが好ましく、3.0〜7.0μmがより好ましい。なお、前記規則相を有するセリア−ジルコニア系固溶体粉末の前記二次粒子径D50は、例えば、粒度分布測定装置を用いて動的光散乱法により、前記規則相を有するセリア−ジルコニア系固溶体粉末の体積基準の粒度分布曲線を求め、この粒度分布曲線における累積体積が50%となる粒子径として求めることができる。 In the ceria-zirconia-based solid solution powder having the ordered phase that forms the core according to the present invention, the secondary particle diameter D50 at which the cumulative volume in the volume-based particle size distribution becomes 50% is 0.2 to 8.0 µm. . When the secondary particle diameter D50 is less than the lower limit, the pyrochlore phase structure and the kappa phase structure change to the fluorite structure due to thermal deterioration, and the oxygen use efficiency of CeO 2 decreases, so that the oxygen storage / release capacity decreases. On the other hand, when the secondary particle diameter D50 exceeds the upper limit, the specific surface area is relatively reduced, and the diffusion distance of oxygen from the inside of the particles is long. Therefore, the oxygen storage / release capability, particularly the oxygen storage / release speed (OSC-r) decreases. The secondary particle diameter D50 of the ceria-zirconia-based solid solution powder having such an ordered phase is preferably from 1.0 to 7.5 μm, from the viewpoint of exhibiting higher oxygen storage / release capability, and is preferably 3.0. -7.0 µm is more preferable. In addition, the secondary particle diameter D50 of the ceria-zirconia-based solid solution powder having the ordered phase is, for example, a dynamic light scattering method using a particle size distribution analyzer, the ceria-zirconia-based solid solution powder having the ordered phase. A volume-based particle size distribution curve is obtained, and the particle size can be obtained as a particle size at which the cumulative volume in the particle size distribution curve becomes 50%.

また、前記規則相を有するセリア−ジルコニア系固溶体粉末の比表面積としては特に制限はないが、0.1〜20m/gが好ましく、0.5〜10m/gがより好ましい。前記比表面積が前記下限未満になると、酸素吸蔵放出能が低下する傾向にあり、他方、前記上限を超えると、粒子径が小さな粒子が増加し、高温耐久性が低下する傾向にある。なお、このような比表面積は吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 Further, the ceria having a regular phase - is not particularly limited as specific surface area of the zirconia solid solution powder is preferably 0.1~20m 2 / g, 0.5~10m 2 / g is more preferable. When the specific surface area is less than the lower limit, the oxygen storage / release capability tends to decrease, while when the specific surface area exceeds the upper limit, particles having a small particle diameter tend to increase, and high-temperature durability tends to decrease. In addition, such a specific surface area can be calculated as a BET specific surface area from an adsorption isotherm using a BET isothermal adsorption equation.

本発明のコアシェル型酸化物材料は、このような前記規則相を有するセリア−ジルコニア系固溶体粉末からなるコアと、このコアの表面に所定の割合で配置されているアルミナ系酸化物からなるシェルとを備えるものである。このようなコアシェル型酸化物材料においては、前記シェルの表面から深さ3nmの領域(以下、「最表面層」という。)におけるAl元素の平均濃度が25〜75at%である。最表面層におけるAl元素の平均濃度が前記下限未満になると、コアシェル型酸化物材料に貴金属が接触している触媒において、貴金属(特に、ロジウム)がコア中のセリアと接触しやすく、貴金属(特に、ロジウム)とセリアとの相互作用により貴金属の還元が進行しにくくなり、NOx浄化性能が低下する。他方、最表面層におけるAl元素の平均濃度が前記上限を超えると、アルミナ系酸化物が凝集しやすく、これにより酸素の拡散が阻害され、酸素吸蔵放出能が低下する。このような最表面層のAl元素の平均濃度としては、酸素吸蔵放出能とNOx浄化性能とがバランスよく向上するという観点から、30〜75at%が好ましく、40〜72at%がより好ましい。なお、最表面層のAl元素の平均濃度は、コアシェル型酸化物材料のX線光電子分光(XPS)スペクトルを、例えば、X線光電子分光分析装置を用い、単色化されたAlKα(1486.6eV)をX線源とし、光電子取出角:45°、分析領域:約200μmφ、チャージアップ補正:Zr3d 182.2eV(ZrO)の条件で測定し、得られたXPSスペクトルに基づいて最表面層に存在する元素を定量し、全金属元素量に対するAl元素量の割合(Al元素量/全金属元素量×100)として求めることができる。 The core-shell type oxide material of the present invention includes a core made of a ceria-zirconia-based solid solution powder having such an ordered phase, and a shell made of an alumina-based oxide disposed at a predetermined ratio on the surface of the core. It is provided with. In such a core-shell oxide material, the average concentration of the Al element in a region having a depth of 3 nm from the surface of the shell (hereinafter, referred to as “outermost surface layer”) is 25 to 75 at%. When the average concentration of the Al element in the outermost surface layer is less than the lower limit, in the catalyst in which the noble metal is in contact with the core-shell oxide material, the noble metal (particularly, rhodium) easily contacts the ceria in the core, and the noble metal (particularly, , Rhodium) and ceria, the reduction of the noble metal becomes difficult to progress, and the NOx purification performance is reduced. On the other hand, when the average concentration of the Al element in the outermost surface layer exceeds the upper limit, the alumina-based oxide is likely to aggregate, thereby inhibiting the diffusion of oxygen and reducing the oxygen storage / release ability. The average concentration of the Al element in the outermost surface layer is preferably from 30 to 75 at%, and more preferably from 40 to 72 at%, from the viewpoint of improving the oxygen storage / release ability and the NOx purification performance in a well-balanced manner. Note that the average concentration of the Al element in the outermost surface layer can be determined by converting an X-ray photoelectron spectroscopy (XPS) spectrum of the core-shell oxide material into a monochromatic AlKα (1486.6 eV) using, for example, an X-ray photoelectron spectrometer. Is used as an X-ray source, photoelectron extraction angle: 45 °, analysis area: about 200 μmφ, charge-up correction: measured under conditions of Zr3d 182.2 eV (ZrO 2 ), and present in the outermost surface layer based on the obtained XPS spectrum The amount of the element to be quantified can be determined and determined as the ratio of the amount of Al element to the total amount of metal element (Al element amount / total metal element amount × 100).

このようなコアシェル型酸化物材料において、アルミナ系酸化物からなるシェルの含有量としては、コア100質量部に対して0.05〜2.0質量部が好ましく、0.1〜1.5質量部がより好ましく、0.2〜1.0質量部が特に好ましい。シェルの含有量が前記下限未満になると、コアシェル型酸化物材料に貴金属が接触している触媒において、貴金属(特に、ロジウム)がコア中のセリアと接触しやすく、貴金属(特に、ロジウム)とセリアとの相互作用により貴金属の還元が進行しにくくなり、NOx浄化性能が低下する傾向にあり、他方、前記上限を超えると、アルミナ系酸化物が凝集しやすく、これにより酸素の拡散が阻害され、酸素吸蔵放出能が低下する傾向にある。   In such a core-shell oxide material, the content of the shell made of an alumina-based oxide is preferably 0.05 to 2.0 parts by mass, and 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the core. Part is more preferable, and 0.2 to 1.0 part by mass is particularly preferable. When the content of the shell is less than the lower limit, in a catalyst in which the noble metal is in contact with the core-shell oxide material, the noble metal (particularly, rhodium) easily contacts the ceria in the core, and the noble metal (particularly, rhodium) and the ceria The reduction of the noble metal is less likely to progress due to the interaction with NO, and the NOx purification performance tends to decrease.On the other hand, when the upper limit is exceeded, the alumina-based oxide is easily aggregated, thereby inhibiting the diffusion of oxygen, Oxygen storage / release capacity tends to decrease.

また、このようなアルミナ系酸化物からなるシェルには、希土類元素(好ましくはCe以外の希土類元素)が更に含まれていてもよい。このような希土類元素がシェルに含まれると、シェルの高温耐久性が向上する。また、前記希土類元素としては、Sc、Y、La、Pr、Nd、Sm、Gd、Tb、Dy、Yb、Lu等が挙げられ、中でも、シェルの高温耐久性が更に向上するという観点から、Laが好ましい。なお、これらの希土類元素は1種が単独で含まれていても2種以上が含まれていてもよい。また、前記希土類元素は、通常、酸化物としてシェルに含まれている。   The shell made of such an alumina-based oxide may further contain a rare earth element (preferably, a rare earth element other than Ce). When such a rare earth element is contained in the shell, the high-temperature durability of the shell is improved. Examples of the rare earth element include Sc, Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Yb, and Lu. Among them, La is preferable from the viewpoint of further improving the high-temperature durability of the shell. Is preferred. These rare earth elements may be used alone or in combination of two or more. The rare earth element is usually contained in the shell as an oxide.

本発明にかかるシェルにおいて、前記希土類元素の含有量としては、元素換算で10mol%以下が好ましく、5mol%以下が好ましく、2mol%以下が特に好ましい。前記希土類元素の含有量が前記上限を超えると、アルミネート相が形成し、シェルの比表面積の低下等、高温耐久性が低下する傾向にある。なお、前記希土類元素の含有量の下限として特に制限はないが、前記希土類元素による効果を確実に得るためには、0.1mol%以上が好ましい。   In the shell according to the present invention, the content of the rare earth element is preferably 10 mol% or less, more preferably 5 mol% or less, particularly preferably 2 mol% or less in terms of element. When the content of the rare earth element exceeds the upper limit, an aluminate phase is formed, and the high-temperature durability such as a decrease in the specific surface area of the shell tends to decrease. The lower limit of the content of the rare earth element is not particularly limited, but is preferably 0.1 mol% or more in order to surely obtain the effect of the rare earth element.

また、前記シェルの厚みとしては1〜50nmが好ましく、2〜20nmがより好ましい。シェルの厚みが前記下限未満になると、コアシェル型酸化物材料に貴金属が接触している触媒において、貴金属(特に、ロジウム)がコア中のセリアと接触しやすく、貴金属(特に、ロジウム)とセリアとの相互作用により貴金属の還元が進行しにくくなり、NOx浄化性能が低下する傾向にあり、他方、前記上限を超えると、シェルによって酸素の拡散が阻害され、酸素吸蔵放出能が低下する傾向にある。   Further, the thickness of the shell is preferably 1 to 50 nm, more preferably 2 to 20 nm. When the thickness of the shell is less than the lower limit, in the catalyst in which the noble metal is in contact with the core-shell oxide material, the noble metal (particularly, rhodium) easily contacts the ceria in the core, and the noble metal (particularly, rhodium) and the ceria The reduction of the noble metal hardly progresses due to the interaction of NO, and the NOx purification performance tends to decrease. On the other hand, when the upper limit is exceeded, the diffusion of oxygen is inhibited by the shell, and the oxygen storage / release capability tends to decrease. .

本発明のコアシェル型酸化物材料においては、大気中、1100℃で5時間加熱した後の、CuKαを用いたX線回折測定により得られるX線回折パターンから求められる2θ=14.5°の回折線と2θ=29°の回折線との強度比〔I(14/29)値〕が、0.02以上であることが好ましく、0.030以上であることがより好ましい。前記I(14/29)値が前記下限未満になると、規則相の維持率が低く、高温に曝された場合に酸素吸蔵放出能が低下する傾向にある。なお、前記I(14/29)値の上限として特に制限はないが、後述するように、PDFカード(01−075−2694)から計算したパイロクロア相のI(14/29)値が上限となるという観点から、0.05以下が好ましい。   In the core-shell oxide material of the present invention, after heating at 1100 ° C. for 5 hours in the air, 2θ = 14.5 ° diffraction obtained from an X-ray diffraction pattern obtained by X-ray diffraction measurement using CuKα. The intensity ratio [I (14/29) value] between the line and the diffraction line at 2θ = 29 ° is preferably 0.02 or more, more preferably 0.030 or more. When the value of I (14/29) is less than the lower limit, the maintenance rate of the ordered phase is low, and the oxygen storage / release capacity tends to decrease when exposed to high temperatures. The upper limit of the I (14/29) value is not particularly limited, but as described later, the upper limit is the I (14/29) value of the pyrochlore phase calculated from the PDF card (01-075-2694). In light of this, 0.05 or less is preferable.

ここで、2θ=14.5°の回折線は規則相(κ相)の(111)面に帰属する回折線である。また、2θ=29°の回折線は規則相の(222)面に帰属する回折線とセリア−ジルコニア固溶体(CZ固溶体)の立方晶相(111)面に帰属する回折線とが重なったものである。したがって、両者の回折線の強度比であるI(14/29)値を算出することにより、これを規則相の維持率(存在率)を示す指標として規定することができる。なお、回折線強度を求める際、各回折線強度の値から、バックグラウンド値として2θ=10°〜12°の平均回折線強度を差し引いて計算する。また、完全な規則相には、酸素が完全充填されたκ相(CeZr)と、酸素が完全に抜けたパイロクロア相(CeZr)とがあり、それぞれのPDFカード(κ相はPDF2:01−070−4048、パイロクロア相はPDF2:01−075−2694)から計算したκ相のI(14/29)値は0.04、パイロクロア相のI(14/29)値は0.05である。さらに、規則相、すなわち、セリウムイオンとジルコニウムイオンとにより形成される規則配列構造を有する結晶相は、CuKαを用いた前記X線回折測定により得られるX線回折パターンの2θ角が14.5°、28°、37°、44.5°及び51°の位置にそれぞれピークを有する結晶の配列構造(φ’相(κ相と同一の相)型の規則配列相:蛍石構造の中に生ずる超格子構造)である。なお、ここにいう「ピーク」とは、ベースラインからピークトップまでの高さが30cps以上のものをいう。 Here, the diffraction line at 2θ = 14.5 ° is a diffraction line belonging to the (111) plane of the ordered phase (κ phase). The diffraction line at 2θ = 29 ° is obtained by overlapping the diffraction line belonging to the (222) plane of the ordered phase with the diffraction line belonging to the cubic phase (111) plane of the ceria-zirconia solid solution (CZ solid solution). is there. Therefore, by calculating the I (14/29) value, which is the intensity ratio between the two diffraction lines, this can be defined as an index indicating the maintenance rate (existence rate) of the ordered phase. When calculating the diffraction line intensity, it is calculated by subtracting the average diffraction line intensity at 2θ = 10 ° to 12 ° as a background value from each diffraction line intensity value. The completely ordered phases include a kappa phase (Ce 2 Zr 2 O 8 ) completely filled with oxygen and a pyrochlore phase (Ce 2 Zr 2 O 7 ) completely removed from oxygen. The I (14/29) value of the kappa phase calculated from the card (PDF2: 01-070-4048 for the kappa phase, PDF2: 01-075-2694 for the pyrochlore phase) was 0.04, and I (14/29) for the pyrochlore phase. ) Value is 0.05. Furthermore, the ordered phase, that is, the crystalline phase having an ordered array structure formed by cerium ions and zirconium ions, has a 2θ angle of 14.5 ° in the X-ray diffraction pattern obtained by the X-ray diffraction measurement using CuKα. , 28 °, 37 °, 44.5 ° and 51 °, respectively, in the crystal array structure (regular array phase of φ ′ phase (same phase as κ phase): occurs in fluorite structure Superlattice structure). Here, the “peak” refers to a peak whose height from the baseline to the peak top is 30 cps or more.

また、本発明のコアシェル型酸化物材料においては、大気中、1100℃で5時間加熱した後の、CuKαを用いたX線回折測定により得られるX線回折パターンから求められる2θ=28.5°の回折線と2θ=29°の回折線との強度比〔I(28/29)値〕が、0.08以下であることが好ましく、0.06以下であることがより好ましく、0.04以下であることが特に好ましい。前記I(28/29)値が前記上限を超えると、高温に曝された場合に酸素吸蔵放出能が低下する傾向にある。なお、前記I(28/29)値の下限としては特に制限はなく、より小さい値となることが好ましい。   In the core-shell oxide material of the present invention, 2θ = 28.5 ° obtained from an X-ray diffraction pattern obtained by X-ray diffraction measurement using CuKα after heating in air at 1100 ° C. for 5 hours. Is preferably 0.08 or less, more preferably 0.06 or less, and 0.04 or less. It is particularly preferred that: If the I (28/29) value exceeds the upper limit, the oxygen storage / release capacity tends to decrease when exposed to high temperatures. The lower limit of the I (28/29) value is not particularly limited, and is preferably a smaller value.

ここで、2θ=28.5°の回折線はCeO単体の(111)面に帰属する回折線であり、2θ=28.5°の回折線と2θ=29°の回折線との両者の回折線の強度比であるI(28/29)値を算出することにより、これを複合酸化物からCeOが分相している程度を示す指標として規定することができる。 Here, the diffraction line at 2θ = 28.5 ° is a diffraction line belonging to the (111) plane of CeO 2 alone, and both the diffraction line at 2θ = 28.5 ° and the diffraction line at 2θ = 29 °. By calculating the I (28/29) value, which is the intensity ratio of the diffraction line, this can be defined as an index indicating the degree to which CeO 2 is phase-separating from the composite oxide.

なお、前記回折線強度比〔I(14/29)値〕及び〔I(28/29)値〕を求める際のX線回折測定の方法としては、X線回折装置(例えば、(株)リガク製「RINT2100」を用いて、CuKα線をX線源とし、40KV、30mA、2θ=2°/分の条件で測定する方法を採用することができる。   In addition, as a method of X-ray diffraction measurement for obtaining the diffraction line intensity ratio [I (14/29) value] and [I (28/29) value], an X-ray diffractometer (for example, Rigaku Corporation) is used. Using "RINT2100" manufactured by Nissan Co., Ltd. and using a CuKα ray as an X-ray source under the conditions of 40 KV, 30 mA, 2θ = 2 ° / min.

また、本発明のコアシェル型酸化物材料の比表面積としては特に制限はないが、0.1〜20m/gが好ましく、0.5〜10m/gがより好ましい。前記比表面積が前記下限未満になると、酸素吸蔵放出能が低下する傾向にあり、他方、前記上限を超えると、粒子径が小さな粒子が増加し、高温耐久性が低下する傾向にある。なお、このような比表面積は吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 No particular limitation is imposed on the specific surface area of the core-shell type oxide material of the present invention, preferably 0.1~20m 2 / g, 0.5~10m 2 / g is more preferable. When the specific surface area is less than the lower limit, the oxygen storage / release capability tends to decrease, while when the specific surface area exceeds the upper limit, particles having a small particle diameter tend to increase, and high-temperature durability tends to decrease. In addition, such a specific surface area can be calculated as a BET specific surface area from an adsorption isotherm using a BET isothermal adsorption equation.

このような本発明のコアシェル型酸化物材料は、例えば、以下の方法により製造することができる。すなわち、セリア−ジルコニア系固溶体を加圧成形して得られる成型体に1500℃以上の温度で還元処理を施して、パイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体粉末を調製し(還元処理工程)、前記規則相を有するセリア−ジルコニア系固溶体粉末とアルミナ前駆体とを接触せしめて、前記規則相を有するセリア−ジルコニア系固溶体粉末の表面に所定の割合で前記アルミナ前駆体を付着させ(付着工程)、前記アルミナ前駆体が付着しているセリア−ジルコニア系固溶体粉末を加熱する(焼成工程)ことによって、本発明のコアシェル型酸化物材料を得ることができる。   Such a core-shell oxide material of the present invention can be produced, for example, by the following method. Specifically, a ceria-zirconia-based solid solution having a regular phase of at least one of a pyrochlore phase and a κ phase is subjected to a reduction treatment at a temperature of 1500 ° C. or more to a molded body obtained by pressure-forming a ceria-zirconia-based solid solution. A powder is prepared (reduction treatment step), and the ceria-zirconia-based solid solution powder having the ordered phase is brought into contact with an alumina precursor to form a predetermined ratio on the surface of the ceria-zirconia-based solid solution powder having the ordered phase. The core-shell oxide material of the present invention can be obtained by adhering the alumina precursor (adhering step) and heating the ceria-zirconia-based solid solution powder to which the alumina precursor is adhering (firing step).

本発明のコアシェル型酸化物材料を製造する際に用いられるセリア−ジルコニア系固溶体としては、CeとZrとの含有比率がモル比(Ce:Zr)で35:65〜65:35であるものが好ましく、45:55〜55:45であるものがより好ましい。モル比(Ce:Zr)が前記範囲から逸脱するセリア−ジルコニア系固溶体を用いると、得られるコアシェル型酸化物材料が高温に曝された場合に規則相が再配列により蛍石構造に変化し、酸素吸蔵放出能が低下する傾向にある。   As the ceria-zirconia-based solid solution used when producing the core-shell oxide material of the present invention, those in which the content ratio of Ce and Zr is 35:65 to 65:35 in molar ratio (Ce: Zr) are used. Preferably, the ratio is 45:55 to 55:45. When a ceria-zirconia-based solid solution having a molar ratio (Ce: Zr) out of the above range is used, when the obtained core-shell oxide material is exposed to a high temperature, the ordered phase changes to a fluorite structure by rearrangement, Oxygen storage / release capacity tends to decrease.

このようなセリア−ジルコニア系固溶体には、Ce以外の希土類元素やTi等の添加元素が更に含まれていてもよい。このような添加元素が含まれると、得られるコアシェル型酸化物材料が高温に曝された場合の酸素吸蔵放出能の低下が抑制される。また、このような添加元素としては、コアシェル型酸化物材料のコアに含まれていてもよいものとして例示した前記添加元素が挙げられ、中でも、得られるコアシェル型酸化物材料が高温に曝された場合の酸素吸蔵放出能の低下が更に抑制されるという観点から、Y、La、Pr、Ndが好ましく、Prがより好ましい。なお、これらの添加元素は1種が単独で含まれていても2種以上が含まれていてもよい。また、前記添加元素は、通常、酸化物としてコアに含まれており、さらに、前記セリア−ジルコニア系固溶体に、固溶、分散等した状態で存在していることが好ましく、前記添加元素による効果を確実に得るためには、固溶していることがより好ましい。   Such a ceria-zirconia solid solution may further contain a rare earth element other than Ce or an additional element such as Ti. When such an additive element is contained, a decrease in the oxygen storage / release capability when the obtained core-shell oxide material is exposed to a high temperature is suppressed. Examples of such additional elements include the above-described additional elements that may be contained in the core of the core-shell oxide material. Among them, the obtained core-shell oxide material was exposed to a high temperature. Y, La, Pr, and Nd are preferable, and Pr is more preferable, from the viewpoint that the decrease in the oxygen storage / release capacity in this case is further suppressed. These additional elements may be used alone or in combination of two or more. In addition, the additive element is usually contained in the core as an oxide, and is preferably present in the ceria-zirconia-based solid solution in a state of solid solution or dispersion. In order to surely obtain, it is more preferable that the solid solution is formed.

前記セリア−ジルコニア系固溶体において、前記添加元素の含有量としては、元素換算で20mol%以下が好ましく、10mol%以下が好ましく、5mol%以下が特に好ましい。前記添加元素の含有量が前記上限を超えると、規則相の耐熱性が低下し、高温に曝された場合に酸素吸蔵放出能が低下する傾向にある。なお、前記添加元素の含有量の下限として特に制限はないが、前記添加元素による効果を確実に得るためには、0.1mol%以上が好ましい。   In the ceria-zirconia solid solution, the content of the additional element is preferably 20 mol% or less, more preferably 10 mol% or less, particularly preferably 5 mol% or less in terms of element. If the content of the additional element exceeds the upper limit, the heat resistance of the ordered phase tends to decrease, and the oxygen storage / release capacity tends to decrease when exposed to high temperatures. The lower limit of the content of the additional element is not particularly limited, but is preferably 0.1 mol% or more in order to surely obtain the effect of the additional element.

このようなセリア−ジルコニア系固溶体は、例えば、以下の共沈法により製造することができる。すなわち、セリウムの塩(例えば、硝酸塩)及びジルコニウムの塩(例えば、硝酸塩)、必要に応じて前記添加元素の塩(例えば、硝酸塩)及び界面活性剤等を含有する水溶液を用い、アンモニアの存在下で共沈殿物を生成させ、得られた共沈殿物を分離回収して洗浄した後、乾燥処理、焼成処理、粉砕処理を施すことによって、粉末状のセリア−ジルコニア系固溶体を得ることができる。なお、前記水溶液中の各原料の含有量は、得られるセリア−ジルコニア系固溶体中の各成分の含有量が所定量となるように適宜調整する。   Such a ceria-zirconia solid solution can be produced, for example, by the following coprecipitation method. That is, an aqueous solution containing a salt of cerium (for example, nitrate) and a salt of zirconium (for example, nitrate) and, if necessary, a salt of the additional element (for example, nitrate) and a surfactant is used in the presence of ammonia. A co-precipitate is formed in the above, the obtained co-precipitate is separated and collected, washed, and then subjected to a drying treatment, a baking treatment, and a pulverization treatment, whereby a powdery ceria-zirconia-based solid solution can be obtained. The content of each raw material in the aqueous solution is appropriately adjusted so that the content of each component in the obtained ceria-zirconia solid solution becomes a predetermined amount.

本発明のコアシェル型酸化物材料を製造する場合には、先ず、このようなセリア−ジルコニア系固溶体を加圧成形する。加圧成形時の圧力としては400〜3500kgf/cm(39〜343MPa)が好ましく、500〜3000kgf/cm(49〜294MPa)がより好ましい。成形圧力が前記範囲から逸脱すると、得られるコアシェル型酸化物材料が高温に曝された場合に酸素吸蔵放出能が低下する傾向にある。なお、このような加圧成形の方法としては特に制限はなく、静水圧プレス等の公知の加圧成形方法を適宜採用できる。 When manufacturing the core-shell oxide material of the present invention, first, such a ceria-zirconia-based solid solution is pressure-formed. The pressure at the time of pressure molding is preferably 400 to 3500 kgf / cm 2 (39 to 343 MPa), and more preferably 500 to 3000 kgf / cm 2 (49 to 294 MPa). If the molding pressure deviates from the above range, the oxygen storage / release capacity tends to decrease when the obtained core-shell oxide material is exposed to high temperatures. Note that there is no particular limitation on such a pressure molding method, and a known pressure molding method such as a hydrostatic press can be appropriately employed.

次に、得られた加圧成型体に1500℃以上の温度で還元処理を施す(還元処理工程)。これにより、本発明にかかるパイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体が形成される。このような規則相を有するセリア−ジルコニア系固溶体は、表面の熱安定性に優れており、緻密で固相反応が進行しにくい構造を有している。還元処理温度が前記下限未満になると、規則相の安定性が低く、得られるコアシェル型酸化物材料が高温に曝された場合に酸素吸蔵放出能が低下する。また、規則相の安定性が向上し、得られるコアシェル型酸化物材料が高温に曝された場合の酸素吸蔵放出能の低下が確実に抑制されるという観点から、還元処理温度としては1600℃以上が好ましい。また、還元処理時間としては0.5時間以上が好ましく、1時間以上がより好ましい。還元処理時間が前記下限未満になると、規則相の安定性が低く、得られるコアシェル型酸化物材料が高温に曝された場合に酸素吸蔵放出能が低下する傾向にある。なお、還元処理温度及び還元処理時間の上限としては特に制限はないが、エネルギー効率や副生成物の低減の観点から、それぞれ、2000℃以下(より好ましくは1900℃以下)、24時間以下(より好ましくは10時間以下)が好ましい。   Next, a reduction treatment is performed on the obtained pressure-molded body at a temperature of 1500 ° C. or higher (reduction treatment step). Thereby, a ceria-zirconia-based solid solution having at least one of the pyrochlore phase and the kappa phase according to the present invention is formed. The ceria-zirconia-based solid solution having such an ordered phase has excellent thermal stability on the surface, and has a structure in which the solid phase reaction does not easily proceed. When the reduction treatment temperature is lower than the lower limit, the stability of the ordered phase is low, and the oxygen storage / release ability is reduced when the obtained core-shell oxide material is exposed to a high temperature. Further, from the viewpoint that the stability of the ordered phase is improved and the decrease in the oxygen storage / release capacity when the obtained core-shell oxide material is exposed to a high temperature is reliably suppressed, the reduction treatment temperature is 1600 ° C. or more. Is preferred. The reduction treatment time is preferably 0.5 hours or more, more preferably 1 hour or more. When the reduction treatment time is shorter than the lower limit, the stability of the ordered phase is low, and the oxygen storage / release capability tends to decrease when the obtained core-shell oxide material is exposed to a high temperature. The upper limit of the reduction treatment temperature and the reduction treatment time are not particularly limited, but from the viewpoint of energy efficiency and reduction of by-products, respectively, 2000 ° C or less (more preferably 1900 ° C or less) and 24 hours or less (more (Preferably 10 hours or less).

還元処理の方法としては、還元雰囲気下で前記加圧成型体に所定の温度で還元処理を施すことができる方法であれば特に制限はなく、例えば、(i)真空加熱炉内に前記加圧成型体を設置して真空引きした後に、炉内に還元性ガスを流入させて炉内の雰囲気を還元雰囲気とし、所定の温度で加熱して還元処理を施す方法、(ii)黒鉛製の炉を用いて炉内に前記加圧成型体を設置して真空引きした後、所定の温度で加熱して炉体や加熱燃料等から発生するCOやHC等の還元性ガスにより炉内の雰囲気を還元雰囲気として還元処理を施す方法や、(iii)活性炭を充填したルツボ内に前記加圧成型体を設置し、所定の温度で加熱して活性炭等から発生するCOやHC等の還元性ガスによりルツボ内の雰囲気を還元雰囲気として還元処理を施す方法等が挙げられる。   The method of the reduction treatment is not particularly limited as long as the method can perform the reduction treatment at a predetermined temperature on the pressure-molded body under a reducing atmosphere. For example, (i) the pressure molding is performed in a vacuum heating furnace. A method in which a reducing gas is introduced into the furnace to reduce the atmosphere in the furnace after the molded body is placed and evacuated, and a reducing treatment is performed by heating the furnace at a predetermined temperature; (ii) a furnace made of graphite. After the above-mentioned press-molded body is set in the furnace using a vacuum and evacuated, the furnace is heated at a predetermined temperature and the atmosphere in the furnace is reduced by a reducing gas such as CO or HC generated from the furnace body or heated fuel. (Iii) placing the pressure-molded body in a crucible filled with activated carbon, heating at a predetermined temperature, and using a reducing gas such as CO or HC generated from the activated carbon. Method of performing reduction treatment using the atmosphere in the crucible as a reducing atmosphere And the like.

このような還元雰囲気を達成するために用いる還元性ガスとしては特に制限はなく、CO、HC、H、その他の炭化水素ガス等の還元性ガスが挙げられる。また、このような還元性ガスの中でも、より高温で還元処理を実施した場合に炭化ジルコニウム(ZrC)等の複生成物が生成されることを防止するという観点から、炭素(C)を含まないものが好ましい。このような炭素(C)を含まない還元性ガスを用いると、ジルコニウム等の融点に近いより高い温度での還元処理が可能となるため、規則相の安定性をより十分に向上させることが可能となる。 The reducing gas used to achieve such a reducing atmosphere is not particularly limited, and examples thereof include reducing gases such as CO, HC, H 2 , and other hydrocarbon gases. In addition, among such reducing gases, carbon (C) is not included from the viewpoint of preventing the formation of double products such as zirconium carbide (ZrC) when the reduction treatment is performed at a higher temperature. Are preferred. If such a reducing gas containing no carbon (C) is used, a reduction treatment at a higher temperature close to the melting point of zirconium or the like becomes possible, so that the stability of the ordered phase can be more sufficiently improved. It becomes.

本発明のコアシェル型酸化物材料の製造方法においては、前記還元処理の後に、前記規則相を有するセリア−ジルコニア系固溶体に酸化処理を更に施すことが好ましい。これにより、還元処理中に失われた酸素が補填され、酸化物材料としての安定性が向上する傾向にある。このような酸化処理の方法としては特に制限はなく、例えば、酸化雰囲気下(例えば、大気中)において前記規則相を有するセリア−ジルコニア系固溶体を加熱処理する方法を好適に採用することができる。また、このような酸化処理の際の加熱温度としては特に制限はないが、300〜800℃程度が好ましい。さらに、前記酸化処理の際の加熱時間も特に制限はないが、0.5〜5時間程度が好ましい。   In the method for producing a core-shell oxide material according to the present invention, it is preferable that the ceria-zirconia-based solid solution having the ordered phase is further subjected to an oxidation treatment after the reduction treatment. Thereby, oxygen lost during the reduction treatment is compensated for, and the stability as an oxide material tends to be improved. There is no particular limitation on the method of such oxidation treatment, and for example, a method of heat-treating a ceria-zirconia-based solid solution having the ordered phase in an oxidizing atmosphere (for example, in the air) can be suitably employed. The heating temperature in such an oxidation treatment is not particularly limited, but is preferably about 300 to 800 ° C. Further, the heating time in the oxidation treatment is not particularly limited, but is preferably about 0.5 to 5 hours.

次に、このようにして得られた前記規則相を有するセリア−ジルコニア系固溶体に、体積基準の粒度分布における累積体積が50%となる二次粒子径D50が所定の範囲内となるように、粉砕処理を施し、前記規則相を有するセリア−ジルコニア系固溶体粉末を得る。粉砕処理の方法としては特に制限はなく、例えば、湿式粉砕法、乾式粉砕法、凍結粉砕法等が挙げられる。   Next, in the ceria-zirconia-based solid solution having the ordered phase obtained in this manner, the secondary particle diameter D50 at which the cumulative volume in the volume-based particle size distribution becomes 50% is within a predetermined range. A pulverization treatment is performed to obtain a ceria-zirconia-based solid solution powder having the regular phase. The method of the pulverization treatment is not particularly limited, and examples thereof include a wet pulverization method, a dry pulverization method, and a freeze pulverization method.

次に、このようにして得られた前記規則相を有するセリア−ジルコニア系固溶体粉末とアルミナ前駆体とを接触せしめ、前記規則相を有するセリア−ジルコニア系固溶体粉末の表面に所定の割合で前記アルミナ前駆体を付着させる(付着工程)。ここで用いられるアルミナ前駆体としては、加熱処理によりアルミナ系酸化物を形成するものであれば特に制限はなく、例えば、アルミニウムの塩(例えば、硝酸塩、酢酸塩)が挙げられる。   Next, the ceria-zirconia-based solid solution powder having the ordered phase thus obtained is brought into contact with an alumina precursor, and the surface of the ceria-zirconia-based solid solution powder having the ordered phase is coated with the alumina at a predetermined ratio. A precursor is attached (attachment step). The alumina precursor used here is not particularly limited as long as it forms an alumina-based oxide by heat treatment, and examples thereof include aluminum salts (for example, nitrates and acetates).

前記規則相を有するセリア−ジルコニア系固溶体粉末とアルミナ前駆体とを接触させる方法としては特に制限はなく、例えば、前記アルミナ前駆体、必要に応じて前記希土類元素の塩(例えば、硝酸塩)及び界面活性剤等を含有する水溶液に前記規則相を有するセリア−ジルコニア系固溶体粉末を浸漬して、前記規則相を有するセリア−ジルコニア系固溶体粉末に前記アルミナ前駆体水溶液を含浸させる方法が挙げられる。なお、前記水溶液中の各原料の含有量は、得られるコアシェル型酸化物材料中の各成分の含有量が所定量となるように適宜調整する。   The method for bringing the ceria-zirconia-based solid solution powder having the ordered phase into contact with the alumina precursor is not particularly limited. For example, the alumina precursor, if necessary, the rare earth element salt (eg, nitrate) and the interface The ceria-zirconia-based solid solution powder having the ordered phase is immersed in an aqueous solution containing an activator or the like, and the alumina precursor aqueous solution is impregnated in the ceria-zirconia-based solid solution powder having the ordered phase. The content of each raw material in the aqueous solution is appropriately adjusted so that the content of each component in the obtained core-shell oxide material becomes a predetermined amount.

次に、前記アルミナ前駆体水溶液を含浸させたセリア−ジルコニア系固溶体粉末を蒸発乾固させた後、前記アルミナ前駆体が付着したセリア−ジルコニア系固溶体粉末に加熱処理を施す(焼成処理)。これにより、前記規則相を有するセリア−ジルコニア系固溶体粉末からなるコアの表面に所定の割合でアルミナ系酸化物からなるシェルが形成され、本発明のコアシェル型酸化物材料が得られる。   Next, after the ceria-zirconia solid solution powder impregnated with the alumina precursor aqueous solution is evaporated to dryness, a heat treatment is performed on the ceria-zirconia solid solution powder to which the alumina precursor is attached (firing treatment). As a result, a shell made of alumina-based oxide is formed at a predetermined ratio on the surface of the core made of ceria-zirconia-based solid solution powder having the ordered phase, and the core-shell oxide material of the present invention is obtained.

加熱処理の温度としては300〜1100℃が好ましく、500〜900℃がより好ましい。加熱処理温度が前記下限未満になると、安定したシェルが形成しにくい傾向にあり、他方、前記上限を超えると、得られるコアシェル型酸化物材料の比表面積が小さくなる傾向にある。また、加熱時間は特に制限はないが、2〜10時間が好ましい。   The temperature of the heat treatment is preferably from 300 to 1100C, more preferably from 500 to 900C. When the heat treatment temperature is lower than the lower limit, a stable shell tends to be hardly formed, and when the heat treatment temperature exceeds the upper limit, the specific surface area of the obtained core-shell oxide material tends to be small. The heating time is not particularly limited, but is preferably 2 to 10 hours.

次に、本発明の排ガス浄化用触媒について説明する。本発明の排ガス浄化用触媒は、前記本発明のコアシェル型酸化物材料と、このコアシェル型酸化物材料に接触している貴金属とを備えるものである。このような本発明の排ガス浄化用触媒は、高温に曝された場合であっても、優れた酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))を有し、かつ、優れたNOx浄化性能を発現するものである。   Next, the exhaust gas purifying catalyst of the present invention will be described. The exhaust gas purifying catalyst of the present invention includes the core-shell oxide material of the present invention and a noble metal in contact with the core-shell oxide material. Such an exhaust gas purifying catalyst of the present invention has excellent oxygen storage / release capacity (oxygen storage capacity (OSC) and oxygen storage / release rate (OSC-r)) even when exposed to high temperatures. In addition, it exhibits excellent NOx purification performance.

本発明の排ガス浄化用触媒において、前記貴金属としては、優れたNOx浄化性能が得られるという観点から、Rh、Pd、Ptが好ましく、Rh、Pdがより好ましく、Rhが特に好ましい。本発明の排ガス浄化用触媒において、このような貴金属は、前記コアシェル型酸化物材料と接触していれば、その形態は特に制限されず、前記コアシェル型酸化物材料の表面に直接貴金属を担持して接触させてもよいが、操作が簡便であるという観点から、前記コアシェル型酸化物材料と、貴金属を担持した他の酸化物材料とを混合して接触させてもよい。   In the exhaust gas purifying catalyst of the present invention, Rh, Pd, and Pt are preferable, Rh and Pd are more preferable, and Rh is particularly preferable, from the viewpoint that excellent NOx purifying performance is obtained. In the exhaust gas purifying catalyst of the present invention, the form of such a noble metal is not particularly limited as long as it is in contact with the core-shell oxide material, and the noble metal is directly supported on the surface of the core-shell oxide material. However, from the viewpoint of easy operation, the core-shell oxide material and another oxide material supporting a noble metal may be mixed and contacted.

本発明の排ガス浄化用触媒は、ペレット状のものを反応管等に充填して使用してもよいが、実用性の観点から、ハニカム基材の細孔の内壁に、本発明の排ガス浄化用触媒からなる層とアルミナを含有する触媒層とを形成したハニカム触媒として使用することが好ましい。また、このようなハニカム触媒のうち、高温や高流速ガスに曝された場合であっても優れた酸素吸蔵放出能を有し、かつ、優れたNOx浄化性能を発現するという観点から、ハニカム基材の細孔の内壁に形成された貴金属及びアルミナを含有する触媒下層と、この触媒下層の上に形成された本発明の排ガス浄化用触媒からなる触媒上層とを備えるものが好ましく、前記触媒上層が本発明のコアシェル型酸化物材料と貴金属を担持したジルコニアとの混合物からなるものがより好ましい。   The exhaust gas purifying catalyst of the present invention may be used by filling pellets into a reaction tube or the like.However, from the viewpoint of practicality, the exhaust gas purifying catalyst of the present invention It is preferable to use as a honeycomb catalyst having a catalyst layer and a catalyst layer containing alumina. Further, among such honeycomb catalysts, from the viewpoint that they have excellent oxygen storage and release performance even when exposed to high temperature or high flow rate gas, and exhibit excellent NOx purification performance, the honeycomb catalysts A catalyst lower layer containing a noble metal and alumina formed on the inner wall of the pores of the material, and a catalyst upper layer comprising the exhaust gas purifying catalyst of the present invention formed on the catalyst lower layer, preferably the catalyst upper layer Is more preferably composed of a mixture of the core-shell oxide material of the present invention and zirconia supporting a noble metal.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用したセリア−ジルコニア−プラセオジム複合酸化物は以下の方法により調製した。   Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The ceria-zirconia-praseodymium composite oxide used in Examples and Comparative Examples was prepared by the following method.

(調製例1)
セリウムとジルコニウムとプラセオジムとの含有比率がモル比([セリウム]:[ジルコニウム]:[プラセオジム])で45:54:1であるセリア−ジルコニア系複合酸化物を以下のようにして調製した。すなわち、先ず、CeO換算で28質量%の硝酸セリウム水溶液442gと、ZrO換算で18質量%のオキシ硝酸ジルコニウム水溶液590gと、Pr11換算で1.2gとなる量の硝酸プラセオジムを含む水溶液100gと、含有されるセリウムの1.1倍モル量の過酸化水素を含む過酸化水素水197gとを、中和当量に対して1.2倍当量のアンモニアを含有する水溶液1217gに添加して共沈物を生成させ、得られた共沈物に遠心分離を施し、イオン交換水で洗浄した。次に、得られた共沈物を110℃で10時間以上乾燥した後、大気中、400℃で5時間焼成してセリウムとジルコニウムとプラセオジムとの固溶体(CeO−ZrO−Pr11固溶体)を得た。その後、前記固溶体を、篩分けにより粒径が75μm以下となるように粉砕機(アズワン(株)製「ワンダーブレンダー」)を用いて粉砕し、前記セリア−ジルコニア−プラセオジム固溶体粉末を得た。
(Preparation Example 1)
A ceria-zirconia-based composite oxide having a content ratio of cerium, zirconium, and praseodymium of 45: 54: 1 in molar ratio ([cerium]: [zirconium]: [praseodymium]) was prepared as follows. That is, first, 442 g of a 28 mass% cerium nitrate aqueous solution in terms of CeO 2 , 590 g of an 18 mass% zirconium oxynitrate aqueous solution in terms of ZrO 2 , and praseodymium nitrate in an amount of 1.2 g in terms of Pr 6 O 11 are included. 100 g of the aqueous solution and 197 g of a hydrogen peroxide solution containing 1.1 times the molar amount of hydrogen peroxide of the contained cerium were added to 1217 g of an aqueous solution containing 1.2 times the equivalent of ammonia with respect to the neutralization equivalent. To form a coprecipitate, and the obtained coprecipitate was centrifuged and washed with ion-exchanged water. Then, after drying the obtained coprecipitate at 110 ° C. 10 hours or more in air, a solid solution of 5 hours firing to cerium and zirconium and praseodymium at 400 ℃ (CeO 2 -ZrO 2 -Pr 6 O 11 (Solid solution). Thereafter, the solid solution was pulverized using a pulverizer (“Wonder Blender” manufactured by As One Corp.) so as to have a particle size of 75 μm or less by sieving to obtain the ceria-zirconia-praseodymium solid solution powder.

次に、このセリア−ジルコニア−プラセオジム固溶体粉末20gを、ポリエチレン製のバッグ(容量:0.05L)に詰め、内部を脱気した後、前記バッグの口を加熱してシールした。続いて、静水圧プレス装置(日機装(株)製「CK4−22−60」)を用いて、前記バッグに対して2000kgf/cm(196MPa)の圧力(成型圧力)で1分間、静水圧プレス(CIP)成形を行い、セリア−ジルコニア−プラセオジム固溶体粉末の成型体を得た。成型体のサイズは、縦4cm、横4cm、平均厚み7mm、質量約20gとした。 Next, 20 g of the ceria-zirconia-praseodymium solid solution powder was packed in a polyethylene bag (capacity: 0.05 L), the inside was evacuated, and the mouth of the bag was sealed by heating. Subsequently, using a hydrostatic pressing device (“CK4-22-60” manufactured by Nikkiso Co., Ltd.), the bag was subjected to hydrostatic pressing at a pressure (molding pressure) of 2000 kgf / cm 2 (196 MPa) for 1 minute. (CIP) molding was performed to obtain a molded body of ceria-zirconia-praseodymium solid solution powder. The size of the molded body was 4 cm in length, 4 cm in width, 7 mm in average thickness and about 20 g in mass.

次いで、得られた成型体(2枚)を、活性炭70gを充填したルツボ(内容積:直径8cm、高さ7cm)内に配置し、蓋をした後、高速昇温電気炉に入れ、1000℃まで1時間かけて昇温し、さらに、1700℃まで4時間かけて昇温した後、1700℃(還元処理温度)で5時間加熱した。その後、1000℃まで4時間かけて冷却した後、自然放冷により室温まで冷却して還元焼成物を得た。   Next, the obtained molded bodies (two pieces) were placed in a crucible (internal volume: diameter 8 cm, height 7 cm) filled with 70 g of activated carbon, covered, and then placed in a high-speed electric heating furnace at 1000 ° C. The temperature was raised to 1700 ° C. over 4 hours, and then heated at 1700 ° C. (reduction temperature) for 5 hours. Then, after cooling to 1000 ° C. over 4 hours, the mixture was naturally cooled to room temperature to obtain a reduced fired product.

次に、この還元焼成物を大気中、500℃の温度条件で5時間加熱して酸化し、複合酸化物におけるセリウムとジルコニウムとプラセオジムとの含有比率がモル比([セリウム]:[ジルコニウム]:[プラセオジム])で45:54:1であるセリア−ジルコニア−プラセオジム複合酸化物を得た。   Next, this reduced calcined product is oxidized by heating at 500 ° C. for 5 hours in the air, and the content ratio of cerium, zirconium, and praseodymium in the composite oxide is set to a molar ratio ([cerium]: [zirconium]: [Praseodymium]) to obtain a ceria-zirconia-praseodymium composite oxide of 45: 54: 1.

(比較調製例2)
セリウムとジルコニウムとの含有比率がモル比([セリウム]:[ジルコニウム])で45.5:54.5であるセリア−ジルコニア固溶体粉末を以下のようにして調製した。すなわち、先ず、CeO換算で28質量%の硝酸セリウム水溶液442gと、ZrO換算で18質量%のオキシ硝酸ジルコニウム水溶液590gと、含有されるセリウムの1.1倍モル量の過酸化水素を含む過酸化水素水197gとを、中和当量に対して1.2倍当量のアンモニアを含有する水溶液1217gに添加して共沈物を生成させ、得られた共沈物に遠心分離を施し、イオン交換水で洗浄した。次に、得られた共沈物を110℃で10時間以上乾燥した後、大気中、400℃で5時間焼成してセリウムとジルコニウムとの固溶体(CeO−ZrO固溶体)を得た。その後、前記固溶体を、篩分けにより粒径が75μm以下となるように粉砕機(アズワン(株)製「ワンダーブレンダー」)を用いて粉砕し、前記セリア−ジルコニア固溶体粉末を得た。
(Comparative Preparation Example 2)
A ceria-zirconia solid solution powder in which the content ratio of cerium and zirconium was 45.5: 54.5 in molar ratio ([cerium]: [zirconium]) was prepared as follows. That is, first, 442 g of a 28% by mass cerium nitrate aqueous solution in terms of CeO 2 , 590 g of an 18% by mass zirconium oxynitrate aqueous solution in terms of ZrO 2 , and 1.1 times the molar amount of cerium contained are included. 197 g of aqueous hydrogen peroxide was added to 1217 g of an aqueous solution containing 1.2 equivalents of ammonia with respect to the neutralization equivalent to form a coprecipitate, and the obtained coprecipitate was subjected to centrifugal separation. Washed with replacement water. Next, the obtained coprecipitate was dried at 110 ° C. for 10 hours or more, and calcined in the air at 400 ° C. for 5 hours to obtain a solid solution of cerium and zirconium (CeO 2 -ZrO 2 solid solution). Thereafter, the solid solution was pulverized using a pulverizer (“Wonder Blender” manufactured by As One Co., Ltd.) so as to have a particle size of 75 μm or less by sieving to obtain the ceria-zirconia solid solution powder.

(実施例1)
調製例1で得られたセリア−ジルコニア−プラセオジム複合酸化物を、体積基準の粒度分布における累積体積が50%となる二次粒子径D50が4μmとなるように、粉砕機(アズワン(株)製「ワンダーブレンダー」)を用いて粉砕し、セリア−ジルコニア−プラセオジム複合酸化物粉末(以下、「CZP粉末」と略す。)を得た。なお、このCZP粉末の体積基準の粒度分布は、粒度分布測定装置(日機装株式会社製「レーザー回折・散乱粒度分布測定装置MT3300EX」)を用いて動的光散乱法により測定した。
(Example 1)
The ceria-zirconia-praseodymium composite oxide obtained in Preparation Example 1 was milled (manufactured by As One Corporation) so that the secondary particle diameter D50 at which the cumulative volume in the volume-based particle size distribution becomes 50% was 4 μm. This was pulverized using a “Wonder Blender”) to obtain a ceria-zirconia-praseodymium composite oxide powder (hereinafter abbreviated as “CZP powder”). The volume-based particle size distribution of the CZP powder was measured by a dynamic light scattering method using a particle size distribution analyzer (“Laser diffraction / scattering particle size analyzer MT3300EX” manufactured by Nikkiso Co., Ltd.).

次に、硝酸アルミニウム0.73gとカルボン酸キレート剤1.12gとを含有する水溶液50mlに4級アミン1.92gを含有する水溶液150mlを添加してアルミナ前駆体水溶液を調製した。このアルミナ前駆体水溶液に前記CZP粉末(D50:4μm)100gを投入して攪拌し、マイクロ波で加熱して蒸発乾固させ、得られた乾燥物を大気中、500℃で5時間焼成して、前記CZP粉末の表面がアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZP粉末のD50:4μm、CZP量:100質量部、アルミナ被覆量:0.1質量部)を得た。   Next, an alumina precursor aqueous solution was prepared by adding 150 ml of an aqueous solution containing 1.92 g of a quaternary amine to 50 ml of an aqueous solution containing 0.73 g of aluminum nitrate and 1.12 g of a carboxylic acid chelating agent. 100 g of the CZP powder (D50: 4 μm) is put into the alumina precursor aqueous solution, stirred, heated by microwave to evaporate to dryness, and the obtained dried product is calcined at 500 ° C. in the air for 5 hours. Thus, a core-shell type oxide material powder (C50: 4 μm, CZP amount: 100 parts by mass, alumina coating amount: 0.1 parts by mass) in which the surface of the CZP powder was coated with an alumina layer was obtained.

(実施例2)
硝酸アルミニウムの量を1.83gに、カルボン酸キレート剤の量を2.8gに、4級アミンの量を4.8gに変更した以外は実施例1と同様にして、前記CZP粉末の表面がアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZP粉末のD50:4μm、CZP量:100質量部、アルミナ被覆量:0.25質量部)を得た。
(Example 2)
The surface of the CZP powder was changed in the same manner as in Example 1 except that the amount of aluminum nitrate was changed to 1.83 g, the amount of the carboxylic acid chelating agent was changed to 2.8 g, and the amount of the quaternary amine was changed to 4.8 g. A core-shell oxide material powder coated with an alumina layer (D50 of CZP powder: 4 μm, CZP amount: 100 parts by mass, alumina coating amount: 0.25 parts by mass) was obtained.

(実施例3)
前記二次粒子径D50が5μmとなるように粉砕した以外は実施例1と同様にしてCZP粉末を得た。D50が4μmのCZP粉末の代わりに、このCZP粉末を用い、硝酸アルミニウムの量を3.66gに、カルボン酸キレート剤の量を5.6gに、4級アミンの量を9.6gに変更した以外は実施例1と同様にして、前記CZP粉末の表面がアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZP粉末のD50:5μm、CZP量:100質量部、アルミナ被覆量:0.5質量部)を得た。
(Example 3)
A CZP powder was obtained in the same manner as in Example 1, except that the powder was pulverized so that the secondary particle diameter D50 became 5 μm. This CZP powder was used instead of the CZP powder having a D50 of 4 μm, and the amount of aluminum nitrate was changed to 3.66 g, the amount of the carboxylic acid chelating agent was changed to 5.6 g, and the amount of the quaternary amine was changed to 9.6 g. Except for the above, in the same manner as in Example 1, the core-shell type oxide material powder in which the surface of the CZP powder was coated with an alumina layer (D50 of CZP powder: 5 μm, CZP amount: 100 parts by mass, alumina coating amount: 0.5 Parts by mass).

(実施例4)
前記二次粒子径D50が6μmとなるように粉砕した以外は実施例1と同様にしてCZP粉末を得た。D50が4μmのCZP粉末の代わりに、このCZP粉末を用い、硝酸アルミニウムの量を5.49gに、カルボン酸キレート剤の量を8.4に、4級アミンの量を14.4gに変更した以外は実施例1と同様にして、前記CZP粉末の表面がアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZP粉末のD50:6μm、CZP量:100質量部、アルミナ被覆量:0.75質量部)を得た。
(Example 4)
A CZP powder was obtained in the same manner as in Example 1, except that the powder was pulverized so that the secondary particle diameter D50 became 6 μm. This CZP powder was used instead of the CZP powder having a D50 of 4 μm, and the amount of aluminum nitrate was changed to 5.49 g, the amount of the carboxylic acid chelating agent was changed to 8.4, and the amount of the quaternary amine was changed to 14.4 g. Except for the above, in the same manner as in Example 1, a core-shell type oxide material powder in which the surface of the CZP powder was coated with an alumina layer (D50 of CZP powder: 6 μm, CZP amount: 100 parts by mass, alumina coating amount: 0.75 Parts by mass).

(実施例5)
硝酸アルミニウムの量を7.32gに、カルボン酸キレート剤の量を10.2gに、4級アミンの量を19.2gに変更した以外は実施例1と同様にして、前記CZP粉末の表面がアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZP粉末のD50:4μm、CZP量:100質量部、アルミナ被覆量:1.0質量部)を得た。
(Example 5)
The surface of the CZP powder was changed in the same manner as in Example 1 except that the amount of aluminum nitrate was changed to 7.32 g, the amount of the carboxylic acid chelating agent was changed to 10.2 g, and the amount of the quaternary amine was changed to 19.2 g. A core-shell oxide material powder coated with an alumina layer (D50 of CZP powder: 4 μm, CZP amount: 100 parts by mass, alumina coating amount: 1.0 parts by mass) was obtained.

(比較例1)
前記二次粒子径D50が10μmとなるように粉砕した以外は実施例1と同様にして、CZP粉末を得た。次に、硝酸アルミニウム9.5mmolと硝酸ランタン0.096mmolとをイオン交換水200mlに溶解し、La含有アルミナ前駆体水溶液を調製した。このLa含有アルミナ前駆体水溶液に、前記CZP粉末(D50:10μm)100gを添加し、15分間撹拌した。得られたCZP粉末含有分散液を撹拌しながら200℃で加熱して蒸発乾固させ、得られた乾燥物を900℃で5時間焼成して、前記CZP粉末の表面がランタンを含有するアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZP粉末のD50:10μm、CZP量:100質量部、アルミナ被覆量:0.5質量部、ランタナ被覆量:0.015質量部)を得た。
(Comparative Example 1)
A CZP powder was obtained in the same manner as in Example 1 except that the secondary particle diameter D50 was pulverized so as to be 10 μm. Next, 9.5 mmol of aluminum nitrate and 0.096 mmol of lanthanum nitrate were dissolved in 200 ml of ion-exchanged water to prepare a La-containing alumina precursor aqueous solution. 100 g of the CZP powder (D50: 10 μm) was added to the La-containing alumina precursor aqueous solution, and the mixture was stirred for 15 minutes. The obtained CZP powder-containing dispersion is heated at 200 ° C. while stirring to evaporate to dryness, and the obtained dried material is calcined at 900 ° C. for 5 hours, so that the surface of the CZP powder has an alumina layer containing lanthanum. (D50 of CZP powder: 10 μm, CZP amount: 100 parts by mass, alumina coating amount: 0.5 parts by mass, lantana coating amount: 0.015 parts by mass).

(比較例2)
調製例1で得られたセリア−ジルコニア−プラセオジム複合酸化物の代わりに、比較調製例1で得られたセリア−ジルコニア固溶体粉末を用い、前記二次粒子径D50が10μmとなるように粉砕した以外は実施例1と同様にして、セリア−ジルコニア固溶体粉末(以下、「CZ粉末」と略す。)を得た。
(Comparative Example 2)
Instead of using the ceria-zirconia solid solution powder obtained in Comparative Preparation Example 1 in place of the ceria-zirconia-praseodymium composite oxide obtained in Preparation Example 1, pulverizing so that the secondary particle diameter D50 becomes 10 μm. In the same manner as in Example 1, ceria-zirconia solid solution powder (hereinafter abbreviated as “CZ powder”) was obtained.

次に、硝酸アルミニウム9.5mmolと硝酸ランタン0.096mmolとをイオン交換水200mlに溶解し、La含有アルミナ前駆体水溶液を調製した。このLa含有アルミナ前駆体水溶液に、前記CZ粉末(D50:10μm)100gを添加し、15分間撹拌した。得られたCZP粉末含有分散液を撹拌しながら200℃で加熱して蒸発乾固させ、得られた乾燥物を900℃で5時間焼成して、前記CZ粉末の表面がランタンを含有するアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZ粉末のD50:10μm、CZ量:100質量部、アルミナ被覆量:0.5質量部、ランタナ被覆量:0.015質量部)を得た。   Next, 9.5 mmol of aluminum nitrate and 0.096 mmol of lanthanum nitrate were dissolved in 200 ml of ion-exchanged water to prepare a La-containing alumina precursor aqueous solution. 100 g of the CZ powder (D50: 10 μm) was added to the La-containing alumina precursor aqueous solution, and the mixture was stirred for 15 minutes. The obtained CZP powder-containing dispersion is heated at 200 ° C. while stirring to evaporate to dryness, and the obtained dried material is calcined at 900 ° C. for 5 hours, so that the surface of the CZ powder is an alumina layer containing lanthanum. (D50 of CZ powder: 10 μm, CZ amount: 100 parts by mass, alumina coating amount: 0.5 parts by mass, lantana coating amount: 0.015 parts by mass).

次に、前記CZ粉末(D50:10μm)の代わりに、このコアシェル型酸化物材料粉末100gを用いた以外は前記方法と同じ手順で、前記CZ粉末の表面がランタンを含有するアルミナ層で被覆されたコアシェル型酸化物材料粉末(CZ粉末のD50:10μm、CZ量:100質量部、アルミナ被覆量:1.0質量部、ランタナ被覆量:0.030質量部)を得た。   Next, the surface of the CZ powder was coated with an alumina layer containing lanthanum in the same procedure as the above method except that 100 g of the core-shell type oxide material powder was used instead of the CZ powder (D50: 10 μm). A core-shell type oxide material powder (D50 of CZ powder: 10 μm, CZ amount: 100 parts by mass, alumina coating amount: 1.0 parts by mass, lantana coating amount: 0.030 parts by mass) was obtained.

<X線回折(XRD)測定>
実施例及び比較例で得られた各コアシェル型酸化物材料粉末を大気中、1100℃で5時間加熱した。加熱後のコアシェル型酸化物材料粉末の規則相(コアの規則相)のX線回折パターンを、X線回折装置((株)リガク製「RINT2100」)を用い、CuKαをX線源としてX線回折法により測定した。その結果を図1に示す。また、得られたX線回折パターンにおいて、2θ=14.5°の回折線と2θ=29°の回折線との強度比〔I(14/29)値〕を求めた。その結果を表1に示す。
<X-ray diffraction (XRD) measurement>
Each core-shell type oxide material powder obtained in the examples and comparative examples was heated at 1100 ° C. for 5 hours in the air. The X-ray diffraction pattern of the ordered phase (ordered phase of the core) of the core-shell oxide material powder after heating was measured using an X-ray diffractometer (“RINT2100” manufactured by Rigaku Corporation) using CuKα as an X-ray source. It was measured by a diffraction method. The result is shown in FIG. Further, in the obtained X-ray diffraction pattern, the intensity ratio [I (14/29) value] between the diffraction line at 2θ = 14.5 ° and the diffraction line at 2θ = 29 ° was determined. Table 1 shows the results.

<X線光電子分光分析>
実施例及び比較例で得られた各コアシェル型酸化物材料粉末のX線光電子分光(XPS)スペクトルを、X線光電子分光分析装置(ULVAC−PHI社製「Quantera SXM」)を用い、単色化されたAlKα(1486.6eV)をX線源とし、光電子取出角:45°、分析領域:約200μmφ、チャージアップ補正:Zr3d 182.2eV(ZrO)の条件で測定した。得られたXPSスペクトルに基づいて、コアシェル型酸化物材料粉末の表面(シェルの表面)から深さ3nmの領域(約200μmφ)に存在する元素を定量し、Al元素の平均濃度〔=Al量/(Al量+Ce量+Zr量+Pr量)×100〕を求めた。その結果を表1に示す。
<X-ray photoelectron spectroscopy analysis>
The X-ray photoelectron spectroscopy (XPS) spectrum of each core-shell type oxide material powder obtained in the examples and comparative examples was converted to a monochromatic color using an X-ray photoelectron spectrometer (ULQUA-PHI “Quantera SXM”). AlKα (1486.6 eV) was used as an X-ray source, and the measurement was carried out under the conditions of a photoelectron extraction angle: 45 °, an analysis region: about 200 μmφ, and a charge-up correction: Zr3d 182.2 eV (ZrO 2 ). Based on the obtained XPS spectrum, the elements present in a region (about 200 μmφ) having a depth of 3 nm from the surface (shell surface) of the core-shell oxide material powder were quantified, and the average concentration of Al element [= Al amount / (Al amount + Ce amount + Zr amount + Pr amount) × 100] was obtained. Table 1 shows the results.

<触媒調製>
実施例及び比較例で得られた各コアシェル型酸化物材料粉末とRh担持Al−ZrO−La−Nd複合酸化物粉末(Rh担持量:0.2質量%、Al:ZrO:La:Nd=30質量%:64質量%:4質量%:2質量%、平均粒径:20μm)とを質量比1:1で乳鉢を用いて混合し、得られた混合物を1tの静水圧で加圧成形し、得られた成型体を、粒径が0.5〜1mmとなるように粉砕・分級して、ペレット触媒を得た。
<Catalyst preparation>
Examples and core-shell type oxide material powder obtained in Comparative Example and Rh-supporting Al 2 O 3 -ZrO 2 -La 2 O 3 -Nd 2 O 3 composite oxide powder (Rh support amount: 0.2 wt% , Al 2 O 3 : ZrO 2 : La 2 O 3 : Nd 2 O 3 = 30% by mass: 64% by mass: 4% by mass: 2% by mass, average particle size: 20 μm) and a mortar at a mass ratio of 1: 1. , And the resulting mixture is press-molded under a hydrostatic pressure of 1 t, and the obtained molded body is pulverized and classified so that the particle size becomes 0.5 to 1 mm, thereby obtaining a pellet catalyst. Was.

<高温耐久試験>
得られたペレット触媒1.5gを直径10mmの円筒状の反応管に充填し、このペレット触媒に、1100℃の温度条件下、ガス流量10L/分で、リッチガス〔H(2%)+CO(10%)+N(88%)〕とリーンガス〔O(1%)+CO(10%)+N(89%)〕とを5分間ずつ交互に切り替えながら5時間流通させた。
<High temperature endurance test>
1.5 g of the obtained pellet catalyst was charged into a cylindrical reaction tube having a diameter of 10 mm, and the rich gas [H 2 (2%) + CO 2] was added to the pellet catalyst at a temperature of 1100 ° C. and a gas flow rate of 10 L / min. (10%) + N 2 (88%)] and lean gas [O 2 (1%) + CO 2 (10%) + N 2 (89%)] were allowed to flow for 5 hours while alternately switching each for 5 minutes.

<酸素吸蔵放出速度(OSC−r)及び酸素吸蔵放出量(OSC)の測定>
高温耐久試験後のペレット触媒0.25gと石英砂0.25gとの混合物を反応管に充填した。この触媒に、触媒入りガス温度500℃、ガス流量10L/分で、リッチガス〔CO(2体積%)+N(残部)〕を3分間流通させた後、流通ガスをリーンガス〔O(1体積%)+N(残部)〕に切り替えて3分間流通させ、再度、流通ガスを前記リッチガスに切り替えた。この2回目の流通ガス切り替え後5秒間及び3分間の触媒出ガス中のCO量から、酸素吸蔵放出速度(OSC−r、単位:μmol/(g・s))及び酸素吸蔵放出量(OSC、単位:μmol/g)をそれぞれ求めた。それらの結果を表1に示す。
<Measurement of oxygen storage / release rate (OSC-r) and oxygen storage / release amount (OSC)>
A mixture of 0.25 g of the pellet catalyst and 0.25 g of quartz sand after the high temperature durability test was filled in the reaction tube. This catalyst entering the catalyst gas temperature 500 ° C., at a gas flow rate 10L / min, rich gas [CO (2 vol%) + N 2 (balance)] After circulating for three minutes, lean gas circulation gas [O 2 (1 volume %) + N 2 (remainder)] and circulated for 3 minutes, and again the flowing gas was switched to the rich gas. From the amount of CO 2 in the catalyst outgas for 5 seconds and 3 minutes after the second circulation gas switching, the oxygen storage and release rate (OSC-r, unit: μmol / (g · s)) and the oxygen storage and release amount (OSC , Unit: μmol / g). Table 1 shows the results.

<50%NOx浄化温度測定>
高温耐久試験後のペレット触媒0.5gを反応管に充填した。この触媒に、モデルガス〔NO(1200体積ppm)+CO(10体積%)+O(0.646体積%)+CO(0.7体積%)+C(1600体積ppmC)+H(0.233体積%)+HO(10体積%)+N(残部)〕を、100℃から600℃まで50℃/分の昇温速度で加熱しながら、ガス流量10L/分で流通させ、各触媒入りガス温度において触媒入りガス中及び触媒出ガス中のNOの濃度を測定してNOx浄化率を算出し、NOxが50%浄化された時点の触媒温度(50%NOx浄化温度)を求めた。その結果を表1に示す。
<50% NOx purification temperature measurement>
The reaction tube was filled with 0.5 g of the pellet catalyst after the high temperature durability test. A model gas [NO (1200 vol ppm) + CO 2 (10 vol%) + O 2 (0.646 vol%) + CO (0.7 vol%) + C 3 H 6 (1600 vol ppm C) + H 2 (0 vol. .233% by volume) + H 2 O (10% by volume) + N 2 (remainder)] while heating at a heating rate of 50 ° C./min from 100 ° C. to 600 ° C., and flowing at a gas flow rate of 10 L / min. The NOx purification rate was calculated by measuring the NO concentration in the catalyst-containing gas and the catalyst exit gas at the catalyst-containing gas temperature, and the catalyst temperature at the time when 50% of NOx was purified (50% NOx purification temperature) was obtained. . Table 1 shows the results.

<NOx過渡浄化率測定>
高温耐久試験後のペレット触媒0.5gを反応管に充填した。この触媒に、ガス流量10L/分で、リーンガス〔NO(1500体積ppm)+CO(10体積%)+O(0.8体積%)+CO(0.65体積%)+C(3000体積ppmC)+HO(5体積%)+N(残部)〕を流通させながら触媒入りガス温度が600℃になるまで昇温した後、流通ガスをリッチガス〔NO(1500体積ppm)+CO(10体積%)+CO(0.65体積%)+C(3000体積ppmC)+HO(5体積%)+N(残部)〕に切り替えて5分間流通させ、さらに、流通ガスを前記リーンガスに切り替えて5分間流通させ、前処理を行なった。その後、触媒入りガス温度を500℃に降温し、ガス流量10L/分で、流通ガスとして前記リッチガスと前記リーンガスとを交互に5分間毎に切り替えながら流通させた。3サイクル目の前記リッチガス流通時(5分間)の触媒入りガス中及び触媒出ガス中の平均NO濃度を測定し、NOx過渡浄化率を求めた。その結果を表1に示す。
<Measurement of NOx transient purification rate>
The reaction tube was filled with 0.5 g of the pellet catalyst after the high temperature durability test. A lean gas [NO (1500 vol ppm) + CO 2 (10 vol%) + O 2 (0.8 vol%) + CO (0.65 vol%) + C 3 H 6 (3000 vol) ppmC) + H 2 O (5% by volume) + N 2 (remainder)], the temperature of the gas containing the catalyst was raised to 600 ° C., and the flowing gas was rich gas [NO (1500 ppm by volume) + CO 2 (10 (Volume%) + CO (0.65 vol%) + C 3 H 6 (3000 vol ppm C) + H 2 O (5 vol%) + N 2 (remainder)], and circulate for 5 minutes. The mixture was switched and circulated for 5 minutes to perform pretreatment. Thereafter, the temperature of the catalyst-containing gas was lowered to 500 ° C., and the gas was flowed at a gas flow rate of 10 L / min while switching the rich gas and the lean gas alternately every 5 minutes as flowing gas. The average NO concentration in the gas entering the catalyst and the gas exiting the catalyst during the third cycle of the rich gas flow (5 minutes) were measured to determine the NOx transient purification rate. Table 1 shows the results.

表1に示した結果から明らかなように、実施例1〜5及び比較例1で得られたコアシェル型酸化物材料粉末はいずれも、CuKαをX線源とするX線回折パターンにおける回折線強度比〔I(14/29)値〕が0.02以上であり、パイロクロア相及びκ相のうちの少なくとも一方の規則相を有するものであることが確認された。一方、比較例2で得られたコアシェル型酸化物材料粉末は、CuKαをX線源とするX線回折パターンにおいて、2θ=14.5°の回折線が観測されず(I(14/29)=0)、パイロクロア相及びκ相のいずれの規則相も形成されていないことがわかった。   As is clear from the results shown in Table 1, the core-shell type oxide material powders obtained in Examples 1 to 5 and Comparative Example 1 each had a diffraction line intensity in an X-ray diffraction pattern using CuKα as an X-ray source. The ratio [I (14/29) value] was 0.02 or more, and it was confirmed that the composition had at least one of the pyrochlore phase and the kappa phase. On the other hand, in the core-shell oxide material powder obtained in Comparative Example 2, in the X-ray diffraction pattern using CuKα as the X-ray source, no diffraction line at 2θ = 14.5 ° was observed (I (14/29) = 0), it was found that neither the pyrochlore phase nor the kappa phase was formed.

また、実施例1〜5で得られたコアシェル型酸化物材料粉末を用いたペレット触媒は、比較例1〜2で得られたコアシェル型酸化物材料粉末を用いたペレット触媒に比べて、酸素吸蔵放出量(OSC)及び酸素吸蔵放出速度(OSC−r)に優れたものであり、また、50%NOx浄化温度が低く、低温でのNOx浄化活性に優れたものであることがわかった。   In addition, the pellet catalyst using the core-shell oxide material powder obtained in Examples 1 to 5 has a higher oxygen storage capacity than the pellet catalyst using the core-shell oxide material powder obtained in Comparative Examples 1 and 2. It was found to be excellent in release amount (OSC) and oxygen storage / release rate (OSC-r), and low in 50% NOx purification temperature and excellent in NOx purification activity at low temperature.

さらに、実施例1〜5及で得られたコアシェル型酸化物材料粉末を用いたペレット触媒は、比較例2で得られたコアシェル型酸化物材料粉末を用いたペレット触媒に比べて、NOx過渡浄化率が高く、流通ガスの組成変化に素早く対応できるものであることがわかった。中でも、セリア−ジルコニア系固溶体粉末が所定の二次粒子径D50を有し、Al元素の平均濃度が30at%以上のコアシェル型酸化物材料粉末を用いたペレット触媒(実施例2〜5)は、NOx過渡浄化率が特に優れており、流通ガスの組成変化に更に素早く対応できるものであることがわかった。   Furthermore, the pellet catalyst using the core-shell type oxide material powder obtained in Examples 1 to 5 was compared with the pellet catalyst using the core-shell type oxide material powder obtained in Comparative Example 2 in terms of NOx transient purification. It was found that the ratio was high, and that it could respond quickly to changes in the composition of the flowing gas. Among them, the ceria-zirconia solid solution powder has a predetermined secondary particle diameter D50, and the pellet catalyst (Examples 2 to 5) using a core-shell type oxide material powder having an average concentration of Al element of 30 at% or more, It was found that the NOx transient purification rate was particularly excellent, and that it could respond more quickly to changes in the composition of the flowing gas.

以上説明したように、本発明のコアシェル型酸化物材料を用いることによって、高温に曝された場合であっても、優れた酸素吸蔵放出能(酸素吸蔵量(OSC)及び酸素吸蔵放出速度(OSC−r))を有し、かつ、優れたNOx浄化性能を発現する排ガス浄化用触媒を得ることが可能となる。   As described above, by using the core-shell oxide material of the present invention, even when exposed to high temperatures, excellent oxygen storage / release capacity (oxygen storage capacity (OSC) and oxygen storage / release rate (OSC) -R)), and it is possible to obtain an exhaust gas purifying catalyst which exhibits excellent NOx purifying performance.

したがって、本発明のコアシェル型酸化物材料は、自動車の内燃機関等から排出される、窒素化合物を含有する排ガスを浄化するための排ガス浄化用触媒の担体や助触媒等として有用である。   Therefore, the core-shell oxide material of the present invention is useful as a carrier or a promoter of an exhaust gas purifying catalyst for purifying exhaust gas containing nitrogen compounds, which is discharged from an internal combustion engine of an automobile or the like.

Claims (6)

パイロクロア相及びκ相のうちの少なくとも一方の規則相を有するセリア−ジルコニア系固溶体粉末からなるコアと、該コアの一部の表面に配置されているアルミナ系酸化物からなるシェルとを備え、
前記セリア−ジルコニア系固溶体粉末の体積基準の粒度分布における累積体積が50%となる二次粒子径D50が0.2〜8.0μmであり、
X線光電子分光分析により測定される、前記シェルの表面から深さ3nmの領域におけるAl元素の平均濃度が25〜75at%であ
大気中、1100℃で5時間加熱した後の、CuKαを用いたX線回折測定により得られるX線回折パターンから求められる2θ=14.5°の回折線と2θ=29°の回折線との強度比〔I(14/29)値〕が0.030以上である、
ことを特徴とするコアシェル型酸化物材料。
A core comprising a ceria-zirconia-based solid solution powder having at least one regular phase of a pyrochlore phase and a κ phase, and a shell composed of an alumina-based oxide disposed on a partial surface of the core,
A secondary particle diameter D50 at which the cumulative volume in the volume-based particle size distribution of the ceria-zirconia-based solid solution powder becomes 50% is 0.2 to 8.0 µm;
As measured by X-ray photoelectron spectroscopy, the average concentration of Al element in the region of the depth of 3nm from the surface of the shell is Ri 25~75At% der,
After heating at 1100 ° C. for 5 hours in the air, a 2θ = 14.5 ° diffraction line and a 2θ = 29 ° diffraction line obtained from an X-ray diffraction pattern obtained by X-ray diffraction measurement using CuKα were used. The intensity ratio [I (14/29) value] is 0.030 or more;
A core-shell type oxide material characterized by the above-mentioned.
前記シェルの含有量が前記コア100質量部に対して0.05〜2.0質量部であることを特徴とする請求項1に記載のコアシェル型酸化物材料。   The core-shell oxide material according to claim 1, wherein the content of the shell is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the core. 前記コアがCe以外の希土類元素を更に含有するものであることを特徴とする請求項1又は2に記載のコアシェル型酸化物材料。   3. The core-shell oxide material according to claim 1, wherein the core further contains a rare earth element other than Ce. 4. X線光電子分光分析により測定される、前記シェルの表面から深さ3nmの領域におけるAl元素の平均濃度が30〜75at%であることを特徴とする請求項1〜3のうちのいずれか一項に記載のコアシェル型酸化物材料。   The average concentration of the Al element in a region at a depth of 3 nm from the surface of the shell, measured by X-ray photoelectron spectroscopy, is 30 to 75 at%. The core-shell oxide material according to 1. 請求項1〜4のうちのいずれか一項に記載のコアシェル型酸化物材料と、該コアシェル型酸化物材料に接触している貴金属とを備えていることを特徴とする排ガス浄化用触媒。   An exhaust gas purifying catalyst comprising: the core-shell oxide material according to claim 1; and a noble metal in contact with the core-shell oxide material. 請求項5に記載の排ガス浄化用触媒に、窒素酸化物を含有する排ガスを接触せしめることを特徴とする排ガス浄化方法。   An exhaust gas purification method comprising contacting the exhaust gas-purifying catalyst according to claim 5 with an exhaust gas containing nitrogen oxides.
JP2017048998A 2017-03-14 2017-03-14 Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method Active JP6630305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017048998A JP6630305B2 (en) 2017-03-14 2017-03-14 Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048998A JP6630305B2 (en) 2017-03-14 2017-03-14 Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2018150207A JP2018150207A (en) 2018-09-27
JP6630305B2 true JP6630305B2 (en) 2020-01-15

Family

ID=63679342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048998A Active JP6630305B2 (en) 2017-03-14 2017-03-14 Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP6630305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446638B2 (en) 2017-12-28 2022-09-20 Umicore Shokubai Japan Co., Ltd Hydrogen-producing catalyst and exhaust gas purifying catalyst using same
JP7401392B2 (en) 2020-05-20 2023-12-19 トヨタ自動車株式会社 Core-shell type oxygen absorbing and releasing material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352300B2 (en) * 2001-08-30 2009-10-28 株式会社豊田中央研究所 Composite oxide, method for producing the same, and co-catalyst for exhaust gas purification
JP4196745B2 (en) * 2003-06-12 2008-12-17 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP4175186B2 (en) * 2003-06-12 2008-11-05 トヨタ自動車株式会社 Exhaust gas purification catalyst and production method thereof
EP2671638B1 (en) * 2011-02-01 2018-06-27 Umicore Shokubai Japan Co., Ltd. Catalyst for cleaning exhaust gas
JP5533783B2 (en) * 2011-05-19 2014-06-25 トヨタ自動車株式会社 Catalyst for exhaust gas purification of internal combustion engine
JP5815496B2 (en) * 2012-12-07 2015-11-17 トヨタ自動車株式会社 Composite oxide material and exhaust gas purification catalyst using the same
JP5763711B2 (en) * 2013-06-13 2015-08-12 株式会社豊田中央研究所 Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP6287687B2 (en) * 2014-08-25 2018-03-07 トヨタ自動車株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2018150207A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
CN107106981B (en) Exhaust gas purifying catalyst
JP5763711B2 (en) Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP4977467B2 (en) Cerium-zirconium composite oxide, method for producing the same, oxygen storage / release material using the same, exhaust gas purification catalyst, and exhaust gas purification method
JP5127380B2 (en) Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP6120309B2 (en) Exhaust gas purification catalyst
JP5547539B2 (en) Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP5763722B2 (en) Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP6499683B2 (en) Core-shell type oxide material, manufacturing method thereof, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP5565569B2 (en) Exhaust gas purification catalyst
JPWO2008093471A1 (en) Catalyst system used in automobile exhaust gas purification device, exhaust gas purification device using the same, and exhaust gas purification method
CN107206316A (en) Exhaust emission control catalyst
JP5900395B2 (en) Composite oxide particles and exhaust gas purification catalyst using the same
JP5580722B2 (en) Exhaust gas purification catalyst and process for producing the same
JP6701581B2 (en) Oxygen absorbing/releasing material
WO2016158656A1 (en) Exhaust purification catalyst
EP2781487B1 (en) Composite oxide
US9868087B2 (en) Core-shell oxide material, method for producing the same, and catalyst and method for purification of exhaust gas using the core-shell oxide material
JP6630305B2 (en) Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP5574222B2 (en) CO oxidation catalyst and exhaust gas purification method using the same
JP7045942B2 (en) Core-shell type oxygen absorption / release material, its manufacturing method, exhaust gas purification catalyst using it, and exhaust gas purification method
CN107224971B (en) Oxygen-occluding material and method for producing same
JP7401392B2 (en) Core-shell type oxygen absorbing and releasing material
JP7307710B2 (en) Core-shell type oxygen storage/release material, method for producing same, catalyst for purifying exhaust gas using the same, and method for purifying exhaust gas
JP2006341176A (en) Manufacturing method of catalyst carrier and manufacturing method of exhaust gas purifying catalyst
JP2024000368A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191206

R150 Certificate of patent or registration of utility model

Ref document number: 6630305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250